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Abstract

The Information Contrastive (I-Con) framework revealed that over 23 representation learn-
ing methods implicitly minimize KL divergence between data and learned distributions that
encode similarities between data points. However, a KL-based loss may be misaligned with
the true objective, and properties of KL divergence such as asymmetry and unboundedness
may create optimization challenges. We present Beyond I-Con, a framework that enables
systematic discovery of novel loss functions by exploring alternative statistical divergences.
Key findings: (1) on unsupervised clustering of DINO-ViT embeddings, we achieve state-
of-the-art results by modifying the PMI algorithm to use total variation (TV) distance;
(2) supervised contrastive learning with Euclidean distance as the feature space metric is
improved by replacing the standard loss function with Jenson-Shannon divergence (JSD);
(3) on dimensionality reduction, we achieve superior qualitative results and better perfor-
mance on downstream tasks than SNE by replacing KL with a bounded f-divergence. Our
results highlight the importance of considering divergence choices in representation learning
optimization.

Keywords: representation learning, contrastive learning, clustering, dimensionality reduc-
tion

1. Introduction

The choice of optimization objective fundamentally determines the success of representa-
tion learning methods, yet the field has largely focused on a single statistical divergence
measure without systematic exploration of alternatives. The Information Contrastive (I-
Con) framework recently revealed that over 23 diverse representation learning methods all
implicitly minimize KL divergence between data and learned distributions that encode sim-
ilarities between data points (Alshammari et al., 2025). The natural question emerges: if
representation learning methods can be unified under minimizing the divergence between
two distributions, what happens when we systematically explore alternative divergences?

Contributions. We present Beyond I-Con, making the following contributions: (1) We
generalize I-Con by replacing KL divergence with alternative f-divergences, revealing that
KL is not unique in enabling meaningful feature optimization; (2) We systematically explore
f-divergences, uncovering novel loss functions with superior performance on unsupervised
clustering, supervised contrastive learning, and dimensionality reduction.

* Equal contribution
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2. Background: I-Con Overview

The [-Con framework unifies representation learning methods by framing them as “minimiz-
ing the average KL divergence between two conditional ‘neighborhood distributions’ that
define transition probabilities between data points,” which we index with i =1,..., N (Al-
shammari et al., 2025). p(j | 7) is typically a fixed “supervisory” distribution, and g4 (j | 7)
are learnable transition probabilities typically calculated using similarities between features
— see Figure 2a of the original paper for an illustration. The core I-Con loss function
(Equation 1 of the original paper) is

Licon = Eiwp(i) [DKL (p(|Z)HQ(|Z))] : (1)

By varying how p is constructed from the dataset and how ¢ is defined in terms of similar-
ities between features, L1.con reproduces the loss functions of many existing representation
learning methods.

3. Beyond I-Con Framework

We generalize the I-Con objective by replacing the KL divergence with any positive-definite
divergence D:

£Beyond I-Con = Eiwp(i) [D(p(h)HQ(h)” (2)

We focus on f-divergences including KL, Total Variation (TV), Jensen-Shannon (JSD),
and Hellinger because they are most directly comparable to KL as a measure of distance
between distributions — some losses such as JSD directly remedy weaknesses of KL such
as asymmetry and unboundedness.

4. Experimental Results

4.1. Unsupervised Clustering

We modify the Pointwise Mutual Information (PMI) clustering algorithm (Adaloglou et al.,
2023) by using different divergences than KL. We followed the same training setup as in the
I-Con paper, which clusters DINO ViT embeddings (Caron et al., 2021) on ImageNet-1K
(Deng et al., 2009) by training a linear classifier for 30 epochs with a batch size of 4096,
a learning rate of 1 x 1073, and the Adam optimizer (Kingma, 2015). Data augmenta-
tion was applied to the training samples. Table 1 contains the results of this experiment.
Clustering using PMI with TV outperforms the state-of-the-art on ViT-B/14 and ViT-L/14
embeddings.

4.2. Supervised Contrastive Learning

We trained ResNet-50 (He et al., 2016) models with supervised contrastive learning (Khosla
et al., 2020) on CIFAR-10 (Krizhevsky, 2009). We used a Euclidean distance metric on
features and trained for 150 epochs with a batch size of 2048 and learning rate of le-3.
We systematically varied divergence measures. We used the learned features to perform
classification by training a linear probe or applying k-nearest neighbors (k-NN). Results are
shown in Table 2.
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Method DiNO ViT-S/14 DiNO ViT-B/14 DiNO ViT-L/14
k-Means 51.84 52.26 53.36
TEMI (Adaloglou et al., 2023) 56.84 58.62 —
Debiased InfoNCE Clustering 57.8 + 0.26 64.75 + 0.18 67.52 + 0.28
JSD 53.50 63.80 66.60

TV 55.90 65.13 + 0.13 68.40 + 0.29
Hellinger 54.90 63.80 67.85

Table 1: Comparison of methods on ImageNet-1K clustering with respect to Hungarian
Accuracy. TV outperforms the state-of-the-art for ViT-B and ViT-L.

Divergence Linear probe test acc. k-NN (k = 7) test acc.

KL 90.03 £ 0.14 89.61 £+ 0.13
TV 83.23 £ 0.18 82.95 £ 0.16
Hellinger 90.47 £ 0.08 90.40 £ 0.09
JSD 90.84 + 0.11 90.62 + 0.11

Table 2: Downstream classification accuracy from SupCon-learned features on CIFAR-10.
Errors are standard errors of the mean over 5 seeds.

Both Hellinger distance and Jenson-Shannon divergence (JSD) exhibit better perfor-
mance than vanilla supervised contrastive learning (KL divergence). In particular, JSD
achieves the best performance.

4.3. Dimensionality Reduction

We also ran SNE (Hinton and Roweis, 2002) with a CNN backbone on CIFAR-10 using dif-
ferent divergences to visualize qualitative differences between resulting image embeddings,
as shown in Figure 1. Visually, while SNE with KL divergence creates highly overlap-
ping clusters, the clusters resulting from SNE with the other divergences are more cleanly
separated.

5. Analysis and Discussion

Across the tasks of unsupervised clustering, supervised contrastive learning, and dimen-
sionality reduction, we observe that a non-KL loss outperforms KL. We hypothesize this
is because optimizing for KL overly penalizes placing dissimilar points farther apart in the
feature space (KL diverges to infinity as ¢(j | ¢) — 0). This causes different clusters or
classes to crowd together and start overlapping with each other.

For example, in dimensionality reduction, SNE (Hinton and Roweis, 2002) is known to
have this crowding problem, which we also observe in Figure 1. Beyond I-Con provides a
solution by replacing the KL divergence in the loss with other distances/divergences. TV,
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Total Variation Hellinger JSD

Figure 1: Results for running SNE on CIFAR-10 using different divergences, after 150
epochs with a CNN model architecture at learning rate le-3. Each color rep-
resents a class. KL divergence produces highly overlapping categories in the SNE
visualization while other divergences achieve separation.

JSD, and Hellinger all penalize small values of ¢(j | 7) less than KL does, since they all
remain bounded as ¢(j | i) — 0.! Indeed, they all solve the crowding problem as seen in the
resultant low-dimensional visualizations (Figure 1). Appendix B provides further analysis
on the geometric arrangement of clusters in high- vs. low-dimensional spaces.

We also hypothesize that KL-based losses may be prone to unstable gradients during
training, similar to previous findings (Lazi¢ et al., 2021; Arjovsky et al., 2017). For example,
in dimensionality reduction, our gradient norm plots during training (Figure 2) show large
spikes in gradients near the beginning of training when the KL-based loss from vanilla SNE
is used.

6. Conclusion

In this work, we extended the I-Con representation learning framework with a new dimen-
sion — the type of f-divergence in the loss function. By experimenting with alternative
divergences, we achieve state-of-the-art ImageNet-1K clustering, surpass vanilla supervised
contrastive learning on CIFAR-10, and outperform SNE on CIFAR-10. Beyond I-Con chal-
lenges the default reliance on KL divergence in representation learning by showing that
alternative statistical divergences can yield superior performance and serve as a basis for
novel loss discovery.
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Appendix A. Supplementary Figures and Tables
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Figure 2: Gradient norms for each divergence from running SNE on CIFAR-10 images with
a CNN backbone. KL’s unbounded nature creates initialization instability that
manifests consistently across all network layers, while bounded divergences (TV,
Hellinger, JSD) provide more stable gradient behavior throughout training.

Appendix B. Geometric Analysis of the Crowding Problem

In this appendix, we illustrate with an example why the KL divergence loss results in
overcrowding in SNE.

Let the original high-dimensional space have d dimensions. A d-dimensional space per-
mits d + 1 clusters/classes that are equidistant from each other — say they’re distance 1
from each other. Now, mapping these clusters to a reduced d’-dimensional feature space
(d < d) while ensuring the clusters are still separated by distance at least 1 means that
some clusters will be very far from each other (Q(dl/ d,)) (Rogers, 1964). This incurs a high
KL penalty as q(j | i) < p(j | i) for data points i, j from two clusters that are now much
farther away each other. Thus, minimizing the KL loss inevitably leads to some clusters
being brought too close together (crowding) in the low-dimensional feature space to prevent
a high KL penalty from two clusters that are too far apart. Bounded divergences like TV,
Hellinger, and JSD resolve this issue since ¢(j | i) < p(j | 7) incurs a lower penalty.
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