
OPT2023: 15th Annual Workshop on Optimization for Machine Learning

Utility-based Perturbed Gradient Descent: An Optimizer for
Continual Learning

Mohamed Elsayed† MOHAMEDELSAYED@UALBERTA.CA

A. Rupam Mahmood†‡ ARMAHMOOD@UALBERTA.CA
†Department of Computing Science, University of Alberta
‡ Alberta Machine Intelligence Institute (Amii)

Abstract
Deep representation learning methods struggle with continual learning, suffering from both catas-
trophic forgetting of useful units and loss of plasticity, often due to rigid and unuseful units. While
many methods address these two issues separately, only a few currently deal with both simultane-
ously. In this paper, we introduce Utility-based Perturbed Gradient Descent (UPGD) as a novel
approach for the continual learning of representations. UPGD combines gradient updates with
perturbations, where it applies smaller modifications to more useful units, protecting them from
forgetting, and larger modifications to less useful units, rejuvenating their plasticity. We adopt
the challenging setup of streaming learning as the testing ground and design continual learning
problems with hundreds of non-stationarities and unknown task boundaries. We show that many
existing methods suffer from at least one of the issues, predominantly manifested by their decreas-
ing accuracy over tasks. On the other hand, UPGD continues to improve performance and surpasses
all methods in all problems, being demonstrably capable of addressing both issues.

1. Introduction

While AI has seen notable successes in natural language processing (Radford et al. 2018, Devlin
et al. 2019), games (Mnih et al. 2015, Silver et al. 2016), and computer vision (Krizhevsky et al.
2017), we are yet to see effective continual learning agents. Catastrophic forgetting (McCloskey &
Cohen 1989, Hetherington & Seidenberg 1989) in neural networks is widely recognized as a major
challenge of continual learning (de Lange et al. 2021). The phenomenon manifests as the failure of
gradient-based methods like SGD or Adam to retain or leverage past knowledge due to forgetting or
overwriting previously learned units (Kirkpatrick et al. 2017). In continual learning, these learners
often relearn recurring tasks, offering little gain over learning from scratch (Kemker et al. 2018).
This issue also raises a concern for reusing large practical models, where finetuning them for new
tasks causes significant forgetting of pretrained models (Chen et al. 2020, He et al. 2021).

Methods for mitigating catastrophic forgetting are primarily designed for specific settings. These
include settings with independently and identically distributed (i.i.d.) samples, tasks fully contained
within a batch or dataset, growing memory requirements, known task boundaries, storing past sam-
ples, and offline evaluation. Such setups are often impractical in situations where continual learning
is paramount, such as on-device learning. For example, retaining samples may not be possible due
to the limitation of computational resources (Hayes et al. 2019, Hayes et al. 2020, Hayes & Kannan
2022, Wang et al. 2023) or concerns over data privacy (Van de Ven et al. 2020).

© M. Elsayed† & A.R. Mahmood†‡.

UTILITY-BASED PERTURBED GRADIENT DESCENT

OfflineOnline

(a) Catastrophic Forgetting

0 50 100 150 200

Task Number

0.68

0.70

0.72

0.74

0.76

0.78

A
ve

ra
ge

O
nl

in
e

A
cc

ur
ac

y

(b) Loss of Plasticity

Task
6

Task
175

Task
176

Task
5

(c) Closer look at (b)
UPGD Adam-RestartsAdam

Figure 1: (a) Adam suffers from catastrophic forgetting and hence hardly improves performance.
Adam loses plasticity as newer tasks are presented and performs much worse than Adam
with restarts later. On the other hand, our proposed method, UPGD, quickly learns to
perform better than Adam with restarts and maintains plasticity throughout learning.

In the challenging and practical setting of streaming learning, catastrophic forgetting is more
severe and remains largely unaddressed (Hayes et al. 2019). In streaming learning, samples are
presented to the learner as they arise, which is non-i.i.d. in most practical problems. The learner
cannot retain the sample and is thus expected to learn from it immediately. Moreover, evaluation
happens online on the most recently presented sample. This setup mirrors animal learning (Hayes
et al. 2021, also c.f., list-learning, Ratcliff 1990) and is practical for many applications, such as
robotics or autonomous on-device learning. In this work, we consider streaming learning with
unknown task boundaries which further amplifies the issue of catastrophic forgetting.

Streaming learning in this work provides the learner with a stream of samples (xt,yt) generated
using a non-stationary target function ft such that yt = ft(xt). The learner observes the input
xt ∈ Rd, outputs the prediction ŷt ∈ Rm, and then observes the true output yt ∈ Rm, strictly in this
order. The learner is then evaluated immediately based on the online metric E(yt, ŷt), for example,
accuracy in classification or squared error in regression. The learner uses a neural network for
prediction and E or a related loss to learn the network parameters immediately without storing the
sample. The target function ft is locally stationary in time, where changes to ft occur occasionally,
creating a nonstationary continual learning problem composed of a sequence of stationary tasks.

Figure 1(a)subfigure illustrates catastrophic forgetting with Adam in the streaming learning set-
ting. Here, a sequence of tasks based on Label-Permuted EMNIST is presented to the learner. The
tasks are designed to be highly coherent, where the features learned in one task are fully reusable
in the other. Full details of the problem are described in Section 3. If the learner can remember
and leverage prior learning, it should continue to improve performance as more tasks are presented.
However, Figure 1(a)subfigure reveals that Adam can hardly improve its performance, which re-
mains at a low level of accuracy, indicating forgetting. Although catastrophic forgetting is com-
monly studied under offline evaluation (solid lines), the issue also manifests in online evaluation
(dashed lines). This result indicates that current representation learning methods are unable to
leverage previously learned useful features but instead forget and relearn them in subsequent tasks.

Yet another pernicious challenge of continual learning is loss of plasticity, where the learner’s
ability to learn new things diminishes. Recent studies reveal that SGD or Adam continues to lose
plasticity with more tasks, primarily due to features becoming difficult to modify (Dohare et al.
2021, Lyle et al. 2023). Several methods exist to maintain plasticity, but they generally do not

2

UTILITY-BASED PERTURBED GRADIENT DESCENT

address catastrophic forgetting. Figures 1(b)subfigure and 1(c)subfigure illustrate loss of plasticity,
where Adam is presented with a sequence of new tasks based on Input-Permuted MNIST. Adam’s
performance degrades with more tasks and becomes worse than Adam-Restarts, which learns from
scratch on each task. The stable performance of Adam-Restarts indicates that the tasks are of similar
difficulty. Yet, Adam becomes slower to learn over time, demonstrating loss of plasticity.

A method that preserves useful units, such as features or weights, while leaving the other units
adaptable would potentially address both catastrophic forgetting and loss of plasticity. Although
a few methods address both issues simultaneously, such methods expect known task boundaries,
maintain a replay buffer, or require pretraining, which does not fit streaming learning. In this paper,
we intend to fill this gap and present a continual learning method that addresses both catastrophic
forgetting and loss of plasticity in streaming learning without such limitations.

2. Method

To retain useful units while modifying the rest, we need a metric to assess their utility or usefulness.
Here, we first introduce a measure for weight utility and outline an efficient method for computing
it. Then, we devise an update rule that modifies weights based on their utility. Weight utility can be
defined as the change in loss when setting the weight to zero, essentially removing its connection
(Mozer & Smolensky 1988). Removing an important weight should result in increased loss. Ideally,
both immediate and future losses matter, but we can only assess immediate loss at the current step.

To define utility precisely, let us consider that the learner produces the predicted output ŷ using
a neural network with L layers, parametrized by the set of weightsW = {W1, ...,WL}. Here Wl

is the weight matrix at the l-th layer, and its element at the i-th row and the j-th column is denoted
by Wl,i,j . At each layer l, we get the activation output hl of the features by applying the activation
function σ to the activation input al: hl = σ(al). We simplify notations by defining h0

.
= x.

The activation output hl is then multiplied by the weight matrix Wl+1 of layer l+ 1 to produce the
next activation input: al+1,i =

∑dl
j=1Wl+1,i,jhl,j , ∀i, where hl ∈ Rdl . Here, σ applies activation

element-wise for all layers except for the final layer, which becomes the softmax function.
The utility Ul,i,j(Z) of the weight i, j at layer l and sample Z is defined as

Ul,i,j(Z)
.
= L(W¬[l,i,j], Z)− L(W, Z), (1)

where L(W, Z) is the sample loss given W , and L(W¬[l,i,j], Z) is a counterfactual loss where
W¬[l,i,j] is the same as W except the weight Wl,i,j is set to 0. We refer to it as the true utility
to distinguish it from its approximations, which are referred to as either approximated utilities or
simply utilities. Note that this utility is a global measure, and it provides a total ordering for weights
according to their importance. However, computing it is prohibitive since it requires additional Nw

forward passes, where Nw is the total number of weights.

2.1. Scalable Approximation of the True Utility

Since the computation of the true utility is prohibitive, we aim to approximate it such that no ad-
ditional forward passes are needed. To that end, we estimate the true utility by a first-order Taylor
approximation. We expand the counterfactual loss L(W¬[l,i,j], Z) around the current weight Wl,i,j

3

UTILITY-BASED PERTURBED GRADIENT DESCENT

and evaluate at weight zero. Hence, the approximation of Ul,i,j(Z) can be written as

Ul,i,j(Z) = L(W¬[l,i,j], Z)− L(W, Z)

≈ L(W, Z) +
∂L(W, Z)

∂Wl,i,j
(0−Wl,i,j)− L(W, Z) = −∂L(W, Z)

∂Wl,i,j
Wl,i,j . (2)

2.2. Utility-based Perturbed Gradient Descent

Now, we devise a new method called Utility-based Perturbed Gradient Descent (UPGD) that per-
forms gradient-based learning guided by utility-based information. The utility information is used
as a gate for the gradients to prevent large updates to already useful weights, addressing forgetting.
On the other hand, the utility information helps maintain plasticity by perturbing unuseful weights
which become difficult to change through gradients. The update rule of UPGD is given by

wl,i,j ← wl,i,j − α

(
∂L

∂wl,i,j
+ ξ

)(
1− Ūl,i,j

)
, (3)

where ξ ∼ N (0, 1) is the noise sample, α is the step size, and Ūl,i,j ∈ [0, 1] is a scaled utility. For
important weights with utility Ūl,i,j = 1, the weight remains unaltered even by gradient descent,
whereas unimportant weights with Ūl,i,j = 0 get updated by both perturbation and gradient descent.
Utility scaling is important for the UPGD update rule. We present here a global scaling. The global
scaled utility requires the maximum utility of all weights (e.g., instantaneous or trace) at every time
step, which is given by Ūl,i,j = ϕ(Ul,i,j/η). Here η is the maximum utility of the weights and ϕ is
the scaling function, for which we use sigmoid.

Another variation of UPGD, which we call non-protecting UPGD, is to add the utility-based
perturbation to the gradient as wl,i,j ← wl,i,j − α[∂L/∂wl,i,j + ξ(1 − Ūl,i,j)]. However, such an
update rule can only help against loss of plasticity, not catastrophic forgetting, as useful weights are
not protected from change by gradients. We include non-protecting UPGD in our experiments to
validate that using the utility information as a gate for both the perturbation and the gradient update
is necessary to mitigate catastrophic forgetting. We provide convergence analysis for both UPGD
and Non-protecting UPGD on non-convex stationary problems in Appendix A.

3. Experiments

Here, we compare the effectiveness of UPGD in mitigating continual learning issues against suit-
able baselines for our streaming learning setup, that is, without replay, batches, or task boundaries.
Unless stated otherwise, we averaged the performance of each method over 20 independent runs.

First, we use Input-Permuted MNIST, a problem where only loss of plasticity is present, and
investigate how UPGD and the other continual learning methods perform on this problem. In Input-
permuted MNIST, we permute the inputs every 5000 steps where the time step at each permutation
marks the beginning of a new task. After each permutation, the learned representations become
irrelevant to the new task, so the learner is expected to overwrite prior-learned representations as
soon as possible. Thus, the input-permuted MNIST is a suitable problem to study loss of plasticity.

We compare SGD with weight decay (SGD-W), PGD (Zhou et al. 2019), S&P (Ash & Adams
2020), which addresses loss of plasticity, AdamW (Loshchilov & Hutter 2019), UPGD-W, and

4

UTILITY-BASED PERTURBED GRADIENT DESCENT

Non-protecting UPGD-W. We also introduce and compare against Streaming Elastic Weight Con-
solidation (S-EWC), Streaming Synaptic Intelligence (S-SI), and Streaming Memory-Aware Intel-
ligence (S-MAS). These methods can be viewed as a natural extension of EWC (Kirkpatrick et al.
2017), SI (Zenke et al. 2017), and MAS (Aljundi et al. 2018), respectively, which are regularization-
based methods for mitigating forgetting to the streaming learning setting. Finally, we introduce and
compare against Streaming RWalk (S-RWalk). This can be seen as a natural extension of RWalk
(Chaudhry et al. 2018), a method that addresses both issues, adapted for streaming learning.

Fig. 2(a)subfigure shows that methods that only address catastrophic forgetting (e.g., S-EWC)
continue to decay in performance whereas methods that address loss of plasticity alone (e.g., S&P)
or together with catastrophic forgetting (e.g., UPGD), except S-RWalk, maintain their performance
level. We plot the average online accuracy against the number of tasks. The average online accuracy
is the percentage of correct predictions within each task, where the sample online accuracy is 1 for
correct prediction and 0 otherwise. The prediction of the learner is given by argmax over its output
probabilities. The learners are presented with a total of 1 million examples, one example per time
step, and use multi-layer (300× 150) networks with ReLU units.

Now, we study how UPGD and other continual learning address forgetting and loss of plasticity
using Label-permuted EMNIST, and Label-permuted mini-ImageNet. The labels are permuted every
2500 time step. Each learner is trained for 1M samples, one sample each time step. Such permuta-
tions should not make the learner change its learned representations since it can simply change the
weights of the last layer to adapt to that change. This makes the Label-permuted problems suitable
for studying catastrophic forgetting. We also might have loss of plasticity present in these problems.

0 50 100 150 200

Task Number

0.68

0.70

0.72

0.74

0.76

0.78

A
ve

ra
ge

O
nl

in
e

A
cc

ur
ac

y

(a) MNIST

0 100 200 300 400

Task Number

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

O
nl

in
e

A
cc

ur
ac

y

(b) EMNIST

0 100 200 300 400

Task Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

O
nl

in
e

A
cc

ur
ac

y

(c) miniImageNet
UPGD-W SGDW PGD AdamW Non-protecting UPGD-W Shrink and Perturb S-EWC S-MAS S-SI S-RWalk

Figure 2: Performance of methods on Input-permuted MNIST, Label-permuted EMNIST, and
Label-permuted mini-ImageNet. A utility trace is used for UPGD/Non-protecting UPGD.

Fig. 2(b)subfigure shows that methods addressing catastrophic forgetting, including UPGD-W
but except S-RWalk and S-SI, keep improving their performance and outperform methods that only
address loss of plasticity. Notably, we observe that S-RWalk, which can address forgetting, struggles
in this problem, likely due to the additional loss of plasticity. On the other hand, the performance
of S-SI and the rest of the methods keeps deteriorating over time. Fig. 2(c)subfigure exhibits the
same trends manifested in the previous problem, where methods addressing catastrophic forgetting
(e.g., S-EWC) performed the best, whereas methods addressing loss of plasticity (e.g., S&P) only
maintained their performance at a lower level.

5

UTILITY-BASED PERTURBED GRADIENT DESCENT

4. Related Works

Addressing Catastrophic Forgetting. Different approaches have been proposed to mitigate catas-
trophic forgetting. For example, replay-based methods (e.g., Chaudhry et al. 2019, Isele & Cosgun
2018, Rolnick et al. 2019) address forgetting by using a replay buffer to store incoming non-i.i.d.
data and then sample from the buffer i.i.d. samples. Catastrophic forgetting is also addressed by
parameter isolation methods (e.g., Rusu et al. 2016, Schwarz et al. 2018, Lee et al. 2019, Wortsman
et al. 2020, Ge et al. 2023) that can expand to accommodate new information without significantly
affecting previously learned knowledge. There are also sparsity-inducing methods (e.g., Liu et al.
2019, Pan et al. 2021) that work by maintaining sparse connections so that the weight updates can
be localized and not affect many prior useful weights. Finally, regularization-based methods (e.g.,
Kirkpatrick et al. 2017, Aljundi et al. 2018, Aljundi et al. 2019) use a quadratic penalty that dis-
courages the learner from moving too far from the previously learned weights. The penalty amount
is usually a function of the weight importance based on its contribution to previous tasks.

Addressing Loss of Plasticity. Dohare et al. (2023) introduced a method that maintains plas-
ticity by continually replacing less useful features and pointed out that methods with continual
injection of noise (e.g., Ash & Adams 2020) also maintain plasticity. Later, several methods were
presented to retain plasticity. For example, Nikishin et al. (2023) proposed dynamically expanding
the network, Abbas et al. (2023) recommended using more adaptive activation functions, and Kumar
et al. (2023) proposed a regularization term in the loss function towards the initial parameters.

Addressing Both Issues. The trade-off between plasticity and forgetting has been outlined early
by Carpenter & Grossberg (1987) as the stability-plasticity dilemma, a trade-off between main-
taining performance on previous experiences and adapting to newer ones. The continual learning
community focused more on improving the stability aspect by overcoming forgetting. Recently,
however, there has been a new trend of methods that address both issues simultaneously. For ex-
ample, Chaudhry et al. (RWalk, 2018) utilized a regularization-based approach with a fast-moving
average that quickly adapts to the changes in the weight importance, emphasizing the present and
the past equally. Despite the recent remarkable advancement in addressing the two issues of con-
tinual learning, most existing methods do not fit the streaming learning setting since they require
knowledge of task boundaries, replay buffers, or pretraining.

Acknowledgement

We gratefully acknowledge funding from the Canada CIFAR AI Chairs program, the Reinforcement
Learning and Artificial Intelligence (RLAI) laboratory, the Alberta Machine Intelligence Institute
(Amii), and the Natural Sciences and Engineering Research Council (NSERC) of Canada. We
especially thank Shibhansh Dohare for the useful discussions that helped improve this paper.

5. Conclusion

In this paper, we introduced a novel approach to mitigating loss of plasticity and catastrophic for-
getting in neural networks. We devised learning rules that protect useful weights and perturb less
useful ones, maintaining plasticity and reducing forgetting. We performed a series of online contin-
ual learning experiments with many non-stationarities, which is a challenging setting for continual
learning. Our experiments showed that UPGD maintains network plasticity and reuses previously
learned useful features, being among the only few methods that can address both issues effectively.

6

UTILITY-BASED PERTURBED GRADIENT DESCENT

References

Abbas, Z., Zhao, R., Modayil, J., White, A., & Machado, M. C. (2023). Loss of Plasticity in Con-
tinual Deep Reinforcement Learning. arXiv preprint arXiv:2303.07507.

Ash, J., & Adams, R. P. (2020). On warm-starting neural network training. Advances in Neural
Information Processing Systems, 33, 3884-3894.

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., & Tuytelaars, T. (2018). Memory aware
synapses: Learning what (not) to forget. European Conference on Computer Vision (pp. 139-
154).

Aljundi, R., Kelchtermans, K., & Tuytelaars, T. (2019). Task-free continual learning. Conference
on Computer Vision and Pattern Recognition (pp. 11254-11263).

Becker, S., & LeCun, Y. (1989). Improving the convergence of backpropagation learning with
second-order methods. Proceedings of the 1988 Connectionist Models Summer School (pp. 29-
37).

Carpenter, G. A., & Grossberg, S. (1987). ART 2: Self-organization of stable category recognition
codes for analog input patterns. Applied Optics, 26(23), 4919-4930.

Chaudhry, A., Dokania, P. K., Ajanthan, T., & Torr, P. H. (2018). Riemannian walk for incremental
learning: Understanding forgetting and intransigence. European Conference on Computer Vision
(pp. 532-547).

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P. K., Torr, P. H., & Ranzato,
M. A. (2019). On tiny episodic memories in continual learning. arXiv preprint arXiv:1902.10486.

Chen, S., Hou, Y., Cui, Y., Che, W., Liu, T., & Yu, X. (2020). Recall and Learn: Fine-tuning deep
pretrained language models with less forgetting. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing.

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., ... & Tuytelaars, T.
(2021). A continual learning survey: Defying forgetting in classification tasks. IEEE transac-
tions on pattern analysis and machine intelligence, 44(7), 3366–3385.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of the North Amer-
ican Chapter of the Association deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference for Computational Linguistics: Human Language Technolo-
gies.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition (pp.

7

UTILITY-BASED PERTURBED GRADIENT DESCENT

248-255).

Dohare, S., Hernandez-Garcia, J. F., Rahman, P., Sutton, R. S., & Mahmood, A. R. (2023). Main-
taining Plasticity in Deep Continual Learning. arXiv preprint arXiv:2306.13812.

Dohare, S., Sutton, R. S., & Mahmood, A. R. (2021). Continual backprop: Stochastic gradient
descent with persistent randomness. arXiv preprint arXiv:2108.06325.

Dong, X., Chen, S., & Pan, S. (2017). Learning to prune deep neural networks via layer-wise opti-
mal brain surgeon. Advances in Neural Information Processing Systems, 30.

Ge, Y., Li, Y., Wu, D., Xu, A., Jones, A. M., Rios, A. S., ... & Itti, L. (2023). Lightweight Learner
for Shared Knowledge Lifelong Learning. Transactions on Machine Learning Research.

Gurbuz, M. B., & Dovrolis, C. (2022). NISPA: Neuro-inspired stability-plasticity adaptation for
continual learning in sparse networks. International Conference on Machine Learning (pp. 8157-
8174).

Hetherington, P. A., & Seidenberg, M. S. (1989). Is there ‘catastrophic interference’ in connection-
ist networks? Conference of the Cognitive Science Society (pp. 26-33).

Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connections for efficient
neural network. Advances in neural information processing systems, 28.

He, T., Liu, J., Cho, K., Ott, M., Liu, B., Glass, J., & Peng, F. (2021). Analyzing the forgetting
problem in pretrain-finetuning of open-domain dialogue response models. In Proceedings of the
16th Conference of the European Chapter of the Association for Computational Linguistics.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Con-
ference on Computer Vision and Pattern Recognition (pp. 770-778).

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. IEEE International Conference on Computer Vision (pp.
1026-1034).

Hassibi, B., & Stork, D. (1992). Second order derivatives for network pruning: Optimal brain sur-
geon. Advances in neural information processing systems, 5.

Hayes, T. L., Cahill, N. D., & Kanan, C. (2019). Memory efficient experience replay for streaming
learning. International Conference on Robotics and Automation (pp. 9769-9776).

Hayes, T. L., Kafle, K., Shrestha, R., Acharya, M., & Kanan, C. (2020). Remind your neural net-
work to prevent catastrophic forgetting. European Conference on Computer Vision (pp. 466-483).

8

UTILITY-BASED PERTURBED GRADIENT DESCENT

Hayes, T. L., Krishnan, G. P., Bazhenov, M., Siegelmann, H. T., Sejnowski, T. J., & Kanan, C.
(2021). Replay in deep learning: Current approaches and missing biological elements. Neural
Computation, 33(11), 2908-2950.

Hayes, T. L., Kanan, C. (2022). Online continual learning for embedded devices. In Conference on
Lifelong Learning Agents, PMLR 199:744–766.

Isele, D., & Cosgun, A. (2018). Selective experience replay for lifelong learning. AAAI Conference
on Artificial Intelligence (pp. 3302-3309).

Jung, D., Lee, D., Hong, S., Jang, H., Bae, H., & Yoon, S. (2022). New insights for the stability-
plasticity dilemma in online continual learning. International Conference on Learning Represen-
tations.

Karnin, E. D. (1990). A simple procedure for pruning back-propagation trained neural networks.
IEEE transactions on neural networks, 1(2), 239-242.

Kemker, R., McClure, M., Abitino, A., Hayes, T., & Kanan, C. (2018). Measuring catastrophic
forgetting in neural networks. In Proceedings of the AAAI conference on artificial intelligence
32:1.

Kingma, D. P. & Ba, J. (2015). Adam: A method for stochastic optimization. International Confer-
ence on Learning Representations.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., ... & Hadsell,
R. (2017). Overcoming catastrophic forgetting in neural networks. National Academy of Sci-
ences, 114(13), 3521-3526.

Kim, S., Noci, L., Orvieto, A., & Hofmann, T. (2023). Achieving a Better Stability-Plasticity Trade-
off via Auxiliary Networks in Continual Learning. Conference on Computer Vision and Pattern
Recognition (pp. 11930-11939).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60(6), 84–90.

Krizhevsky, A. (2009) Learning Multiple Layers of Features from Tiny Images. Ph.D. dissertation,
University of Toronto.

Konorski J. (1948). Conditioned Reflexes and Neuron Organization. Cambridge University Press.

Kumar, S., Marklund, H., & Van Roy, B. (2023). Maintaining Plasticity via Regenerative Regular-
ization. arXiv preprint arXiv:2308.11958.

9

UTILITY-BASED PERTURBED GRADIENT DESCENT

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11), 2278-2324.

LeCun, Y., Denker, J., & Solla, S. (1989). Optimal brain damage. Advances in neural information
processing systems, 2.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11), 2278-2324.

Lesort, T., Ostapenko, O., Rodriguez, P., Arefin, M. R., Misra, D., Charlin, L., & Rish, I. (2023).
Challenging Common Assumptions about Catastrophic Forgetting and Knowledge Accumula-
tion. Conference on Lifelong Learning Agents.

Liu, V., Kumaraswamy, R., Le, L., & White, M. (2019). The utility of sparse representations for
control in reinforcement learning. AAAI Conference on Artificial Intelligence (pp. 4384-4391).

Loshchilov, I., & Hutter, F. (2019). Decoupled weight decay regularization. International Confer-
ence on Learning Representations.

Lyle, C., Zheng, Z., Nikishin, E., Pires, B. A., Pascanu, R., & Dabney, W. (2023). Understanding
plasticity in neural networks. International Conference on Machine Learning (pp. 23190-23211).

Mahmood, A. R., & Sutton, R. S. (2013). Representation search through generate and test. AAAI
Conference on Learning Rich Representations from Low-Level Sensors (pp. 16-21).

Mozer, M. C., & Smolensky, P. (1988). Skeletonization: A technique for trimming the fat from a
network via relevance assessment. Advances in neural information processing systems, 1.

Molchanov, P., Mallya, A., Tyree, S., Frosio, I., & Kautz, J. (2019). Importance estimation for neu-
ral network pruning. IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp.
11264-11272).

Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2016). Pruning convolutional neural
networks for resource efficient inference. arXiv preprint arXiv:1611.06440.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D.
(2015). Human-level control through deep reinforcement learning. nature, 518(7540), 529–533.

McCloskey, M., & Cohen, N. J. (1989). Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation, 24, 109–165.

Nikishin, E., Oh, J., Ostrovski, G., Lyle, C., Pascanu, R., Dabney, W., & Barreto, A. (2023). Deep
reinforcement learning with plasticity injection. In Workshop on Reincarnating Reinforcement
Learning at ICLR.

10

UTILITY-BASED PERTURBED GRADIENT DESCENT

Park, S., Lee, J., Mo, S., & Shin, J. (2020). Lookahead: a far-sighted alternative of magnitude-based
pruning. arXiv preprint arXiv:2002.04809.

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understand-
ing by generative pre-Training. OpenAI blog.

Ratcliff, R. (1990). Connectionist models of recognition memory: constraints imposed by learning
and forgetting functions. Psychological review, 97(2), 285–308.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., ... &
Hadsell, R. (2016). Progressive neural networks. arXiv preprint arXiv:1606.04671.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., & Wayne, G. (2019). Experience replay for con-
tinual learning. Advances in Neural Information Processing Systems, 32.

Schwarz, J., Czarnecki, W., Luketina, J., Grabska-Barwinska, A., Teh, Y. W., Pascanu, R., & Had-
sell, R. (2018). Progress & compress: A scalable framework for continual learning. International
Conference on Machine Learning (pp. 4528-4537).

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Hass-
abis, D. (2016). Mastering the game of Go with deep neural networks and tree search. nature,
529(7587), 484–489.

Tresp, V., Neuneier, R., & Zimmermann, H. G. (1996). Early brain damage. Advances in Neural
Information Processing Systems, 9.

Van de Ven, G. M., Siegelmann, H. T., & Tolias, A. S. (2020). Brain-inspired replay for continual
learning with artificial neural networks. Nature communications, 11(1), 4069.

Wang, Y.⋆, Vasan, G.⋆, & Mahmood, A. R. (2023). Real-time reinforcement learning for vision-
based robotics utilizing local and remote computers. In Proceedings of the 2023 International
Conference on Robotics and Automation.

Wortsman, M., Ramanujan, V., Liu, R., Kembhavi, A., Rastegari, M., Yosinski, J., & Farhadi, A.
(2020). Supermasks in superposition. Advances in Neural Information Processing Systems, 33,
15173-15184.

Zaheer, M., Reddi, S., Sachan, D., Kale, S., & Kumar, S. (2018). Adaptive methods for nonconvex
optimization. Advances in Neural Information Processing systems, 31.

Zenke, F., Poole, B., & Ganguli, S. (2017). Continual learning through synaptic intelligence. Inter-
national Conference on Machine Learning (pp. 3987-3995).

Zhou, M., Liu, T., Li, Y., Lin, D., Zhou, E., & Zhao, T. (2019). Toward understanding the impor-
tance of noise in training neural networks. International Conference on Machine Learning (pp.
7594-7602).

11

UTILITY-BASED PERTURBED GRADIENT DESCENT

Appendix A. Convergence Analysis for UPGD and Non-protecting UPGD

In this section, we provide convergence analysis for UPGD and Non-protecting UPGD in noncon-
vex stationary problems. We focus on the stochastic version of these two algorithms since we are
interested in continual learners performing updates at every time step. The following proof shows
the convergence to a stationary point up to the statistical limit of the variance of the gradients,
where ∥∇f(θ)∥2 ≤ δ represent a δ-accurate solution and is used to measure the stationarity of θ.
Nonconvex optimization problems can be written as:

min
θ∈Rd

f(θ)
.
= ES∼P [L(θ, S)] ,

where f is the expected loss, L is the sample loss, S is a random variable for samples and θ is
a vector of weights parametrizing L. We assume that L is L-smooth, meaning that there exist a
constant L that satisfy

∥∇L(θ1, s)−∇L(θ2, s)∥ ≤ L∥θ2 − θ1∥, ∀θ1,θ2 ∈ Rd, s ∈ S. (4)

We further assume that L has bounded variance in the gradients E[∥∇L(θ, S) − ∇f(θ)∥2] ≤
σ2, ∀θ ∈ Rd. We assume that the perturbation noise has bounded variance E[∥ξ∥2] ≤ σ2

n. Note
that the assumption of L-smoothness on the sample loss result in L-smooth expected loss too, which
is given by ∥∇f(θ1) − ∇f(θ2)∥ ≤ L∥θ1 − θ2∥. For the simplicity of this proof, we use the
true instantaneous weight utility, not an approximated one. We assume that any connection in the
network has an average utility ū.

A.1. Non-protecting Utility-based Perturbed Gradient Descent

Remember that the update equation of the Non-protecting UPGD can be written as follows when
the parameters are stacked in a single vector θ:

θt+1,i = θt,i − α(gt,i + ξt,iρt,i).

where α is the step size, gt is the sample gradient vector at time t, ρt = (1 − ut) is the opposite
utility vector, and ξt is the noise perturbation. Since the function f is L-smooth, we can write the
following:

f(θt+1) ≤ f(θt) + (∇f(θt))⊤(θt+1 − θt) +
L

2
∥θt+1 − θt∥22 (5)

= f(θt)− α
d∑

i=1

(∇[f(θt)]i(gt,i + ξt,iρt,i)) +
Lα2

2

d∑
i=1

(gt,i + ξt,iρt,i)
2. (6)

12

UTILITY-BASED PERTURBED GRADIENT DESCENT

Next, we take the conditional expectation of f(θt+1) as follows:

Et[f(θt+1)|θt] ≤ f(θt)− α
d∑

i=1

∇[f(θt)]iEt[(gt,i + ξt,iρt,i)] +
Lα2

2

d∑
i=1

Et[(gt,i + ξt,iρt,i)
2]

= f(θt)− α
d∑

i=1

∇[f(θt)]iEt[gt,i] +
Lα2

2

d∑
i=1

(
Et[g

2
t,i] + Et[(ξt,iρt,i)

2]
)

= f(θt)− α

d∑
i=1

∇[f(θt)]2i +
Lα2

2

d∑
i=1

(
Et[g

2
t,i] + Et[(ξt,iρt,i)

2]
)

= f(θt)− α∥∇f(θt)∥2 +
Lα2

2

d∑
i=1

(
Et[g

2
t,i] + Et[(ξt,iρt,i)

2]
)

≤ f(θt)− α∥∇f(θt)∥2 +
Lα2

2

d∑
i=1

Et[g
2
t,i] +

Lα2

2
σ2
n.

Note that Et[gt,i] = [∇f(θt)]i, Et[ξt,i] = 0, and E[(ξt,iρt,i)2] ≤ E[ξ2t,i], since 0 ≤ ρt,i ≤ 1 ∀t, i.
From the bounded variance assumption, we know that the E[∥gt∥2] is bounded as follows:

E[∥gt∥2] ≤
σ2

bt
+ ∥∇f(θt)∥2,

where bt is the batch size at time step t. We can now bound Et[f(θt+1)|θt] as follows:

Et[f(θt+1)|θt] ≤ f(θt)− α∥∇f(θt)∥2 +
Lα2

2

(
σ2
n +

σ2

bt
+ ∥∇f(θt)∥2

)
= f(θt)−

2α− Lα2

2
∥∇f(θt)∥2 +

Lα2

2

(
σ2
n +

σ2

bt

)
.

Rearranging the inequality and using the telescopic sum, we can write:

2α− Lα2

2

T∑
t=1

∥∇f(θt)∥2 ≤ f(θ1)− ET+1[f(θT+1)] +
Lα2T

2

(
σ2
n +

σ2

bt

)
.

Multiplying both sides by 2
T (2α−Lα2)

and using the fact that f is the lowest at the global mini-
mum θ∗: f(θT+1) ≥ f(θ∗), we can write the following:

1

T

T∑
t=1

E∥∇f(θt)∥2 ≤ 2
f(θ1)− f(θ∗)

T (2α− Lα2)
+

Lα22(σ2
nbt + σ2)

bt(2α− Lα2)
.

Therefore, the algorithm converges to a stationary point. However, in the limit T → ∞, the algo-
rithm has to have an increasing batch size or a decreasing step size to converge, which is the same
requirement for convergence of other stochastic gradient-based methods at the limit (see Zaheer et
al. 2018).

13

UTILITY-BASED PERTURBED GRADIENT DESCENT

A.2. Utility-based Perturbed Gradient Descent

Remember that the update equation of UPGD can be written as follows when the parameters are
stacked in a single vector θ:

θt+1,i = θt,i − α(gt,i + ξt,i)ρt,i.

where α is the step size, gt is the sample gradient vector at time t, ρt = (1 − ut) is the opposite
utility vector, and ξt is the noise perturbation. Since the function f is L-smooth, we can write the
following:

f(θt+1) ≤ f(θt) + (∇f(θt))⊤(θt+1 − θt) +
L

2
∥θt+1 − θt∥22 (7)

= f(θt)− α
d∑

i=1

(∇[f(θt)]iρt,i(gt,i + ξt,i)) +
Lα2

2

d∑
i=1

(gt,i + ξt,i)
2ρ2t,i. (8)

Next, we take the conditional expectation of f(θt+1) as follows:

Et[f(θt+1)|θt] ≤ f(θt)− α
d∑

i=1

∇[f(θt)]iEt[ρt,i(gt,i + ξt,i)] +
Lα2

2

d∑
i=1

Et[(gt,i + ξt,i)
2ρ2t,i]

= f(θt)− α

d∑
i=1

∇[f(θt)]2iEt[ρt,i] +
Lα2

2

d∑
i=1

Et[g
2
t,i]Et[ρ

2
t,i] + Et[(ξt,iρt,i)

2]

≤ f(θt)− αρ̄
d∑

i=1

∇[f(θt)]2i +
Lα2

2

(
σ2
n +

σ2

bt
+ ∥∇f(θt)∥2

)
= f(θt)−

(
αρ̄− Lα2

2

)
∥∇f(θt)∥2 +

Lα2

2

(
σ2
n +

σ2

bt

)
.

Note that ρ̄ = 1 − ū, Et[gt,i] = [∇f(θt)]i, Et[ξt,i] = 0, and E[(ξt,iρt,i)2] ≤ E[ξ2t,i], since
0 ≤ ρt,i ≤ 1 ∀t, i.

Rearranging the inequality and using the telescopic sum, we can write:

2αρ̄− Lα2

2

T∑
t=1

∥∇f(θt)∥2 ≤ f(θ1)− ET+1[f(θT+1)] +
Lα2T

2

(
σ2
n +

σ2

bt

)
.

Multiplying both sides by 2
T (2αρ̄−Lα2)

and using the fact that f is the lowest at the global mini-
mum θ∗: f(θT+1) ≥ f(θ∗), we can write the following:

1

T

T∑
t=1

E∥∇f(θt)∥2 ≤ 2
f(θ1)− f(θ∗)

T (2αρ̄− Lα2)
+

Lα2(σ2
nbt + σ2)

bt(2αρ̄− Lα2)
.

Therefore, the algorithm converges to a stationary point. However, in the limit T → ∞, the algo-
rithm has to have an increasing batch size or a decreasing step size to converge, which is the same
requirement for convergence of other stochastic gradient-based methods at the limit (see Zaheer et
al. 2018).

14

UTILITY-BASED PERTURBED GRADIENT DESCENT

Appendix B. Utility Propagation

The instantaneous utility measure can be used in a recursive formulation, allowing for backward
propagation. We can get a recursive formula for the utility equation for connections in a neural
network. This property is a result of Theorem 1.

Theorem 1 If the second-order off-diagonal terms in all layers in a neural network except for the
last one are zero and all higher-order derivatives are zero, the true weight utility for the weight ij
at the layer l can be propagated using the following recursive formulation:

Ul,i,j(Z)
.
= fl,i,j + sl,i,j

where

fl,i,j
.
=

σ′(al,i)

hl,i
hl−1,jWl,i,j

|al+1|∑
k=1

fl+1,k,i,

sl,i,j
.
=

1

2
h2l−1,jW

2
l,i,j

|al+1|∑
k=1

(
2sl+1,k,i

σ′(al,i)
2

h2l,i
− σ′′(al,i)

hl,i
fl+1,k,i

)
.

Proof
First, we start by writing the partial derivative of the loss with respect to each weight in terms

of earlier partial derivatives in the next layers as follows:

∂L
∂al,i

=

|al+1|∑
k=1

∂L
∂al+1,k

∂al+1,k

∂hl,i

∂hl,i
∂al,i

= σ′(al,i)

|al+1|∑
k=1

∂L
∂al+1,k

Wl+1,k,i, (9)

∂L
∂Wl,i,j

=
∂L
∂al,i

∂al,i
∂Wl,i,j

=
∂L
∂al,i

hl−1,j . (10)

Next, we do the same with second-order partial derivatives as follows:

∂̂2L
∂a2l,i

.
=

|al+1|∑
k=1

[
∂̂2L

∂a2l+1,k

W 2
l+1,k,iσ

′(al,i)
2 +

∂L
∂al+1,k

Wl+1,k,iσ
′′(al,i)

]
, (11)

∂̂2L
∂W 2

l,i,j

.
=

∂̂2L
∂a2l,i

h2l−1,j . (12)

Now, we derive the utility propagation formulation as the sum of two recursive quantities, fl,ij
and sl,ij . These two quantities represent the first and second-order terms in the Taylor approxi-
mation. Using Eq. 9, Eq. 10, Eq. 11, and Eq. 12, we can derive the recursive formulation as

15

UTILITY-BASED PERTURBED GRADIENT DESCENT

follows:

Ul,i,j(Z)
.
= −∂L(W, Z)

∂Wl,i,j
Wl,i,j +

1

2

∂2L(W, Z)

∂W 2
l,ij

W 2
l,ij

≈ −∂L(W, Z)

∂Wl,i,j
Wl,i,j +

1

2

̂∂2L(W, Z)

∂W 2
l,ij

W 2
l,ij

= − ∂L
∂al,i

hl−1,jWl,i,j +
1

2

̂∂2L(W, Z)

∂a2l,i,j
h2l−1,jW

2
l,ij

= fl,i,j + sl,i,j . (13)

From here, we can write the first-order part fl,i,j and the second-order part sl,i,j as follows:

fl,i,j = −σ′(al,i)hl−1,jWl,i,j

|al+1|∑
k=1

(
∂L

∂al+1,k
Wl+1,k,i

)
(14)

sl,i,j =
1

2
h2l−1,jW

2
l,i,j

|al+1|∑
k=1

(
∂̂2L

∂a2l+1,k

W 2
l+1,k,iσ

′(al,i)
2 +

∂L
∂al+1,k

Wl+1,k,iσ
′′(al,i)

)
(15)

Using Eq. 14 and Eq. 15, we can write the recursive formulation for fl,ij and sl,ij as follows:

fl,ij = −σ′(al,i)hl−1,jWl,i,j

|al+1|∑
k=1

(
∂L

∂al+1,k
Wl+1,k,i

)

=
σ′(al,i)

hl,i
hl−1,jWl,i,j

|al+1|∑
k=1

(
− ∂L

∂al+1,k
hl,iWl+1,k,i

)

=
σ′(al,i)

hl,i
hl−1,jWl,i,j

|al+1|∑
k=1

fl+1,k,i (16)

sl,i,j =
1

2
h2l−1,jW

2
l,i,j

|al+1|∑
k=1

(
∂̂2L

∂a2l+1,k

W 2
l+1,k,iσ

′(al,i)
2 +

∂L
∂al+1,k

Wl+1,k,iσ
′′(al,i)

)
(17)

=
1

2
h2l−1,jW

2
l,i,j

|al+1|∑
k=1

(
∂̂2L

∂a2l+1,k

h2l,iW
2
l+1,k,i

σ′(al,i)
2

h2l,i
− σ′′(al,i)

hl,i
fl+1,k,i

)
(18)

=
1

2
h2l−1,jW

2
l,i,j

|al+1|∑
k=1

(
2sl+1,k,i

σ′(al,i)
2

h2l,i
− σ′′(al,i)

hl,i
fl+1,k,i

)
(19)

16

UTILITY-BASED PERTURBED GRADIENT DESCENT

Appendix C. Utility-baesd Perturbed Gradient Descent Algorithm

Algorithm 1: UPGD
Data: Given a stream of data D, a network f with weights {W1, ...,WL}.
Initialize Step size α, decay rate β.
Initialize {W1, ...,WL}.
Initialize Ul, Ûl,∀l to zero.
Initialize time step t← 0.
for (x,y) in D do

t← t+ 1;
for l in {L,L− 1, ..., 1} do

η ← −∞
Fl,Sl ←GetDerivatives(f,x,y, l);
Ml ← 1/2Sl ◦W 2

l − Fl ◦Wl

Ul ← βUl + (1− β)Ml

Ûl ← Ul/(1− βt)
end
if η < max(Ûl) then

η ← max(Ûl)
end
for l in {L,L− 1, ..., 1} do

Sample noise matrix ξ
Ūl ← ϕ(Ûl/η)
Wl ←Wl − α(Fl + ξ) ◦ (1− Ūl)

end
end

Appendix D. UPGD on Stationary MNIST

We use the MNIST dataset to assess the performance of UPGD under stationarity. A desirable
property of continual learning systems is that they should not asymptotically impose any extra
performance reduction, which can be studied in a stationary task such as MNIST. We report the
results in Fig. 3. We notice that UPGD improves performance over SGD. Each point in the stationary
MNIST figures represents an average accuracy over a non-overlapping window of 10000 samples.
The learners use a network of 300×150 units with ReLU activations. The utility traces are computed
using exponential moving averages given by Ũt = βuŨt−1 + (1 − βu)Ut, where Ũt is the utility
trace at time t and Ut is the instantaneous utility at time t. Each learner is trained for 1 million time
steps. The results are averaged over 20 independent runs.

Appendix E. Quality of the Approximated Utilities

A high-quality approximation of utility should give a similar ordering of weights to the true utility.
We use the ordinal correlation measure of Spearman to quantify the quality of our utility approxi-
mations. An SGD learner with a small neural network with ReLU activations is used on a simple
problem to minimize the online squared error over a total of 2000 samples.

17

UTILITY-BASED PERTURBED GRADIENT DESCENT

0.0 0.2 0.4 0.6 0.8 1.0

Number of Samples ×106

0.80

0.85

0.90

0.95

1.00

A
ve

ra
ge

d
O

nl
in

e
A

cc
ur

ac
y

UPGD SGDW PGD Non-protecting UPGD Shrink and Perturb

Figure 3: Performance of Utility-based Perturbed Gradient Descent with first-order approximated
utilities on stationary MNIST.

0 500 1000 1500 2000

Number of Samples

0.0

0.1

0.2

0.3

0.4

S
p

ea
rm

an
’s

C
oe

ffi
ci

en
t

Loss (Reference)
First-order

Second-order
Random

Weight-magnitude
Squared Gradient

Figure 4: Rank correlation between the true utility and approximated utility.

At each time step, Spearman’s correlation is calculated for first- and second-order global utility
against the random ordering, the squared-gradient utility, and the weight-magnitude utility. We
report the correlations between the true utility and approximated global weight utilities in Fig. 4.
The correlation is the highest for the second-order utility throughout learning. On the other hand,
the first-order utility becomes less correlated when the learner plateaus, likely due to zigzagging
gradient elements near the solution. The weight-magnitude utility shows a small correlation to the
true utility that gets smaller. The correlation of the squared-gradient utility increases with time steps
but remains smaller than that of the first-order utility. We use random ordering as a baseline, which
maintains zero correlation with the true utility, as expected.

18

UTILITY-BASED PERTURBED GRADIENT DESCENT

Appendix F. More Diagnostic Statistics Characterizing Solution Methods

Here, we provide more diagnostic statistics for our methods Fig. 5, Fig. 6, and Fig. 7. We de-
fine the plasticity of a learner given a sample as the ability to change its prediction to match
the target. The learner achieves plasticity of 1 given a sample if it can exactly match the tar-
get and achieves plasticity of 0 if it achieves zero or negative progress toward the target com-
pared to its previous prediction given the same sample. Formally, we define the sample plastic-
ity to be p(Z) = max

(
1− L(W†,Z)

max(L(W,Z),ϵ) , 0
)
∈ [0, 1], where W† is the set of weights after per-

forming the update and ϵ is a small number to maintain numerical stability. Note that the term(
1− L(W†,Z)

max(L(W,Z),ϵ)

)
∈ (−∞, 1] has an upper bound of 1, since L(W, Z) ∈ [0,∞),∀W, Z for

cross-entropy and squared-error losses.

0 50 100 150 200

Task Number

0.30

0.35

0.40

0.45

0.50

A
ve

ra
ge

O
nl

in
e

P
la

st
ic

it
y

0 50 100 150 200

Task Number

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%
of

Z
er

o
A

ct
iv

at
io

ns

0 50 100 150 200

Task Number

0.0

0.2

0.4

0.6

` 0
N

or
m

of
G

ra
di

en
ts

0 50 100 150 200

Task Number

1000

2000

3000

4000

5000

` 1
N

or
m

of
G

ra
di

en
ts

0 50 100 150 200

Task Number

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
ve

ra
ge

O
nl

in
e

L
os

s

0 50 100 150 200

Task Number

10

20

30

40

` 2
N

or
m

of
G

ra
di

en
ts

0 50 100 150 200

Task Number

4000

6000

8000

10000

12000

14000

16000

` 1
N

or
m

of
W

ei
gh

ts

0 50 100 150 200

Task Number

10

20

30

40

50

60

` 2
N

or
m

of
W

ei
gh

ts

UPGD-W SGDW PGD AdamW Non-protecting UPGD-W Shrink and Perturb S-EWC S-MAS S-SI S-RWalk

Figure 5: Diagnostic statistics of methods on Input-permuted MNIST. The shaded area represents
the standard error.

Appendix G. Ablation on Components of UPGD

We conducted a short ablation study in Fig. 8 on the components of UPGD: weight decay, weight
perturbation, and utility gating. Starting from SGD, we add each component step by step until we
reach UPGD. Fig. 8 shows the performance of learners on Input-permuted MNIST, Label-permuted
EMNIST, and Label-permuted mini-ImageNet.

We notice that both weight perturbation and weight decay improve SGD performance. Still, the
role of weight decay seems to be more important in Input-permuted MNIST and Label-permuted
mini-ImageNet. Notably, the combination of weight decay and weight perturbation makes the
learner maintain its performance. When utility gating is added on top of weight decay and weight
perturbation, the learner can improve its performance continually in all label-permuted problems
and slightly improve its performance on input-permuted.

We also conduct an additional ablation in Fig. 9 where we start from UPGD-W and remove each
component individually. This ablation bolsters the contribution of utility gating more. Using utility
gating on top of SGD makes SGD maintain its performance instead of dropping on input-permuted

19

UTILITY-BASED PERTURBED GRADIENT DESCENT

0 100 200 300 400

Task Number

0.1

0.2

0.3

0.4

0.5

0.6

0.7
A

ve
ra

ge
O

nl
in

e
P

la
st

ic
it

y

0 100 200 300 400

Task Number

0.5

0.6

0.7

0.8

0.9

1.0

%
of

Z
er

o
A

ct
iv

at
io

ns

0 100 200 300 400

Task Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

` 0
N

or
m

of
G

ra
di

en
ts

0 100 200 300 400

Task Number

0

500

1000

1500

2000

2500

` 1
N

or
m

of
G

ra
di

en
ts

0 100 200 300 400

Task Number

1.0

1.5

2.0

2.5

3.0

3.5

A
ve

ra
ge

O
nl

in
e

L
os

s

0 100 200 300 400

Task Number

5

10

15

20

25

` 2
N

or
m

of
G

ra
di

en
ts

0 100 200 300 400

Task Number

10000

20000

30000

40000

` 1
N

or
m

of
W

ei
gh

ts

0 100 200 300 400

Task Number

0

100

200

300

400

` 2
N

or
m

of
W

ei
gh

ts

UPGD-W SGDW PGD AdamW Non-protecting UPGD-W Shrink and Perturb S-EWC S-MAS S-SI S-RWalk

Figure 6: Diagnostic statistics of methods on Label-permuted EMNIST. The shaded area represents
the standard error.

0 100 200 300 400

Task Number

0.0

0.2

0.4

0.6

A
ve

ra
ge

O
nl

in
e

P
la

st
ic

it
y

0 100 200 300 400

Task Number

0.5

0.6

0.7

0.8

0.9

1.0

%
of

Z
er

o
A

ct
iv

at
io

ns

0 100 200 300 400

Task Number

0.0

0.1

0.2

0.3

0.4

` 0
N

or
m

of
G

ra
di

en
ts

0 100 200 300 400

Task Number

0

500

1000

1500

2000

2500

3000

` 1
N

or
m

of
G

ra
di

en
ts

0 100 200 300 400

Task Number

2.0

2.5

3.0

3.5

4.0

4.5

A
ve

ra
ge

O
nl

in
e

L
os

s

0 100 200 300 400

Task Number

5

10

15

20

25

` 2
N

or
m

of
G

ra
di

en
ts

0 100 200 300 400

Task Number

20000

40000

60000

` 1
N

or
m

of
W

ei
gh

ts

0 100 200 300 400

Task Number

0

50

100

150

200

250

300

` 2
N

or
m

of
W

ei
gh

ts

UPGD-W SGDW PGD AdamW Non-protecting UPGD-W Shrink and Perturb S-EWC S-MAS S-SI S-RWalk

Figure 7: Diagnostic Statistics of methods on Label-permuted mini-ImageNet. The shaded area
represents the standard error.

MNIST and makes SGD improve its performance continually on label-permuted problems. The role
of weight decay and weight perturbation is not significant in label-permuted problems, but including
both with utility gating improves performance and plasticity on input-permuted MNIST.

20

UTILITY-BASED PERTURBED GRADIENT DESCENT

0 100 200 300 400

Task Number

0.68

0.70

0.72

0.74

0.76

0.78

A
ve

ra
ge

O
nl

in
e

A
cc

ur
ac

y

(a) MNIST

0 100 200 300 400

Task Number

0.2

0.4

0.6

A
ve

ra
ge

O
nl

in
e

A
cc

ur
ac

y
(b) EMNIST

0 100 200 300 400

Task Number

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

O
nl

in
e

A
cc

ur
ac

y

(c) mini-ImageNet
SGD SGD+WD SGD+WD+WP SGD+WD+WP+UG (UPGD)SGD+WP

Figure 8: Ablation on the components of UPGD: Weight Decay (WD), Weight Perturbation (WP),
and Utility Gating (UG) shown on Input-permuted MNIST, Label-permuted EMNIST,
and Label-permuted mini-ImageNet.

0 50 100 150 200

Task Number

0.68

0.70

0.72

0.74

0.76

0.78

A
ve

ra
ge

O
nl

in
e

A
cc

ur
ac

y

(a) MNIST

0 100 200 300 400

Task Number

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

O
nl

in
e

A
cc

ur
ac

y

(b) EMNIST

0 100 200 300 400

Task Number

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

O
nl

in
e

A
cc

ur
ac

y

(c) mini-ImageNet
SGD+UG+WP+WD (UPGD-W) SGD+UG+WD SGD+UG+WP SGD+UG SGD+WD SGD+WP

Figure 9: Ablation on the components of UPGD: Weight Decay (WD), Weight Perturbation (WP),
and Utility Gating (UG) shown on Input-permuted MNIST, Label-permuted EMNIST,
and Label-permuted mini-ImageNet, starting from UPGD-W and removing each compo-
nent individually. SGD+WD and SGD+WP are added as baselines that do not use utility
gating. A global first-order utility trace is used. Results are averaged over 10 runs. The
shaded area represents the standard error.

21

	Introduction
	Method
	Scalable Approximation of the True Utility
	Utility-based Perturbed Gradient Descent

	Experiments
	Related Works
	Conclusion
	Convergence Analysis for UPGD and Non-protecting UPGD
	Non-protecting Utility-based Perturbed Gradient Descent
	Utility-based Perturbed Gradient Descent

	Utility Propagation
	Utility-baesd Perturbed Gradient Descent Algorithm
	UPGD on Stationary MNIST
	Quality of the Approximated Utilities
	More Diagnostic Statistics Characterizing Solution Methods
	Ablation on Components of UPGD

