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Abstract
This paper introduces an event-based communi-
cation mechanism in federated Q-learning algo-
rithms, enhancing convergence and reducing com-
munication overhead. We present a communica-
tion scheme, which leverages event-based com-
munication to update Q-tables between agents and
a central server. Through theoretical analysis and
empirical evaluation, we demonstrate the conver-
gence properties of event-based QAvg, highlight-
ing its effectiveness in federated reinforcement
learning settings.

1. Introduction
Federated reinforcement learning (FedRL) enables multiple
agents to collaborate on learning tasks while maintaining
data privacy. However, traditional federated algorithms
suffer from high communication overhead and slow con-
vergence rates. To address these challenges, we propose
an event-based communication mechanism for federated
Q-learning algorithms. This mechanism reduces communi-
cation frequency by only transmitting critical updates, thus
improving the efficiency and speed of the learning process.

2. Related Work
We review existing federated reinforcement learning algo-
rithms and highlight their limitations in terms of commu-
nication efficiency and convergence speed. Additionally,
we discuss recent advancements in event-based communica-
tion strategies and their potential applications in federated
learning.

This paper focuses on Q-Learning (Watkins & Dayan, 1992),
which aims to learn the optimal Q-function directly without
estimating a model of the Markov decision process. Paral-
lel reinforcement learning involves distributing the learn-
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ing process across multiple agents or processors to speed
up learning. Approaches like A3C (Asynchronous Advan-
tage Actor-Critic) (Mnih et al., 2016) enable agents to learn
in parallel while updating a global model asynchronously.
This method has shown significant improvements in training
times and performance.

Federated reinforcement learning extends federated learning
methods to the domain of RL, by allowing multiple agents
to learn collaboratively without sharing their raw data. Tech-
niques such as FedAvg (McMahan et al., 2017) have been
adapted to RL scenarios, focusing on improving the stability
and efficiency of learning in heterogeneous environments.
Existing federated Q-learning approaches periodically av-
erage local Q-estimates (Jin et al., 2022), whereas in our
approach, the communication between agents is triggered
in an event-based manner.

Event-based methods are widely used for learning dynami-
cal systems (Solowjow & Trimpe, 2020; Umlauft & Hirche,
2019), for Bayesian optimization (Brunzema et al., 2022),
and communication efficient distributed optimization (Liu
et al., 2019; Singh et al., 2023; Er et al., 2024). In addition,
Ornia & Mazo (2022) proposed an event-based approach
to selectively share agent experience to a central learner.
Inspired by the sent-on-delta concept (Miskowicz, 2006),
we reduce the communication load by introducing an event-
based communication strategy, such that each agent (or
computational node) communicates only if necessary.

3. Problem Formulation
We model the environment heterogeneity among n environ-
ment who have the same state action pairs S × A, reward
function R but different state transitions {Pi}ni=1. Each of
the n agents are assumed to be located in different environ-
ments. The goal is to learn a single policy that yields high
rewards on each environment and that is obtained by sharing
local information.

The primary motivation for this paper is to address the com-
munication overhead and slow convergence rates in existing
FedRL methods by leveraging an event-based communica-
tion mechanism. This approach aims to reduce unnecessary
data transmissions by only sharing updates when they are
deemed important, thereby improving the overall efficiency
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of the federated learning process.

The goal of FedRL is to enable n agents to jointly learn a
policy function or a value function that performs uniformly
well across all environments. Due to privacy constraints, the
n agents cannot share their previous trajectories. FedRL is
formulated as the following optimization problem:

max
π

1

n

n∑
i=1

E{
∞∑
t=1

γtR(st, at) | s0 ∼ D,

at ∼ π(· | st), st+1 ∼ Pi(· | st, at)}
(1)

where D, π, and γ ∈ (0, 1) represent the common initial
state distribution in these n environments, the policy, and
discount factor, respectively.

4. Event-Based Federated Q-Learning
Algorithm

We introduce the event-based QAvg (EBQAvg) algorithm,
which integrates event-based communication into federated
Q-learning. QAvg is proposed by (Jin et al., 2022) which
alternates between a local computation and global aggrega-
tion. Each agent performs multiple local updates of its value
function before the server aggregates the value functions
from all n agents. To increase communication efficiency,
several local updates are executed between successive aggre-
gations. Following the same local update and aggregation
structure, the event-based QAvg algorithm enables agents
to communicate Q-table updates to the central server only
when significant changes occur, reducing unnecessary com-
munication overhead. We provide a detailed description of
the algorithm and its communication protocol.

Our event-based algorithm, stated in Algorithm 1, works as
follows. As in classical Q learning, each agent constructs
a table of size |S| × |A| by executing the following local
update equation:

Qk
t′+1(s, a)← (1−λt)Q

k
t′(s, a) + λt[R(s, a)

+ γ
∑
s′∈S
Pk (s

′|s, a)max
a′∈A

Qk
t′ (s

′, a′)] (2)

where k denotes the agent and, t and t′ represents the global
and local iteration number, respectively.

After several local updates, a communication event is trig-
gered if

|Qk
t+1 −Qk

[t]| > δ (3)

and the current Q-table is assigned to the new communicated
value Qk

[t+1] ← Qk
t+1, where Qk

[t] denotes the value of Qk

that has been last communicated. If the communication
event is not triggered by agent k, the last communicated
value of its Qk remains the same Qk

[t+1] ← Qk
[t].

This procedure ensures that the error ekt := Qk
t − Qk

[t]

remains bounded such that

|ekt |∞ ≤ |ekt | ≤ δ, (4)

at any time t for all agents k ∈ {1, . . . , n}.

After agents complete their local computations and commu-
nications, the server proceeds with the global aggregation:

Q̄t+1 =
1

n

n∑
i=1

Qi
[t+1].

Following this, the server broadcasts the aggregated value
Q̄t+1 to every agent. In the next iteration, each agent initi-
ates its local update using the received aggregated value.

Algorithm 1 Event-Based QAvg Algorithm

Require: Number of agents n, number of rounds T , learn-
ing rate λt, discount factor γ, communication threshold
δ, number of local updates E
Initialize Q-tables Qk for each agent k
for t = 1 to T do

for k = 1 to n do
Receive of broadcasted Qk

t ← Q̄t

Perform E local updates of Qk
t according to (2)

Event-based send of Qk
t+1 to the central server

Qk
[t+1] ← Qk

t+1

end for
Aggregate Q-tables from all agents at central server
Q̄t+1 = 1

n

∑n
i=1 Q

i
[t+1]

Broadcast Q̄t to all agents
end for

5. Convergence Analysis
We conduct a theoretical analysis to show the effect of the
communication threshold on the convergence of the event-
based QAvg algorithm. QAvg is proposed as the federated
version of Q-Learning. Leveraging mathematical tools such
as Markov decision processes and dynamic programming
principles, (Jin et al., 2022) demonstrates that QAvg con-
verges to an optimal or near-optimal solution under certain
conditions by focusing on the convergence performance of
the averaged Q-function, i.e., Q̄t over several environments.
We extend this analysis to the event-based communication
case and discuss the impact of event-based communication
on convergence speed.

We know that the error between the estimate of the average
Q-table Q̄t and the average of Q-tables;∣∣∣∣∣Q̄t −

1

n

n∑
k=1

Qk
t

∣∣∣∣∣ =
∣∣∣∣∣ 1n

n∑
k=1

(
Qk

[t] −Qk
t

)∣∣∣∣∣
2
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is bounded by the event rule in (3). We therefore extend the
analysis of QAvg for event-based communication of agents
by using the estimate of the average Q-table Q̄t as

Q̄t =
1

n

n∑
k=1

Qk
[t] =

1

n

n∑
k=1

Qk
t + ekt ,

where ekt represents the error due to event-based communi-
cation of agent k at iteration t.

Theorem 5.1 states the main theoretical result that represents
the trade-off between the communication threshold δ and
the convergence rate of the Q-function Q̄t.

Theorem 5.1. Let the constant step-size for Algorithm 1
be λt = α and the discount factor be γ. Let Q∗ be the
Q-function of the optimal policy π∗ (see (1)). If the number
of local updates E is chosen as E ≥ log2

α(1−γ) , the following
inequality holds,

∣∣Q̄t −Q∗
∣∣
∞ ≤

(
1

2

)t ∣∣Q̄0 −Q∗
∣∣
∞ + 2δ + 3ϵ,

where Q̄t is the average of the distributed Q functions Qk
[t],

which are last communicated by agents {1, . . . , n} at it-
eration t, i.e., Q̄t = 1

n

∑n
k=1 Q

k
[t]. Furthermore, δ repre-

sents the communication threshold and ϵ bounds the differ-
ence between Q∗ and the locally optimal Q-functions, i.e.
|Qk

∗ −Q∗| ≤ ϵ.

Proof. See Appendix A.

6. Empirical Evaluation
We evaluate the performance of EBQAvg in the following
environments: Windy Cliff and Cart Pole. Specifically, we
investigate the effect of the communication threshold on the
performance and the communication load.

Windy Cliff: The Windy Cliff environment is a variation
of the classic cliff walking problem (Sutton & Barto, 1998),
where an agent is required to navigate from a start position
to a goal while avoiding cliffs. Our experimental setup
is composed of multiple Windy Cliff environments, each
a modified version of the classic cliff environment by the
addition of random noise for wind intensity θ blowing from
the north, uniformly sampled from [0, 1] (Paul et al., 2019;
Jin et al., 2022). This means the agent could unintentionally
move south, with a probability of θ

3 . Our experiments use
a 4× 4 grid map, with rewards set at 100 for reaching the
goal and −100 for falling off the cliff. For the federated
learning task, we set n = 10 agents and trained on different
Windy Cliff environments. After sampling different state
transitions {P ′

k}Nk=0, we create different environments by
setting {Pk = κkP ′

k + P ′
0}Nk=1. Therefore, environments

with {Pk}Nk=1 will have a heterogeneity controlled by κk. In

our experiments, κk = 0.4 for k = {1, 2} and κk = 0.8 for
k = {3, . . . , 10}. Throughout the experiment, the discount
factor is set γ = 0.95.

Figure 1 shows the evolution of objective function over
episodes in the case of different communication thresholds.
This visualization provides insight into how different thresh-
olds affect the convergence behavior of the algorithm over
time. In addition, Figure 2 indicates the tradeoff between
objective and communication load. These figures collec-
tively provide an understanding of the trade-off between
performance and communication efficiency in the Windy
Cliff environment.
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Figure 1: The top panel shows the evolution of the objec-
tive function value over episodes, for different values of
communication thresholds selected in the Windy Cliff envi-
ronment experiments, whereas the bottom panel shows the
corresponding communication loads.

Cart Pole: The Cart Pole environment is constructed from
variations of the classic Cart Pole task, which involves bal-
ancing a pole on a moving cart. The agent must apply forces
to the cart to keep the pole upright while moving the cart
within the bounds of the environment. In our experimental
setup, we set different pole lengths for each agent, which
leads to varying state transitions among agents. The pole
length follows a uniform distribution [0.5, 0.7] among the
agents, creating a range of dynamics that the agent must
learn to handle. We choose n = 5 agents and environments
for the federated learning experiments, with a discount fac-
tor of γ = 0.99. In this case, averaged Q-functions are not
Q-tables but Q-networks (Mnih et al., 2015) with two linear
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Figure 2: The figure presents the trajectory of total commu-
nication load versus objective function value for the different
communication thresholds selected in the Windy Cliff en-
vironment experiments. A 100% total communication load
indicates that all agents communicate at every episode.

layers with ReLU activation in between.

In the Cart Pole environment, we demonstrate, again, the
performance and communication load for EBQAvg across
various communication thresholds. Figure 3 presents the
objective function’s evolution over episodes, providing in-
sight into the agent’s learning progress in balancing the pole.
Additionally, we compare our event-based approach to a
random selection approach, where communicated agents
are chosen randomly with a rate of ρ. Figure 4 shows the
trade-off between convergence performance and total com-
munication load in the Cart Pole environment for both the
event-based and random communication schemes. The re-
sults indicate a significant reduction in communication cost
with EBQAvg without compromising convergence speed.

In both Windy Cliff Walking and Cart Pole environments,
our results show that EBQAvg requires fewer communica-
tion rounds to reach the same objective value. This demon-
strates the efficiency of our event-based approach in envi-
ronments with dynamic conditions.

7. Discussion and Future Work
In this paper, we present an event-based federated Q-
learning algorithm, EBQAvg, and provide an analysis of its
convergence properties. Through empirical evaluation, we
demonstrate the effectiveness of EBQAvg in reducing com-
munication overhead in federated reinforcement learning
settings.

Our results highlight the potential of event-based communi-
cation in federated reinforcement learning. By strategically
transmitting updates, EBQAvg effectively reduces commu-
nication overhead while maintaining performance. This has
significant implications for the scalability and efficiency
of federated learning systems, particularly in environments
with diverse and dynamic conditions.

Future research directions include extending the event-based
communication strategy to other RL algorithms and en-
vironments to validate the practicality and effectiveness
of EBQAvg in large-scale federated learning scenarios.
Additionally, investigating adaptive thresholds for event-
triggered communication could further enhance efficiency.
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Figure 3: The top panel shows the evolution of the objec-
tive function value over episodes, for different values of
communication thresholds selected in the Cart Pole envi-
ronment experiments, whereas the bottom panel shows the
corresponding communication loads.
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Figure 4: The figure compares different communication
methods with respect to the resulting trade-off between total
communication load and the objective function. Results of
event-based communication are represented by circles, and
random selection by squares.
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A. Proof of Theorem 5.1
We start with some preliminary definitions and lemmas.

Definition A.1. We denote the Bellman Operator in the k-th environment as:

TkQ(s, a) = R(s, a) + γ
∑
s′∈S
Pk (s

′ | s, a)max
a′∈A

Q (s′, a′)

where R(s, a) is the reward received when taking action a in state s, γ is the discount factor, Pk(s
′ | s, a) is the transition

probability of moving to state s′ from state s after taking action a in the k-th environment, and Q(s, a) is the action-value
function.

Theorem A.2. The Bellman operator in the k-th environment, Tk, is a γ-contractor. For any Q1 and Q2, it satisfies:

|TkQ1 − TkQ2|∞ ≤ γ |Q1 −Q2|∞ .

Proof. Consider two arbitrary action-value functions Q1 and Q2. Let Tk be the Bellman operator for the k-th environment.

By definition of the Bellman operator, we have

TkQ1(s, a)− TkQ2(s, a) = γ
∑
s′∈S
Pk(s

′ | s, a)
(
max
a′∈A

Q1(s
′, a′)−max

a′∈A
Q2(s

′, a′)

)
.

The maximum operator is non-expansive and therefore we get

|TkQ1(s, a)− TkQ2(s, a)|∞ ≤ γ
∑
s′∈S
Pk(s

′ | s, a)max
a′∈A

|Q1(s
′, a′)−Q2(s

′, a′)|∞.

Now, using the fact that the transition probabilities form a probability distribution (
∑

s′∈S Pk(s
′ | s, a) = 1), and taking the

supremum over all states and actions, we get:

|TkQ1 − TkQ2|∞ ≤ γ|Q1 −Q2|∞.

Thus, we have shown that for arbitrary action-value functions Q1 and Q2, the difference in their images under the Bellman
operator is bounded by γ times the difference between the functions themselves. Therefore, Tk is a γ-contraction.

The average Q-table is defined as the average of last communicated Q-tables of each agent, which is

Q̄t =
1

n

n∑
k=1

Qk
[t] =

1

n

n∑
k=1

Qk
t + ekt . (5)

The local update rule in Algorithm 1 can be rewritten as

Qk
t′+1 = (1− λt)Q

k
t′ + λtTkQk

t′ , (6)

where t and t′ represents the global and local iteration number, respectively. The local iterations are initialized with
Qk

t′

∣∣
t′=0

= Q̄t.

Due to the environment heterogeneity, the optimal Q-functions for the individual environments are different from the optimal
Q-function in (1). The following assumption quantifies this difference.

Assumption A.3. Let the optimal Q-function corresponding to (1) be denoted by Q∗ and let the optimal Q-function of
environment k be denoted by Qk

∗ . The difference between Qk
∗ and Q∗ is bounded by

|Qk
∗ −Q∗| ≤ ϵ. (7)

6
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Lemma A.4. Let Assumption A.3 be satisfied and let λt be the step-size, γ be the discount factor for the local update step,
and E be the number of local updates at each global iteration in Algorithm 1. Then the following inequality holds,

|Qk
t+1 −Q∗|∞ ≤ e−λt(1−γ)E |Q̄t −Q∗|∞ + (1 + e−λt(1−γ)E)ϵ, (8)

for all environments k ∈ {1, . . . , n}, where Q̄t is the estimated average broadcasted by the server after the global
aggregation step at (global) iteration t and Q∗ is the optimal Q-function corresponding to (1).

Proof. By subtracting Qk
∗ from both sides of (6) and using the fact TkQk

∗ = Qk
∗ , we obtain

Qk
t′+1 −Qk

∗ = (1− λt) (Q
k
t′ −Qk

∗) + λt(TkQk
t′ − TkQk

∗).

This further implies
|Qk

t′+1 −Qk
∗|∞ ≤ (1− λt) |Qk

t′ −Qk
∗|∞ + λt|TkQk

t′ − TkQk
∗|∞.

The Bellman operator is a γ contractor, and therefore the following holds

|Qk
t′+1 −Qk

∗|∞ ≤ (1− λt) |Qk
t′ −Qk

∗|∞ + λtγ|Qk
t′ −Qk

∗|∞ = (1− λt(1− γ))|Qk
t′ −Qk

∗|∞.

Given the initialization of the local update with Qk
t′

∣∣
t′=0

= Q̄t, the value after E local steps, Qk
t′

∣∣
t′=E

= Qk
t+1, satisfies

the following inequality
|Qk

t+1 −Qk
∗|∞ ≤ (1− λt(1− γ))E |Q̄t −Qk

∗|∞.

Then, using the fact that 1 + x ≤ ex for any x ∈ R, we get

|Qk
t+1 −Qk

∗|∞ ≤ e−λt(1−γ)E |Q̄t −Qk
∗|∞.

We add and subtract Q∗ to both sides of the equation. In addition, we apply the triangle inequality and Assumption A.3,
which yields the following

|Qk
t+1 −Q∗|∞ ≤ e−λt(1−γ)E |Q̄t −Q∗|∞ + (1 + e−λt(1−γ)E)ϵ.

Lemma A.5. Let Assumption A.3 be satisfied and let λt be the step-size of the local update, γ be the discount factor and δ
be the communication threshold for the event-based communication in Algorithm 1. Then, the following inequality holds:

|Q̄t+1 −Q∗|∞ ≤ e−λt(1−γ)E |Q̄t −Q∗|∞ + (1 + e−λt(1−γ)E)ϵ+ δ.

where Q̄t is the estimated average broadcasted by the server after the global aggregation step at (global) iteration t and Q∗
is the optimal Q-function corresponding to (1).

Proof. Using (5) and (6), we have:

∣∣Q̄t+1 −Q∗
∣∣
∞ =

∣∣∣∣∣ 1n
n∑

k=1

(Qk
t+1 + ekt+1)−Q∗

∣∣∣∣∣
∞

=

∣∣∣∣∣ 1n
n∑

k=1

(Qk
t+1 −Q∗) +

1

n

n∑
k=1

ekt+1

∣∣∣∣∣
∞

≤

∣∣∣∣∣ 1n
n∑

k=1

(Qk
t+1 −Q∗)

∣∣∣∣∣
∞

+

∣∣∣∣∣ 1n
n∑

k=1

ekt+1

∣∣∣∣∣
∞

≤ 1

n

n∑
k=1

∣∣Qk
t+1 −Q∗

∣∣
∞ +

1

n

n∑
k=1

∣∣ekt+1

∣∣
∞ .

By applying Lemma A.4, substituting the bound on the error (4) and by Assumption A.3, we get:

|Q̄t+1 −Q∗|∞ ≤ e−λt(1−γ)E |Q̄t −Q∗|∞ + (1 + e−λt(1−γ)E)ϵ+ δ.
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Lemma A.6. Let the sequence |Q̄t −Q∗|∞ ≥ 0 satisfy

|Q̄t+1 −Q∗|∞ ≤ |Q̄t −Q∗|∞(1− α̃) + β̃α̃, (9)

for all t ≥ 0, where the parameters α̃, β̃ satisfy 0 < α̃ < 1 and 0 ≤ β̃. Then, the following holds for all t ≥ 0:

|Q̄t −Q∗|∞ ≤ |Q̄0 −Q∗|∞(1− α̃)t + β̃. (10)

Proof. We prove the lemma by induction.

The claim holds for t = 0. We therefore assume that the claim holds for t and show that, as a result, the claim holds for
t+ 1. More precisely,

|Q̄t+1 −Q∗|∞ ≤ |Q̄t −Q∗|∞(1− α̃) + β̃α̃

≤ |Q̄0 −Q∗|∞(1− α̃)t+1 + (1− α̃)β̃ + β̃α̃

≤ |Q̄0 −Q∗|∞(1− α̃)t+1 + β̃,

(11)

which completes the induction argument.

We are now, ready to prove Theorem 5.1, which we restate for the convenience of the reader.

Theorem. Let the constant step-size for Algorithm 1 be λt = α and the discount factor be γ. Assume Q∗ is the Q-function
of the optimal policy π∗. If the number of local updates E is chosen as E ≥ log2

α(1−γ) , the following inequality holds,

∣∣Q̄t −Q∗
∣∣
∞ ≤

(
1

2

)t ∣∣Q̄0 −Q∗
∣∣
∞ + 2δ + 3ϵ,

where Q̄t is the average of the distributed Q functions Qk
[t], which are last communicated by agents {1, . . . , n} at iteration t,

i.e., Q̄t =
1
n

∑n
k=1 Q

k
[t]. Furthermore, δ represents the communication threshold and ϵ bounds the difference between Q∗

and the optimal Q-functions.

Proof. For a fixed step-size λt = α, we apply Lemma A.5 to Lemma A.6 and conclude

|Q̄t+1 −Q∗|∞ ≤ e−α(1−γ)Et|Q̄t −Q∗|∞ +
δ + (1 + e−α(1−γ)E)ϵ

1− e−α(1−γ)E
.

If the number of local updates E is chosen as E ≥ log2
α(1−γ) , then the following inequality holds

∣∣Q̄t+1 −Q∗
∣∣
∞ ≤

(
1

2

)t ∣∣Q̄0 −Q∗
∣∣
∞ + 2δ + 3ϵ.
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