

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CHEMBOMAS: ACCELERATED BO FOR SCIENTIFIC DISCOVERY IN CHEMISTRY WITH LLM-ENHANCED MULTI-AGENT SYSTEM

Anonymous authors

Paper under double-blind review

ABSTRACT

Bayesian optimization (BO) is a powerful tool for scientific discovery in chemistry, yet its efficiency is often hampered by the sparse experimental data and vast search space. Here, we introduce **ChemBOMAS**: a large language model (LLM)-enhanced multi-agent system that accelerates BO through synergistic data- and knowledge-driven strategies. Firstly, the data-driven strategy involves an 8B-scale LLM regressor fine-tuned on a mere 1% labeled samples for pseudo-data generation, robustly initializing the optimization process. Secondly, the knowledge-driven strategy employs a hybrid Retrieval-Augmented Generation approach to guide LLM in dividing the search space while mitigating LLM hallucinations. An Upper Confidence Bound algorithm then identifies high-potential subspaces within this established partition. Across the LLM-refined subspaces and supported by LLM-generated data, BO achieves the improvement of effectiveness and efficiency. Comprehensive evaluations across multiple chemical benchmarks demonstrate that ChemBOMAS set a new state-of-the-art, accelerating optimization efficiency by up to 5-fold compared to baseline methods. Additionally, a real wet-lab campaign with strong early-round gains validated the practical relevance of ChemBOMAS.

1 INTRODUCTION

Manual experimentation and traditional control variable methods have long underpinned chemical discovery, yet they remain labor-intensive and time-consuming, slowing the generation of new scientific insights Xie et al. (2023); Tom et al. (2024). To address these constraints, automated or self-driving laboratories integrate robotic execution with AI algorithms, delivering high throughput, precision, and efficiency Seifrid et al. (2022); Chen et al. (2024); Ai et al. (2024a). Within these experimental platforms, Bayesian Optimization (BO) algorithms are widely recognized as a crucial decision-making tool for experiment design Guo et al. (2023); Abolhasani and Kumacheva (2023); Chen et al. (2023); Ai et al. (2024b). BO enables efficient navigation of complex experimental variable spaces and converges toward optimal reaction conditions or material compositions by integrating prior data, constructing probabilistic surrogate models, quantifying uncertainty, and iteratively selecting the most informative subsequent experiments Shields et al. (2021a).

Despite BO achieving remarkable success in complex scientific domains, particularly chemistry, it still contends with two major obstacles: (I) the scarcity and high cost of experimental observations during the early optimization stages, and (II) the multitude of reaction parameters that inflate the search into high-dimensional design spaces Shahriari et al. (2015); Wang et al. (2023). The two obstacles exacerbate the limitations of vanilla BO, also known as the "cold start" problem and the "curse of dimensionality", frequently leading to slow convergence Guo et al. (2023). Without effective acceleration strategies, the protracted optimization process may yield only marginal improvements, which could cause researchers to abandon the search before discovering the optimal conditions.

Several strategies have been proposed to accelerate BO, including search space partitioning Wang et al. (2020a), specialized encoding embeddings Tripp et al. (2020); Moriconi et al. (2020); Nayebi et al. (2019), pseudo-data generation Yin et al. (2023), and transfer across similar tasks Swersky et al. (2013). However, when these acceleration strategies are applied to the intricate chemical reactions, two critical shortcomings emerge. First, most approaches employ a single acceleration technique,

054 which might be insufficient for the chemical optimization problems with multiple demands, such
 055 as exploration of diverse reaction parameter combinations while overcoming data scarcity in the
 056 early-stage. Second, current acceleration methods are predominantly data-driven. Because chemical
 057 reaction pathways differ widely in their underlying kinetics and thermodynamics, a purely statistical
 058 BO framework frequently expends resources in chemically implausible regions of the search space,
 059 missing opportunities to leverage mechanistic insight that could guide the search more efficiently.

060 To overcome these limitations, we propose **ChemBOMAS**, an LLM-Enhanced Multi-Agent System
 061 specifically designed for accelerated Bayesian Optimization in chemistry. ChemBOMAS synergis-
 062 tically integrates two LLM-powered modules: a **knowledge-driven search space decomposition**
 063 **module** and a **data-driven pseudo-data generation module**. The knowledge-driven module em-
 064 ploys an LLM-powered agent to reason over existing chemical knowledge (e.g., literature, databases),
 065 intelligently decompose the vast search space and identify promising candidate regions, dynamically
 066 pruning the search space for better BO efficiency. Simultaneously, the data-driven module utilizes a
 067 fine-tuned LLM to generate informative pseudo-data points across the entire search space. These
 068 pseudo-data not only warm-start the BO process but also inform the knowledge-driven module’s sub-
 069 space selection. This closed-loop interaction enables ChemBOMAS to achieve superior optimization
 070 efficiency and convergence speed even under extreme data scarcity.

071 The effectiveness of ChemBOMAS was rigorously evaluated. We conducted extensive experiments
 072 on four chemical performance optimization benchmarks, demonstrating consistent improvements in
 073 optimal results, convergence speed, initialization performance, and robustness compared to various
 074 baseline methods. Crucially, ablation studies confirmed that the synergy between the knowledge-
 075 driven and data-driven strategies is essential for creating a highly efficient and robust optimization
 076 framework. Additionally, the practical utility and real-world applicability of ChemBOMAS were
 077 validated through a previously unreported wet-lab experiment.

078 Our main contributions are summarized as follows:

- 079 1. We systematically investigated how LLM-based approaches could address two key limitations in
 080 BO for scientific discovery in chemistry: data scarcity and inefficiency in vast search spaces.
- 082 2. We propose ChemBOMAS, a framework that synergistically leverages LLM-based knowledge and
 083 data modules to improve the sample efficiency of BO for chemical synthesis tasks. A knowledge-
 084 driven module partitions the variable space into chemically meaningful subspaces, while a data-driven
 085 module generates pseudo-data to identify the promising subspaces and warm-start the surrogate.
 086 Unlike prior approaches, these modules augment rather than replace the underlying BO components.
- 087 3. We show that ChemBOMAS consistently and substantially outperforms four relevant baselines
 088 when only 1% of the data is labeled across four chemical benchmarks with ten independent seeds.
- 089 4. We demonstrate the practical utility and scalability of ChemBOMAS through a real wet-lab
 090 campaign with a 10-combination variable space.

092 2 RELATED WORK

094 Large Language Models (LLMs) offer synergistic potential with Bayesian Optimization (BO) to
 095 address traditional BO limitations (e.g., sample inefficiency, cold starts) by providing prior knowl-
 096 edge Souza et al. (2021), enhancing surrogate models Liu et al. (2024); Nguyen et al. (2024); Ramos
 097 et al. (2023a), automating acquisition function design Austin et al. (2024), and enabling optimiza-
 098 tion in novel problem representations. Prior work has explored LLM-driven BO improvements in
 099 warm-starting, surrogate modeling, candidate generation, acquisition function design, and search
 100 space understanding.

102 However, directly replacing core BO modules with LLMs introduces significant challenges. LLM
 103 "hallucinations" can mislead optimization, compromising reliability. Furthermore, the direct suit-
 104 ability of LLMs as surrogates or acquisition functions is limited by concerns regarding uncertainty
 105 quantification, theoretical guarantees, computational cost, efficiency in low-data regimes, adaptability
 106 to specific numerical tasks, and interpretability.

107 On another front, some techniques such as LA-MCTS Wang et al. (2020a) was proposed, which
 108 employ tree structures to decompose the search space Wang et al. (2023; 2024; 2019). Some works

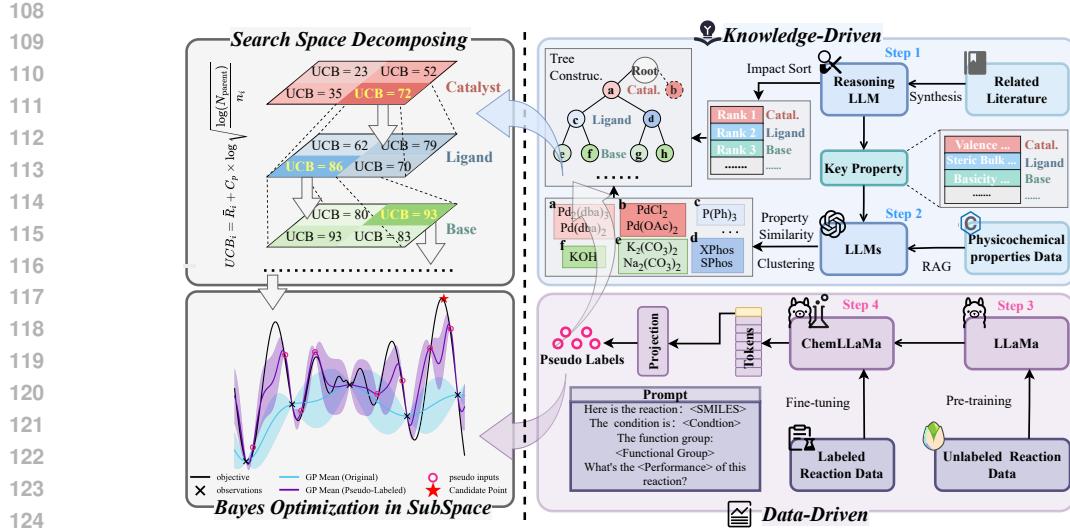


Figure 1: ChemBOMAS: A synergistic knowledge- and data-driven framework for efficient Bayesian Optimization. The framework operates as a closed-loop system: the **knowledge-driven module** decomposes the search space into subspaces using LLM-extracted chemical insights, followed by a UCB algorithm to select promising subspaces; the **data-driven module** generates pseudo-data to initialize both the subspace selection and the Bayesian Optimization process within the selected subspaces. The two modules interact iteratively, with real data from optimization feedback refining subsequent search directions.

propose hierarchical Bayesian optimization Moriconi et al. (2020); Reker et al. (2020). These approaches offer valuable strategies for managing and navigating complex optimization landscapes. Unlike previous works, we focus on robustly integrating LLM knowledge to enhance BO, leveraging their strengths as auxiliary tools while mitigating weaknesses such as hallucinations, to achieve this synergy over substitution.

3 METHODOLOGY

3.1 PROBLEM SETUP

This work aims to significantly improve the efficiency of searching a task’s variable space for the optimal combination that maximizes the objective function.

3.2 THE FRAMEWORK OF CHEMBOMAS

As illustrated in Figure 1, we propose ChemBOMAS, an LLM-enhanced multi-agent optimization framework that systematically integrates data-driven and knowledge-driven strategies. First, the data-driven strategy utilizes a pre-trained and fine-tuned LLM regressor to generate pseudo-data, thereby robustly initializing the optimization process. Second, the knowledge-driven strategy employs a hybrid Retrieval-Augmented Generation (RAG) approach, which guides an LLM to partition the search space based on variable impact ranking and property similarity. Third, an Upper Confidence Bound (UCB) algorithm then identifies the most promising subspaces from this partition. Finally, BO is performed within the selected subspaces, supported by the LLM-generated pseudo-data, leading to enhanced effectiveness and efficiency. The complete algorithm process can be seen in Appendix D. The two strategies are detailed below.

162 3.3 DATA-DRIVEN STRATEGY: LLM-GENERATED PSEUDO DATA
163164 An LLM-based regression model was constructed and utilized in three sequential steps to generate
165 pseudo-data for optimization initialization.166 **Step 1: Pre-training.** The base LLaMA 3.1 model Grattafiori et al. (2024) was pre-trained on the
167 Pistachio dataset $\mathcal{D}_{\text{chem}}$ to enhance its representational ability for chemical reactions. The dataset
168 was formatted as Q&A pairs where, given reactants \mathbf{R} and products \mathbf{P} , the model learns to predict
169 the corresponding reaction conditions $\mathbf{c} = (c_1, c_2, \dots, c_T)$, thereby avoiding direct exposure to
170 objective performance labels. Pre-training employed a Causal Language Modeling loss: $\mathcal{L}_{\text{pre-train}} =$
171 $\mathbb{E}_{s \sim \mathcal{D}_{\text{chem}}} [\sum t = 1^T \log p(w_t | s_{<t})]$, where t denotes the token index, $s = (w_1, \dots, w_t)$ denotes a
172 token sequence, w_t represents the t -th token, and T is the sequence length.173 **Step 2: Fine-tuning.** The pre-trained model was subsequently fine-tuned on a small labeled dataset
174 $\mathcal{D}_{\text{labeled}} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$, which only comprises 1% of the data, by integrating a regression head. A
175 reaction configuration \mathbf{x} (including \mathbf{R} , \mathbf{P} , and \mathbf{c}) is fed into the LLM via prompt engineering. The
176 final hidden state $\mathbf{h}_T = \text{LLM}(\mathbf{x})^{[T]}$ is then projected to a reaction performance prediction \hat{y} via an
177 MLP: $\hat{y} = f_{\theta_{\text{MLP}}}(\mathbf{h}_T) = f_{\theta_{\text{MLP}}}(\text{LLM}(\mathbf{x})^{[T]})$. Fine-tuning used Low-Rank Adaptation (LoRA) Hu
178 et al. (2022) with rank $r = 8$, introducing adaptable parameters ϕ_{LoRA} alongside the frozen pre-
179 trained weights θ_{LLM} . The MLP parameters θ_{MLP} were fully trained to minimize an L2-loss with
180 regularization:

181
$$\mathcal{L}_{\text{fine-tune}} = \frac{1}{|\mathcal{D}_{\text{labeled}}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}_{\text{labeled}}} \left\| f_{\theta_{\text{MLP}}}(\text{LLM}_{\theta_{\text{LLM}}, \phi_{\text{LoRA}}}^{[T]}(\mathbf{x})) - y \right\|_2^2 + \lambda \|\theta_{\text{MLP}}\|_2^2 \quad (1)$$

182
183

184 **Step 3: Pseudo-data Generation and Utilization.** The fine-tuned LLM regressor was used to generate
185 pseudo-data for all unsampled data points, forming a pseudo-dataset $\mathcal{D}_{\text{pseudo}} = \{(\mathbf{x}_k, \hat{y}_k)\}_{k=1}^M$,
186 where $\hat{y}_k = f_{\theta_{\text{MLP}}}(\text{LLM}_{\theta_{\text{LLM}}, \phi_{\text{LoRA}}}^{[T]}(\mathbf{x}_k))$ was used to initialize a UCB algorithm. The UCB algorithm
187 (Section 3.4) then identifies the high-potential subspaces. BO is then conducted within these sub-
188 spaces (Section 3.5), leveraging both the selected pseudo-data and limited real data to accelerate
189 surrogate model fitting. To mitigate the influence of the noise in the pseudo-data, a refinement strategy
190 based on data similarity and reverse-order removal is applied (see Appendix C for details).
191192 3.4 KNOWLEDGE-DRIVEN STRATEGY: LLM-DIVIDED SEARCH SPACE
193194 To efficiently identify high-potential regions in the vast chemical reaction parameter space, we
195 construct a Subspace Tree Search module using the GPT-o3 API in three steps.196 **Step 1: LLM-Guided Space Partitioning.** The n -dimensional variable space is defined as
197 $\mathcal{X} = \{C_i\}_{i=1}^n$, containing n categories of chemicals involved in the reaction, where each
198 $C_i = \{x_{i,1}, \dots, x_{i,k}\}$ represented a category including k candidate substances. A hybrid Retrieval-
199 Augmented Generation (RAG) approach integrates multi-source information (literature, professional
200 databases, web search) to facilitate the LLM’s decisions and minimize hallucination. The LLM first
201 ranks the chemical categories C_i by their importance to the chemical reaction, generating an ordered
202 sequence $\mathcal{O} = (o_1, \dots, o_n)$. Subsequently, for each chemical category C_i , the LLM identifies key
203 influencing physicochemical properties $p_{i,1}, p_{i,2}, \dots$ and clusters the candidates based on these prop-
204 erty values. This partitions each C_i into a collection of separate subspaces $\Pi_i = \{S_{i,1}, \dots, S_{i,q_i}\}$,
205 where candidate substances within each subspace $S_{i,l}$ share similar properties.206 **Step 2: Hierarchical Search Tree Construction.** A hierarchical tree is built based on the category
207 importance order \mathcal{O} and the clustering results Π_i . The l -th layer of the tree corresponds to the l -th
208 most important category C_l and contains nodes representing its q_l clusters. Each path from the root
209 to a leaf node defines a unique search subspace as the Cartesian product of n clusters, resulting in a
210 total of $\prod_{i=1}^n q_i$ disjoint subspaces that comprehensively partition the original space.211 **Step 3: UCB-based Subspace Selection.** A UCB algorithm is employed to explore the tree and
212 identify promising subspaces. Starting from the root, UCB selects child nodes layer-by-layer until
213 reaching a leaf node. The UCB value for a child node i is computed as: $\text{UCB}_i = \bar{R}_i + C_p \times$
214 $\log \sqrt{\frac{\log(N_{\text{parent}})}{n_i}}$, where \bar{R}_i is the average performance value (exploitation), N_{parent} is the parent’s
215 visit count, n_i is the child’s visit count, and C_p is an exploration constant. At each layer, the top-5

216 nodes by UCB value are selected for further exploration. This path traversal pinpoints high-value
 217 subspaces for subsequent BO. The UCB values are updated dynamically as BO progresses and new
 218 samples are acquired.
 219

220 3.5 BAYESIAN OPTIMIZATION IN CHEMBOMAS

222 BO is performed within the promising subspaces identified by the preceding modules, leveraging the
 223 LLM-generated pseudo-data for initialization. The procedure consists of two main steps.

224 **Step 1: Surrogate Modeling.** A Gaussian Process (GP) surrogate model, using a Matérn kernel with
 225 constant scaling and a white noise kernel, is fitted to the combined set of actual observations and
 226 pseudo-data points, which serve as an informative prior. This model provides, for any unsampled
 227 point \mathbf{x} in the target subspaces, a posterior distribution over the performance value, characterized by
 228 a mean function $\mu(\mathbf{x})$ and a variance function $\sigma^2(\mathbf{x})$.

229 **Step 2: Acquisition Function Optimization.** An acquisition function $\alpha(\mathbf{x})$, such as Expected
 230 Improvement (EI), is used to recommend the next sample by balancing exploration (high uncertainty)
 231 and exploitation (high predicted mean). The next query point is selected by maximizing $\alpha(\mathbf{x})$ over
 232 the unsampled points within the high-potential subspaces: $\mathbf{x}_{next} = \arg \max \mathbf{x} \in \mathcal{X}_{sub} \alpha(\mathbf{x})$. This
 233 point is then evaluated to obtain a new real observation, which updates the GP surrogate model for
 234 the next iteration.

236 4 EXPERIMENT

238 4.1 DATA

240 The pre-training phase employed a subset of the Pistachio dataset containing approximately 50,000
 241 chemical reaction entries, none of which contained objective performance labels.

242 For the fine-tuning and Bayesian Optimization (BO) phases, three benchmark datasets were used:
 243 Suzuki Perera et al. (2018), Arylation Shields et al. (2021b), and Buchwald Ahneman et al. (2018).
 244 In each case, only 1% of the labeled data was randomly selected for fine-tuning the LLM regressor;
 245 the effectiveness of this data volume is analyzed in Appendix J.2. For the Buchwald dataset,
 246 which exhibits inconsistencies in reactants and products across entries, two consistent subsets were
 247 constructed, denoted Buchwald_sub1 and Buchwald_sub2, to serve as rational benchmarks for the
 248 optimization task. Detailed statistics for all benchmarks are provided in Appendix F.

250 4.2 EXPERIMENT SETUP

252 The LLM regressor in data-driven module was trained on $2 \times$ NVIDIA A800 GPUs. To facilitate
 253 parameter-efficient fine-tuning, we adopted the Low-Rank Adaptation (LoRA) technique, configuring
 254 the rank $r = 8$, the scaling factor $\alpha = 16$, and the LoRA dropout rate to 0.1. For fine-tuning the
 255 LLM regressor, the hyperparameters were set as follows: learning rate of 1×10^{-4} , batch size of 24,
 256 and 100 training epochs.

257 In the knowledge-driven module, the search tree was constructed using a UCB policy with an
 258 exploration constant $\kappa = 1$. The BO process was run for 40 iterations, initialized with 1% of
 259 the data as the prior and sampling 0.1% of the dataset in each iteration. It employed a Single-
 260 task Gaussian Process as the surrogate model and utilized EI as the acquisition function. Each
 261 optimization experiment was independently repeated 10 times with different random seeds, and
 262 the average performance across these runs is reported as the final result. The prompts for LLM
 263 clustering and further implementation details are provided in the Appendix E. Additionally, the
 264 specific hyperparameter settings for all baseline methods are detailed in Appendix F.4.

265 4.3 PERFORMANCE COMPARISON

267 4.3.1 REGRESSION MODELS

268 The quality of the pseudo-data is directly influenced by the prediction accuracy of the regression
 269 model. We evaluated the performance prediction accuracy of ChemBOMAS against four categories

of existing regression models on three chemical datasets: 1) traditional machine learning models fitted on 1% labeled data; 2) general-purpose LLMs (GPT series) with zero-shot inference; 3) open LLMs fine-tuned on 1% labeled data; and 4) scientific LLMs with molecule pre-training fine-tuned on 1% labeled data. The prediction metrics for each model are summarized in Table 1, from which two key observations can be drawn.

Table 1: Comparative performance of various LLM-based regression models on the chemical performance prediction task.

Model	Suzuki			Arylation			Buchwald		
	MSE↓	MAE↓	R ² ↑	MSE↓	MAE↓	R ² ↑	MSE↓	MAE↓	R ² ↑
<i>Traditional Machine Learning Models fitted on 1% labeled data</i>									
MLP	737.88	23.93	0.04	596.30	22.62	0.03	612.57	22.51	0.06
DecisionTree	749.86	20.80	0.05	927.01	23.38	-0.24	1003.35	25.19	-0.35
RandomForest	693.08	22.25	0.12	735.65	22.78	0.01	761.55	23.50	-0.02
XGBoost	643.03	21.89	0.18	653.86	21.25	0.13	667.22	21.63	<u>0.10</u>
<i>General-purpose LLMs with zero-shot inference</i>									
GPT-4o	2207.17	40.02	-1.80	2702.58	44.86	-2.63	1512.44	33.60	-1.03
GPT-5	1218.93	30.34	-0.55	1515.81	33.68	-1.04	1516.62	33.55	-1.04
<i>Open LLMs fine-tuned on 1% labeled data</i>									
Bert	808.12	24.04	-0.03	746.78	23.18	-0.00	747.05	23.19	-0.00
Qwen3-7B	820.48	22.10	-0.04	848.51	22.52	-0.14	998.22	25.25	-0.34
GLM4-9B	593.49	18.94	0.25	739.20	20.78	0.01	719.72	20.77	0.00
LLaMa-3.1-8B	685.55	20.50	0.13	679.72	19.57	<u>0.09</u>	739.27	<u>20.57</u>	0.01
<i>Scientific LLMs with molecule pre-training and fine-tuned on 1% labeled data</i>									
MolFormer	788.57	24.04	-0.00	746.85	23.17	-0.00	744.97	23.19	-0.00
MolT5-Large	1081.23	25.13	-0.37	1094.86	25.40	-0.47	1098.16	25.37	-0.47
Chem-T5	1551.12	29.79	-0.96	1189.38	26.14	-0.60	1184.85	26.09	-0.59
Galactica-1.3B	727.18	22.23	0.08	785.01	21.83	-0.05	857.79	22.54	-0.15
ChemBOMAS	<u>633.68</u>	<u>19.47</u>	<u>0.20</u>	650.00	19.55	0.13	593.76	18.52	0.20

First, ChemBOMAS demonstrated superior effectiveness and versatility in chemical performance regression. As shown in Table 1, ChemBOMAS achieved the highest prediction accuracy on the Arylation and Buchwald datasets, with R² scores exceeding the second-best model by 200% and 140%, respectively. On the Suzuki dataset, ChemBOMAS outperformed thirteen of the fourteen compared models, ranking second only to GLM4-9B GLM et al. (2024). However, the poor generality of GLM4-9B is evident from its near-zero R² scores on the other two datasets.

Second, task-specific fine-tuning proved essential. Despite their general capabilities, the off-the-shelf general-purpose LLMs GPT-4o OpenAI et al. (2024) and GPT-5 OpenAI (2025) performed poorly on this specialized regression task, consistently yielding strongly negative R² scores, lower than most fine-tuned models, which also confirms that these chemical datasets were not part of their training data. In contrast, traditional machine learning models, while computationally efficient, exhibit limited capability in capturing complex structure-activity relationships. Their R² values consistently remained below 0.20, with regression performance fluctuating significantly across different datasets. Among the open-source models, LLaMa-3.1-8B Grattafiori et al. (2024) exhibited a favorable balance of prediction accuracy and generalization, justifying its selection as the base model for the data-driven module of ChemBOMAS.

Furthermore, we investigated the impact of fine-tuning data volume on pseudo-data quality and BO performance in Appendix J.2. The predictive performance improved gradually as data volume increased from 0.00% to 32.00%. Notably, the R² value first turned positive and consistently exceeded 0.1 across all datasets at the 1% volume. Table 10 indicates that BO’s optimization performance does not linearly correlate with the regression model’s R²; a value between 0.1 and 0.2 is sufficient for BO to identify high-performing conditions. Therefore, using 1% data volume for fine-tuning represents a rational and effective trade-off between cost and performance.

324 4.3.2 CLUSTER METHODS
325

326 We evaluated the impact of the search tree structure on BO by comparing scenarios with and without
327 a tree, as well as trees constructed using three distinct strategies: expert guidance (Expert), data-
328 driven approach (D-d), and knowledge-driven approach (K-d). All methods were initialized without
329 pseudo-data to ensure a fair comparison.

330
331 Table 2: Comparison of Bayesian Optimization performance using different search space decom-
332 position strategies: expert-guided clustering (Expert), data-driven clustering (D-d) and knowledge-driven
333 clustering (K-d). 95% Iter and Best Iter are rounded to the nearest integer.

334 Method	335 Best Found			336 Initial			337 95% Iter			338 Best Iter		
	339 Mean \pm Std	340 95% CI	341 p-val	342 Mean \pm Std	343 95% CI	344 p-val	345 Mean \pm Std	346 95% CI	347 p-val	348 Mean \pm Std	349 95% CI	350 p-val
Suzuki												
Expert	87.85 \pm 6.44	[83.25, 92.46]	-	61.82 \pm 14.78	[51.24, 72.39]	-	17 \pm 13	[7, 27]	-	28 \pm 11	[19, 36]	-
D-d	84.94 \pm 7.74	[79.40, 90.48]	> 0.05	58.29 \pm 12.14	[49.61, 66.98]	> 0.05	13 \pm 14	[3, 22]	> 0.05	31 \pm 14	[20, 41]	> 0.05
K-d	82.04 \pm 4.49	[78.83, 85.26]	> 0.05	66.94 \pm 8.02	[61.21, 72.68]	> 0.05	8 \pm 11	[0, 16]	> 0.05	18 \pm 14	[8, 28]	> 0.05
Arylation												
Expert	82.05 \pm 2.32	[80.39, 83.71]	-	50.07 \pm 19.15	[36.37, 63.77]	-	16 \pm 12	[7, 25]	-	26 \pm 13	[16, 35]	-
D-d	82.20 \pm 2.58	[80.35, 84.05]	> 0.05	43.82 \pm 27.57	[24.09, 63.54]	> 0.05	14 \pm 10	[7, 22]	> 0.05	29 \pm 8	[23, 35]	> 0.05
K-d	81.28 \pm 2.12	[79.76, 82.80]	> 0.05	59.38 \pm 17.79	[46.66, 72.11]	> 0.05	11 \pm 13	[2, 21]	> 0.05	20 \pm 14	[10, 30]	> 0.05
Buchwald_sub1												
Expert	79.37 \pm 1.00	[78.65, 80.09]	-	35.63 \pm 28.22	[15.44, 55.81]	-	7 \pm 3	[5, 9]	-	23 \pm 11	[15, 31]	-
D-d	79.27 \pm 0.48	[78.93, 79.61]	> 0.05	47.98 \pm 30.69	[26.02, 69.93]	> 0.05	6 \pm 6	[1, 10]	> 0.05	24 \pm 14	[14, 34]	> 0.05
K-d	80.25 \pm 2.22	[78.66, 81.83]	> 0.05	44.08 \pm 26.71	[24.98, 63.19]	> 0.05	4 \pm 2	[2, 6]	0.0373	11 \pm 7	[5, 16]	0.0062
Buchwald_sub2												
Expert	53.01 \pm 0.87	[52.39, 53.63]	-	12.23 \pm 16.70	[0.29, 24.18]	-	14 \pm 7	[9, 19]	-	30 \pm 11	[22, 39]	-
D-d	52.67 \pm 1.89	[51.32, 54.02]	> 0.05	18.99 \pm 18.12	[6.03, 31.95]	> 0.05	15 \pm 10	[7, 22]	> 0.05	15 \pm 10	[8, 22]	0.0010
K-d	53.23 \pm 0.38	[52.95, 53.50]	> 0.05	18.19 \pm 22.47	[2.12, 34.26]	> 0.05	18 \pm 9	[12, 25]	> 0.05	26 \pm 7	[22, 31]	> 0.05

347 The results, summarized in Table 2, demonstrate that the clustering methods derived from ChemBO-
348 MAS—both D-d and K-d—consistently matched or surpassed the performance of the expert-guided
349 approach across all benchmarks. This underscores the robustness and reliability of our automated
350 framework for variable space decomposition. Furthermore, the knowledge-driven clustering strat-
351 egy achieved superior optimization performance on more benchmarks compared to its data-driven
352 counterpart, highlighting the value of incorporating structured chemical knowledge.

353 4.3.3 OPTIMIZATION

355 The analysis focuses on four key metrics: the optimal yield found (**Best Found**), the starting yield
356 (**Initial**), the number of iterations required to reach 95% of the optimum (**95% Iter**), and the iteration
357 where the best result was identified (**Best Iter**).

358 As shown in Figure 2, ChemBOMAS demonstrates consistent and superior performance over all
359 baseline methods across the four benchmark datasets in terms of optimal result, convergence rate,
360 initialization performance, and robustness.

362 In terms of final performance and convergence speed, ChemBOMAS identified the highest objec-
363 tive values—96.15% (Suzuki), 82.83% (Arylation), 79.97% (Buchwald_sub1) and 56.81% (Buch-
364 wald_sub2)—achieving convergence in just 3, 4, 23, and 2 iterations, respectively.

365 Regarding initialization performance, ChemBOMAS attained the highest initial performance on the
366 Suzuki, Arylation, Buchwald_sub1, and Buchwald_sub2 datasets. It surpassed all baselines by the
367 first iteration and proceeded to converge, highlighting its strong optimization capability.

368 Two additional observations further underscore the robustness of ChemBOMAS. First, it exhibited
369 the lowest variance across ten independent optimization runs, indicating high stability. Second, its
370 performance remained consistently effective and was largely unaffected by the subspace partition
371 (see Appendix J.1 for details). These findings collectively confirm the reliability of our method.

372 To evaluate the generality of ChemBOMAS beyond chemistry, we assessed its optimization perfor-
373 mance on a materials science benchmark. As shown in Table 13 (see Appendix K for dataset details),
374 ChemBOMAS maintains competitive performance, demonstrating its applicability to other scientific
375 domains.

376 To further validate the practical applicability of ChemBOMAS and preclude the possibility of
377 knowledge leakage in the LLM, we conducted wet-lab optimization for a previously unreported

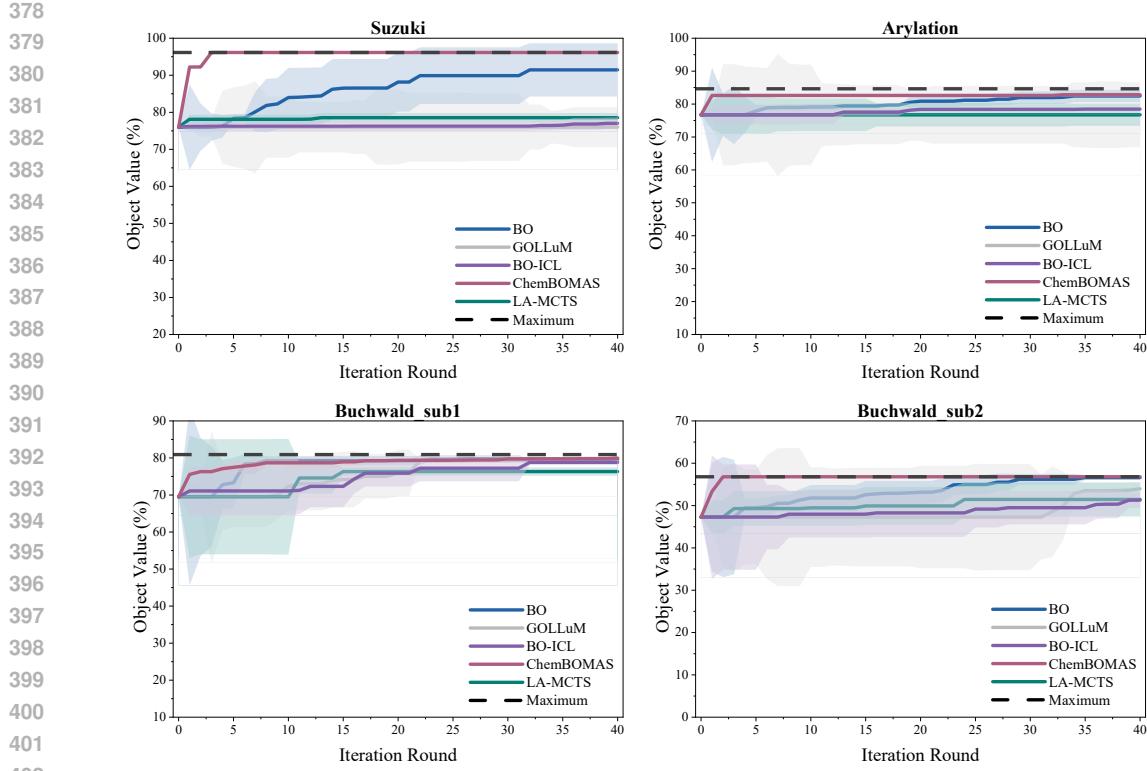


Figure 2: Optimization performance comparison between ChemBOMAS and baseline methods on the four benchmark datasets: (a) Suzuki, (b) Arylation, (c) Buchwald_sub1, and (d) Buchwald_sub2. ChemBOMAS exhibits accelerated convergence and achieves superior final performance with lower variance across all tasks, demonstrating its enhanced efficiency and robustness. Detailed data can be found in Appendix H.

chemical reaction (see Appendix I for details). As shown in Figure ??, ChemBOMAS identified the optimal reaction condition with a yield of 96% after evaluating only 43 samples in 2 iterations. This result markedly outperforms the 15% yield obtained by a chemist using the traditional control variable method, demonstrating the framework’s effectiveness in real-world scenarios.

4.4 ABLATION STUDY

We first evaluate the impact of pre-training and fine-tuning on the regression performance of ChemBOMAS. The prediction accuracy is measured on the Suzuki, Arylation, and Buchwald datasets using Mean Squared Error (MSE), Mean Absolute Error (MAE), and the coefficient of determination (R^2)

Table 3: Impact of pre-training and fine-tuning strategies on the regression performance of ChemBOMAS across the Suzuki, Arylation, and Buchwald datasets.

Model Configuration	Suzuki			Arylation			Buchwald		
	MSE \downarrow	MAE \downarrow	R^2	MSE \downarrow	MAE \downarrow	R^2	MSE \downarrow	MAE \downarrow	R^2
w/o Pre & SFT	2338.02	39.43	-1.966	1797.88	32.54	-1.413	1881.96	33.73	-1.527
Pre-train Only (w/o SFT)	2407.22	40.27	-2.054	1853.70	33.24	-1.488	1795.72	32.52	-1.411
SFT Only (w/o Pre-train)	685.55	20.50	0.130	679.72	19.57	0.088	739.27	20.57	0.007
Pre-train & SFT	633.68	19.47	0.196	650.00	19.55	0.128	667.16	19.51	0.104

The results in Table 3 indicate that the combined use of pre-training and supervised fine-tuning (SFT) yields the best predictive performance across all benchmarks. Notably, SFT alone (without pre-training) achieves the second-best performance and substantially outperforms models using only

432 pre-training or those without any training. This strongly suggests that supervised fine-tuning is the
 433 most critical component for adapting large models to chemical performance prediction tasks.
 434

435 We further evaluate the contribution of each module by comparing the complete ChemBOMAS
 436 framework against three ablated versions: (i) without the data-driven module, (ii) without the
 437 knowledge-driven module, and (iii) without both modules. The results in Table 4 demonstrate
 438 that both modules are critical to the framework’s performance. Ablating either module leads to a
 439 significant degradation in both optimization efficiency and final effectiveness.
 440

441 For instance, on the Suzuki dataset, the full ChemBOMAS achieves the optimal value of 96.15%
 442 within only three iterations. In contrast, removing the data-driven module reduces the optimum to
 443 83.26%. The performance of the single-module ablations is comparable to or only marginally better
 444 than the version lacking both modules, indicating that neither strategy alone is sufficient. These results
 445 underscore that the synergy between the knowledge-driven and data-driven strategies is essential for
 446 creating a highly efficient and robust optimization framework.
 447

448 Table 4: Optimization performance of the full ChemBOMAS framework compared to its ablated
 449 variants. 95% Iter and Best Iter are rounded to the nearest integer.

Method	Best Found			Initial			95% Iter			Best Iter		
	Mean \pm Std	95% CI	p-val	Mean \pm Std	95% CI	p-val	Mean \pm Std	95% CI	p-val	Mean \pm Std	95% CI	p-val
Suzuki 1%												
full	96.15 \pm 0	[96.15, 96.15]	-	92.24 \pm 0	[92.24, 92.24]	-	1 \pm 0	[1, 1]	-	3 \pm 0	[3, 3]	-
w/o d-d	83.26 \pm 5.4	[79.40, 87.12]	0.0000	65.09 \pm 9.88	[58.02, 72.16]	0.0000	10 \pm 12	[1, 18]	0.0418	20 \pm 13	[11, 30]	0.0022
w/o k-d	96.15 \pm 0	[96.15, 96.15]	∞	58.91 \pm 12.14	[50.23, 67.60]	0.0000	8 \pm 5	[5, 12]	0.0016	9 \pm 5	[5, 12]	0.0101
w/o both	91.44 \pm 7.58	[86.02, 96.87]	0.0812	58.91 \pm 12.14	[50.23, 67.60]	0.0000	12 \pm 10	[5, 19]	0.0050	16 \pm 7	[10, 21]	0.0004
Arylation 1%												
full	82.83 \pm 0.64	[82.38, 83.29]	-	82.63 \pm 0	[82.63, 82.63]	-	1 \pm 0	[1, 1]	-	4 \pm 10	[1, 11]	-
w/o d-d	81.28 \pm 2.12	[79.76, 82.80]	0.0680	59.38 \pm 17.79	[46.66, 72.11]	0.0025	12 \pm 13	[2, 21]	0.0347	20 \pm 14	[10, 30]	0.0390
w/o k-d	79.76 \pm 0.11	[79.68, 79.84]	0.0000	49.59 \pm 15.1	[38.79, 60.40]	0.0001	8 \pm 3	[5, 10]	0.0001	24 \pm 11	[16, 32]	0.0020
w/o both	82.83 \pm 1.77	[81.57, 84.10]	0.9969	49.59 \pm 15.1	[38.79, 60.40]	0.0001	12 \pm 9	[5, 18]	0.0036	27 \pm 8	[21, 33]	0.0004
Buchwald_sub1 4%												
full	80.45 \pm 0.59	[80.03, 80.87]	-	79.52 \pm 0	[79.53, 79.53]	-	1 \pm 1	[1, 1]	-	10 \pm 7	[5, 15]	-
w/o d-d	80.3 \pm 2.18	[78.74, 81.86]	0.8218	50.35 \pm 28.93	[29.66, 71.05]	0.0110	4 \pm 2	[2, 6]	0.0030	14 \pm 8	[8, 20]	0.0341
w/o k-d	80.66 \pm 0.53	[80.28, 81.04]	0.3983	49.67 \pm 18.48	[36.45, 62.89]	0.0006	8 \pm 5	[5, 12]	0.0018	20 \pm 10	[13, 27]	0.0736
w/o both	79.74 \pm 0.42	[79.44, 80.04]	0.0064	53.57 \pm 25.22	[35.54, 71.61]	0.0099	5 \pm 2	[3, 6]	0.0013	12 \pm 10	[5, 19]	0.5027
Buchwald_sub2 1%												
full	56.81 \pm 0	[56.81, 56.81]	-	53.33 \pm 0	[53.34, 53.34]	-	2 \pm 0	[2, 2]	-	2 \pm 0	[2, 2]	-
w/o d-d	53.22 \pm 0.38	[52.95, 53.49]	0.0000	16.58 \pm 22.98	[0.14, 33.02]	0.0007	16 \pm 8	[10, 21]	0.0004	20 \pm 5	[16, 23]	0.0000
w/o k-d	56.81 \pm 0	[56.81, 56.81]	∞	31.62 \pm 13.55	[21.92, 41.31]	0.0007	8 \pm 3	[6, 10]	0.0000	8 \pm 3	[6, 10]	0.0000
w/o both	56.61 \pm 0.61	[56.18, 57.05]	0.3434	31.62 \pm 13.55	[21.92, 41.31]	0.0007	20 \pm 9	[13, 27]	0.0002	22 \pm 9	[16, 28]	0.0000

4.5 WET EXPERIMENTS

466 To further validate the practical value of our proposed method, an algorithm-driven **wet laboratory**
 467 **experiment** was conducted. Guided by ChemBOMAS, this study aimed to maximize product yield
 468 in a challenging chemical reaction optimization—the palladium-catalyzed cross-coupling of boronic
 469 esters with aryl chlorides. The details are shown in Appendix I.

470 This optimization task, provided by a pharmaceutical enterprise, was subject to four stringent
 471 constraints: (1) a **previously-unreported** chemical reaction, resulting in the complete absence of
 472 reference data; (2) a six-dimensional process parameter space, reportedly **exceeding seventy times**
 473 the scale of those in comparable published studies, making exploration highly challenging; (3) a cost-
 474 saving imperative requiring a **tenfold reduction** in catalyst loading relative to conventional levels,
 475 substantially hampering product formation; and (4) a hard budget of approximately **60 experimental**
 476 **runs** to curtail labor intensity.

477 As shown in Figure 3, during the wet experiment task, ChemBOMAS successfully identified the
 478 optimal reaction condition with a yield of 96%, markedly outperforming the 15% yield achieved
 479 by a chemist employing the traditional control variable method. Additionally, three noteworthy
 480 phenomena emerged. First, in the initial round, ChemBOMAS had attained the product yield of
 481 90%, surpassing the target threshold of 75%. Second, the optimal reaction condition yielding 96%
 482 was discovered in the early stage of the optimization process, specifically in the second iteration.
 483 Third, as the optimization progressed, ChemBOMAS increasingly recommended reaction conditions
 484 with yields exceeding the 75% target threshold, indicating a continuous refinement of the surrogate
 485 model. The number of high-yielding conditions ($\geq 75\%$) identified in rounds one through five was
 one, two, three, four, and five, respectively. The strong initialization performance, rapid convergence,

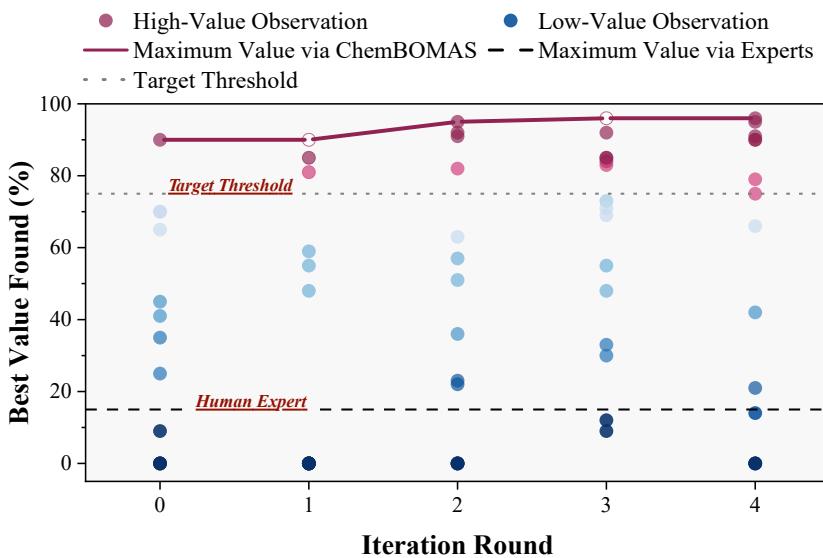


Figure 3: Wet laboratory experiment result. Comparison of Best Value Found (%) over Iteration Rounds', showing individual high and low-value observations. Lines indicate maximum values achieved via ChemBOMAS, human experts, and a target threshold.

and progressive model improvement collectively demonstrate the potential utility of the proposed method in real-world chemical optimization tasks.

5 LIMITATIONS

While ChemBOMAS represents a significant advancement in accelerating Bayesian Optimization for chemical reactions, its performance remains constrained by several factors. Most notably, the framework is inherently dependent on the accuracy and scope of the underlying LLM and its knowledge base; inference errors in literature parsing or incomplete corpora can lead to suboptimal search-space decompositions. In addition, the absence of explicit safety and feasibility constraints raises the risk of recommending theoretically optimal yet practically hazardous or infeasible conditions, underscoring the need for expert oversight or integration of safety-aware modules in future implementations.

6 CONCLUSION

ChemBOMAS presents an LLM-enhanced multi-agent framework designed to accelerate Bayesian Optimization in the context of chemical reactions. Through a synergistic combination of knowledge-driven search space decomposition and data-driven pseudo-data generation, this approach seeks to mitigate common challenges like data scarcity and complex reaction mechanisms. Results from benchmark evaluations, along with encouraging outcomes from wet-lab validation on a demanding, previously unreported industrial reaction—where ChemBOMAS showed improved performance compared to domain expert methods—suggest its potential for practical application. ChemBOMAS offers a promising direction for facilitating chemical discovery and enhancing the optimization of complex chemical processes.

REFERENCES

Yunchao Xie, Kianoosh Sattari, Chi Zhang, and Jian Lin. Toward autonomous laboratories: Convergence of artificial intelligence and experimental automation. *Progress in Materials Science*, 132: 101043, 2023.

540 Gary Tom, Stefan P Schmid, Sterling G Baird, Yang Cao, Kourosh Darvish, Han Hao, Stanley Lo,
 541 Sergio Pablo-García, Ella M Rajaonson, Marta Skreta, et al. Self-driving laboratories for chemistry
 542 and materials science. *Chemical Reviews*, 124(16):9633–9732, 2024.

543

544 Martin Seifrid, Robert Pollice, Andres Aguilar-Granda, Zamyla Morgan Chan, Kazuhiro Hotta,
 545 Cher Tian Ser, Jenya Vestfrid, Tony C Wu, and Alan Aspuru-Guzik. Autonomous chemical
 546 experiments: Challenges and perspectives on establishing a self-driving lab. *Accounts of Chemical
 547 Research*, 55(17):2454–2466, 2022.

548 Yangguan Chen, Longhan Zhang, Zhehong Ai, Yifan Long, Ji Qi, Pengxiao Bao, and Jing Jiang.
 549 Robot-assisted optimized array design for accurate multi-component gas quantification. *Chemical
 550 Engineering Journal*, 496:154225, 2024.

551

552 Zhehong Ai, Longhan Zhang, Yangguan Chen, Yu Meng, Yifan Long, Julin Xiao, Yao Yang, Wei
 553 Guo, Yueming Wang, and Jing Jiang. Customizable colorimetric sensor array via a high-throughput
 554 robot for mitigation of humidity interference in gas sensing. *ACS sensors*, 9(8):4143–4153, 2024a.

555 Jeff Guo, Bojana Ranković, and Philippe Schwaller. Bayesian optimization for chemical reactions.
 556 *Chimia*, 77(1/2):31–38, 2023.

557

558 Milad Abolhasani and Eugenia Kumacheva. The rise of self-driving labs in chemical and materials
 559 sciences. *Nature Synthesis*, 2(6):483–492, 2023.

560

561 Yangguan Chen, Longhan Zhang, Zhehong Ai, Yifan Long, Temesgen Muruts Weldengus, Xubin
 562 Zheng, Di Wang, Haowen Wang, Yiteng Zhai, Yuqing Huang, et al. Robot-accelerated development
 563 of a colorimetric co₂ sensing array with wide ranges and high sensitivity via multi-target bayesian
 optimizations. *Sensors and Actuators B: Chemical*, 390:133942, 2023.

564

565 Zhehong Ai, Longhan Zhang, Yangguan Chen, Yifan Long, Boyuan Li, Qingyu Dong, Yueming Wang,
 566 and Jing Jiang. On-demand optimization of colorimetric gas sensors using a knowledge-aware
 567 algorithm-driven robotic experimental platform. *ACS sensors*, 9(2):745–752, 2024b.

568

569 Benjamin J Shields, Jason Stevens, Jun Li, Marvin Parasram, Farhan Damani, Jesus I Martinez
 570 Alvarado, Jacob M Janey, Ryan P Adams, and Abigail G Doyle. Bayesian reaction optimization as
 a tool for chemical synthesis. *Nature*, 590(7844):89–96, 2021a.

571

572 Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
 573 human out of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, 104(1):
 148–175, 2015.

574

575 Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent advances in bayesian
 576 optimization. *ACM Computing Surveys*, 55(13s):1–36, 2023.

577

578 Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space partition for black-box
 579 optimization using monte carlo tree search. *Advances in Neural Information Processing Systems*,
 33:19511–19522, 2020a.

580

581 Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimization in
 582 the latent space of deep generative models via weighted retraining. *Advances in Neural Information
 583 Processing Systems*, 33:11259–11272, 2020.

584

585 Riccardo Moriconi, Marc Peter Deisenroth, and KS Sesh Kumar. High-dimensional bayesian
 586 optimization using low-dimensional feature spaces. *Machine Learning*, 109:1925–1943, 2020.

587

588 Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A framework for bayesian optimization
 589 in embedded subspaces. In *International Conference on Machine Learning*, pages 4752–4761.
 PMLR, 2019.

590

591 Yuxuan Yin, Yu Wang, and Peng Li. High-dimensional bayesian optimization via semi-supervised
 592 learning with optimized unlabeled data sampling. *arXiv preprint arXiv:2305.02614*, 2023.

593

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. *Advances in
 neural information processing systems*, 26, 2013.

594 Artur L. F. Souza, Luigi Nardi, Leonardo B. Oliveira, Kunle Olukotun, Marius Lindauer, and Frank
 595 Hutter. Bayesian optimization with a prior for the optimum. In Nuria Oliver, Fernando Pérez-
 596 Cruz, Stefan Kramer, Jesse Read, and José Antonio Lozano, editors, *Machine Learning and*
 597 *Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2021,*
 598 *Bilbao, Spain, September 13-17, 2021, Proceedings, Part III*, volume 12977 of *Lecture Notes in*
 599 *Computer Science*, pages 265–296. Springer, 2021. doi: 10.1007/978-3-030-86523-8_17. URL
 600 https://doi.org/10.1007/978-3-030-86523-8_17.

601 Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language models
 602 to enhance bayesian optimization. *arXiv preprint arXiv:2402.03921*, 2024.

603

604 Tung Nguyen, Qiuyi Zhang, Bangding Yang, Chansoo Lee, Jörg Bornschein, Yingjie Miao, Sagi
 605 Perel, Yutian Chen, and Xingyou Song. Predicting from strings: Language model embeddings for
 606 bayesian optimization. *CoRR*, abs/2410.10190, 2024. doi: 10.48550/ARXIV.2410.10190. URL
 607 <https://doi.org/10.48550/arXiv.2410.10190>.

608 Mayk Caldas Ramos, Shane S Michtavy, Marc D Porosoff, and Andrew D White. Bayesian optimiza-
 609 tion of catalysts with in-context learning. *arXiv preprint arXiv:2304.05341*, 2023a.

610

611 David Eric Austin, Anton Korikov, Armin Toroghi, and Scott Sanner. Bayesian optimization with
 612 llm-based acquisition functions for natural language preference elicitation. In Tommaso Di Noia,
 613 Pasquale Lops, Thorsten Joachims, Katrien Verbert, Pablo Castells, Zhenhua Dong, and Ben
 614 London, editors, *Proceedings of the 18th ACM Conference on Recommender Systems, RecSys*
 615 *2024, Bari, Italy, October 14-18, 2024*, pages 74–83. ACM, 2024. doi: 10.1145/3640457.3688142.
 616 URL <https://doi.org/10.1145/3640457.3688142>.

617 Shukuan Wang, Ke Xue, Lei Song, Xiaobin Huang, and Chao Qian. Monte carlo tree search based
 618 space transfer for black-box optimization. *arXiv preprint arXiv:2412.07186*, 2024.

619

620 Linnan Wang, Saining Xie, Teng Li, Rodrigo Fonseca, and Yuandong Tian. Sample-efficient neural
 621 architecture search by learning action space. *arXiv preprint arXiv:1906.06832*, 2019.

622

623 Daniel Reker, Emily A Hoyt, Gonçalo JL Bernardes, and Tiago Rodrigues. Adaptive optimization of
 624 chemical reactions with minimal experimental information. *Cell Reports Physical Science*, 1(11),
 625 2020.

626 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, et al. The llama 3 herd of models, 2024. URL
 627 <https://arxiv.org/abs/2407.21783>.

628

629 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 630 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *The Tenth Interna-*
 631 *tional Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.*
 632 OpenReview.net, 2022. URL <https://openreview.net/forum?id=nZeVKeeFYf9>.

633

634 Damith Perera, Joseph W Tucker, Shalini Brahmhatt, Christopher J Helal, Ashley Chong, William
 635 Farrell, Paul Richardson, and Neal W Sach. A platform for automated nanomole-scale reaction
 636 screening and micromole-scale synthesis in flow. *Science*, 359(6374):429–434, 2018.

637

638 Benjamin J Shields, Jason Stevens, Jun Li, Marvin Parasram, Farhan Damani, Jesus I Martinez
 639 Alvarado, Jacob M Janey, Ryan P Adams, and Abigail G Doyle. Bayesian reaction optimization as
 640 a tool for chemical synthesis. *Nature*, 590(7844):89–96, 2021b.

641

642 Derek T Ahneman, Jesús G Estrada, Shishi Lin, Spencer D Dreher, and Abigail G Doyle. Predicting
 643 reaction performance in c–n cross-coupling using machine learning. *Science*, 360(6385):186–190,
 644 2018.

645

646 Team GLM, Aohan Zeng, Bin Xu, and et al. Chatglm: A family of large language models from
 647 glm-130b to glm-4 all tools, 2024.

648

649 OpenAI et al. Gpt-4o system card, 2024. URL <https://arxiv.org/abs/2410.21276>.

650

651 OpenAI. Introducing gpt-5, 2025. URL <https://openai.com/gpt-5>.

648 Connor J. Taylor, Alexander Pomberger, Kobi C. Felton, Rachel Grainger, Magda Barecka, Thomas W.
649 Chamberlain, Richard A. Bourne, Christopher N. Johnson, and Alexei A. Lapkin. A brief introduc-
650 tion to chemical reaction optimization. *Chemical Reviews*, 123(6):3089–3126, 2023.
651

652 Mayk Caldas Ramos, Shane S Michtavy, Marc D Porosoff, and Andrew D White. Bayesian optimiza-
653 tion of catalysts with in-context learning. *arXiv preprint arXiv:2304.05341*, 2023b.
654

655 Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space partition for black-box
656 optimization using monte carlo tree search. *Advances in Neural Information Processing Systems*,
657 33:19511–19522, 2020b.
658

659 Bojana Ranković and Philippe Schwaller. Gollum: Gaussian process optimized llms—reframing llm
660 finetuning through bayesian optimization. In *ICLR 2025 Workshop on World Models: Under-
661 standing, Modelling and Scaling*, 2025.
662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A ILLUSTRATIVE EXAMPLE OF LLM ASSISTED CONSTRUCTION OF A**
 703 **REACTION OPTIMIZATION TREE**
 704

705 In the following illustrative example, we demonstrate how an LLM can assist in constructing an
 706 optimization tree for the reaction $A + B \rightarrow C$ in two steps, enabling efficient optimization of reaction
 707 conditions (e.g., catalyst, ligand, solvent, base), given that reactants A and B are fixed. In the first
 708 step, an LLM is used to infer the possible reaction type for $A + B \rightarrow C$. Based on the inferred reaction
 709 type and specific optimization objectives (e.g., improving yield or selectivity), relevant scientific
 710 literature is retrieved. Literature acquisition can be done through manual downloads or by using
 711 publisher-provided APIs (noting that not all APIs are openly accessible). The collected literature
 712 is then used to construct a vector database to support the subsequent retrieval process. Using the
 713 information from the literature in the vector database, the LLM is queried via analyzing literature
 714 to determine the relative importance of different reaction conditions (variables) on the reaction
 715 objects, generating a ranked list. For instance, the LLM might determine the order of influence as:
 716 Catalyst > Ligand > Solvent > Base. Further queries to the LLM identify the key physicochemical
 717 properties within each category that significantly influence the chemical reaction performance. For
 718 example, within the ligand category, the LLM may highlight "steric and electronic effects" as crucial
 719 physicochemical properties. Subsequently, detailed information regarding the key physicochemical
 720 properties of each ligand candidate is retrieved from online databases, after which the LLM clusters
 721 these ligand candidates into subsets based on similarities in "steric and electronic effects".

722 In the second step, the optimization tree is constructed based on the variable importance ranking
 723 and clustering results. The first level of the tree corresponds to the most important variable—the
 724 catalyst. At the first level, several child nodes can be established, representing different subsets
 725 of catalyst candidates clustered by property similarity. The second level of the tree corresponds
 726 to the next most important variable—the ligand. Under each catalyst subset node at the first level,
 727 additional child nodes branch out, representing various subsets of ligand candidates categorized by
 728 their physicochemical properties. This process continues iteratively, layer by layer, incorporating
 729 additional variables (e.g., solvent, base) until the complete optimization tree is constructed.

730 **B UPDATE ON CHEMBOMAS DURING OPTIMIZATION**
 731

732 After receiving the observation feedback on each round of the experiment, ChemBOMAS would
 733 update. First, the data module would be retrained with the prior and newly acquired data points, and
 734 then infer the unsampled data points to generate pseudo-labels. Second, the optimization tree would
 735 recount the visit number and value of each node to refine the identified hot regions. Third, with the
 736 updated observations, pseudo-labels, and refined hot regions, the BO module would recommend
 737 next-round reaction conditions, targeting potentially higher object values.

739 **C DUAL-STRATEGY REFINEMENT FOR ENHANCED OPTIMIZATION**
 740

741 To mitigate the detrimental influence of noise and redundancy inherent in generated pseudo-data, we
 742 introduced a dual-pronged refinement strategy. This approach was designed to dynamically curate the
 743 pseudo-dataset, ensuring its quality and diversity throughout the optimization process. The strategy
 744 combined a local, similarity-based removal mechanism with a global, performance-driven pruning
 745 policy. This ensured that the pseudo-dataset remained a reliable and informative asset for guiding the
 746 optimization, particularly in complex search spaces.

747 **Data Similarity (Local Removal):** We utilized the final token embedding, $\mathbf{e}(\mathbf{x}) = \text{LLM}_{\theta_{\text{LLM}}, \phi_{\text{LoRA}}}^{[T]}(\mathbf{x})$,
 748 to calculate cosine similarity. Upon acquiring a new real data point $(\mathbf{x}_{\text{new}}, y_{\text{new}})$, the pseudo-dataset
 749 was updated by removing points that were too similar:

$$751 \mathcal{D}_{\text{pseudo}} \leftarrow \mathcal{D}_{\text{pseudo}} \setminus \left\{ (\mathbf{x}_j, \hat{y}_j) \in \mathcal{D}_{\text{pseudo}} \mid \frac{\mathbf{e}(\mathbf{x}_j) \cdot \mathbf{e}(\mathbf{x}_{\text{new}})}{\|\mathbf{e}(\mathbf{x}_j)\| \|\mathbf{e}(\mathbf{x}_{\text{new}})\|} > \tau \right\} \quad (2)$$

753 where τ was a predefined similarity threshold.

754 **Observed Performance (Global Removal):** As the optimization progresses, the model should be
 755 encouraged to explore more broadly. Therefore, based on the predicted performance values \hat{y} of

756 the pseudo-points, we randomly discarded a proportion of pseudo-data, starting from those with
 757 high predicted performance downwards. The probability of discarding a pseudo-point $(\mathbf{x}_j, \hat{y}_j)$ was a
 758 monotonically increasing function of its predicted performance.

759 These generated pseudo-points could also provide further support for the construction of the
 760 knowledge-guided optimization tree in Stage 1. By adjusting the LLM’s temperature parameter
 761 during generation, we could produce a set of candidate tree structures, $\{\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_K\}$. Using
 762 the pseudo-points, we quantitatively evaluated these candidates. Let $\mathcal{N}(\mathcal{T}_k)$ be the set of leaf nodes
 763 of tree \mathcal{T}_k , and let $\mathcal{D}_{\text{pseudo}}^{(j)}$ be the subset of pseudo-points belonging to node $j \in \mathcal{N}(\mathcal{T}_k)$. The tree
 764 structure that minimized the weighted average of intra-node variances was selected as the optimal
 765 one:

$$766 \quad \mathcal{T}^* = \arg \min_{\mathcal{T}_k} \sum_{j \in \mathcal{N}(\mathcal{T}_k)} \frac{|\mathcal{D}_{\text{pseudo}}^{(j)}|}{|\mathcal{D}_{\text{pseudo}}|} \text{Var}(\{\hat{y} \mid (\mathbf{x}, \hat{y}) \in \mathcal{D}_{\text{pseudo}}^{(j)}\}) \quad (3)$$

770 This ensured the selection of a tree that best partitions the search space into regions of homogeneous
 771 performance, guiding the subsequent optimization more effectively.

773 D COMPLETE ALGORITHM PROCESS

775 To provide a comprehensive and formal description of the ChemBOMAS framework, we present
 776 its complete algorithmic process in Algorithm D. This pseudocode encapsulates the synergistic,
 777 two-stage optimization strategy detailed in Section 3.

779 The algorithm begins by initializing a hierarchical search tree using the LLM-guided knowledge-
 780 driven approach as shown in Section 3.4. The main loop then iterates through the coarse-grained
 781 optimization phase, where a UCB policy navigates the tree to select a promising subspace. Within
 782 this selected subspace, the algorithm transitions to the fine-grained, data-driven optimization phase.
 783 Here, a standard Bayesian Optimization procedure is executed, but it is significantly accelerated by
 784 an informative prior constructed from both real experimental data and pseudo-data generated by the
 785 fine-tuned LLM regressor (Section 3.3).

786 After each experimental evaluation, the results are backpropagated to update the value estimates of
 787 the nodes in the search tree, refining the knowledge-driven search for subsequent iterations. This
 788 process continues until the predefined budget of evaluations is exhausted, ultimately returning the
 789 best-performing experimental configuration found.

791 E DETAILS OF PROMPTS

793 As outlined in the main text, our methodology leverages LLMs to support several critical tasks in
 794 reaction optimization, such as analyzing literature, assessing parameter significance, and understanding
 795 physicochemical properties to inform the construction of a hierarchical optimization tree. This
 796 appendix section presents a detailed overview of the specific prompts designed to guide the LLM in
 797 executing these crucial Tasks.

799 E.1 PROMPT OF DATA MODULE

801 As detailed in the Section 3.3, our pre-training phase employs a conditional prediction task. Given
 802 the reactants and products, the model’s objective is to predict the corresponding reaction conditions.
 803 This process utilizes a Causal Language Modeling (CLM) loss, where the model learns to predict the
 804 next token in the sequence of reaction conditions.

805 To provide concrete examples of the input format for this task, this appendix section presents a
 806 selection of prompts utilized during the pre-training phase. These prompts typically consist of the
 807 reactants, products, and the target reaction condition sequence that the model is trained to predict.
 808 Furthermore, in line with the methodology described in the main text, these input sequences are
 809 augmented with functional group annotations (generated via RDKit) to enhance the model’s chemical
 awareness; the augmentation of the prompt is also reflected in the examples provided below.

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Algorithm 1 The Complete Algorithm Process of ChemBOMAS

Input: Search space \mathcal{X} , black-box objective function $h(\cdot)$, coarse iterations N_{coarse} , fine iterations per evaluation N_{fine} , exploration constant C_p , fine-tuned LLM regressor $f_{\theta_{MLP}}(\text{LLM}_{\theta_{LLM}, \phi_{LoRA}}(\cdot))$.

Initialize:
 Construct hierarchical search tree via LLM-guided space partitioning (see Section 3.4).
 Construct hierarchical search tree \mathcal{T} by partitioning \mathcal{X} via LLM-driven analysis.
 Initialize value estimate $Q_v \leftarrow 0$, visit count $n_v \leftarrow 0$ for all nodes $v \in \mathcal{T}$.
 Initialize global set of real experimental data $\mathcal{D}_{\text{real}} \leftarrow \emptyset$.

procedure MAIN LOOP

for $i = 1$ to N_{coarse} **do**

$v_{\text{current}} \leftarrow \text{root}(\mathcal{T})$

$\text{path} \leftarrow [v_{\text{current}}]$

// Stage 1: Knowledge-driven Strategy

while v_{current} is not a leaf node **do**

$v_{\text{current}} \leftarrow \arg \max_{v_k \in \text{children}(v_{\text{current}})} \left(\frac{Q_{v_k}}{n_{v_k}} + C_p \sqrt{\frac{\ln n_{v_{\text{current}}}}{n_{v_k}}} \right)$

Append v_{current} to path.

end while

Let \mathcal{S}_j be the promising subspace corresponding to the leaf node v_{current} .

// Stage 2: Data-driven Strategy

$(y_{\text{new}}, \mathbf{x}_{\text{new}}) \leftarrow \text{BO}(\mathcal{S}_j, N_{fine}, \mathcal{D}_{\text{real}}, f_{\theta_{MLP}}(\text{LLM}_{\theta_{LLM}, \phi_{LoRA}}(\cdot)))$

$\mathcal{D}_{\text{real}} \leftarrow \mathcal{D}_{\text{real}} \cup \{(\mathbf{x}_{\text{new}}, y_{\text{new}})\}$.

for v in path **do** ▷ Backpropagation

$n_v \leftarrow n_v + 1$

$Q_v \leftarrow Q_v + y_{\text{new}}$

end for

end for

end procedure

function $\text{BO}(\mathcal{S}_j, N_{fine}, \mathcal{D}_{\text{real}}, \text{LLM_regressor})$

// Initialize surrogate model with LLM-generated pseudo-data.

Generate pseudo-dataset $\mathcal{D}_{\text{pseudo}} = \{(\mathbf{x}_k, \hat{y}_k)\}_{k=1}^M$ for $\mathbf{x}_k \in \mathcal{S}_j$ using LLM_regressor.

Let $\mathcal{D}_{\text{real}}^{(j)} = \{(\mathbf{x}, y) \in \mathcal{D}_{\text{real}} \mid \mathbf{x} \in \mathcal{S}_j\}$.
▷ Fit Gaussian Process (GP) on combined data to serve as an informative prior.

Initialize GP surrogate model \mathcal{M} on $\mathcal{D}_{\text{pseudo}} \cup \mathcal{D}_{\text{real}}^{(j)}$.

for $k = 1$ to N_{fine} **do**

▷ Select next point by maximizing the acquisition function $\alpha(\cdot)$.

$\mathbf{x}_{\text{next}} \leftarrow \arg \max_{\mathbf{x} \in \mathcal{S}_j} \alpha(\mathbf{x} | \mathcal{M})$

$y_{\text{next}} \leftarrow h(\mathbf{x}_{\text{next}})$ ▷ Perform real experiment to get objective value.

$\mathcal{D}_{\text{real}}^{(j)} \leftarrow \mathcal{D}_{\text{real}}^{(j)} \cup \{(\mathbf{x}_{\text{next}}, y_{\text{next}})\}$

// Apply refinement strategy

Update $\mathcal{D}_{\text{pseudo}}$ by removing points based on similarity and performance rules.

Update GP surrogate model \mathcal{M} with new data $\{(\mathbf{x}_{\text{next}}, y_{\text{next}})\}$ and pruned $\mathcal{D}_{\text{pseudo}}$.

end for

return $(y_{\text{next}}, \mathbf{x}_{\text{next}})$ ▷ Return the result of the last experiment.

end function

Output: The configuration \mathbf{x}^* with the highest observed objective value $h(\mathbf{x}^*)$ from $\mathcal{D}_{\text{real}}$.

864 **Prompt of Condition Prediction Pretraining:** For the condition prediction pre-training, the
 865 input prompts are structured to provide the model with comprehensive reaction information.
 866 Typically, a prompt is formatted as: [Reactants_SMILES]; [Products_SMILES]; [Reaction
 867 Type];[Target_Reaction_Conditions]. Prior to constructing these prompts, the SMILES strings for
 868 both reactants and products are canonicalized using RDKit. This normalization step ensures a stan-
 869 dardized and consistent representation of molecular structures, which is vital for robust model training.
 870 The model then processes this complete sequence, aiming to predict the [Target_Reaction_Conditions]
 871 segment token by token, guided by the Causal Language Modeling objective and conditioned on the
 872 preceding reaction type, reactants, and products.

873 To further clarify the input structure for this prediction task, the following examples demonstrate the
 874 format used:

Condition Prediction Pre-training Prompts

875 "reaction": "Here is a chemical reaction.
 876 Reactants are: C1=CC=CC=2C3=CC=CC=C3N(C12)CC#C,BrC#CCCCCO.
 877 Product is: C1=CC=CC=2C3=CC=CC=C3N(C12)CC#CC#CCCCCO.
 878 Reaction type is Cadiot-Chodkiewicz coupling.",
 879 "condition": "The reaction conditions of this reaction are:
 880 Solvent: O,CN(C=O)C,CN(C=O)C. Catalyst: Cl[Cu]. Atmosphere: N#N. Additive:
 881 C(C)N,[Na]Cl,Cl.NO. ", "reaction_type": "Cadiot-Chodkiewicz coupling",
 882
 883
 884
 885
 886
 887

888 **Prompt of Yield Prediction Fine-tuning:** To fine-tune LLM for precise prediction of chemical
 889 reaction yields, we combine key chemical information—including reaction type, products, reactants,
 890 and reaction conditions—into structured prompts. This approach guides the model to learn the
 891 complex relationships between these variables and reaction outcomes, enabling it to output a specific
 892 numerical prediction.

893 Below is an example prompt for yield prediction fine-tuning from the reactants in the Suzuki coupling
 894 dataset.

An example prompt for yield prediction fine-tuning

895 Here is a chemical reaction:
 896 Reactants are: CCc1cccc(CC)c1.Clc1ccc2ncccc2c1, Cc1ccc2c(cnn2C2CCCCO2)c1B(O)O.
 897 Product is: Cc1ccc2c(cnn2C2CCCCO2)c1-c1ccc2ncccc2c1.
 898 Reaction type is Suzuki Miyaura.
 899 The reaction conditions of this reaction are:
 900 Solvent: CC≡N · O
 901 Ligand: CC(C)(C)P(C(C)(C)C)C(C)(C)C
 902 Base: [Na⁺] · [OH⁻]
 903 What is the yield of this reaction?
 904
 905
 906
 907
 908
 909

E.2 PROMPTS OF KNOWLEDGE MODULE

910 The Knowledge Module, as described in Section 3.4, employs the LLM to systematically analyze
 911 chemical literature and physicochemical data. This involves ranking the impact of various reaction
 912 parameters and classifying components based on their physicochemical properties.

913 **Variable Candidates Clustering Prompt:** The prompt guides the LLM to identify key physico-
 914 chemical properties of each variable and cluster variable candidates based on their similarity in the
 915 physicochemical properties. Below is an example of the prompt for variable candidates classification.

918
919**Prompt for Variable Candidates Classification Based on Physicochemical Data**

920

Objective:

921

922 Classify the provided list of candidate chemical substances into NO MORE THAN THREE
 923 groups according to the [Specified_physicochemical_Properties], or place them all in ONE
 924 class if justified.. Your primary method for classification must be the utilization of quantitative
 925 data that would typically be found in a comprehensive physicochemical property database.

926

Crucial Instructions:

927

928 **Prioritize Quantitative Data:** For each substance and property, you should first attempt to
 929 classify it based on specific, measurable, quantitative values (e.g., pKa for basicity/ acidity,
 930 dielectric constant for polarity, boiling point for volatility, specific functional group counts).

931

932 **Minimize General Knowledge/Intuition:** Avoid relying on your general, unquantified
 933 chemical knowledge or intuition. If a quantitative value from the "database" directly supports
 934 a classification, state that. If a direct value isn't typically used for a category but strong
 935 structural indicators (which could be quantified, e.g., number of H-bond donors) point to it,
 936 explain this as an inference based on data-like principles.

937

938 **Adhere to Provided Categories:** Classify substances strictly into the categories provided for
 939 each property. If a substance does not clearly fit or straddles categories based on (assumed)
 940 data, note this ambiguity.

941

Candidate Substances to Classify:

942

[TYPE] : [CANDIDATE_SUBSTANCES_LIST]

943

Provided Literature:

944

[LITERATURE_1]

945

[LITERATURE_2]

946

...

947

Available Tools:

948

949

[PubMedToolkit], [PubChemToolkit], [GoogleSearchToolkit]

950

F BENCHMARK DETAIL

951

952 This section provides further details on the benchmark datasets used for evaluating ChemBOMAS.

953

F.1 DATASET FOR LLM PRE-TRAIN

954

955 The Pistachio dataset employed during the pre-training phase is a large-scale reaction information
 956 repository. Its core data was systematically extracted from the full texts of US patents and European
 957 patents through automated text mining techniques. To enhance data diversity and accuracy, the dataset
 958 integrates information from multiple sources, including: - Structured data parsed from ChemDraw
 959 files embedded directly within patent documents - Records sourced from specialized chemical
 960 databases such as Reaxys - Exported data from select electronic laboratory notebooks. The dataset
 961 contains a total of 19.17 million chemical reactions. In this project, we primarily utilize the reaction
 962 SMILES strings for model pre-training.

963

F.2 DATASET FOR LLM FINE-TUNE

964

965 To conduct a rigorous and unbiased evaluation of model performance, we selected a series of publicly
 966 available benchmark datasets widely used in the field of chemical reaction optimization. The core
 967 strength of these datasets lies in their completeness: all were generated via high-throughput automated
 968 experimental platforms and encompass experimental results for every variable combination within
 969 a clearly defined chemical space (full factorial design). This exhaustive coverage effectively elimi-
 970 nates sampling bias, enabling deterministic quantitative evaluation of algorithmic recommendation
 971 performance against known experimental ground truth.

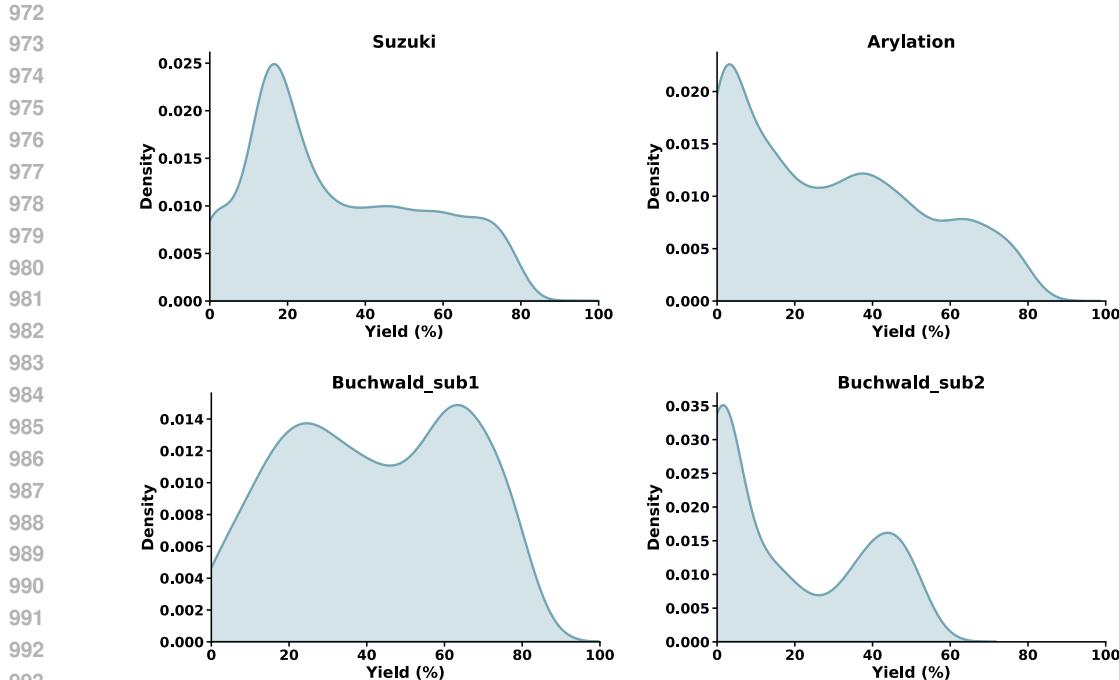


Figure 4: KDE plots illustrating the yield distributions for the four benchmark datasets.

Specifically, we employed three recognized benchmark datasets: Suzuki, Arylation, and Buchwald reactions. During fine-tuning, we randomly sampled 1% of data from each dataset as training samples to adjust the pre-trained model.

Suzuki originates from the automated nanomolar-scale flow screening study reported by Perera et al. in 2018. The chemical space of the experiments comprised a full factorial combination of 4 halogenated quinolines, 3 boronic acid derivatives, 11 phosphine ligands, 7 bases, and 4 solvents. All reactions were conducted under uniform conditions (100 °C, 1-minute residence time, 9:1 organic/aqueous phase). Reaction yields were detected via dual UPLC-MS online detection and uniformly calibrated. The data is comprehensive and highly consistent, making it one of the widely adopted validation standards in the field.

Arylation was reported by Shields et al. in 2021 for Bayesian optimization studies. Its chemical space was generated via a full factorial design comprising 12 phosphine ligands, 4 bases, 4 solvents, 3 temperature gradients, and 3 concentration gradients. All experiments were conducted at high throughput in 96-well plates, with yields precisely quantified via UHPLC-MS coupled with internal standard methods. This dataset features no duplicates or missing data, exhibits uniform variable distribution, and has been validated by 50 practicing chemists, establishing it as a critical benchmark for optimizing C-H functionalization reactions.

Buchwald was published by Ahneman et al. in 2018, this dataset aims to predict yields of C-N coupling reactions via machine learning. Experiments were conducted in nanomolar-scale high-throughput format using 1536-well plates, systematically examining all combinations of 15 aryl halides, 4 ligands, 3 bases, and 23 isoxazole additives. All reactions proceeded under standard conditions (60 °C, DMSO, 16 hours), with yields quantified by LC-MS. This dataset is complete with no missing values, serving as an authoritative open-access resource for studying additive effects and modeling complex reaction systems.

1026
 1027 Table 5: Descriptive statistics of the four reaction datasets. The table summarizes key statistical
 1028 measures for the reaction yields, including measures of central tendency, dispersion, and distribution
 1029 shape.

1030 Statistic	1031 Suzuki	1032 Arylation	1033 Buchwald_sub1	1034 Buchwald_sub2
1031 Total data points (N)	1032 5030	1033 3678	1034 629	1035 765
1032 Maximum Yield (%)	1033 96.15	1034 84.65	1035 80.91	1036 56.81
1033 Minimum Yield (%)	1034 0.00	1035 0.00	1036 0.00	1037 0.00
1034 Mean (%)	1035 33.04	1036 29.05	1037 42.24	1038 18.71
1035 Median (%)	1036 26.86	1037 25.53	1038 42.21	1039 11.34
1036 Standard Deviation (%)	1037 22.47	1038 23.79	1039 22.86	1040 18.98
1037 25% Quantile (%)	1038 15.26	1039 6.87	1040 23.14	1041 0.72
1038 75% Quantile (%)	1039 51.27	1040 47.14	1041 63.01	1042 38.77

1040 F.3 DATASET FOR BAYESIAN OPTIMIZATION

1041 For Bayesian optimization tasks, we employed four benchmark datasets: Suzuki, Arylation, Buch-
 1042 wald_sub1, and Buchwald_sub2. The latter two originate from partitions of the aforementioned
 1043 Buchwald-Hartwig dataset. To ensure consistency of target products within the optimization space,
 1044 the original dataset was first divided into five independent subsets based on product molecular struc-
 1045 tures. We observed distinct high-yield and low-yield patterns in the reaction yields of these subsets.
 1046 To ensure comprehensive evaluation, we selected one representative subset from each category,
 1047 naming them Buchwald_sub1 and Buchwald_sub2, respectively. Table 5 summarizes key descriptive
 1048 statistics for these four datasets, while Figure 4 visually depicts their respective yield distributions
 1049 via kernel density estimation (KDE) plots. These datasets exhibit distinct statistical characteristics,
 1050 with average yields ranging from 18.71% to 42.24% and diverse distribution shapes. Collectively,
 1051 they form a challenging optimization problem that effectively tests algorithm performance across
 1052 varying data environments.

1053 F.4 COMPARATIVE ALGORITHMS

1054 To evaluate the efficacy of our proposed method, we benchmark it against four algorithms representing
 1055 diverse approaches to black-box optimization. These baselines were strategically selected to strictly
 1056 validate specific components of the ChemBOMAS framework: (1) **BO** serves as the classical standard.
 1057 (2) **BO-ICL** relies entirely on LLM inference, serving as a reference for our data-driven module. (3)
 1058 **LA-MCTS** employs a tree-structured partitioning mechanism analogous to our knowledge-driven
 1059 module. (4) **GOLLuM** operates in the latent space, sharing the core philosophy of Latent Bayesian
 1060 Optimization (LBO).

1061 To ensure a fair comparison, we standardized the experimental protocol across all methods involving
 1062 Bayesian optimization components. The detailed parameters and computational costs across all
 1063 methods are shown in Table 6. The specific configurations and selection rationale for each baseline
 1064 are detailed below:

- 1065 • Traditional Bayesian Optimization (**BO**): This serves as the classical fundamental baseline. It
 1066 utilizes a Gaussian Process (GP) with a Matérn kernel as the surrogate model to approximate
 1067 the objective function. Consistent with the general protocol, it employs EI to guide sequential
 1068 sampling. Input features are processed using one-hot encoding, as prior research indicates
 1069 that more complex encoding schemes yield negligible benefits in this context Taylor et al.
 1070 (2023); Shields et al. (2021a).
- 1071 • Bayesian Optimization with In-Context Learning (**BO-ICL**): This method integrates a frozen
 1072 LLM with BO, as proposed by Ramos et al. (2023b). Instead of fine-tuning, it leverages
 1073 the in-context learning capability of the LLM to function as a surrogate model. Since this
 1074 approach relies entirely on the LLM to drive optimization, it serves as a direct comparator to
 1075 evaluate the effectiveness of the LLM-based regression strategy in our data-driven module.
 1076 Our implementation utilizes gpt-3.5-turbo with a temperature setting of 0.7. The model
 1077 predicts outcomes and uncertainty by retrieving the $k = 3$ nearest neighbors from the
 1078 optimization history to construct the textual context prompts.

1080

1081 Table 6: Detailed Experimental Settings and Computational Cost.

	BO	BO-ICL	GoLLum	LA-MCTS	ChemBOMAS
<i>Experimental Settings</i>					
Initialization				1% of dataset	
BO Batch Size				0.1% of dataset	
Acq. Function			Types of Expected Improvement		
Iterations				40	
Repeat Campaigns				10	
Kernel Function			Matérn Family ($\nu = 3/2, 5/2$, or ∞)		
<i>Computational Cost per campaign (seconds)</i>					
Suzuki	144	19	22	2575	212
Arylation	88	20	21	1957	100
Buchwald_sub1	21	22	13	1734	28
Buchwald_sub2	17	19	13	1767	22

1096

1097

- Latent Action Monte Carlo Tree Search (**LA-MCTS**): This is a meta-algorithm designed for high-dimensional optimization Wang et al. (2020b). It employs Monte Carlo Tree Search to dynamically partition the search space into high- and low-performance regions. This hierarchical partitioning strategy closely mirrors the tree-structured search logic of our knowledge-driven module, making it an ideal baseline to assess the efficiency of our LLM-guided space decomposition. The tree search policy utilizes the Upper Confidence Bound (UCB) as the acquisition function, with a dynamically adjusted exploration parameter κ . A local optimizer is subsequently deployed within the promising subregions identified by the tree.
- Gaussian Process Optimized LLMs (**GoLLum**): Representing a deeper fusion of LLMs and Bayesian optimization Ranković and Schwaller (2025), this method utilizes the LLM’s embedding space as a deep kernel for the GP, jointly optimizing the embedding and GP hyperparameters. Its core mechanism of performing BO within a latent space shares the fundamental philosophy of LBO, providing a benchmark for latent-space-based strategies. We employed T5-base as the featurizer to extract representations, utilizing a random initialization method for the embedding space optimization.

1113

G QUALITATIVE COMPARISON OF OPTIMIZATION TRAJECTORIES

1114

1115

To qualitatively assess how well the automated clustering strategies of ChemBOMAS emulate expert-level reasoning, we visualized the optimization progress. Figure 5 provides a comparative heatmap of the "Best Found" objective value over 40 iterations for three different search tree configurations: one guided by human experts, one by our knowledge-driven module (K-d), and one by our data-driven module (D-d).

1116

1117

1118

1119

1120

The visual evidence strongly suggests that both automated ChemBOMAS strategies produce optimization trajectories that are remarkably consistent with the expert-guided approach. The color progression—from blue (lower values) to red (higher values)—is highly similar across all three methods. This indicates that the subspaces identified as promising by the LLM-driven modules align well with those selected by human domain experts. The ability of both the knowledge-driven and data-driven variants to rapidly progress towards high-yield regions in a manner analogous to the expert baseline underscores the effectiveness of our framework in automatically structuring the search space in a chemically meaningful way. This qualitative alignment provides further confidence in the robustness and practical utility of ChemBOMAS for real-world chemical optimization tasks.

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

H COMPLETE DATA FOR OPTIMIZATION TASK EXPERIMENTS

Table 7 presents the comprehensive performance metrics for ChemBOMAS and four baseline methods across the Suzuki, Arylation, Buchwald_sub1, and Buchwald_sub2 datasets. Results are averaged

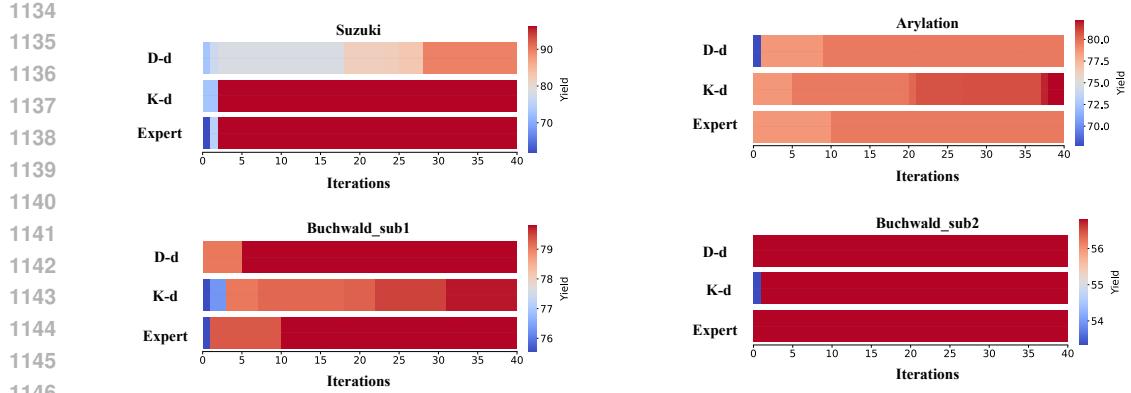


Figure 5: Heatmap of the best-found objective value over 40 iterations on the Suzuki dataset for three different tree-building strategies. Each colored block represents the highest value discovered up to that iteration, with the color scale progressing from blue (low) to red (high). The visual similarity in the optimization trajectories demonstrates that both the knowledge-driven (K-d) and data-driven (D-d) methods closely mirror the performance progression of the expert-guided approach.

over 10 independent runs. The p -values are calculated using a one-sided t -test comparing the "Best Found" and "Initial" performance of each baseline against ChemBOMAS.

Table 7: Comparison of Methods across Datasets. 95% Iter and Best Iter are rounded to the nearest integer.

Method	Best Found			Initial			95% Iter			Best Iter		
	Mean \pm Std	95% CI	p -val	Mean \pm Std	95% CI	p -val	Mean \pm Std	95% CI	p -val	Mean \pm Std	95% CI	p -val
Suzuki												
BO	91.45 \pm 7.58	[86.02, 96.87]	0.0812	58.91 \pm 12.14	[50.23, 67.60]	0.0000	12 \pm 10	[5, 19]	0.0050	16 \pm 7	[10, 21]	0.0004
BO-ICL	80.37 \pm 5.93	[74.14, 86.59]	0.0013	76.02 \pm 0.07	[75.94, 76.10]	0.0000	6 \pm 12	[1, 18]	0.3632	21 \pm 13	[7, 34]	0.0197
LA-MCTS	78.43 \pm 1.15	[77.60, 79.25]	0.0000	77.70 \pm 1.67	[76.51, 78.90]	0.0000	1 \pm 0	[1, 1]	∞	3 \pm 4	[0, 6]	0.8751
GOLLuM	78.07 \pm 6.67	[73.30, 82.85]	0.0000	79.10 \pm 26.53	[26.27, 26.79]	0.0000	25 \pm 9	[18, 31]	0.0000	31 \pm 7	[26, 36]	0.0000
ChemBOMAS	96.15 \pm 0.00	[96.15, 96.15]	-	92.24 \pm 0.00	[92.24, 92.24]	-	1 \pm 0	[1, 1]	-	3 \pm 0	[3, 3]	-
Arylation												
BO	82.83 \pm 1.77	[81.57, 84.10]	0.9969	49.59 \pm 15.10	[38.79, 60.40]	0.0000	12 \pm 9	[0, 18]	0.0036	27 \pm 8	[21, 33]	0.0004
BO-ICL	78.63 \pm 1.21	[77.36, 79.91]	0.0005	76.43 \pm 0.77	[5.62, 77.23]	0.0000	1 \pm 0	[1, 1]	∞	27 \pm 13	[13, 41]	0.0047
LA-MCTS	74.12 \pm 4.03	[71.23, 77.01]	0.0001	67.85 \pm 7.53	[2.46, 73.24]	0.0002	6 \pm 8	[1, 11]	0.0858	13 \pm 11	[5, 21]	0.0976
GOLLuM	76.99 \pm 8.39	[70.99, 83.00]	0.0557	23.77 \pm 1.17	[22.93, 24.60]	0.0000	21 \pm 11	[13, 29]	0.0003	29 \pm 11	[21, 36]	0.0002
ChemBOMAS	82.83 \pm 0.64	[82.38, 83.29]	-	82.63 \pm 0.00	[82.63, 82.63]	-	1 \pm 0	[1, 1]	-	4 \pm 10	[1, 11]	-
Buchwald_sub1												
BO	79.74 \pm 0.42	[79.44, 80.04]	0.3216	53.57 \pm 25.22	[35.54, 71.61]	0.0222	5 \pm 2	[3, 6]	0.7811	12 \pm 10	[5, 19]	0.0281
BO-ICL	78.26 \pm 2.53	[75.61, 80.91]	0.1692	69.78 \pm 0.64	[69.11, 70.45]	0.0000	7 \pm 6	[1, 13]	0.4604	19 \pm 13	[5, 33]	0.5129
LA-MCTS	75.52 \pm 3.95	[72.69, 78.34]	0.0056	71.10 \pm 13.22	[1.64, 80.55]	0.3141	2 \pm 4	[1, 6]	0.4945	3 \pm 5	[1, 7]	0.0016
GOLLuM	79.77 \pm 0.72	[79.25, 80.28]	0.3980	36.32 \pm 4.02	[3.45, 39.19]	0.0000	13 \pm 7	[8, 18]	0.0042	25 \pm 12	[17, 34]	0.7381
ChemBOMAS	79.97 \pm 0.50	[79.62, 80.33]	-	75.55 \pm 0.00	[5.55, 75.55]	-	4 \pm 5	[0, 8]	-	23 \pm 13	[4, 33]	-
Buchwald_sub2												
BO	56.61 \pm 0.61	[56.18, 57.05]	0.3434	31.62 \pm 13.55	[21.92, 41.31]	0.0016	20 \pm 9	[3, 27]	0.0002	22 \pm 9	[16, 28]	0.0000
BO-ICL	53.14 \pm 1.93	[51.12, 55.16]	0.0055	46.12 \pm 2.85	[43.12, 49.11]	0.0016	23 \pm 12	[1, 35]	0.0069	24 \pm 10	[20, 40]	0.0008
LA-MCTS	51.63 \pm 3.40	[49.19, 54.06]	0.0010	48.25 \pm 4.00	[45.39, 51.11]	0.0030	4 \pm 7	[0, 9]	0.4723	6 \pm 8	[0, 12]	0.1439
GOLLuM	54.99 \pm 1.99	[53.57, 56.41]	0.0177	7.46 \pm 3.08	[5.25, 9.66]	0.0000	24 \pm 11	[16, 31]	0.0001	28 \pm 12	[19, 37]	0.0001
ChemBOMAS	56.81 \pm 0.00	[56.81, 56.81]	-	53.33 \pm 0.00	[53.34, 53.34]	-	2 \pm 0	[2, 2]	-	2 \pm 0	[2, 2]	-

Definition of Four Optimization Metrics. Initial: The best objective value observed in the first "search", reflecting the quality of the initial design or warm start; Best Found: The final best objective value achieved by a method over all iterations, showing the optimization performance under the same evaluation budget; 95% Iter: The smallest iteration index for which the best-so-far value reaches at least 95% of the final best value, measuring the convergence speed in terms of the number of iterations needed to get "close enough" to the final optimum; Best Iter: The earliest iteration at which the final best value is first achieved, together with 95% Max Iteration, gives a more detailed view of the convergence trajectory.

Final Performance and Statistical Significance. ChemBOMAS consistently achieves the highest mean objective values across all four benchmark datasets: 96.15% (Suzuki), 82.83% (Arylation), 79.97% (Buchwald_sub1), and 56.81% (Buchwald_sub2). As shown in Table 7, our method demon-

1188 strates statistically significant superiority ($p < 0.05$) against baselines such as LA-MCTS and
 1189 GOLLuM across most tasks.

1190 **Initialization and Cold-Start Capability.** A distinguishing feature of ChemBOMAS is its excep-
 1191 tional cold-start performance. The Initial column in Table 7 reveals that ChemBOMAS surpasses all
 1192 baselines by a large margin in the very first iteration. For instance, in the Suzuki task, ChemBOMAS
 1193 starts at 92.24%, whereas the strongest baseline GOLLuM starts at 79.10% and BO at only 58.91%.

1194 **Convergence Efficiency and Stability.** ChemBOMAS exhibits the fastest convergence rates among
 1195 all compared methods. The 95% Iter metric indicates that our method reaches near-optimal solutions
 1196 within merely 1 to 4 iterations across all tasks. In contrast, baseline methods often require significantly
 1197 more iterations.

1200 I WET EXPERIMENTS

1202 I.1 WET EXPERIMENT DETAIL PROTOCOL

1204 To validate the robustness of ChemBOMAS’s initialization performance, the initial-round sampling
 1205 was repeated ten times with the fixed experimental configurations. In the ten repeated initialization
 1206 tests using ChemBOMAS, each run consistently identified at least two reaction conditions with yields
 1207 exceeding 60%. Moreover, reaction conditions achieving yields above 80% appeared in 70% of the
 1208 validation tests, totaling 11 such high-yield conditions across all trials. These results demonstrate that
 1209 ChemBOMAS reliably mitigates the “cold-start” problem inherent to BO optimization.

1210 **General Procedure for Reaction Optimization** For the wet experiment involving palladium-
 1211 catalyzed coupling of boronic esters with aryl chlorides, first, an oven-dried 10 mL Schlenk tube fitted
 1212 with a Teflon-coated magnetic stir bar was charged inside an N_2 -filled glovebox with Pd-catalyst
 1213 (0.002 mmol), Phosphine ligand (0.008 mmol), and base (0.30 mmol, 1.5 equiv). Then, the tube
 1214 was sealed with a septum, removed from the glovebox, and placed under a positive flow of N_2 . The
 1215 Mixture of organic solvent and water (2 mL) was introduced via a syringe. Next, pinacol boronic
 1216 ester 2 (Reactant 1, 0.20 mmol, 1 equiv) and Aryl chloride 1 (Reactant 1, 0.25 mmol, 1.25 equiv)
 1217 were added sequentially by syringe. The tube was capped tightly, placed in a pre-heated aluminum
 1218 heating block maintained at 80 °C, 100 °C, or 120 °C, and the mixture was stirred (approximately
 1219 1500 rpm) for 24 hours. After cooling to room temperature, the mixture was diluted with ethyl acetate
 1220 (3 mL) and quenched with water (3 mL). Finally, GC yields were determined directly from the crude
 1221 mixture against the n-dodecane standard.

1222 **ChemBOMAS Configuration** Some configurations of ChemBOMAS described in the Experiment
 1223 Section of the main text were adjusted for the wet experiment task. First, in the Knowledge Module,
 1224 the additional process parameters (here, water usage and temperature) were divided into multiple
 1225 subsets automatically by the LLM using RAG, and these subsets were grouped by the similarity of
 1226 physical properties, which is the same as the category variables. For instance, temperature conditions
 1227 were categorized into three distinct subsets corresponding to low, intermediate, and high activation
 1228 energy levels. Moreover, during the Bayesian Optimization (BO), considering the relatively high
 1229 experimental throughput, multiple acquisition functions (here, EI and UCB) were applied to generate
 1230 fourteen samples per round. Apart from the aforementioned adjustments, all other configurations
 1231 within ChemBOMAS remained consistent with those used in the dry-lab experiments.

1232 **Sample in The Initial Round** The initial experiment was only designed by Knowledge module
 1233 due to the lack of prior data. Specifically, after the Knowledge Module partitioned the variables
 1234 into subsets, a sampling function that can select variables from different subsets evenly was applied
 1235 to generate fourteen diverse reaction conditions. The generated reaction conditions were then sent
 1236 to the experiment operators for actual observation, which facilitated providing data to inform the
 1237 experimental design in the next round.

1238 **Sample in The Iterated Round** As illustrated in Section B of the Supplementary Material, after
 1239 receiving the observation feedback on each round of the wet experiment, all ChemBOMAS modules
 1240 would update based on the feedback from each round of the wet-lab experiments. Following the

1242 update of ChemBOMAS, the BO module would recommend fourteen reaction conditions with
1243 potentially higher yields for the subsequent round.
1244

1245 J ADDITIONAL RESULTS ANALYSIS 1246

1247 J.1 DETAILED IMPLEMENTATION AND ROBUSTNESS ASSESSMENT OF THE 1248 KNOWLEDGE-DRIVEN MODULE 1249

1250 In this section, we provide an in-depth exposition of the knowledge-driven components within
1251 ChemBOMAS. We first detail the hierarchical information retrieval protocol that grounds the LLM’s
1252 reasoning. Subsequently, we present concrete examples of the resulting subspace partitions and
1253 analyze the robustness of our framework against the inherent stochasticity of LLMs.
1254

1255 J.1.1 HYBRID RETRIEVAL-AUGMENTED GENERATION ARCHITECTURE 1256

1257 To ensure the LLM partitions the chemical search space based on grounded scientific principles
1258 rather than hallucinated correlations, we implemented a three-tier "Hybrid RAG" architecture. This
1259 prioritized pipeline orchestrates data retrieval from sources of varying structure and specificity:
1260

- 1261 • **Tier 1: Specialized Literature Repository.** The system first queries a curated local
1262 repository comprising peer-reviewed publications. Using reaction-specific keywords (e.g.,
1263 "Suzuki Coupling mechanism," "ligand steric effects"), the retriever extracts the top- k
1264 unstructured text passages. This tier prioritizes expert consensus on reaction mechanisms
1265 and reagent interactions.
- 1266 • **Tier 2: Structured Chemical Databases.** If the unstructured text yields insufficient
1267 context for specific molecular properties, the pipeline queries structured databases, including
1268 RDKit and PubChem. By utilizing exact molecular identifiers (SMILES strings or IUPAC
1269 names), the system retrieves precise quantitative data, such as molecular fingerprints and
1270 physicochemical descriptors, to substantiate the clustering process.
- 1271 • **Tier 3: Constrained Web Search.** As a final fallback mechanism, a web search API is
1272 employed to access encyclopedic or handbook-style chemical websites. This tier is strictly
1273 constrained to factual verification and obtaining short descriptions for less common reagents
1274 that may be absent from the local repository.

1275 J.1.2 QUALITATIVE ANALYSIS OF SUBSPACE PARTITIONING 1276

1277 The effectiveness of the ChemBOMAS framework relies on the logical partitioning of the search
1278 space into chemically similar clusters. By grouping reagents based on the properties retrieved via the
1279 Hybrid RAG pipeline, the LLM constructs a subspace tree to guide the BO.
1280

1281 Table 8 illustrates the clustering outcomes for key variable categories—Ligands, Bases, and Sol-
1282 vents—across different independent runs. For instance, in the Ligand category, phosphine ligands
1283 are consistently grouped by steric and electronic characteristics (e.g., grouping bulky, electron-rich
1284 ligands like XPhos and SPhos), distinct from simple triphenylphosphine derivatives. These parti-
1285 tions effectively reduce the combinatorial complexity by allowing the UCB algorithm to prioritize
1286 subspaces with high-potential chemical properties.
1287

J.1.3 ROBUSTNESS AGAINST LLM STOCHASTICITY

1288 Since the Knowledge-driven module relies on Large Language Models (LLMs) for chemical space
1289 partitioning, the inherent stochasticity of LLM generation could potentially lead to variations in
1290 the search tree structure. To evaluate the robustness of our framework against these variations, we
1291 conducted four independent runs of the partitioning process, generating distinct subspace structures
1292 denoted as Subspace-1 through Subspace-4. We compared these against the primary reported partition
1293 Subspace across four datasets. The results, detailed in Table 9, provide compelling evidence for the
1294 stability of ChemBOMAS.
1295

Consistency in Optimization Performance. The primary metric, "Best Found" performance,
1296 demonstrates remarkable stability. As shown in Table 9, the vast majority of variations yielded
1297

1296

1297

1298

1299

Table 8: Summary of clustering results across different subspaces.

Agent	Class	Subspace	Subspace-1	Subspace-2	Subspace-3	Subspace-4
Ligand	Class 1	Xantphos	Xantphos	Xantphos	Xantphos	Xantphos
		dtbpf	dtbpf	dtbpf	dtbpf	dtbpf
		dppf	XPhos	XPhos	XPhos	dppf
		dppf	dppf	dppf	dppf	dppf
		SPhos				
	Class 2	CataCXium A				
		XPhos	P(Ph)3	P(Ph)3	P(Ph)3	P(Ph)3
		P(tBu)3	P(tBu)3	P(Cy)3	P(Cy)3	P(o-Tol)3
		CataCXium A	P(Cy)3	P(o-Tol)3	AmPhos	SPhos
		P(Cy)3	AmPhos	SPhos	P(o-Tol)3	CataCXium A
	Class 3	AmPhos	P(o-Tol)3	CataCXium A	CataCXium A	XPhos
		SPhos				
		P(Ph)3	nothing	P(tBu)3	P(tBu)3	P(tBu)3
		P(o-Tol)3		nothing	nothing	P(Cy)3
		nothing		AmPhos		AmPhos
						nothing
Base	Class 1	KOH	KOH	KOH	KOH	KOH
		NaOH	NaOH	NaOH	NaOH	NaOH
		LiOtBu	K3PO4	K3PO4		K3PO4
			LiOtBu	LiOtBu		LiOtBu
			NaHCO3	NaHCO3		NaHCO3
	Class 2	CsF	CsF			CsF
		K3PO4	Et3N	Et3N	Et3N	
		CsF			nothing	
	Class 3	Et3N			LiOtBu	
Solvent	Class 1	NaHCO3	nothing	nothing	K3PO4	/
					NaHCO3	
					CsF	
	Class 2	MeOH	MeOH	MeOH	MeOH	MeOH
		MeOH/H2O_V2 9:1				
	Class 3	DMF	DMF	DMF	DMF	DMF
		MeCN	MeCN	MeCN	MeCN	MeCN
	Class 3	THF	THF	THF	THF	THF
		THF_V7	THF_V2	THF_V3	THF_V4	THF_V5

1326

1327

1328

1329

1330

Table 9: Robust Performance of Subspace Partitioning Across Different Datasets. 95% Iter and Best Iter are rounded to the nearest integer.

Method	Best Found			Initial			95% Iter			Best Iter		
	Mean \pm Std	95% CI	p-val	Mean \pm Std	95% CI	p-val	Mean \pm Std	95% CI	p-val	Mean \pm Std	95% CI	p-val
Suzuki												
Subspace	82.04 \pm 4.49	[78.83, 85.26]	-	66.94 \pm 8.02	[61.21, 72.68]	-	8 \pm 11	[0, 16]	-	18 \pm 14	[8, 28]	-
Subspace-1	82.3 \pm 5.14	[78.63, 85.98]	> 0.05	60.9 \pm 17.11	[48.66, 73.14]	> 0.05	12 \pm 13	[2, 21]	> 0.05	21 \pm 12	[12, 30]	> 0.05
Subspace-2	84.74 \pm 7.87	[79.11, 90.37]	> 0.05	64.46 \pm 8.83	[58.14, 70.77]	> 0.05	15 \pm 13	[5, 24]	> 0.05	26 \pm 12	[18, 34]	> 0.05
Subspace-3	94.92 \pm 1.98	[93.51, 96.34]	0.0000	60.38 \pm 15.03	[49.63, 71.13]	> 0.05	13 \pm 11	[5, 21]	> 0.05	15 \pm 11	[6, 23]	> 0.05
Subspace-4	85.83 \pm 7.61	[80.39, 91.27]	> 0.05	58.09 \pm 16.78	[46.08, 70.10]	> 0.05	13 \pm 14	[3, 23]	> 0.05	20 \pm 14	[10, 30]	> 0.05
Arylation												
Subspace	81.28 \pm 2.12	[79.76, 82.80]	-	59.38 \pm 17.79	[46.66, 72.11]	-	11 \pm 13	[2, 21]	-	20 \pm 14	[10, 30]	-
Subspace-1	81.4 \pm 2.14	[79.87, 82.93]	> 0.05	56.87 \pm 20.19	[42.13, 71.02]	> 0.05	10 \pm 9	[3, 17]	> 0.05	28 \pm 9	[22, 35]	> 0.05
Subspace-2	81.4 \pm 2.14	[79.87, 82.93]	> 0.05	56.87 \pm 20.19	[42.13, 71.02]	> 0.05	10 \pm 9	[3, 17]	> 0.05	28 \pm 9	[22, 35]	> 0.05
Subspace-3	81.25 \pm 2.03	[79.80, 82.70]	> 0.05	60.58 \pm 13.88	[50.65, 70.51]	> 0.05	14 \pm 9	[8, 20]	> 0.05	28 \pm 9	[21, 34]	> 0.05
Subspace-4	82.14 \pm 2.14	[80.61, 83.67]	> 0.05	54.12 \pm 19.98	[39.83, 68.42]	> 0.05	15 \pm 12	[6, 23]	> 0.05	28 \pm 8	[22, 34]	> 0.05
Buchwald_sub1												
Subspace	80.25 \pm 2.22	[78.66, 81.83]	-	44.08 \pm 26.71	[24.98, 63.19]	-	4 \pm 2	[2, 6]	-	11 \pm 7	[5, 16]	-
Subspace-1	79.01 \pm 1.31	[78.08, 79.95]	> 0.05	50.39 \pm 17.4	[37.94, 62.83]	> 0.05	9 \pm 8	[4, 15]	0.0383	27 \pm 13	[18, 37]	0.0025
Subspace-2	79.52 \pm 0.39	[79.24, 79.80]	> 0.05	41.35 \pm 22.53	[25.24, 57.47]	> 0.05	9 \pm 9	[3, 15]	> 0.05	33 \pm 13	[23, 42]	0.0033
Subspace-3	79.01 \pm 1.31	[78.08, 79.95]	> 0.05	50.39 \pm 17.4	[37.94, 62.83]	> 0.05	9 \pm 8	[4, 15]	0.0383	27 \pm 13	[18, 37]	0.0025
Subspace-4	79.01 \pm 1.31	[78.08, 79.95]	> 0.05	50.39 \pm 17.4	[37.94, 62.83]	> 0.05	9 \pm 8	[4, 15]	0.0383	27 \pm 13	[18, 37]	0.0025
Buchwald_sub2												
Subspace	53.23 \pm 0.38	[52.95, 53.50]	-	18.19 \pm 22.47	[2.12, 34.26]	-	18 \pm 9	[12, 25]	-	26 \pm 7	[22, 31]	-
Subspace-1	53.72 \pm 0.89	[53.08, 54.36]	> 0.05	16.56 \pm 17.42	[4.10, 29.02]	> 0.05	22 \pm 7	[17, 27]	> 0.05	26 \pm 9	[20, 33]	> 0.05
Subspace-2	52.67 \pm 1.89	[51.32, 54.03]	> 0.05	22.52 \pm 20.2	[8.08, 36.97]	> 0.05	14 \pm 10	[6, 21]	> 0.05	18 \pm 12	[10, 26]	0.0402
Subspace-3	51.62 \pm 1.47	[50.57, 52.67]	0.0079	19.12 \pm 19.96	[4.85, 33.40]	> 0.05	7 \pm 6	[3, 11]	0.0120	28 \pm 10	[21, 35]	> 0.05
Subspace-4	51.62 \pm 1.47	[50.57, 52.67]	0.0079	19.12 \pm 19.96	[4.85, 33.40]	> 0.05	7 \pm 6	[3, 11]	0.0120	28 \pm 10	[21, 35]	> 0.05

1349

1350 results that are statistically indistinguishable from the baseline (p -value > 0.05). For example, in
 1351 the Arylation dataset, all four variants achieved mean yields between 81.25% and 82.14%, with no
 1352 significant deviation from the baseline (81.28%). This indicates that while the specific topological
 1353 structure of the search tree may vary due to LLM ranking and clustering differences, the framework
 1354 consistently identifies high-potential regions that contain the global or near-global optima.

1355 **Variance as Exploration Opportunity.** In the rare instances where statistically significant differences
 1356 were observed, the deviations often favored improved performance. Notably, in the Suzuki dataset,
 1357 Subspace-3 achieved a significantly higher mean yield of 94.92% compared to the baseline's 82.04%
 1358 ($p < 0.001$). This suggests that the stochastic nature of the LLM-guided partitioning can occasionally
 1359 serve as a beneficial exploration mechanism, uncovering superior subspace configurations without
 1360 catastrophic failure modes. Even in the worst-case scenario in Buchwald_sub2 of Subspace-4, the
 1361 performance drop was marginal (< 1.7%), further confirming the method's resilience.

1362 **Efficiency Stability.** While the convergence metrics exhibit naturally higher variance due to the
 1363 differing depths and branching factors of the generated trees, the optimization process remains
 1364 efficient. The "Initial" values across all variants are comparable, ensuring that the BO process starts
 1365 from a robust baseline regardless of the specific partition.

1367 J.2 VALIDATION OF PSEUDO-DATA EFFICACY ACROSS DATA VOLUMN

1369 To rigorously evaluate the data efficiency of the ChemBOMAS framework and determine the minimal
 1370 supervision required for robust optimization, we conducted a sensitivity analysis regarding the volume
 1371 of labeled data utilized during the Supervised Fine-Tuning (SFT) phase. We varied the size of the
 1372 labeled dataset $\mathcal{D}_{\text{labeled}}$ from a scarce regime of 0.00% to a data-rich regime of 32.00% across four
 1373 distinct chemical reaction datasets. The impact of data volume was assessed through two lenses:
 1374 the predictive accuracy of the LLM regressor measured by MSE, MAE and R^2 and the downstream
 1375 efficacy of the Bayesian Optimization measured by the best yield found and convergence speed. The
 1376 comprehensive results are presented in Table 10.

1377 Our analysis reveals a distinct non-linear relationship between data availability and optimization
 1378 performance. Initially, we observe a critical performance threshold below which the framework fails
 1379 to gain traction. In regimes where the labeled data constitutes less than 0.50% of the total pool, the
 1380 regression metrics indicate a failure to learn meaningful representations, evidenced by negative R^2
 1381 values across most datasets. Specifically, at the 0.02% and 0.10% levels, the LLM-generated pseudo-
 1382 data exhibits high noise, leading to UCB initializations that are often comparable to, or marginally
 1383 better than, random baselines. For instance, in the Suzuki dataset, the 0.25% setting results in a
 1384 negative R^2 of -0.53 and a best-found yield of 81.17%, significantly underperforming compared to
 1385 settings with adequate supervision. This suggests that insufficient few-shot examples prevent the
 1386 LLM from aligning its pre-trained chemical knowledge with the specific response landscape of the
 1387 target reaction, thereby degrading the guidance provided to the BO module.

1388 Conversely, the results demonstrate a performance saturation, beyond which increasing data volume
 1389 yields diminishing returns for the optimization objective. As the data volume increases from 2.00% to
 1390 32.00%, the regression accuracy improves monotonically, with MSE decreasing and R^2 approaching
 1391 0.96 in the Buchwald cases. However, this increase in predictive precision does not translate linearly
 1392 into improved BO outcomes. The "Best Found" yields effectively plateau once the data volume
 1393 surpasses the 1.00% to 2.00% range. For example, in the Buchwald_sub1 dataset, quadrupling the
 1394 data from 1.00% to 4.00% improves the R^2 from 0.09 to 0.61, yet the best yield found improves only
 1395 marginally from 79.97% to 80.45%. This phenomenon indicates that while higher data volumes refine
 1396 the surrogate model's global fidelity, the coarse-grained topology provided by the LLM at moderate
 1397 data levels is sufficiently accurate to identify high-potential subspaces for the UCB algorithm.

1398 Based on these observations, we selected 1.00% as the optimal data volume for the ChemBOMAS
 1399 framework. This setting represents a strategic equilibrium, situated immediately past the inflection
 1400 point of the lower bound where the model begins to demonstrate positive R^2 values and reliable
 1401 ranking capabilities. At 1.00%, the framework achieves near-optimal optimization results—matching
 1402 the peak performance of data-rich settings in datasets like Suzuki (96.15%) and Buchwald_sub2
 1403 (56.81%)—while requiring a minimal experimental budget. This decision aligns with the core
 1404 objective of Bayesian Optimization in chemistry: to maximize reaction yield with the fewest possible
 1405 wet-lab experiments. By leveraging just 1.00% of labeled data, ChemBOMAS effectively activates

1404
1405
1406
1407
14081409 Table 10: Summary of Pseudo Data Analysis and BO Results. The table compares different SFT
1410 settings across four datasets. 95% Iter and Best Iter are rounded to the nearest integer.

Variant	Data %	Num	Regression Metrics			BO Result (Mean \pm Std)			
			MSE	MAE	R ²	Best Found	Initial	95% Iter	Best Iter
Suzuki									
Random Pseudo	/	/	1734.34	33.97	-1.20	80.98 \pm 3.94	73.12 \pm 0.00	14 \pm 9	24 \pm 12
No SFT	0	0	2403.41	40.18	-2.05	88.18 \pm 8.41	44.00 \pm 0.00	17 \pm 16	31 \pm 8
SFT 0.02	0.02%	1	1205.49	26.04	-0.53	87.41 \pm 8.45	21.55 \pm 0.00	20 \pm 15	27 \pm 11
SFT 0.1	0.10%	6	1332.07	27.51	-0.69	85.38 \pm 6.41	37.34 \pm 0.00	14 \pm 11	25 \pm 9
SFT 0.25	0.25%	14	1205.19	27.80	-0.53	81.17 \pm 3.84	76.01 \pm 0.00	5 \pm 12	14 \pm 13
SFT 0.5	0.50%	29	774.70	21.13	0.02	92.06 \pm 0.00	92.06 \pm 0.00	1 \pm 0	1 \pm 0
SFT 1.0	1.00%	50	633.68	19.47	0.20	96.15 \pm 0.00	92.24 \pm 0.00	1 \pm 0	3 \pm 0
SFT 2.0	2.00%	115	479.09	15.92	0.39	93.41 \pm 1.89	92.24 \pm 0.00	1 \pm 0	13 \pm 19
SFT 4.0	4.00%	230	360.02	13.44	0.54	92.24 \pm 0.00	92.24 \pm 0.00	1 \pm 0	1 \pm 0
SFT 8.0	8.00%	461	252.85	10.77	0.68	91.89 \pm 0.52	74.96 \pm 0.00	2 \pm 0	24 \pm 10
SFT 16.0	16.00%	922	163.48	8.23	0.79	92.24 \pm 0.00	88.80 \pm 0.00	1 \pm 0	2 \pm 0
SFT 32.0	32.00%	1844	89.84	5.46	0.89	96.15 \pm 0.00	88.80 \pm 0.00	2 \pm 0	2 \pm 0
Arylation									
Random Pseudo	/	/	1849.86	35.18	-1.48	79.56 \pm 0.42	35.70 \pm 0.00	2 \pm 0	21 \pm 9
No SFT	0	0	1853.70	33.24	-1.49	82.20 \pm 1.38	65.86 \pm 0.00	11 \pm 6	22 \pm 14
SFT 0.02	0.02%	1	885.06	25.33	-0.19	80.58 \pm 2.09	0.00 \pm 0.00	10 \pm 6	17 \pm 9
SFT 0.1	0.10%	4	1330.97	31.57	-0.79	81.50 \pm 2.35	32.41 \pm 0.00	16 \pm 11	29 \pm 9
SFT 0.25	0.25%	10	800.09	24.22	-0.07	80.94 \pm 1.65	28.33 \pm 0.00	3 \pm 1	21 \pm 12
SFT 0.5	0.50%	20	1016.37	26.53	-0.36	81.70 \pm 1.41	76.34 \pm 0.00	2 \pm 0	9 \pm 9
SFT 1.0	1.00%	34	650.00	19.55	0.13	82.83 \pm 0.64	82.63 \pm 0.00	1 \pm 0	4 \pm 10
SFT 2.0	2.00%	79	462.52	15.75	0.38	82.98 \pm 0.53	82.57 \pm 0.00	1 \pm 0	13 \pm 16
SFT 4.0	4.00%	158	286.56	11.97	0.62	83.60 \pm 0.00	76.95 \pm 0.00	2 \pm 0	14 \pm 9
SFT 8.0	8.00%	316	170.07	8.49	0.77	83.60 \pm 0.00	82.57 \pm 0.00	1 \pm 0	13 \pm 3
SFT 16.0	16.00%	633	110.42	6.39	0.85	83.29 \pm 0.70	77.47 \pm 0.00	4 \pm 5	26 \pm 13
SFT 32.0	32.00%	1266	38.14	3.65	0.95	83.60 \pm 0.00	82.57 \pm 0.00	1 \pm 0	11 \pm 3
Buchwald_sub1									
Random Pseudo	/	/	1608.17	33.08	-1.14	79.57 \pm 0.20	32.17 \pm 0.00	5 \pm 2	26 \pm 12
No SFT	0	0	3486.42	52.28	-3.64	79.83 \pm 0.38	77.63 \pm 0.00	1 \pm 0	27 \pm 11
SFT 0.02	0.02%	1	3159.89	49.18	-3.20	79.93 \pm 0.53	37.12 \pm 0.00	2 \pm 0	16 \pm 6
SFT 0.1	0.10%	4	3019.90	47.77	-3.02	80.11 \pm 0.55	66.43 \pm 0.00	2 \pm 0	13 \pm 13
SFT 0.25	0.25%	10	701.56	22.90	0.07	79.60 \pm 0.28	75.55 \pm 0.00	4 \pm 2	22 \pm 12
SFT 0.5	0.50%	20	750.86	22.72	0.00	79.91 \pm 0.53	28.40 \pm 0.00	2 \pm 0	27 \pm 8
SFT 1.0	1.00%	34	680.99	21.65	0.09	79.97 \pm 0.12	75.55 \pm 0.00	4 \pm 1	23 \pm 13
SFT 2.0	2.00%	79	448.16	16.90	0.40	79.73 \pm 0.08	65.59 \pm 0.00	2 \pm 0	22 \pm 13
SFT 4.0	4.00%	158	291.79	13.16	0.61	80.45 \pm 0.59	79.53 \pm 0.00	3 \pm 0	10 \pm 7
SFT 8.0	8.00%	316	165.57	8.99	0.78	80.68 \pm 0.48	79.08 \pm 0.00	1 \pm 0	13 \pm 9
SFT 16.0	16.00%	633	90.34	6.40	0.88	80.11 \pm 0.55	79.08 \pm 0.00	3 \pm 0	8 \pm 5
SFT 32.0	32.00%	1266	33.33	3.59	0.96	80.44 \pm 0.60	79.53 \pm 0.00	3 \pm 0	20 \pm 8
Buchwald_sub2									
Random Pseudo	/	/	2111.08	37.88	-4.21	51.74 \pm 0.79	12.94 \pm 0.00	13 \pm 3	18 \pm 8
No SFT	0	0	809.26	20.16	-1.00	53.69 \pm 2.19	46.94 \pm 0.00	16 \pm 12	23 \pm 15
SFT 0.02	0.02%	1	716.50	19.00	-0.77	52.52 \pm 2.35	0.00 \pm 0.00	6 \pm 3	14 \pm 12
SFT 0.1	0.10%	4	670.44	18.79	-0.66	55.57 \pm 2.24	14.90 \pm 0.00	33 \pm 13	36 \pm 9
SFT 0.25	0.25%	10	714.63	23.07	-0.76	52.77 \pm 1.96	35.26 \pm 0.00	5 \pm 2	14 \pm 12
SFT 0.5	0.50%	20	408.47	16.02	-0.01	53.34 \pm 0.77	43.09 \pm 0.00	11 \pm 11	28 \pm 8
SFT 1.0	1.00%	34	247.70	12.15	0.39	56.81 \pm 0.00	53.33 \pm 0.00	2 \pm 0	2 \pm 0
SFT 2.0	2.00%	79	195.03	9.76	0.51	53.94 \pm 1.11	53.10 \pm 0.00	5 \pm 12	18 \pm 14
SFT 4.0	4.00%	158	178.88	8.70	0.56	53.83 \pm 2.10	52.01 \pm 0.00	10 \pm 15	18 \pm 14
SFT 8.0	8.00%	316	75.81	5.26	0.81	55.21 \pm 1.70	50.21 \pm 0.00	8 \pm 7	17 \pm 11
SFT 16.0	16.00%	633	59.02	4.06	0.85	54.78 \pm 1.47	53.33 \pm 0.00	8 \pm 13	15 \pm 15
SFT 32.0	32.00%	1266	33.32	2.61	0.92	54.72 \pm 1.16	53.33 \pm 0.00	2 \pm 2	10 \pm 11

1454
1455
1456
1457

1458 the latent knowledge of the LLM to guide the search, avoiding the prohibitive costs associated with
 1459 collecting larger datasets required for traditional supervised learning saturation.
 1460

1461 J.3 ROBUSTNESS ANALYSIS OF ACQUISITION FUNCTIONS

1463 To determine the optimal configuration for the Bayesian Optimization component within Chem-
 1464 BOMAS, we conducted a comparative analysis of four standard acquisition functions: Expected
 1465 Improvement (EI), Minimum Variance Estimation (MVE), Probability of Improvement (PI), and
 1466 Upper Confidence Bound (UCB). To isolate the specific impact of the acquisition strategy from
 1467 the proposed LLM-enhanced modules, these experiments were performed using a traditional BO
 1468 framework across the four benchmark datasets.
 1469

1470 Table 11: Comparison of different acquisition functions across four chemical reaction datasets. The
 1471 datasets are arranged in a 2×2 grid for compact comparison.

Acq.	Suzuki						Arylation					
	Best Found		95% Iter		Best Iter		Best Found		95% Iter		Best Iter	
	Mean \pm Std	p-val	Mean \pm Std	p-val	Mean \pm Std	p-val	Mean \pm Std	p-val	Mean \pm Std	p-val	Mean \pm Std	p-val
EI	91.45 \pm 7.58	-	12 \pm 10	-	16 \pm 7	-	82.83 \pm 1.77	-	12 \pm 9	-	27 \pm 8	-
MVE	91.35 \pm 7.73	> 0.05	15 \pm 13	> 0.05	24 \pm 15	> 0.05	82.40 \pm 2.33	> 0.05	14 \pm 12	> 0.05	30 \pm 9	> 0.05
PI	92.99 \pm 6.67	> 0.05	16 \pm 9	> 0.05	21 \pm 11	> 0.05	82.99 \pm 2.02	> 0.05	16 \pm 14	> 0.05	26 \pm 11	> 0.05
UCB	94.61 \pm 4.88	> 0.05	16 \pm 11	> 0.05	16 \pm 11	> 0.05	83.55 \pm 2.06	> 0.05	21 \pm 11	> 0.05	28 \pm 5	> 0.05

Acq.	Buchwald_sub1						Buchwald_sub2					
	Best Found		95% Iter		Best Iter		Best Found		95% Iter		Best Iter	
	Mean \pm Std	p-val	Mean \pm Std	p-val	Mean \pm Std	p-val	Mean \pm Std	p-val	Mean \pm Std	p-val	Mean \pm Std	p-val
EI	79.74 \pm 0.42	-	5 \pm 2	-	12 \pm 10	-	56.61 \pm 0.61	-	20 \pm 9	-	22 \pm 9	-
MVE	79.39 \pm 1.35	> 0.05	4 \pm 3	> 0.05	12 \pm 9	> 0.05	56.81 \pm 0.00	> 0.05	16 \pm 6	> 0.05	25 \pm 4	> 0.05
PI	79.78 \pm 0.41	> 0.05	5 \pm 3	> 0.05	12 \pm 13	> 0.05	55.77 \pm 1.66	> 0.05	26 \pm 11	> 0.05	29 \pm 9	> 0.05
UCB	79.83 \pm 0.39	> 0.05	6 \pm 4	> 0.05	17 \pm 16	> 0.05	54.07 \pm 0.58	> 0.05	13 \pm 8	> 0.05	22 \pm 11	> 0.05

1483 The experimental results are summarized in Table ???. We observe distinct performance characteristics
 1484 across the different strategies:

- 1487 • **Performance Consistency:** While UCB achieves marginally higher mean "Best Found" values in the *Suzuki* (94.61 ± 4.88) and *Arylation* (83.55 ± 2.06) datasets, it exhibits instability in more complex landscapes. Notably, in the *Buchwald_sub2* dataset, UCB yields the lowest performance (54.07 ± 0.58), whereas EI maintains robust performance (56.61 ± 0.61), comparable to the top-performing MVE method.
- 1488
- 1489 • **Statistical Significance:** Crucially, the statistical analysis reveals that the performance differences between EI and the other methods are generally not statistically significant ($p > 0.05$) across most metrics and datasets. This suggests that while UCB may offer aggressive exploration benefits in specific contexts, it does not consistently outperform EI.
- 1490
- 1491 • **Convergence Efficiency:** In terms of convergence speed ("95% Iter"), EI demonstrates high efficiency. For instance, in the *Arylation* dataset, EI requires an average of 12 iterations to reach 95% of the optimum, compared to 21 iterations for UCB. This efficiency is critical for chemical optimization tasks where experimental evaluations are costly.

1501 Given that EI provides a parameter-free mechanism that effectively balances exploration and exploitation
 1502 while maintaining consistent performance across diverse chemical spaces, we adopt **Expected**
 1503 **Improvement** as the default acquisition function for the proposed ChemBOMAS framework.

1505 K GENERALIZATION TO BROADER SCIENTIFIC DOMAINS

1508 To assess the cross-domain universality of the ChemBOMAS framework, we extended our evaluation
 1509 to a materials science benchmark. This expansion serves to validate a core hypothesis: that the
 1510 fundamental principle of combining knowledge-driven decomposition with data-driven fine-tuning is
 1511 transmissible beyond chemistry to generic complex black-box optimization problems. Accordingly,
 we selected the LNP3 dataset, which presents unique challenges in scientific discovery.

1512
1513

K.1 DATASET OVERVIEW AND PROBLEM CONTEXT

1514
1515
1516
1517

The LNP3 dataset originates from the field of nanomedicine, specifically addressing the optimization of lipid nanoparticle (LNP) formulations for the effective delivery of cannabidiol [?]. The original experimental campaign encompassed 768 unique formulations defined by a 5-dimensional parameter space, including the type and quantity of solid lipids, liquid lipids, and surfactants.

1518
1519
1520
1521
1522
1523

While the formulation of LNPs is inherently a multi-objective problem—aiming to simultaneously maximize drug loading and encapsulation efficiency while minimizing particle size—this study isolates the specific challenge of maximizing Encapsulation Efficiency (EE). This creates a complex single-objective optimization task constrained by a discrete, categorical search space that encapsulates the non-trivial trade-offs found in real-world material design.

1524
1525
1526

K.2 TASK DEFINITION AND EXPERIMENTAL SETUP

1527
1528
1529
1530
1531

We formulate the LNP3 challenge as a static, offline black-box optimization task.

- **Objective:** Maximize the raw, non-normalized Encapsulation Efficiency.
- **Constraint:** The search is restricted to the predefined discrete experimental grid.
- **Data Source:** The dataset is accessible via the Olympus benchmark suite¹.

1532
1533
1534
1535
1536
1537
1538
1539
1540

The parameter space \mathcal{X} is constructed from five categorical variables with explicitly defined levels:

1. **Drug Input:** Dosage levels of $\{6, 12, 24, 48\}$ mg.
2. **Solid Lipid Type:** Categorical selection from $\{\text{Stearic Acid, Compritol 888, Glyceryl Monostearate}\}$.
3. **Solid Lipid Quantity:** Amount levels of $\{72, 96, 108, 120\}$ mg.
4. **Liquid Lipid Input:** Amount levels of $\{0, 12, 24, 48\}$ mg.
5. **Surfactant Concentration:** Weight-to-weight ratios of $\{0.0, 0.0025, 0.005, 0.01\}$.

1541
1542
1543
1544
1545

K.2.1 STATISTICAL DISTRIBUTION

1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558

The optimization target, Encapsulation Efficiency, exhibits significant variation across the design space, as summarized in Table 12. To further visualize the landscape difficulty, Figure 6 presents the global distribution of the objective values.

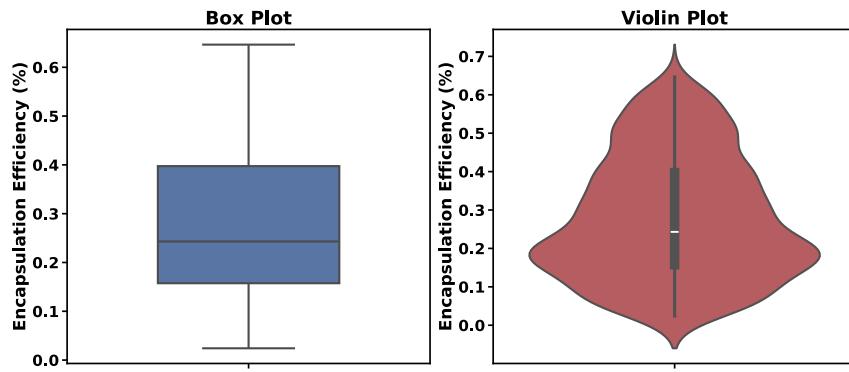
1559
1560
1561
1562
1563
1564
1565

Figure 6: **Distribution of the optimization objective across the LNP3 dataset.** The figure employs a hybrid visualization using box plots and violin plots to characterize the target variable. The vertical axis represents the raw Encapsulation Efficiency.

The performance comparison between ChemBOMAS and baseline methods on this dataset is summarized in Table 13.

¹<https://github.com/aspru-guzik-group/olympus>

1566

1567 Table 12: Statistical Summary of the LNP3 Benchmark. The target variable is the raw Encapsulation
1568 Efficiency, exhibiting a broad dynamic range.

Statistical Metric	Value
Total Data Points (N)	768
Maximum	0.6464
Minimum	0.0241
Mean	0.28
Median	0.24
Standard Deviation	0.16
25th Percentile	0.16
75th Percentile	0.40

1578

1579

1580 Table 13: Performance Comparison on a Non-Chemical Scientific Benchmark.

Dataset	Method	Best Found	Initial Value	95% Max Iter \downarrow	Iteration of Best \downarrow
LNP3	ChemBOMAS	0.62	0.23	12	28
	Gollum	0.62	0.21	13	33
	BO	0.62	0.25	12	38
	LA-MCTS	0.47	0.44	4	15
	BO-ICL	0.60	0.15	24	38

1587

1588

1589 In the LNP3 material formulation benchmark, ChemBOMAS demonstrated highly competitive performance.
1590 It successfully identified an optimal value of 0.62, matching the final performance achieved
1591 by GoLLuM and traditional Bayesian optimization (BO). More importantly, ChemBOMAS demon-
1592 strated higher sample efficiency, locating this optimal solution in just 28 iterations, compared to 33 for
1593 GoLLuM and 38 for BO. This result indicates that the framework’s structured exploration mechanism
1594 can effectively accelerate convergence even in non-chemical optimization scenarios. Notably, while
1595 LA-MCTS delivered strong initial performance, it prematurely converged to a suboptimal solution,
1596 highlighting the risks of overly aggressive early exploration.

1597 Overall, testing results in the field of materials science demonstrate that ChemBOMAS’s fundamental
1598 architecture—namely, the synergistic integration of knowledge-based search space partitioning with
1599 data-driven model optimization—holds potential as a universal strategy. It has proven that beyond
1600 core chemical domains, this framework possesses equally robust applicability and competitiveness in
1601 accelerating black-box optimization across diverse scientific discovery tasks.

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619