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Abstract

Reference linking, or the identification of the
paper in a database that is cited by a given
reference, is an important part of academic
publishing. In this work, we explored refer-
ence linking based on the lexical and semantic
similarity in the metadata of references and
candidate papers. Our experiments affirmed
the strong accuracy of Jaccard similarity re-
ported by prior work (lowest percentage error
of 0.95%) but also highlighted its poor infer-
ence speed (0.88-1.89 s per query reference,
depending on the amount of metadata used).
In contrast, semantic similarity-based linking
achieves about twice the error rate (1.90%)
while being 94 times faster (0.02 s per query
reference). We recommend that future refer-
ence linking efforts employ a mixed approach
of first using the coarser but faster semantic
similarity-based linking, and then, only if no
candidate achieves a high semantic similarity
score, resorting to the slower but more accurate
Jaccard-based lexical linking.

1 Introduction

Reference lists are critical components of academic
writing that inform readers of relevant and influ-
ential works (Tkaczyk, 2018a). However, linking
each reference with the exact paper being cited
(see Figure 1) is a non-trivial task, with Liang et al.
(2021) finding that the percentage of S20RC (Lo
et al., 2020) papers for which all references to
PubMed are correctly linked is only 4-7%. In-
correct reference linking causes more than just in-
convenience to readers; it also impairs our ability
to reliably compute quantitative measures of re-
search value and importance, such as the h-index
and journal impact factor, and thus academic ca-
reer prospects and perception of journal prestige
(Aksnes, 2006; McKiernan et al., 2019). The expo-
nential expansion of the literature (Fortunato et al.,
2018) is likely to only make linking references cor-
rectly and quickly even more challenging.
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Figure 1: Illustration of reference linking. The metadata
fields listed are cited paper Title, author Last names,
publication Venue name, and publication Year.

In this work, we examine the task of linking ref-
erences with the papers being cited. We explore
various linking approaches that use lexical and se-
mantic similarity of reference and paper metadata,
and compare them on linking accuracy and infer-
ence speed. Our experiments show that semantic
linking makes for a strong first-pass approach be-
cause of its speed and decent accuracy, whereas
lexical linking is more suitable as a fine-grained
fallback because it requires more time.

2 Dataset

The datasets made available by the prior works
involve either very few references (up to 2K) or
very few papers (less than 20K) (Tkaczyk, 2018a,b,
2019; Ghavimi et al., 2019; Lo et al., 2020). There-
fore, for more meaningful performance evaluations,
we curated a custom dataset.

2.1 Dataset construction

All data for this work was derived from the PubMed
Central Open Access (PMCOA) subset, one of the
largest repositories for publications in the biomedi-
cal and life science domains. We downloaded all
5.38 million PMCOA papers as XML files in bulk'
and used a custom parser? to represent the content

"From ncbi.nlm.nih.gov/pmc/tools/ftp on 2023-06-18.
2 github.com/titipata/pubmed_parser (MIT license).
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of each paper in a structured JSON format. We then
removed papers that had very short titles or that
were not in English?; for details, see Appendix A.
The 5.27 million remaining papers formed our set
‘P of reference linking candidates.

Next, we looked within the papers in P for ref-
erences © to PMCOA papers. Many references
lacked the PMC identifier (PMCID) of the ground-
truth cited paper P,, but had the DOI or PubMed
identifier (PMID). In such cases, we deduced the
PMCID of P, by constructing the mapping be-
tween DOI, PMID, and PMCID. Finally, to avoid
overlap with the training data for the semantic
similarity-based approaches (see Appendix B), we
ignored all references x which cited papers P, pub-
lished before 2022. This led to a test set of 326
thousand references.

2.2 Metadata-based representative texts

For each sample x (resp. candidate P), we con-
structed a representative text r,, (resp. 7p), explor-
ing two different variants:

Raw. We formed the raw 7, by copy-pasting raw
references, i.e. by concatenating (with a single
space) all the metadata of = in the corresponding
original XML file. For each candidate P, we de-
signed 7 p to be very similar to the typical reference
entry by concatenating (with a single space) the au-
thors’ Last names, the Title, the publication Year,
and the publication Venue name.

Modes. To contrast against Raw, we also ex-
plored using only selected metadata fields. Asin Lo
et al. (2020), we considered Title information an
essential part of all representative texts. We supple-
mented Titles with the four most common metadata
fields: publication Venue name, publication Year,
author Last names*, and Abstract (see Table 1). All
unavailable metadata fields were represented by an
empty string. For examples, see Appendix C.

We defined the mode in terms of the initial letters
of the used metadata field(s) — for instance, mode
TV indicates that Title and Venue were used.

3 Methods

Based on the representative texts r, and rp we
computed a similarity score s(r,7p). We then
performed a nearest neighbour search and linked

3 github.com/pemistahl/lingua-py (Apache 2.0 license).
“All detected last names were concatenated with a single
space to form a single string.

T v Y L A

100.0 100.0 100.0 96.5 87.8
992 999 993 904 0.0

Candidates
Samples

Table 1: Percentage availability of Title, publication
Venue name, publication Year information, author Last
names, and Abstract among candidates and samples. As
might be expected, no references had an abstract.

x to the candidate paper with the highest similar-
ity score. The next subsections introduce the two
forms of similarity we explored, namely, lexical
similarity and semantic similarity.

3.1 Linking with lexical similarity

We considered two forms of lexical similarity:

TitleMatch. We looked for exact matches in pre-
processed titles, and, in cases of multiple matches,
we randomly selected the paper for linking.

Jaccard. This refers to the Jaccard index-based
lexical similarity used by Lo et al. (2020) when
constructing S20RC, a massive corpus of scientific
papers. The similarity score s(7, 7p) is computed
as the harmonic mean of the Jaccard index J and a
containment index C":

2x JxC
J+C

s(rg,rp) =

The indexes J and C' are based on the representa-
tive texts 1, and rp:

. ‘Nz ﬂ./\fp‘
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where N, and Np respectively denote the sets of
trigrams on the character level extracted from the
representative texts r, and rp. Unlike Lo et al.
(2020), to increase recall, we chose to not use any
threshold for linking.

We were unable to test the lexical-based meth-
ods explored by Tkaczyk (2018a,b, 2019) because
they made use of CrossRef’s APIs and were thus
applicable only within CrossRef’s databases, not
within our custom dataset.

J and C =

3.2 Linking with semantic similarity

This approach involved using pre-trained text en-
coders to compute latent embeddings v, and vp
from the representative texts r, and rp, normal-
ising all embeddings with the L2 norm, then per-
forming a nearest neighbour search with cosine
similarity as a proxy for semantic similarity.
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We experimented with the following four pre-
trained text encoders:

Sent2vec. Sent2vec (Pagliardini et al., 2018) was
trained with a simple, unsupervised objective to
produce distributed representations for general do-
main texts.”

SBERT. SBERT (Reimers and Gurevych, 2019)
was developed by using siamese and triplet net-
works with BERT (Devlin et al., 2019) to produce
semantically meaningful embeddings for general
domain text.®

HAtten. HAtten (Gu et al., 2022) is an encoder
for scientific texts that was trained on local cita-
tion recommendation, i.e. for finding appropriate
papers to cite in a given sentence.’

SciNCL. SciNCL (Ostendorff et al., 2022) is sim-
ilar to HAtten, but was trained with a more nuanced
citation graph embedding-based contrastive learn-
ing objective.?®

4 Experiments

We conducted all experiments under the inference
setting (i.e. linking one sample at a time) on a sin-
gle RTX 3090 GPU and over two random test sub-
sets (seeds 1, 2), each containing 20 thousand sam-
ples. To reduce the over-representation of highly-
cited papers, we ensured that each ground-truth
cited paper appeared at most once per test subset.

For all modes and all approaches, the metadata
texts were truncated (see Appendix D), lowercased,
then stripped of excess white spaces and all punc-
tuation. For lexical approaches only, we replaced
special characters with a single space.

Because certain experiments were very time-
consuming (see Section 5.2), we selected the
modes to use with each model greedily. This en-
tailed combining the best two modes involving two
metadata fields to form a three-field mode, then the
next best two-field mode to form a four-field mode,
and so on, until accuracy stopped improving. For
simplicity, we also always used the same mode for
samples and candidates.

Below, we outline how the selected metadata
texts were provided as input for each approach:

Ssent2vec_wiki_unigrams (BSD license).

®huggingface.co/sentence-transformers/all-MiniLM-L6-
v2 (Apache 2.0 license).

"We used HAtten trained on arXiv (MIT license).

8huggingface.co/malteos/scincl (MIT license).

» Jaccard, Sent2vec: Concatenation with “”.
¢ SBERT: Concatenation with [SEP].

e HAtten, SciNCL: Concatenation with [SEP]
for mode TA and with ““” for all other modes.

Note that we were unable to run Jaccard with mode
TA due to memory constraints.

We were unable to find the code used by Lo et al.
(2020) for reference linking with Jaccard similarity,
so we implemented it on our own and optimised
it with GPU acceleration (see Appendix E). For
the nearest neighbour search required by the se-
mantic linking approaches, we used the algorithm
designed by Gu et al. (2022) because we found it
to be faster than FAISS (Johnson et al., 2019).

5 Results and discussion

We assessed performance on two fronts. The first
is percentage error, i.e. the percentage of samples
for which the linked candidate was not the ground-
truth cited paper. The second is inference time,
i.e. the time required per sample x to construct the
representative text r,,, compute the similarity score
against all candidates, and find the top-scoring can-
didate. The time taken to process candidates was
excluded because it could be performed in advance.

5.1 Jaccard linking is more accurate

TitleMatch performed notably poorly (27.08% er-
ror) in our tests (see Table 2). We expected the
errors to be caused by the randomness involved
with resolving multiple matches; however, only
0.22% of the wrongly-linked samples even had
matching titles with the ground-truth cited papers.
This suggested that the lexical differences between
titles in references and of cited papers were often
so major that they could not be overcome with our
preprocessing, justifying developing more flexible
methods for reference linking.

Jaccard-based lexical linking achieved the low-
est error of just 0.95% with Raw representatives,
whereas the lowest percentage error with seman-
tic linking was 1.90%, achieved by SBERT with
mode TVL. The superior performance of Jaccard
linking may be due to representative texts being
concatenations of individual pieces of text, which
makes them less coherent and less like the naturally-
occurring text corpora used to pre-train semantic
encoders. Note that the semantic methods were
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Raw T TV TY TL TA TLY TVL TVY TVLY
TitleMatch - 27.07 - - - - - - - -
Jaccard 0.95 1.43 1.24 140 1.08 - - - 1.25 -
Sent2Vec 7.41 2.81 340 227 495 54.02 - - - -
SBERT 2.16 2.62 225 246 227 3512 - 1.90 - 1.92
HAtten 37.82 444 1989 475 874 79.28 - - - -
SciNCL 5.32 3.08 329 286 278 46.77 271 - - -

Table 2: Average percentage error (lower is better) on two test subsets. The best score per row is in bold and the

best overall is underlined.

evaluated zero-shot (i.e. without fine-tuning to ref-
erence linking specifically), which explains their
poorer performance.

For all approaches, accuracy (100-percentage
error) did not always improve with the number of
metadata fields used. This was particularly evident
in Raw references leading to worse accuracies for
most approaches than when only partial metadata
was used. This justifies the importance of parsing
metadata when reference linking.

All semantic linking approaches also performed
very poorly with mode TA. This was unsurprising
because the Abstract component for all samples
was an empty string whereas almost all candidates
had Abstracts (see Table 1), resulting in the repre-
sentative texts for samples and for candidates being
extremely dissimilar.

5.2 Semantic linking is much faster

TitleMatch was the fastest of all approaches, per-
forming each inference almost instantaneously, but
we disregarded it as a viable approach because of
its poor accuracy.

The four semantic reference linking approaches
required very little time per sample regardless of
the mode, with SBERT needing just 0.02 seconds.
In contrast, the Jaccard lexical approach took much
longer, ranging from 0.52 seconds with mode T
to 1.89 seconds with mode Raw. It follows that
SBERT with mode TVL achieves a 94 times higher
throughput than Jaccard with Raw. Because pa-
pers can have many references to be linked — the
average paper in our dataset had 41 references — we
find semantic linking to be much more feasible in
application than Jaccard-based linking.

5.3 Suggested framework

Based on our experiments, we recommend primar-
ily using semantic-based reference linking because
of its high accuracy and inference speed, and re-
sorting to Jaccard-based lexical linking for refer-

ences whose semantic link achieved a similarity
score lower than some threshold ¢. An appropri-
ate threshold value can be determined by using a
precision-recall curve; for SBERT with mode TVL,
we recommend ¢ = 0.7959 (see Appendix F).

6 Related works

Reference linking originated from the different task
of citation matching (Hitchcock et al., 1997; Mc-
Callum et al., 2000; Pasula et al., 2002), which aims
to group references that cite the same paper but
does not require identifying the paper being cited.
Reference linking is also similar to the task of /o-
cal citation recommendation (Gu et al., 2022), in
which appropriate papers to cite are recommended
based on a query sentence, except references are
not natural language sentences.

Most prior works on reference linking have re-
lied on lexical similarity in metadata as measured
by term frequency-based metrics (Lawrence et al.,
1999; Foufoulas et al., 2017; Lo et al., 2020) and
edit distances (Tkaczyk, 2018b, 2019), with some
works defining different lexical similarity measures
for each metadata field (Fedoryszak et al., 2013)
and training support vector machines to classify
candidate links (Ghavimi et al., 2019). In contrast,
our work explored the viability of semantic simi-
larity under the zero-shot setting and without any
handcrafted heuristics.

7 Conclusion

Reference linking is a surprisingly non-trivial task
where the straightforward approaches based on lex-
ical similarity are either not accurate or not fast.
In contrast, semantic similarity-based linking is a
promising approach that balances speed and accu-
racy. We encourage people who perform reference
linking to first do extensive exploration to under-
stand which metadata fields are most present within
their dataset before deciding on the mode and link-
ing method to use.



8 Limitations

The primary limitations of our study include:

* We did not explore additional metadata fields,
such as affiliation information, due to its ab-
sence in the raw papers. This aspect is left for
future investigation.

* The optimal ordering of metadata in modes
was not thoroughly examined, despite its po-
tential significance in constructing representa-
tive texts.

* We decided against fine-tuning any model for
reference linking because all models demon-
strated very strong accuracy under the zero-
shot setting.

In future, we will explore modelling the depen-
dencies among metadata fields and expand our
experiments to include papers from beyond the
biomedical domain.
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A Paper validation

Because PMCOA is a multilingual corpus but our
linking methods are designed for English text, we
used 1ingua’ to identify the language of each pa-
per based on its title. 1ingua performs better with
longer texts, so we ignored papers whose titles
were shorter than 10 characters.

%See github.com/pemistahl/lingua-py (Apache 2.0 license).

B Test split

Many of the semantic encoders we considered have
been trained on scientific text, so for fair compar-
isons, we needed to ensure our test set was disjoint
from all model’s train set. Sent2vec was released in
2018 and the SBERT pretrained weights we chose
were released in 2021. The train set for HAtten
consisted only of papers published up till 2019. As
for SciNCL, the train set was constructed from Sci-
Docs (Cohan et al., 2020) and S20RC (Lo et al.,
2020), both of which were released in 2020. With
these release dates in mind, we felt confident that
using only sample references that cite papers pub-
lished in and after 2022 would be suitable.

C Example representative texts

Table 3 provides examples of representative texts
for a sample reference.

Mode Representative text

direct metatranscriptomics survey of the

T . . .
sunflower microbiome and virome

direct metatranscriptomics survey of the
TL sunflower microbiome and virome wang
naupane feng pedersen marzano

direct metatranscriptomics survey of the
sunflower microbiome and virome viruses

TV

Table 3: Example representative texts (concatenated
with a single space) for the reference by Paudel et al.
(2022) to cite Wang et al. (2021).

D Truncation limits

For each metadata field, we chose truncation limits
(see Table 4) based on the 95-th percentile number
of characters in that field across all papers.

T L
120 60 4

vV Y A
2480

Truncation limit 200

Table 4: Truncation limits in terms of number of charac-
ters per metadata field.

E Jaccard implementation

The most straightforward method of finding the
candidate P whose representative r p has maximal
Jaccard similarity against the representative r, of a
sample z has a time complexity of O(nm), where
n is the number of candidates and m is the max-
imal length of r,,. We improved the efficiency to
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O(n + m) by using a trigram inverted index, but
inferences were still slow. Therefore, we decided
to optimise Jaccard linking with the GPU.

We represented each character in each string by
its ASCII code. Because special characters and
punctuation were removed during preprocessing,
all ASCII codes contained up to three digits, and
we ensured that all codes had exactly three dig-
its by prepending with zero wherever necessary.
This allowed us to associate each trigram with a
unique integer; for instance, “bat” is associated
with (0)98097116. In turn, after identifying and
alphabetically sorting the trigrams in each rp (resp.
rz), we could associate each P (resp. x) with a
vector of trigram integers wp (resp. wy).

We enforced a mandatory vector length ¢ on the
trigram integer vectors so that we could exploit the
GPU for parallel processing. Vectors longer than
¢ were truncated and vectors shorter than ¢ were
padded at the back with zeros. The exact value of £
depended on truncation limits relevant to the mode
being used; for instance, with mode TV, we let
¢ =200+ 60+ 1 = 261.

We used numba (Lam et al., 2015) to compute
Jaccard similarities with CUDA GPU programming
and used 16 threads per block.

F Precision-recall trade-off for SBERT

When following our suggestion of using both se-
mantic and lexical linking, our advice is to check
the precision-recall trade-off for the semantic link-
ing approach to select an appropriate threshold ¢.

1.000

0.995

0.990 (0.9954, 0.9895)
t=0.7959

Precision

0.985

0.980

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 2: Precision-recall curve for links made on the
two test subsets by SBERT with mode TVL. The posi-
tion on the curve that is closest to the theoretical opti-
mum (1.0, 1.0) is indicated with an orange dot.

In the case of SBERT with mode TVL, based on
Figure F, we recommend using ¢ = 0.7959.
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