Under review as a conference paper at ICLR 2025

LEGO-COMPILER: ENHANCING NEURAL COMPILA-
TION THROUGH COMPOSABLE CHAIN OF THOUGHT

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have the potential to revolutionize how we design
and implement compilers and code translation tools. However, existing LLMs
struggle to handle long and complex programs. We introduce LEGO-Compiler,
a novel neural compilation system that leverages LLMs to translate high-level
languages into assembly code. Our approach centers on three key innovations:
LEGO translation, which decomposes large programs into manageable blocks;
annotation-based Chain-of-Thoughts, guiding LLMs through the compilation pro-
cess with LLM-annotated context; and a feedback mechanism for self-correction.
Supported by formal proofs of code composability, LEGO-Compiler demonstrates
high accuracy on multiple datasets including over 99% on ExeBench and 100% on
industrial-grade CoreMark, and successfully handles programs far exceeding the
length limitations of native LLM translation. This work opens new avenues for
applying LLMs to system-level tasks, complementing traditional compiler tech-
nologies.

1 INTRODUCTION

The rapid development of Large Language Models (LLMs) has led to an expansion of their applica-
tions and effectiveness across various domains (Rombach et al.| 2022} OpenAl, 2023}, [2024; |Ziegler
et al., |2024). One important area where LLMs have shown impressive results is code translation,
including tasks such as code generation from natural languages (Zan et al.,|2023) and transformation
between programming languages (Yang et al.,[2024). In code translation, LLMs have demonstrated
remarkable accuracy and readability, often surpassing manually crafted translators.

While LLMs have shown promising results in translating between high-level programming lan-
guages (Roziere et al., 2020; Roziere et al.l 2021} |Szafraniec et al), [2023) and in decompilation
tasks (Fu et al, 2019; |Cao et al., [2022; |Armengol-Estapé et al., |2023)), their application to trans-
lating from high-level languages to low-level assembly languages remains a relatively unexplored
area. This can be attributed to two main factors. Firstly, the dominance of traditional compilers
in this domain has left little incentive for exploring alternatives in such a mature field. Secondly,
the complexity of compilers and the bitwise precision required in compilation tasks for semantic
accuracy have made it challenging for LLMs based on statistical learning.

Despite these challenges, LLMs have shown promising capabilities in compilation-related tasks.
Cummins et al.| (2023} |2024) has demonstrated their proficiency in optimizing compiler options and
their excellent ability to mimic compiler code behavior, producing high-quality IR code. Further-
more, preliminary explorations in translating from high-level languages to assembly languages, such
as C-x86 (Armengol-Estapé & O’Boyle, 2021) and C-LLVM IR (Guo & Moses, [2022)), have indi-
cated the potential feasibility of using LLMs in compilation tasks. However, these existing works
have not fully addressed the boundaries of LLM capabilities in compilation tasks — specifically, what
LLMs can and cannot do in this domain. Compilation is typically divided into two main aspects:
functionality and optimization. This work focuses on exploring and answering questions about LLM
capabilities in the functionality aspect of compilation.

LLMs are pre-trained on vastly large code corpora. some are monolingual, and some may be bilin-
gual (where LLMs can learn the translation rule between two languages). However, most of these
LLMs do not disclose their training datasets, so their capabilities can only be assessed through

Under review as a conference paper at ICLR 2025

empirical testing. We primarily find that LLMs learn the neural compilation process from directly
compiler-generated bilingual corpora, which is a relatively easy way to construct pretraining dataset.
However, we found that assembly code directly generated by traditional compilers is hard to learn
for LLM-based generation due to several challenges. These include the presence of semantically
opaque labels, symbols or numeric values that LLMs struggle to translate accurately, and the need
to handle symbol renaming for identifiers with the same name in different scopes, etc. Although
style migration or modifications to existing compilers can be made, these approaches still rely on an
existing compiler to perform the neural compilation job, which doesn’t outperform existing designs.

Our work takes a different approach where we do not require bilingual corpora. As a result, we don’t
rely on an existing compiler. Regarding LLMs’ strong in-context learning abilities (Min et al., 2022}
Song et al.,[2024), we propose the following methods: through high-quality examples and compiler
knowledge guided Chain-of-Thoughts, LLMs can perform step-by-step neural compilation. This
approach involves generating annotations highly corresponding to source code statements and data
structure layout annotations, leading to substantial improvements in the compilation generation task.

More importantly, the scalability of current code translation is also a big problem. Although ad-
vanced LLMs already have hundreds of thousands tokens context limit, they can not merely com-
pile a code with 2.6k tokens in CoreMark (Gal-On & Levyl [2012)), which is just a 200-LOC func-
tion. To address this limitation, we have an intuitive thought: can we split the program into finer-
grained components, compile each component, then assemble them together? We can surely do it
in function-level, since functions are trivial semantic units (Ibrahimzadal 2024). However, we still
think function-level is still too coarse-grained, and we seek to further break it.

Based on these insights, we propose a novel approach called LEGO translation, which draws inspi-
ration from the modular and composable nature of LEGO blocks. This method breaks down large
programs into manageable, semantically-composable control blocks, analogous to LEGO pieces.
These blocks are then independently translated and rebuilt to form a much larger scale transla-
tion. We apply the LEGO translation method to the compilation domain and, guided by a series of
compilation-specific expert knowledge, design the LEGO-Compiler, a scalable, LLM-driven system
that leverages the power of LLMs to perform neural compilation tasks.

LEGO-Compiler can correctly compile over 99% of the code in ExeBench (Armengol-Estapé et al.,
2022), a large scale dataset through careful unit-testing. We can also correctly compile 100% Core-
Mark (Gal-On & Levy, 2012), an industrial-grade code that encompasses most common program-
ming language features in C. Regarding scalability, we have verified that LEGO translation method
can significantly scale up the capability of code translation/compilation performed by LLMs, where
we propose the LongFunction dataset for very long code translation and compilation evaluation,
and the LEGO translation method can sufficiently translate it for both neural compilation or code
translation purposes.

The main contributions of this work are as follows:

* We propose a set of novel methods for neural compilation, including LEGO translation for
breaking down large programs, annotation-based Chain-of-Thoughts (CoTs) that explicitly
generate intermediate results to aid translation, and a feedback-driven self-correction mech-
anism. These methods collectively address the challenges of applying LLMs to complex
compilation tasks.

* We introduce LEGO-Compiler, a comprehensive neural compilation system that integrates
our proposed methods. LEGO-Compiler incorporates control flow annotation, struct an-
notation, and variable mapping to ensure accurate and scalable compilation across various
architectures and programming languages.

* We provide both theoretical and empirical support for our approach. We present a formal
proof of code composability that underpins the LEGO translation method. Empirically,
we demonstrate LEGO-Compiler’s effectiveness through extensive evaluations, achieving
over 99% accuracy on ExeBench and 100% accuracy on the industrial-grade CoreMark
benchmark. Our system successfully handles programs far exceeding the length limitations
of direct LLM translation, showcasing its scalability.

Under review as a conference paper at ICLR 2025

Plain Translator LEGO Translator LEGO Compiler
Translate the following {src} Translate the following {src} ; ung;gan":;-act;*eth;yift‘ﬂ.ml::lv'linxg(Lfn:i‘);:edlnbtlok:fzbe code)pa{rt by pa\‘t:
;pgi ln;u {dst} code code into {dst} code part by part |~ Unsigned N = ©; shont #A; short *B; r
src " {srct i i-0 j=0: !
TRE qUant GGRE 7, THE 1) T [int avant(int n, int m { #] UG £ G 3 = B Symbol Table
int i, neg = 0; it i, nea b o) y
if (n'< ©) {nege+in = -ni} i (n'< 0) fnegeein = iR TS &) < BloE) ¢ N:-20(%nbp) Unsigned
i=n/m . i=a/m S sieowa i:-28(%rbp)unsigned
if (n-mxi>m/2){i+= 1} if (n-m*di>m/ 2){i+= 1;} ’ j:-32(%rbp)unsigned
ix=m . i*=m; blksize:-36(%rbp)unsigned
if (neg){i = -i;} if (neg){i = -i;} "" 3.Part rebuild

return(i); | A iy:
¥ -— B return(i) -.’ part

T.Partsplit |translation

[# block 1

" {dst}h - {dst}

def quant(n: Int, m: int) = Int: [def quant(n: int, m: int) -> int:s8) | -L_loop_1:
neg = 0 neg = 0 | movl -32(%rbp), %eax
if n < 0: . ifn<o | cmpl -36(%rbp), %eax
neg += 1 Direct | neg += 1 1 hile (3 < blksize) { | dge .L,Lgon,ljend
n=-n translation| [- | vt | incl -28(%rbp) # i+
i=n//m RS = jeikixoxs T > | movl -28(%rbp), %eax |
ifn-mxi>m// 2: ifn-m*xi>m// 2: Block i | imull -28(%rbp), %eax # ixi |
i+=1 14=1 | Shll %eax # ixix2 i

ix=m i%=m | shll $2, %eax # ixix2x4

if neg: 57 e Q i movl Xeax, -32(%rbp) # 3=
i=-i i=-i jmp .L_loop_1

return i return i -L_loop_1_en

3.Part rebuild

(a) (b)

Figure 1: a. Plain translation vs LEGO translation, by splitting the program into smaller composable
control blocks(parts), translating each part becomes an easier task, and rebuilding each translated
partial result will form a full translation. b. LEGO compiler, a special case for LEGO translation,
to translate each part correctly, a symbol table need to be maintained first and provided during
translation.

2 METHODS

2.1 PROBLEM DEFINITION

Before introducing our method, we first define the neural compilation problem. Neural compilation
can be viewed as a specialized version of code translation problem, as defined in with
the goal of translating high-level programming language as the src language (such as C) into low-
level assembly language as the dst language (such as x86, ARM, or RISC-V). Unlike general code
translation, compilation needs to handle more low-level details, such as memory layout and calling
convention, while ensuring the functional correctness of the translated result.

Definition 1. There are two programming languages: L. and L g5, each is an infinite set of valid
program strings. There exists a unary relation — from L. to Lgss. The problem is to perform a
translator function T: V& € Lgye, (Fu € Lyst, v — u) = (x — T(x)), T (z) = x semantically.

2.2 LEGO TRANSLATION: CORE METHOD

As depicted in (a) in previous neural code translation methods typically convert entire
programs at the function or file level. While this approach may be effective for smaller programs,
it struggles with larger programs due to significant accuracy degradation. These methods translate
code at a coarse granularity, making it challenging to translate very long functions using LLMs.
Taking neural compilation as an example, all current LLMs fail to compile a C function with larger
than 2.6k tokens using direct translation, although some advanced LL.Ms already have 128k-200k
context limit. They could also perform code-snippet level translation, but they lack guidelines and
necessary information to compose the code-snippet level results together, and there is also no clear
formal proof to the composability of code. Despite these limitations, we observe an inherently
composable nature in code. In the context of neural compilation, we propose the following insights
to enhance translation scalability:

* Fine-grained translation: Instead of translating an entire program at once, focus on trans-
lating smaller code snippets accurately. By ensuring each part is correctly translated, they
can be combined to form a semantically equivalent complete translation.

» Contextual Awareness: Effective translation of smaller code snippets requires understand-
ing their contextual positioning within the code. This includes recognizing the relationship
with preceding and succeeding snippets to maintain semantic coherence.

Under review as a conference paper at ICLR 2025

* Symbol Handling: Accurate translation involves reasoning about necessary symbols and
constructs within each snippet to enhance alignment with the target language’s syntax and
semantics, thereby aiming to preserve the intended functionality.

Inspired by |Wang et al.| (2024)), where this process is similar to the destruct and rebuild process of a
LEGO toy, we named the fine-grained translation technique as LEGO translation and our system
built upon it as LEGO-Compiler. As depicted in (b) in LEGO translation first breaks
down large programs into manageable, self-contained blocks, analogous to LEGO pieces (Part
split). Then these blocks are independently translated (Part translation) and finally recombined,
enabling scalable and accurate translation of complex programs (Part rebuild). All these methods
rely on an inherently nature in programming languages, the composability in control block level,
which reflects the linearization process in compiler design (Wirth et al.| [1996), where tree-structured
control flow can be linearized, and therefore, composable. We have formally proved the widely

applicable composability of programming languages using a constructive approach in

Algorithm 1 LLM-driven Part Split Algorithm based on Control Blocks

procedure SELECTCONTROLBLOCKS(function)
blocks < ()
deque.push_back(function)
while deque is not empty do
block < deque.pop_front()
decision < LLMDecideSplit(block)
if decision is “keep” then
blocks.append(block)
else
subBlocks < SplitByOutermostControl(block)
for subBlock in subBlocks in reverse order do
deque.push_front(subBlock)
end for
end if
end while
return blocks
end procedure

2.3 LEGO-COMPILER:THE FUNCTIONAL NEURAL COMPILER

We apply the LEGO translation method to the compilation domain and, guided by compilation-
specific expert knowledge, design the LEGO-Compiler. This LLM-driven system accepts C
programs as input and generates assembly code for x86, ARM, or RISC-V architectures. An
overview of the LEGO-Compiler is depicted in primarily including the following Chain-
of-Thoughts, where their detailed prompts can be found in

2.3.1 CONTROL FLOW ANNOTATION

The first annotation process addresses the positioning issues. Control flow in high-level languages
consists of structures like if, while, for, and switch statements, which are linearized into branch-label
constructs in assembly. In modern programming languages like C, most control statements (except
goto) are encapsulated, meaning their generated labels remain within their scope. This property
makes C programs composable at the control block level, which is formally proved in

Control flow annotation is where Part Split is performed. which is also inspired by
the composability proof algorithm in describes how to use LLM to split program into
reasonably sized blocks. For small programs or control statements with low nesting levels, splitting
may be unnecessary. For deeply nested control statements, further splitting may be required. This
process maintains composability and encapsulation, ensuring correctness when rebuilding the full

translation. In extreme cases, the program can be divided into basic blocks (Definition 3) or even
sequential statements (Definition 2J).

Under review as a conference paper at ICLR 2025

#include <stdio.h> Zi
typedef struct point { :;
float x; // 0 b2
float y; // 4 c2 Variable
} point_t; // size: 8 N . M: i
Struct Annotation p:point_t apping 2
typedef struct line { 7| —— |
point_t i /0 4
point_t /8 1l:line_t
:) ol A - il
}linet; // size: 16 Value Collection
// collect locals: al, bl, c1, a2, b2, c2, d, p
// collect params: 11, 12 12:line_t

point_t cross_point(line_t 11, line_t 12) { LEGO translation
float al = 11.end.y - ll.start.y; |

<

I
¥ ¥

1
1
1
1
1
1
1
movss -44(%rbp), %xmmo 1
1
1
1
1
1
1
1

float bl = 1l1.start.x - 1l.end.x; [|
float cl = 11.end.x * 11.start.y - 1l.start.x * 1l.end.y; -12(%rbp) = -44(%rbp) * -48(%rbp)
float a2 = 12.end.y - L2.start.y; | - -52(%rbp) * -40(%rbp)
float b2 = 12.start.x - 12.end.x;

y

float c2 = 12.end.x * 12.start.y - 12.start.x * 12.end.y;
float d = al *x b2 - a2 % bl;

1
T
1
1
1
]
|
point_t p; :
1
1
1
1
1
1
1

mulss -48(%rbp), %xmmO
onstace () moves -S20iebe), Bumm | T 4t
result mulss -40(%rbp), %xmml result

p.x = (bl * c2 - b2 * c1) / d;
p.y = (a2 * ¢1 - al * c2) / d;
return p;

subss %xmml, %xmmO
movss %xmm@, -12(%rbp)

Figure 2: Workflow of LEGO-Compiler’s annotation-based Chain-of-Thoughts, Struct Annota-
tion reasons type information from basic types, Value Collection finds all instances of each type,
Variable Mapping explicitly bind variables from src language to dst language, then Part Split will
split the program into composable parts, then LEGO translate them.

2.3.2 STRUCT ANNOTATION

The C language type system includes numerous basic types based on integer or float, their corre-
sponding pointers, and compound types such as struct, union, and array, composed of basic types.
Translating basic types and their instructions is relatively simple, as LLMs have learned this knowl-
edge through extensive pre-training. However, for compound types, like structs (and similarly
unions), the challenge arises from the infinite possible combinations of basic types.

To address this, we adopted a Chain-of-Thought approach. Instead of directly memorizing the map-
pings of variables from source-assembly language pairs in pretraining stage, we prompt the LLM
to perform a separate thought process to reason about the memory layout of compound types based
on structure, which includes size, offset, and alignment. Since compound types are ultimately com-
posed of basic types, and LLMs understand basic type memory layouts, this pass can effectively
infer the memory layout of compound types, like struct and array.

The Struct Annotation result is also verifiable using front-end tools like IntelliSense (Microsoft Cor-
poration, [2024) or Clangd (LLVM Project, 2024b). After Struct Annotation, we obtain the symbol
attributes for each type in the symbol table (LLM’s context).

2.3.3 VARIABLE ANNOTATION

After type attribute inference, we need to determine where each type appears in the program and
which variable identifier represents it. Our designed prompt guides the LLM to infer all declarations
and arrange variable stack allocations according to their declaration order

Using x86 assembly as an example, global variables are stored in the data segment and indexed by
same-name labels, providing clear binding relationships. For local variables, our method involves
treating them as stored on the stack, assigning each a specific offset relative to a base address.
By iterating through variable definitions, we can update these offsets relative to the base address,
achieving effective stack allocation in most cases.

For compound type variables like structs, following the |System V ABI (2018)) for x86 assembly,
access to sub-elements is achieved by adding offsets. This process is generally accurate with LLMs,
relying primarily on precise binary integer arithmetic operations. After the Variable Annotation
pass, we obtain a correspondence between variables in C and assembly languages, allowing for
simple substitution during compilation, as illustrated in [Figure 2}

Under review as a conference paper at ICLR 2025

An additional challenge is ensuring variable name uniqueness in the source program. We address
this through a renaming pass at the source program level, eliminating name conflicts and ensuring
variable uniqueness. This process is also verifiable through behavioral validation of the program
before and after renaming.

2.3.4 SELF-CORRECTION THROUGH ERROR FEEDBACK

To address potential errors in the LLM-generated code, we implement a comprehensive self-
correction mechanism. This system classifies errors into three categories: assembly semantic errors
(detected by the assembler), runtime errors (identified through execution and caught by debuggers
like gdb), and behavioral errors (discovered through result comparison). The error information
is collected and fed back to the LLM for self-correction. Assembly semantic errors are typically
straightforward to fix, while runtime errors, often caused by null pointer dereferences, are addressed
by tracing instructions step-by-step to pinpoint the problematic area. Behavioral errors, being the
most complex, may require multiple iterations to resolve. This iterative feedback and correction
process significantly enhances the robustness and accuracy of the LLM-based compilation system,
which is evaluated in the following section.

In general, LEGO-Compiler uses Chain-of-Thoughts in neural compilation task by either explicitly
annotating the source code or generating intermediate text results. These annotations and results are
stored in the LLM’s context, allowing the model to integrate them effectively. Through in-context
learning, LEGO-Compiler is able to perform neural compilation tasks step by step, with each step
being a simpler subtask that the LLM can handle. For more details on the LEGO-Compiler system

design, see [subsection D.

3 EXPERIMENTS

To evaluate the effectiveness of our LEGO-Compiler approach, we have conducted a comprehensive
set of experiments using three distinct datasets: ExeBench, CoreMark, and LongFunction. Each
dataset serves a specific purpose in assessing different aspects of our neural compilation method.

3.1 EXPERIMENTAL SETUP

Major parameters we have tested are listed below, All settings use a one-shot prompt to help align
the format. We evaluate the Pass @k correctness through IO unittests, altering the following settings,
note that not all combinations of experimental settings are tested due to resource constraints.

* models: Advanced LLMs: GPT-40 (OpenAll [2024), Claude-3.5-sonnet (Anthropicl|[2023),
Deepseek-coder (Guo et al., [2024) and Mini LLMs: GPT-40-mini, Claude-3-haiku, and
Codestral-22b (Al [2024). We also test the newest ol-preview model (OpenAll [2024)) for
limited evaluation.

* method ablation: Direct(baseline), annotation, annotation + fixing, annotation + fixing +
LEGO translation, annotation + fixing + LEGO translation + pass @k(LEGO-Compiler)

* Temperature: 0.0-1.0, with 0.2 step increments
* ki 1,5
e fix rounds: 0, 1, 3

* architecture: x86_64, arm-v8a, riscv64, majorly on x86

3.2 EXEBENCH EVALUATION

ExeBench (Armengol-Estapé et al.| [2022) is a large-scale dataset of executable C programs, each
equipped with a comprehensive unittest system. We use its Real-Executable subset, initially con-
taining 40k samples. After data cleaning and removing samples that couldn’t be compiled by the
oracle compiler, our final test set consists of 23k samples. We utilize a test set of 500 cases randomly
chosen from the full dataset for comprehensive evaluation due to resource and time constraints. To
ensure the representativeness of this test set, we conduct additional evaluations on a larger subset

Under review as a conference paper at ICLR 2025

of 2,000 cases using DeepseekCoder, one of our evaluating LLMs, which shows similar evaluation
results in accuracy(< 1% difference). We evaluate ExeBench through the following methodology:

1.

AN i

Translate the C program to assembly using the LLM (to generate hypothesis), where we
have three methods: direct, annotation-based CoT and LEGO translation.

Assemble and link the hypothesis assembly to create an executable.

Run the executable through 10 different IO test cases provided by ExeBench.

Consider the translation successful if it passes all test cases.

If a translation fails, apply self-fixing with the collected error feedback, will try fix rounds.
If still unsuccessful, proceed to the next iteration in Pass @k, until k is reached.

Consider the translation failed if it doesn’t pass after all configured attempts.

The overall results on ExeBench are presented in [Table 1| and case-difficulty ablation results in
IFigure 3| where we have tested 3 advanced LLMs and 3 mini LLMs respectively with the following
experimental settings:

* Baseline: Direct code translation with Pass@1 and greedy-decoding. This represents the

basic neural compilation capability of LLMs based on their default pretraining results. As
we can see, models vary in a large margin, advanced models outperform mini models, and
Claude-series outperform GPT series, where we found GPT series are facing simple syntax
failures. Additionally, DeepseekCoder and Codestral performs well in the baseline setting.

+Pass@k: Altering the Temperature to 0.6 and k to 5. This improves greatly for trivial code
syntax errors as it allows LLMs trying different styles in the assembly, however, pass@k
by allowing sampling on sub-optimal choices during decoding stage can only mitigate, but
not solve the inefficiency during the pretraining on LLMs. We see large improvement for
all models, where most relatively simple cases are generated correctly during this stage,
however, for harder cases, and those with pretraining biases(causing the errors), Pass @k is
not helpful.

+Feedback: Enabling the feedback self-fixing method, which enables LLMs to self-
correcting its output from assembler feedback, runtime feedback and behavioral feedback.
This significantly improves those cases with pretraining biases, because by explicitly pro-
viding error feedback, LLMs will reflect on their generation and focus on solving the er-
rors. In comparison, assembler feedback is the most efficient feedback message, because
it directly points out the errors; runtime feedback is helpful as well, though LLMs need
to additionally reason its actual error occurrence from the message; behavioral message,
since it lacks clear information about where is wrong in the hypothesis, although it’s some-
how helpful, LLMs’ guesses on which part is problematic are usually wrong. In general,
by enabling the feedback-driven LLM self-correction method, all models get significant
improvement on their Pass@5 accuracy. Typically, the advanced LLMs majorly solve the
simple and medium code, while the mini LLMs will still face some problems in simple
cases.

+CoT: Further enabling the annotation-based CoT methods described in
This helps LLMs to reason the compilation process instead of direct generation, although
it requires more tokens to be consumed as it generates intermediate text and reasoning
steps. As a result, a large part of hard code is successfully generated, even for mini LLMs.
The possible explanation is, these mini LLMs are not sufficiently pretrained on neural
compilation datasets, but are sufficient for reasoning the logic of a guided compilation
process, which is given by the annotation methods. Empirical results show all models
pass at least 92.2% of the testset of ExeBench, which already looks good. Additionally,
the 3 advanced LLMs reach around 99% IO Accuracy, showing that except for extreme
hard cases, LLMs are sufficient to translate it well with guidelines of the annotation-based
Chain-of-Thoughts.

LEGO-Compiler(all): Coming so far, the remaining failed cases are all difficult in at least
one of their features, detailed explanations of these difficulties are in By
translating a managed small part of code at a time and combining these results together to
form a full neural compilation, LEGO-Compiler significantly solves the difficulty due to

Under review as a conference paper at ICLR 2025

Table 1: ExeBench experimental results

Model Baseline +Pass@k +Feedback +CoT LEGO-Compiler
GPT-40 76.8% 93.4% 97.8% 99.2% 99.8%
Claude-3.5-Sonnet ~ 92.6% 97.8% 98.6 % 99.4% 100.0 %|I|
DeepseekCodel 82.48% 87.96% 93.76% 97.36% 99.24%
GPT-40-mini 58.8% 74.8% 86.0% 92.2% -
Claude-3-Haiku 69.4% 81.8% 90.0% 95.8% -
Codestral 71.8% 79.4% 88.6% - -

Easy Medium

100

q0.00
.04

100.0 4%80 100
90
“99 90
80
80

70

Percentage %
Percentage %
Percentage %
Py
3

60 50

40
50 —e— claude-3-5

gpt-d0

80.0 40 30 —e— deepseekcoder
T T T T T T T T T T T T codestral
baseline pass 5 feedback CoT baseline pass 5 feedback CoT baseline pass 5 feedback CoT ~&— gpt-4o-mini

—8— claude-3-haiku

Figure 3: Ablation study: easy, medium and hard subsets ablations on ExeBench.

long code length and complicated control flows, where all advanced LLMs achieve over
99% accuracy in the ExeBench testset. Since the accuracy is very impressive, we fur-
ther filter the hardest 10% subset of ExeBench based on the number of basic blocks and
instructions within these blocks using the LLVM toolchain (LLVM Project, |2024a) to char-
acterize the difficulty in ExeBench. The characterization of ExeBench and its hard subset
is illustrated in in the appendix. Additionally, the experimental results on this
hard subset, demonstrating the effectiveness of our methods, can be viewed in also
located in the appendix.

To sum up, the empirical results of our final LEGO-Compiler are suggesting the success
of using LLMs for neural compilation, where the advanced LLMs solve almost all difficult
cases in ExeBench(>99%), and the mini LLLMs can also have over 95% accuracy.

3.3 COREMARK EVALUATION, A CASE STUDY

Previous evaluation has given promising results on neural compilation, with all methods applied,
LLMs are achieving over 99% accuracy. However, considering ExeBench is a function-level com-
pilation dataset that contains code with limited complexity, which we characterize in [Fig 6] it
is natural for us to think about applying our LEGO-Compiler for real-world codebases, where we
choose CoreMark (Gal-On & Levy,2012) as a case study, showing how complicated code that LLMs
are capable of handling now.

CoreMark is a widely used benchmark for embedded devices, written entirely in C. It evaluates
computer performance through state machine operations, linked list manipulations, and matrix com-
putations. CoreMark consists of 40 functions, representing a complex, industry-grade codebase.

As depicted in the main function is one of the most complicated code in CoreMark, which
contains a lot of complicated features of a C program. From another perspective, we can assert that if

1100% test accuracy suggests LEGO-Compiler’s state-of-the-art potential, but it doesn’t ensure perfection
in all scenarios, which suggests us to study harder cases as well.

2We evaluate the rest of models with a 500 subset of ExeBench, while we perform a larger scale 5000 subset
of ExeBench with DeepseekCoder model, showcasing the consistency.

Under review as a conference paper at ICLR 2025

. . . /* Part 5 */
f“mam” function in CoreMark if (results[0].iterations == 0) {)
#include <stdint.h> double secs_passed = 0;

N . unsigned divisor;
gizg}_ﬁgz :::g{gbh; results[0].iterations = 1;

while (secs_passed < (double)1) {

#includ time.h 3 3 : N
/inzu:tim:ﬂict: %/ Variable Mapplng results[0].iterations *= 10;
i . start_time();

EXEZSZ; 3:213223 zz::tu;?él by LLM iterate(&results[0]);
typedef struct CORE_PORTABLE_S { stop_timeQ; =) .

U8 portable_id; r\bp ' secs_passed = time_in_secs(get_time());
§ cone portabie; divisor = (unsigned)secs_passed;
typedef struct list_data_s { S it (divisor‘g--) -P '

short datalé; . ivi 1:

short idx; 1 -8 divisor ‘1, . .
} list_data; j -12 results[0].iterations *= 1 + 10 / divisor;
typedef struct list_head_s { n_algo -16 7%

i - Part 6 */

struct list_head_s *next; : _ 5 .

struct list_data_s xinfo; known_id 20 start_time(); .
} list_head; tot_errs -24 iterate(&results[0]);
typedef struct MAT_PARAMS_S { seedcrc -28 stop_tine); .

int N; total_time = get_time();

shor‘t'*A') seedcrc = crclé(results[0].seedl, seedcrc);

short *B- tot_time -40 seedcrc = crclé(results[0].seed2, seedcrc);

int %C; ! seedcrc = crclé(results[0].seed3, seedcrc);
} mat_params; 1] port -152+106 izegcr: ; z;clé(r’esults[@].slze, seedcre) ;
typedef struct RESULTS_S {offset 1| err Par

. \ switch (seedcrc) {
short seedl; 0 1 | crestate Oxegie
short seed?; \ case Oxe B

\ crecmatrix . known_id = 3;
\ h crclist printf("2K performance run parameters for coremark.\n");

2
short seed3; 4
8

unsigned size; 40\ | crc
44
48

void xmemblock[4];

break;
i default:
unsigned iterations; \ . _ .
unsigned execs; \II Eotaber‘r‘or‘s =L
struct list_head_s *list;56 | mat -152+64 N reak;
mat_params mat; 64y list -152+56 V% Part 8 %/
16 cretist; o e 1 Gown. 14 >= 0) {
ulé crematrix; w00 1\ iterations results[i].err = 0;
PN \ i if ((results[il.execs & 1) &&
tat 1 size a L > .
gﬁgrit‘%; c igz 1 (results[i].crclist != list_known_crc[known_id])) {
core : e printf("[%U]ERROR! list crc 0x%04x - should be Ox%04x\n", i,
_portable port; 106 1 memblock L : : : . .
. . \ results[i].crclist, list_known_crc[known_id]);
} core_results; fotal: 112/ \| seed3 -152+4 results[i].err++;
/* function declarations */ . '
ul6 crclé(short newval, ulé crc); \| seed2 -152+2 if ((results[i] & 2) 8
ul6 crculb(ulé newval, ulé crc); seedl results -152+0 ¢ l'Lt [r“?SU S i’ Iex?ES rix K Ik 1)) 1
void portable_init(core_portable *p) otx -156 results[i].crcmatrix != matrix_known_crc[known_i

void portable_fini(core_portable *p) printf("[%U]ERROR! matrix crc Ox%04x - should be Ox%B4x\n",

void portable_malloc(size t size); S?CTpaSS -164 i, results.[é]twcmat:i)f, matrix_known_crc[known_id]);
void portable_free(void *p); divisor -168 N results[i].err++;
H ~——————
3§i§hi§>€52:t:f%gzsigr'~es)- rs if ((results[i].execs & 4) &&)
void start tine(void); p (results[i].crcstate != state_known_crc[known_id])) {

printf("[%U]ERROR! state crc 0x%04x - should be 0x%04x\n",
i, results[i].crcstate, state_known_crc[known_id]);
results[i].err++;

void stop_time(void);

clock_t get_time(void);

double time_in_secs(clock_t ticks);
list_head *core_list_init(unsigned blksize, list_head *memblock,
short seed);

void core_init_state(unsigned size, short seed, u8 *p);
unsigned core_init_matrix(unsigned blksize, void *memblk, int
seed,

mat_params *p);

/* global and static variables */

struct timespec start_time_val, stop_time_va
static ulé list_known_crc[] = {(u16)0xd4be,

total_errors += results[i].err;

1

/x Part 9 %/

total_errors += check_data_types();

printf("CoreMark Size : %lu\n", (long unsigned)results[0].size);
printf("Total ticks : %lu\n", (long unsigned)total_time);

1 printf("Total time (secs): %f\n", time_in_secs(total_time));
(x’ﬂé)ﬂxﬁm, if (time_in_secs(total_time) > 0)

(U16)0x6a79, (U16)0xeT14, (U16)8xe3cl}; printf(tIterations/Sec : %f\n", .
static ulé matrix_known_crc[] = {(u16)xbe52, (u16)8x1199, 1 % resylts[0].iterations / tine_in_secs(total_tine));
(U16)0x5608, (U16)0x1Fd7, (U16)0x0747}; if (time_in_secs(total_tine) < 10) ,
static ul6 state_known_crc[] = {(u16)8x5e47, (U16)8x39bF, printf("ERROR! Must execute for at least 10 secs for a valid
(u16)Bxe5a4, (u16)6x8e3a, (u16)0x8d84}; result!\n®); .
/* main function x/ total_errors++;
int mainQ) {
/* Partl:Prologue */
/* Part2:Variable init */
ulé i, j = 0, num_algorithms = 3;
short known_id = -1, total_errors = 0;
ulé seedcrc = 0;
clock_t total_time;
core_results results[1];
portable_init(&(results[0].port));
results[0].seedl
results[0].seed2 = 0;
results[0].seed3 = 0x66;
results[0].iterations =
results[0].execs = 7;
results[0].size = 2000;
results[0].memblock[0] = portable_malloc(results[i].size);
results[0].err = 0;
results[0].size = results[0].size / num_algorithms;
/x Part3 x/
for (1 = 0; 1< 3; i++) {
unsigned ctx;
for (ctx = 0; ctx < 1; ctx++)
results[ctx].memblock[i + 1] =
(char *) (results[ctx].memblock[0]) + results[0].size * j;
4+

}
printf("Iterations : %lu\n", (long
unsigned)results[0].iterations);
printf("Compiler version : AICC 1.0\n");
printf("seedcrc : 0x%04x\n", seedcrc);
/* Part 10 */
if (results[0].execs & 1)
printf("[%d]crclist : Ox%04x\n", i, results[i].crclist);
if (results[0].execs & 2)
. printf("[%d]crematrix : 0x%04x\n", i, results[i].crcmatrix);
! if (results[0].execs & 4)
printf("[%d]crcstate : 0x%04x\n", i, results[i].crcstate);
printf("[%d]crcfinal : 0x%04x\n", i, results[i].crc);
if (total_errors ==
printf("Correct operation validated. See README.md for run
and reporting rules.\n");
if (known_id == 3) {
printf("Function Level CoreMark 1.0 : %f by AICC 1.0",
results[0].iterations / time_in_secs(total_time));
printf(" / Heap");
printf("\n");

}
if (total_errors > 0)
printf("Errors detected\n");
if (total_errors < 0)
/% Partd %/ printf("tanngt validate operation for these seed values,
results[0].list = please compare with results on a known platform.\n");
core_list_init(results[0].size, results[0].memblock[1], pur‘table,ﬁeg(r‘esults[ﬂ] -memblock[61);
results[0].seedl); portable_fini(&(results[0].port));
core_init_matrix(results[0].size, results[0].memblock[2],
(int)results[0].seedl | (((int)results[0].seed2) << 16),
&(results[0].mat));
core_init_state(results[0].size, results[0].seedl,
results[0].memblock[3]);

return 0;
/% Part 11: Epilogue %/

J

Figure 4: The CoreMark main function, one of the most difficult code we evaluated. In this figure,
all CoTs are illustrated in the code annotations in color, as well as the variable mapping process.

Under review as a conference paper at ICLR 2025

CoreMark’s main function can be neural compiled, simpler code, can be neural-compiled correctly
in high possibility.

In general, Claude-3.5-sonnet compiles all 40 out of 40 functions correctly, both GPT-40 and
DeepseekCoder achieves 38, where they fail to generate the main function and another compli-
cated core_bench _state function. The reason for their failure is not on the complicated code control
structures, but on the translation of certain instructions, which can be improved with more compiler
knowledge taught to them. If taught with such knowledge (manually prompted), all three LLMs can
successfully compile the whole CoreMark, achieving functionality just as oracle compiler does.

3.4 LONGFUNCTION EVALUATION

Since the LEGO translation method significantly scales up the capability of long code translation,
we design LongFunction, a synthesized dataset for testing very long code translations, particularly
for evaluating the effectiveness of our LEGO translation method. The dataset is made up of 50 syn-
thesized programs, ranging from 317 to 238737 tokens in length, each program is self-contained and
can be compiled and run independently. We evaluate the neural compilation task on LongFunction
dataset for all x86_64, arm-v8a and riscv64 architectures, and the neural code translation task by
migrating C to Python/C++/Rust.

Examples of LongFunction and the evaluation details can be found in due to page
limits. In conclusion, our proposed LEGO translation method breaks the complexity of long code,
boosting their capability of handling long code, where all LLMs we tested passed the whole Long-
Function dataset. In comparison, the current best model, ol-preview, can only maximally translate
a 5772 token sized case using direct translation method.

The results of LongFunction dataset evaluation give us a strong insight: Code, or programming
languages, unlike the natural languages, no matter how long they are, their complexity can be divide-
and-conquered into two levels: The first is on the control flow level, which combines each block of
code logic together to form a long and complicated code, where both current compilers and our
LEGO-Compiler methods can iteratively split the code into smaller and smaller, managable code
snippets to overcome this complexity. The second is on the handling of each code snippet, where
the size is not large, and the major difficulties are on how to correctly translate each statement of
it correctly, where we also find out that for these advanced LLMs, they perform strongly on this
level. Since the basic operations are also limited in programming languages, within proper size,
the code snippet level translation or compilation can be gradually improved to near 100% with the
advancement of more powerful pretrained LLMs.

4 CONCLUSION

This paper introduces LEGO-Compiler, a novel approach to neural compilation that leverages Large
Language Models (LLMs) to translate high-level programming languages into assembly code. Our
LEGO translation method breaks down large programs into manageable, self-contained blocks
through the composable nature of code, significantly extending the scalability of neural code trans-
lation. By incorporating a series of Chain-of-Thought stages guided by classical compiler design
and self-correction mechanisms, LEGO-Compiler effectively addresses key challenges in compi-
lation tasks, achieving significant improvements in accuracy and scalability. Our experimental re-
sults demonstrate the effectiveness of LEGO-Compiler, as it achieves over 99% accuracy on the
ExeBench dataset and fully compiles the industrial-grade CoreMark benchmark correctly. We
also introduce LongFunction, a new dataset designed to evaluate the translation and compilation
of lengthy code, demonstrating the effectiveness of the proposed LEGO translation method.

These findings provide important insights into the capabilities and limitations of LLMs in neural
compilation tasks. While our current implementation incurs higher computational costs compared
to traditional compilers, it offers unique advantages in adaptability and potential for rapid integration
of new instruction sets or language features. As LLM capabilities continue to improve, approaches
like LEGO-Compiler are poised to play an increasingly important role in the future of software
development and compilation, complementing and enhancing traditional compiler technologies.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Mistral Al. Codestral: Hello, world! |https://mistral.ai/news/codestral/, May
2024. Accessed on September 15, 2024.

Anthropic. Claude ai. https://www.anthropic.com, 2023. Accessed: 2024-09-14.

Jordi Armengol-Estapé and Michael FP O’Boyle. Learning ¢ to x86 translation: An experiment in
neural compilation. arXiv preprint arXiv:2108.07639, 2021.

Jordi Armengol-Estapé, Jackson Woodruff, Alexander Brauckmann, José Wesley de Souza Mag-
alhdes, and Michael FP O’Boyle. Exebench: an ml-scale dataset of executable ¢ functions. In
Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming, pp.
50-59, 2022.

Jordi Armengol-Estapé, Jackson Woodruff, Chris Cummins, and Michael FP O’Boyle. Slade:
A portable small language model decompiler for optimized assembler. arXiv preprint
arXiv:2305.12520, 2023.

Ying Cao, Ruigang Liang, Kai Chen, and Peiwei Hu. Boosting neural networks to decompile opti-
mized binaries. In Proceedings of the 38th Annual Computer Security Applications Conference,
pp. 508-518, 2022.

Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’ 18, pp. 2552-2562, Red Hook, NY, USA, 2018. Curran Associates Inc.

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang Yu, Tao He, Haotian Wang, Weihua Peng,
Ming Liu, Bing Qin, and Ting Liu. Navigate through enigmatic labyrinth a survey of chain of
thought reasoning: Advances, frontiers and future, 2024. URL https://arxiv.org/abs/
2309.15402.

Chris Cummins, Volker Seeker, Dejan Grubisic, Mostafa Elhoushi, Youwei Liang, Baptiste Roziere,
Jonas Gehring, Fabian Gloeckle, Kim Hazelwood, Gabriel Synnaeve, et al. Large language mod-
els for compiler optimization. arXiv preprint arXiv:2309.07062, 2023.

Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas Gehring, Gabriel Synnaeve,
and Hugh Leather. Meta large language model compiler: Foundation models of compiler opti-
mization, 2024. URL https://arxiv.org/abs/2407.02524.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context learning,
2024. URL https://arxiv.org/abs/2301.00234.

Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. The linpack benchmark: past, present and
future. Concurrency and Computation: practice and experience, 15(9):803-820, 2003.

Shihan Dou, Haoxiang Jia, Shenxi Wu, Huiyuan Zheng, Weikang Zhou, Muling Wu, Mingxu
Chai, Jessica Fan, Caishuang Huang, Yunbo Tao, Yan Liu, Enyu Zhou, Ming Zhang, Yuhao
Zhou, Yueming Wu, Rui Zheng, Ming Wen, Rongxiang Weng, Jingang Wang, Xunliang Cai, Tao
Gui, Xipeng Qiu, Qi Zhang, and Xuanjing Huang. What’s wrong with your code generated by
large language models? an extensive study, 2024. URL https://arxiv.org/abs/2407.
06153.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming
and natural languages, 2020.

Free Software Foundation. c++filt. GNU Binutils, 2023. URL https://sourceware.org/
binutils/docs/binutils/c_002b_002bfilt.html. Accessed: [Insert access date
here].

Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuandong Tian, Farinaz Koushanfar, and Jishen
Zhao. Coda: An end-to-end neural program decompiler. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

11

https://mistral.ai/news/codestral/
https://www.anthropic.com
https://arxiv.org/abs/2309.15402
https://arxiv.org/abs/2309.15402
https://arxiv.org/abs/2407.02524
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2407.06153
https://arxiv.org/abs/2407.06153
https://sourceware.org/binutils/docs/binutils/c_002b_002bfilt.html
https://sourceware.org/binutils/docs/binutils/c_002b_002bfilt.html

Under review as a conference paper at ICLR 2025

Shay Gal-On and Markus Levy. Exploring coremark a benchmark maximizing simplicity and effi-
cacy. The Embedded Microprocessor Benchmark Consortium, 2012.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y.K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming — the rise of code intelligence, 2024. URL https:
//arxiv.org/abs/2401.14196.

Zifan Carl Guo and William S. Moses. Enabling transformers to understand low-level programs.
In 2022 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1-9, 2022. doi:
10.1109/HPEC55821.2022.9926313.

John L Gustafson and Quinn O Snell. Hint: A new way to measure computer performance. In
Proceedings of the Twenty-Eighth Annual Hawaii International Conference on System Sciences,
volume 2, pp. 392-401. IEEE, 1995.

Ali Reza Ibrahimzada. Program decomposition and translation with static analysis. In Proceedings
of the 2024 IEEE/ACM 46th International Conference on Software Engineering: Companion
Proceedings, ICSE-Companion ’24, pp. 453-455, New York, NY, USA, 2024. Association for
Computing Machinery. ISBN 9798400705021. doi: 10.1145/3639478.3641226. URL https:
//doi.org/10.1145/3639478.3641226,

Siddharth Jha, Lutfi Eren Erdogan, Sehoon Kim, Kurt Keutzer, and Amir Gholami. Characterizing
prompt compression methods for long context inference. In Workshop on Efficient Systems for
Foundation Models II @ ICML2024,2024. URL https://openreview.net/forum?id=
vs6CCDuK71.

Mingsheng Jiao, Tingrui Yu, Xuan Li, Guanjie Qiu, Xiaodong Gu, and Beijun Shen. On the eval-
uation of neural code translation: Taxonomy and benchmark, 2023. URL https://arxiv.
org/abs/2308.08961.

Bonan Kou, Shengmai Chen, Zhijie Wang, Lei Ma, and Tianyi Zhang. Do large language models
pay similar attention like human programmers when generating code? Proc. ACM Softw. Eng., 1
(FSE), jul 2024. doi: 10.1145/3660807. URL https://doi.org/10.1145/3660807.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Dmitry Sorokin, Artyom Sorokin, and Mikhail Burtsev.
In search of needles in a 11m haystack: Recurrent memory finds what llms miss, 2024. URL
https://arxiv.org/abs/2402.10790.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length
on the reasoning performance of large language models. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 15339-15353, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. URL https://aclanthology.org/2024.
acl-long.818.

Zhuowan Li, Cheng Li, Mingyang Zhang, Qiaozhu Mei, and Michael Bendersky. Retrieval aug-
mented generation or long-context 1lms? a comprehensive study and hybrid approach, 2024.
URL https://arxiv.org/abs/2407.16833.

J. Liu, F. Zhang, X. Zhang, Z. Yu, L. Wang, Y. Zhang, and B. Guo. hmcodetrans: Human—-machine
interactive code translation. [EEE Transactions on Software Engineering, 50(05):1163-1181,
may 2024a. ISSN 1939-3520. doi: 10.1109/TSE.2024.3379583.

Yue Liu, Chakkrit Tantithamthavorn, Yonghui Liu, and Li Li. On the reliability and explainability of
language models for program generation. ACM Trans. Softw. Eng. Methodol., 33(5), jun 2024b.
ISSN 1049-331X. doi: 10.1145/3641540. URL https://doi.org/10.1145/3641540!

LLVM Project. The LLVM Compiler Infrastructure. LLVM Foundation, 2024a. URL https:
//11lvm.org. Version 18.1.8.

LLVM Project. Clangd: C/c++ language server. https://clangd.llvm.org/, 2024b. Ac-
cessed: 2024-09-14.

12

https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://doi.org/10.1145/3639478.3641226
https://doi.org/10.1145/3639478.3641226
https://openreview.net/forum?id=vs6CCDuK7l
https://openreview.net/forum?id=vs6CCDuK7l
https://arxiv.org/abs/2308.08961
https://arxiv.org/abs/2308.08961
https://doi.org/10.1145/3660807
https://arxiv.org/abs/2402.10790
https://aclanthology.org/2024.acl-long.818
https://aclanthology.org/2024.acl-long.818
https://arxiv.org/abs/2407.16833
https://doi.org/10.1145/3641540
https://llvm.org
https://llvm.org
https://clangd.llvm.org/

Under review as a conference paper at ICLR 2025

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

Microsoft Corporation. Intellisense in visual studio code. https://code.visualstudio.
com/docs/editor/intellisense, 2024. Accessed: 2024-09-14.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 11048—11064, Abu Dhabi, United
Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.emnlp-main.759. URL https://aclanthology.org/2022.emnlp-main.759.

Christian Munley, Aaron Jarmusch, and Sunita Chandrasekaran. Llm4vv: Developing llm-driven
testsuite for compiler validation. Future Generation Computer Systems, 2024.

nfinit. Ansibench: A selection of ansi ¢ benchmarks and programs useful as benchmarks, 2024.
URLhttps://github.com/nfinit/ansibench. Accessed: 2024-11-22.

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. Divide-and-conquer approach for
multi-phase statistical migration for source code. In Proceedings of the 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 15, pp. 585-596. IEEE Press,
2015a. ISBN 9781509000241. doi: 10.1109/ASE.2015.74. URL https://doi.org/10.
1109/ASE.2015.74.

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. Divide-and-conquer approach
for multi-phase statistical migration for source code (t). In 2015 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pp. 585-596, 2015b. doi:
10.1109/ASE.2015.74.

Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is self-repair a silver bullet for code generation? In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
v0GJIXRungR.

OpenAl. Chatgpt: Optimizing language models for dialogue. OpenAl, 2023. URL https://
openail.com/research/chatgptl

OpenAl. Gpt-4o0 system card. https://openai.com/index/gpt-4o-system—card/,
August 2024. Accessed on September 15, 2024.

OpenAl. Openai ol system card. Technical report, OpenAl, September 2024. URL https:
//cdn.openai.com/ol-system-card.pdf. Accessed on September 15, 2024.

OpenAl. Video generation models as world simulators. https://openai.com/index/
video-generation-models-as-world-simulators/} 2024. Technical Report.

OpenAl, :, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mo Bavar-
ian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner,
Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim
Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek
Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling,
Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko
Felix, Simén Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Chris-
tian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gor-
don, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei

13

https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://aclanthology.org/2022.emnlp-main.759
https://github.com/nfinit/ansibench
https://doi.org/10.1109/ASE.2015.74
https://doi.org/10.1109/ASE.2015.74
https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=y0GJXRungR
https://openai.com/research/chatgpt
https://openai.com/research/chatgpt
https://openai.com/index/gpt-4o-system-card/
https://cdn.openai.com/o1-system-card.pdf
https://cdn.openai.com/o1-system-card.pdf
https://openai.com/index/video-generation-models-as-world-simulators/
https://openai.com/index/video-generation-models-as-world-simulators/

Under review as a conference paper at ICLR 2025

Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke,
Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu,
Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang,
Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaf-
tan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan,
Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Hendrik Kirchner, Jamie
Kiros, Matt Knight, Daniel Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich, Aris Konstan-
tinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning,
Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew,
Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok
Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan
Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Rei-
ichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang,
Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista
Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam
Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Fran-
cis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli,
Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman,
Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam,
Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Ben-
jamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya
Sutskever, Jie Tang, Nikolas Tezak, Madeleine Thompson, Phil Tillet, Amin Tootoonchian, Eliza-
beth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cer6n Uribe, Andrea Vallone,
Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2023.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
Automatically correcting large language models: Surveying the landscape of diverse automated
correction strategies. Transactions of the Association for Computational Linguistics, 12:484-506,
2024. doi: 10.1162/tacl_.a_00660. URL https://aclanthology.org/2024.tacl-1.
27.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsupervised
translation of programming languages. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Had-
sell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
praper/2020/hash/ed23fbf18c2cd35f8c7f8ded4£85c08d-Abstract.html.

Baptiste Roziere, Jie M Zhang, Francois Charton, Mark Harman, Gabriel Synnaeve, and Guil-

laume Lample. Leveraging automated unit tests for unsupervised code translation. arXiv preprint
arXiv:2110.06773, 2021.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2022.

14

https://aclanthology.org/2024.tacl-1.27
https://aclanthology.org/2024.tacl-1.27
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html

Under review as a conference paper at ICLR 2025

Xinyu She, Yue Liu, Yanjie Zhao, Yiling He, Li Li, Chakkrit Tantithamthavorn, Zhan Qin, and
Haoyu Wang. Pitfalls in language models for code intelligence: A taxonomy and survey. arXiv
preprint arXiv:2310.17903, 2023.

Mingyang Song, Mao Zheng, and Xuan Luo. Can many-shot in-context learning help long-context
IIm judges? see more, judge better!, 2024. URL https://arxiv.org/abs/2406.11629.

System V ABI. System v application binary interface: Amd64 architecture processor supple-
ment (with Ip64 and ilp32 programming models) version 1.0. Technical report, The Santa Cruz
Operation, Inc., 2018. URL https://github.com/hjl-tools/x86-psABI/wiki/
x86-64-psABI-1.0.pdf.

Marc Szafraniec, Baptiste Roziere, Hugh Leather, Patrick Labatut, Francois Charton, and Gabriel
Synnaeve. Code translation with compiler representations. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. URL https://openreview.net/pdf?id=XomEU3eNeSQ.

Bowen Tan, Zichao Yang, Maruan Al-Shedivat, Eric Xing, and Zhiting Hu. Progressive gener-
ation of long text with pretrained language models. In Kristina Toutanova, Anna Rumshisky,
Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy
Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
pp. 43134324, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.naacl-main.341. URL https://aclanthology.org/2021.naacl-main.341.

Kiran Vodrahalli, Santiago Ontanon, Nilesh Tripuraneni, Kelvin Xu, Sanil Jain, Rakesh Shivanna,
Jeffrey Hui, Nishanth Dikkala, Mehran Kazemi, Bahare Fatemi, Rohan Anil, Ethan Dyer, Siamak
Shakeri, Roopali Vij, Harsh Mehta, Vinay Ramasesh, Quoc Le, Ed Chi, Yifeng Lu, Orhan Firat,
Angeliki Lazaridou, Jean-Baptiste Lespiau, Nithya Attaluri, and Kate Olszewska. Michelangelo:
Long context evaluations beyond haystacks via latent structure queries, 2024. URL https:
//arxiv.org/abs/2409.12640.

Boshi Wang, Xiang Deng, and Huan Sun. Iteratively prompt pre-trained language models for
chain of thought. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings
of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 2714-2730,
Abu Dhabi, United Arab Emirates, December 2022a. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.emnlp-main.174. URL https://aclanthology.org/2022.
emnlp-main.174.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Zhengying Liu, Qingxing Cao, Yinya Huang, Jing
Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo Li, and Xiaodan Liang. LEGO-prover: Neural
theorem proving with growing libraries. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=3f5PALef5B.

Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yitong Li, Pingyi Zhou, Jin Liu, Hao Wu, Xin Jiang,
and Qun Liu. Compilable neural code generation with compiler feedback. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio (eds.), Findings of the Association for Computational
Linguistics: ACL 2022, pp. 9-19, Dublin, Ireland, May 2022b. Association for Computational
Linguistics. doi: 10.18653/v1/2022.findings-acl.2. URL https://aclanthology.org/
2022 .findings—-acl.?2.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 24824-24837. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/9d5609613524ecfd4fl5af0f7b3labcad4-Paper-Conference.pdf.

15

https://arxiv.org/abs/2406.11629
https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf
https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf
https://openreview.net/pdf?id=XomEU3eNeSQ
https://aclanthology.org/2021.naacl-main.341
https://arxiv.org/abs/2409.12640
https://arxiv.org/abs/2409.12640
https://aclanthology.org/2022.emnlp-main.174
https://aclanthology.org/2022.emnlp-main.174
https://openreview.net/forum?id=3f5PALef5B
https://aclanthology.org/2022.findings-acl.2
https://aclanthology.org/2022.findings-acl.2
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf

Under review as a conference paper at ICLR 2025

Yuanbo Wen, Qi Guo, Qiang Fu, Xiaqing Li, Jianxing Xu, Yanlin Tang, Yongwei Zhao, Xing Hu,
Zidong Du, Ling Li, et al. Babeltower: Learning to auto-parallelized program translation. In
International Conference on Machine Learning, pp. 23685-23700. PMLR, 2022.

Niklaus Wirth, Niklaus Wirth, Niklaus Wirth, Suisse Informaticien, and Niklaus Wirth. Compiler
construction, volume 1. Addison-Wesley Reading, 1996.

Yiqging Xie, Atharva Naik, Daniel Fried, and Carolyn Rose. Data augmentation for code trans-
lation with comparable corpora and multiple references. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 13725-13739, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.917. URL https://aclanthology.org/2023.
findings—-emnlp.917.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs in ¢ com-
pilers. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI *11, pp. 283-294, New York, NY, USA, 2011. Associa-
tion for Computing Machinery. ISBN 9781450306638. doi: 10.1145/1993498.1993532. URL
https://doi.org/10.1145/1993498.1993532.

Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan Hong, Xiaoxue Ma,
Zhi Jin, and Ge Li. Exploring and unleashing the power of large language models in automated
code translation. Proc. ACM Softw. Eng., 1(FSE), jul 2024. doi: 10.1145/3660778. URL https:
//doi.org/10.1145/3660778.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Wang Yongji, and
Jian-Guang Lou. Large language models meet NL2Code: A survey. In Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pp. 7443-7464, Toronto, Canada,
July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.411. URL
https://aclanthology.org/2023.acl-1long.411l

Albert Ziegler, Eirini Kalliamvakou, X. Alice Li, Andrew Rice, Devon Rifkin, Shawn Simister,
Ganesh Sittampalam, and Edward Aftandilian. Measuring github copilot’s impact on productivity.
Commun. ACM, 67(3):54—63, February 2024. ISSN 0001-0782. doi: 10.1145/3633453. URL
https://doi.org/10.1145/3633453.

16

https://aclanthology.org/2023.findings-emnlp.917
https://aclanthology.org/2023.findings-emnlp.917
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3660778
https://doi.org/10.1145/3660778
https://aclanthology.org/2023.acl-long.411
https://doi.org/10.1145/3633453

Under review as a conference paper at ICLR 2025

A RELATED WORK

A.1 CODE TRANSLATION

Code Translation has evolved from traditional statistical methods (Nguyen et al.,[2015b)) to neural-
based approaches that capture programming language structures (Chen et al., [2018)). Current
neural code translation researches can be majorly categorized to two types: learning-based tran-
spilers (Roziere et al., |2020; [Roziere et al. |2021; Wen et al.,|2022)) and pre-trained language mod-
els (Feng et al.| 2020; 'Wang et al., [2021; [Lu et al., 2021} |[Roziere et al., [2022; OpenAl et al.| 2023;
Anthropic| |2023). The former majorly studies the scarcity of parallel corpora (Xie et al., 2023)) and
develops unsupervised learning methods to overcome it. The latter using Large Language Models’
vast pretrained knowledge, can also perform code translations well without training (Yang et al.,
2024; Liu et al., [20244a)).

Analysis of neural code translation is equally crucial. Studies have examined common pitfalls in
language models for code intelligence (She et al., 2023; Jiao et al.|[2023)), investigated the reliability
and explainability of these models in automated program generation (Liu et al. 2024b), and the
attention paid by LLM during code generation that differs from human (Kou et al., [2024).

As for compilation related translations, Armengol-Estapé & O’Boyle|(2021) first gives a try on
neural compilation. |Guo & Moses| (2022)) further studies on C-to-LLVM IR translation. However,
they only perform limited investigations on the methods, and their results are still preliminary. There
are also works on the reverse decompilation process (Fu et al., 2019; [Cao et al., 2022; |Armengol-
Estapé et al.,|2023)) and works on code optimizations (Cummins et al.| 2023} 2024).

Finally, the breakdown of neural code translation is also less studied, [Nguyen et al.| (2015a)
first breaks the translation of Java-C# into syntaxemes level to lower the translation difficulty in
SMTs. Our work uses similar divide-and-conquer methodology to breakdown a large long code
into manageable control block parts, then LLMs can translate these parts separately with the aid of
necessary context and combine their results into a large, complete and coherent translation.

A.2 OTHER RELATED WORK

LLM self-repair. Recent research has focused extensively on enhancing LLLMs’ self-correction ca-
pabilities. Several studies closely related to our work deserve mention. A comprehensive survey by
Pan et al.| (2024)) thoroughly examined methods for leveraging feedback to autonomously improve
LLM outputs. |Wang et al.| (2022b) first uses compiler feedback for better code generation, and
Dou et al,| (2024) establishes the syntax-runtime-functional bug type taxonomy and builds corre-
sponding self-repair pipelines for code. Our work is their natural extensions to neural compilation
scenario. While |Olausson et al.[(2024) investigated the limitations of self-repair mechanisms in
code generation, our findings diverge significantly. Contrary to their conclusions, we discovered
that self-repair serves as a highly effective solution in the neural compilation process, particularly
when incorporating syntax feedback and runtime feedback.

In-context learning and Chain-of-Thoughts. LLMs are able to in-context learn via inference alone
by providing few shots of demonstration then predicting on new inputs (Min et al.|[2022; Dong et al.|
2024)). Thus customized Chain-of-Thoughts (Wei et al., [2022} |(Chu et al., 2024) can guide LLMs
to perform complicated reasoning (Wang et al., [2022a} |Song et al.| 2024, which is the cornerstone
of our work. More specifically, [Levy et al.| (2024) reveals the degradation of LLMs’ performance
for long context, and validate the effectiveness on using Chain-of-Thoughts to mitigate. We found
similar results in code translation/compilation tasks. However, our proposed LEGO translations
method can significantly mitigate such degradation as it turns a long context direct translation into
multiple composable, shorter ones that LLMs can handle.

Generation Scalability and Long Context Learning. Except for code translation, many LLM-
based method will fall into scalability problems since larger inputs are not well trained like the
smaller ones. So methods to extend LLMs scalability remain an interesting study. For example,
in order to coherently generate long passages of text, [Tan et al|(2021) proposes a multi-staged
keyword-first progressive method to improve it significantly, where our work shares a similar insight.
Li et al.[(2024) introduces a self-route method to dynamically choose the usage of RAG or fully in-

17

Under review as a conference paper at ICLR 2025

context, balancing the cost and performance in long-context scenario, which inspires us to use an
analyze-first, then-CoT approach.

Needle-in-the-haystack experiment (Kuratov et al., 2024)) is a well-known test for testing LLMs’ ca-
pability for long context, however, it only requires simple reasoning on the needle part, where the test
is not complicated enough. There are more works evaluating the long-context learning capabilities of
LLMs. |Vodrahalli et al.|(2024) examines LLMs with their proposed Latent Structure Queries eval-
uation, which aims to chisel away irrelevant information in the context, revealing a latent structure
in the context, which provide a stronger signal of long-context language model capabilities. Prompt
compression is another useful method to improve the long-context inference capabilities (Jha et al.,
2024), which is widely used for retrieval-augmented generation(RAG) systems by compressing the
long contexts. Our work and its broader area: neural compilation/translation in large codebase,
could serve as another useful real-world application for long-context inference.

B COMPOSABILITY OF C-LIKE LANGUAGE CONSTRUCTS
B.1 DEFINITIONS AND LANGUAGE STRUCTURE
We define a simplified C-like language structure using the following EBNF-inspired grammar:

block: "{' (blockItem)sx* '}';
blockItem: decl | stmt;

stmt :
1val '=' exp ';' # assignStmt
| exp ';' # exprStmt
| 'goto' label ';' # gotoStmt
[# blankStmt
| block # blockStmt
| IF '(' exp '")' stmt (ELSE stmt)? # ifStmt
| WHILE '(' exp ')' stmt # whileStmt
| FOR ' (' stmt exp ';' stmt ')' stmt # forStmt
| SWITCH ' (' stmt ')' stmt # switchStmt
| BREAK ';' # breakStmt
| CONTINUE ';' # continueStmt
| RETURN (exp)? ';' # returnStmt;

We derived from the grammar that describes C-like language to form the following definitions. Also
for simplicity purposes, we omit the slight differences between decl, stmt and exp.

Definition 2 (Basic Statement). A basic statement is a statement that does not contain any other
statements within its structure. This includes assignStmt, exprStmt, gotoStmt, blankStmt, breakStmt,
continueStmt, and returnStmt. We first exclude gotoStmt for the main proof for simplicity.

Definition 3 (Basic Block). A basic block is a sequence of consecutive basic statements as defined
in in which flow of control enters at the beginning and leaves at the end without halt or
possibility of branching except at the end.

Definition 4 (Control Block). A control block is a code snippet that reflects a complete control struc-
ture, such as for(;;){}, if(){ telse{}], while(){}, do{}while(), or switch(){case:...}. Each subpart
of a control block can be other control blocks or basic blocks as defined in

Definition 5. A basic control block is an innermost control block (|Definition 4)) where each of its
subparts contains only basic blocks as defined in|Definition 3

Definition 6 (Compound Control Block). A compound control block is a control block
that contains at least one subpart that is not a basic block (Definition 3)), but rather another control

block as defined in

Definition 7 (Translation Function and Valid Translations). Let T be the set of all valid translation
Sfunctions from SRC to DST, where SRC' is the source language (our C-like language) and DST
is the destination language (e.g., x86 assembly).

Formally, T ={T | T : SRC — DST} such that for any T € T and any stmt € SRC':

18

Under review as a conference paper at ICLR 2025

1. T'(stmt) € DST 2. T(stmt) preserves the semantics of stmt

A translation function T' € T maps each construct in the source language to one or more constructs
in the destination language while preserving the program’s behavior.

Definition 8 (Translation Composability). Let (SRC, o) be the source language with concatenation
operation o, and (DST), -) be the destination language with concatenation operation -. Let T be the

set of valid translation functions as defined in
Translation composability holds if and only if:

E'TETIVPl,PQ ESRC,T(Plopg) ET(Pl)T(PQ)

Where:

T : SRC — DST is a translation function
* = denotes semantic equivalence, preserving both control flow and data flow

* 0: SRC x SRC — SRC is the concatenation operation in the source language

-2 DST x DST — DS is the concatenation operation in the destination language

B.2 COMPOSABILITY OF BASIC STATEMENTS

Theorem 1 (Composability of Basic Statements). For any two basic statements stmt, and stmts
in SRC, as defined in[Definition 2| their translation is composable: T(stmty o stmty) = T (stmty)-
T (stmts)

Proof. We prove this for all combinations of assignment statements and expression statements. The
proof considers control flow preservation, data flow preservation, and independence of translation.
Other basic statements (blank, return, etc.) trivially maintain composability as they do not affect
control or data flow when composed with other basic statements. O

Example B.1. This example illustrates the composability of basic statements as defined in|Defini-|

and proved in

Consider the following sequence of basic statements:

a=>b+ 3; // stmt_1
b=a-1; // stmt_2

The translation of these statements might look like:

T(stmt_1):
mov eax, [b]
add eax, 3

mov [a], eax

T(stmt_2) :
mov eax, [a]
sub eax, 1
mov [b], eax

These translations are composable because:

1. Control Flow: The order of execution is preserved (stmt_I then stmt_2). 2. Data Flow: The value
of 'a’ computed in stmt_l is correctly used in stmt_2. 3. Independence: The translation of stmt_2
does not depend on how stmt_I was translated, only on its effect (the value of ’a’).

Therefore, T (stmty o stmits) = T(stmty) - T (stmty), demonstrating composability.

19

Under review as a conference paper at ICLR 2025

illustrates that even when statements have data dependencies, their translations remain
composable as long as the order of operations is preserved. Similar proof of composability can be

made for all stmts within a basic block (Definition 3)).

B.3 COMPOSABILITY OF BASIC CONTROL STRUCTURES

Theorem 2 (Composability of Basic Control Structures). Basic control structures (if-else, for, while,
do-while, switch-case), where all their components are basic blocks as defined in|Definition 3| are
composable under the translation function T’ as defined in|Definition 7

Proof. We will prove this for each basic control structure:
1. For Loop:
Let Binit> Beonds Biner, and Byogy be the basic blocks for init, cond, incr, and body respectively.

Translation structure:

T (basic_for_loop) :

T(B_init)
loop_start:

T (B_cond)

jz loop_end

T (B_body)

T(B_incr)

Jmp loop_start
loop_end:

1. Control Flow Preservation: The structure of jump instructions preserves the original control
flow. 2. Data Flow Preservation: The order of operations within and between blocks is maintained.
3. Composability: T'(basic_for_loop) = T(Binit) - T(Beond) - T (Bbody) * T (Biner), Where -
represents concatenation with appropriate jump instructions.

Therefore, the basic for loop is composable under 7'. Similar proofs can be constructed for other
basic control structures. O

2. If-Else Statement: Let B.,,d, Bihen, and Bgse be the basic blocks for condition, then-branch,
and else-branch respectively.

Translation structure:

T (basic_if_else):
T (B_cond)
jz else_label
T (B_then)
Jmp end_label
else_label:
T(B_else)
end_label:

Control flow and data flow preservation follow similarly to the for loop case.
3. While Loop: Let B.ong and Byoqy be the basic blocks for condition and body respectively.
Translation structure:
T (basic_while) :
loop_start:
T (B_cond)
jz loop_end

T (B_body)
Jmp loop_start

20

Under review as a conference paper at ICLR 2025

loop_end:

4. Do-While Loop: Let Byoqy and B4 be the basic blocks for body and condition respectively.

Translation structure:

T (basic_do_while) :
loop_start:

T (B_body)

T (B_cond)

jnz loop_start

5. Switch-Case Statement: Let B, be the basic block for the switch expression, and
Bi, Bs, ..., By, be the basic blocks for each case.

Translation structure:

T (basic_switch) :
T (B_expr)
cmp result, casel_value
je casel_label
cmp result, case2_value
je case2_label

Jmp default_label
casel_label:

T(B_1)

// No break implies fall-through
caseZ_label:

T(B_2)

default_label:
T (B_n)
end_switch:

For all these structures, control flow is preserved by the appropriate use of jump instructions, and
data flow is maintained by the sequential execution of basic blocks. The translation of each structure
is a composition of its basic block translations, proving composability.

Theorem 3 (Composability of Break and Continue Statements). Break and continue statements,
which are basic statements as per|Definition 2| are composable within their respective control struc-
tures when proper loop depth tracking is maintained.
Proof. Let loop_depth be a counter maintained during translation to track nested loop levels.
1. Break Statement: Translation structure:
T (break) :
Jmp loop_end_label_depth
Where loop_end_label _depth corresponds to the end of the current loop at depth loop_depth.
2. Continue Statement: Translation structure:

T (continue) :
Jmp loop_continue_label_depth

Where loop_continue_label _depth corresponds to the continuation point of the current loop at depth
loop_depth.

Control flow is preserved by jumping to the appropriate label based on the current loop depth. Data
flow is trivially preserved as these statements do not modify data.

21

Under review as a conference paper at ICLR 2025

Algorithm 2 Iterative Bottom-Up Composability Proof Algorithm

procedure PROVECOMPOSABILITY(Program P)

blocks < DecomposelntoOutermostControlBlocks(P) > Initial decomposition

to_process < new Deque()
for each block in blocks do

to_process.PushBack(block) > Initialize processing queue

end for
while to_process is not empty do

current_block < to_process.PopFront() > Handle first unhandled block

if IsBasicBlock(current_block) then
continue

else if IsControlStructure(current_block) then
sub_blocks < SplitControlStructure(current_block)
for each sub_block in sub_blocks in reverse order do

> Do nothing

to_process.PushFront(sub_block) > Handle sub-blocks in original order
end for
else
return P is not composable > Unrecognized structure
end if
end while

return P is composable
end procedure
function SPLITCONTROLSTRUCTURE(Block b)
if b is a For Loop then
return SplitForLoop(b)
else if b is an If-Else structure then
return SplitIfElse(b)
else

return SplitOtherControlStructure(d) > Extensible for other structures

end if
end function

function SPLITFORLOOP(ForLoop f) > Decompose for loop into constituent parts

return [f.init, f.ForBodyLabel, f.cmp, ConditionalJump(f.ForEndLabel),
f-body, f.incr, UnconditionalJump(f.ForBodyLabel), f.ForEndLabel]
end function

function SPLITIFELSE(IfElse 7) > Decompose if-else into constituent parts

return [i.cmp, ConditionalJump(i.ElseLabel), i.then_body,
UnconditionalJump(:.EndIfLabel), i.ElseLabel, i.else_body, i.EndIfLabel]
end function

The composability of these statements within their containing loops is maintained because: a) They
generate a single jump instruction that integrates with the loop’s control flow. b) The loop depth

tracking ensures the jump targets the correct loop level in nested structures.

B.4 COMPOSABILITY OF COMPLEX STRUCTURES

Definition 9 (Composable Control Block). A composable control block is either:

* A basic block as defined in|Definition 3| or
* A basic control structure as proved in or

* A sequence of composable control blocks, or

* A control structure whose all subparts are composable control blocks.

22

Under review as a conference paper at ICLR 2025

Theorem 4 (Composability of Sequential Control Blocks). A sequence of composable control
blocks CB1,CBa, ...,CB,, as defined in is composable under the translation function
T.

Proof. Let CB;1,C B, ...,CB, be composable control blocks. 1. By each C'B; is
composable. 2. Translation structure: T'(CBy0CBgo...oCB,,) = T(CB;)-T(CB3)-...-T(CB,,)
where o denotes sequential composition in SRC and - denotes concatenation in DST. 3. Control Flow
Preservation: The sequential order of control blocks is maintained in the translation. 4. Data Flow
Preservation: The order of operations between control blocks is preserved.

Therefore, the sequence of composable control blocks is itself a composable control block under
T. O

Theorem 5 (Composability of Arbitrary Programs). Any program P that can be decomposed into
a sequence of control blocks as defined in is composable under the translation function
T if the Iterative Composability Proof algorithm marks it as composable.

Proof. The proof follows from the correctness of the Iterative Composability Proof algorithm:

1. The algorithm starts with basic blocks and basic control structures, which are proven com-
posable by|Theorem I|and [Theorem 2|

2. It iteratively builds up composability for larger structures:

* Sequences of composable blocks are proved composable by
 Control structures with all composable subparts are marked composable.

3. The process continues until the entire program is marked composable or no further progress
can be made.

4. If the entire program is marked composable, it means that 7(P) can be expressed as a
composition of the translations of its composable parts, preserving both control flow and

data flow as per |[Definition 8|
Therefore, if the algorithm returns that P is composable, then P is indeed composable under the
translation function 7'. O

Theorem 6 (Composability of Goto Statements). Goto statements, which are basic statements as
per are composable under the translation function T, but aribitrary goto statements
can break the structured control flow assumed in the main proof.

Proof. Letl be alabel and goto [be a goto statement.

Translation structure:

T (goto 1):
Jmp label_1

T(l:):
label_1:

The goto statement translates to an unconditional jump, preserving control flow. It doesn’t directly
affect data flow. Composability holds as T'(stmt; o goto l o stmty) = T(stmty) - T(goto 1) -
T (stmis).

However, goto introduces complications:

¢ Non-local control flow can break the nested structure of control blocks.

* Programs with unrestricted goto usage are difficult to decompose into well-defined control
blocks.

23

Under review as a conference paper at ICLR 2025

* It can lead to unstructured code, complicating reasoning about program behavior.
O

While goto is provably composable, it’s discouraged in modern programming for readability, main-
tainability, and optimization reasons. Our composability principle is most applicable and valuable
in the context of structured programming paradigms.

B.5 SCOPE AND LIMITATIONS OF THE PROOF

The proof of composability presented in this paper is based on a simplified model of C-like languages
and unoptimized translation. It’s important to note several key points about the scope and limitations
of this proof:

1. Simplification and Correctness: The simplifications made in our language model and
translation process do not compromise the validity of the proof. The core of our argument
relies on the decomposition of programs into control blocks and the composability of these
blocks. The internal structure of basic blocks, while important for actual compilation, does
not affect the composability principle we’ve established.

2. Unoptimized Translation: Our proof assumes a straightforward, unoptimized translation
process. This assumption is crucial for maintaining the direct correspondence between
source code structures and their translations.

3. Limitations for Complex Language Features: The composability principle as proved
here can be applied to C-like languages, but may not hold for more complex language
features. For example:

» Exception Handling: Languages with sophisticated exception handling mechanisms,
such as Python, introduce complexities that can break composability. These mecha-
nisms often require:

— Guarded execution of code blocks.

— Runtime type information (RTTI) for determining appropriate exception handlers.

— Non-local control flow that can’t be easily decomposed into our model of control
blocks.

* Coroutines and Generators: Features that allow for suspending and resuming execu-
tion mid-function can introduce state that is not easily captured in our model of control
flow.

* Reflection and Metaprogramming: Languages that allow for runtime modification of
program structure or behavior can invalidate static composability assumptions.

Although not applicable to some specific language features, it doesn’t mean the compos-
ablity and its derived LEGO translation method is not applicable to the whole programming
language, as long as these features are not used in the code, the composability will still stand
and the LEGO translation will still work.

4. Optimizations Across Basic Blocks: Our proof assumes that the boundaries of control
blocks are respected in the translation process. However, many real-world compiler opti-
mizations operate across these boundaries. Examples include:

* Loop unrolling

* Function inlining

* Global value numbering

* Code motion optimizations

Such optimizations can reorder, eliminate, or combine operations from different control
blocks, potentially breaking the composability property as we’ve defined it.

5. Applicability: Despite these limitations, the composability principle proved here is valu-
able for:

* The foundation of LEGO translation method, the proof reveals the composable na-
ture of code in at least control block level, which is a major difference than natural
languages.

24

Under review as a conference paper at ICLR 2025

* The proof process also guided [Algorithm T|in LEGO translation, as proving the com-
posability and making use of the composability share similar algorithms.

In conclusion, while our proof provides a strong foundation for understanding composability in C-
like languages with straightforward translation, it’s important to recognize its boundaries. More
complex language features may require extensions or modifications to this framework to maintain
composability guarantees. And optimized code translation usually is not composable.

C DISCUSSIONS

C.1 UNIVERSALITY OF LEGO TRANSLATION

The LEGO translation method, while initially developed for compilation tasks, demonstrates broader
applicability based on fundamental properties of programming languages rather than being spe-
cific to compilation. The composability that LEGO translation leverages stems from the well-
encapsulated control flow and locality principles inherent in modern programming languages (dis-
regarding constructs like goto in C, more limitations are clearly described in[Appendix E).

These characteristics are intrinsic to programming languages themselves and have guided modern
compiler design. They enable the modular partitioning of large-scale programs in modern soft-
ware development, allowing for incremental and even parallel compilation of code. We harness
these properties and apply them to the context of neural compilation using Large Language Models
(LLMs).

It’s important to note that the applicability of LEGO translation extends beyond compilation. It is
suitable for various tasks originating from programming languages, such as code translation between
different languages. This method significantly enhances the scalability of machine translation tasks
for code, providing a powerful tool for handling large and complex codebases.

C.2 MANAGING HIGHLY COMPLEX EXPRESSIONS

One of the primary challenges in neural compilation arises when dealing with expressions or state-
ments of high complexity. In such cases, LLMs struggle to accurately evaluate these expressions
through next token prediction. To address this, we propose two solutions:

* External Tool Integration: We can utilize external parsing tools to generate tree structure
information for complex expressions evaluation. This tree structure is then provided to the
LLM, offering an explicit traversal order and guiding the evaluation process.

» Expression Decomposition: Without relying on external tools, we can design a new pass
where the LLM identifies high-complexity expressions and rewrites them as a combination
of lower-complexity expressions. This approach ensures that the entire program consists
only of expressions within a proper LLM’s evaluation capabilities.

C.3 COMPUTATIONAL COST, EFFECTIVENESS, AND FUTURE PROSPECTS

While our neural compilation method is primarily a proof of concept, it does incur significantly
higher computational costs compared to traditional compilation methods - approximately 10° to 107
times higher. However, this should be weighed against the substantial human resources required for
traditional compiler development.

The key advantage of our approach lies in its potential for rapid adaptation to new instruction set
extensions or frontend intrinsics. Through techniques like RAG (Retrieval-Augmented Generation)
and in-context learning, our method can be extended to support new architectures or language fea-
tures. This positions neural compilation as a valuable assistant in the compiler development process.
A particularly promising application is in generating end-to-end unit tests for compiler adaptation
to new instructions. This could significantly streamline the development and testing phases of com-
piler updates. Recent researches like Munley et al.|(2024) have shown the ability to using LLMs to
generate unittests during compiler validations.

25

Under review as a conference paper at ICLR 2025

4 Input:
System Message: you are a professional Al assistant in code, based on the user input C code,
you are going to help me to generate the corresponding x86 assembly.
You will perform like a compiler with O0 optimization level, the architecture is x86_64. You
should think carefully, follow the guidelines.
Guidel: Analyze the input C code, determine whether it contains the following program
attributes, return the key name if you are certain.
"numerical": If the code contains numerical values, like 1.0, 2e-5, 3.14f, etc, if the code only
use integers, then don't include this feature.
"hex_octal": If the code contains hex or octal values, like 0x3f, 077, etc.
"funcall": If the code contains other function calls.
"recursive": If the code function is recursive.
"long": If the code is long and complex (more than 50 lines)
"str" If the code manipulates strings or char arrays.
"order": If the code contains i
be aware of the order of operations.
Guide2: For these triggered features, do more thoughts.
10 Format: input code will be inside """c" and """ "tags, please also make sure the generated
x86 assembly be inside "*"x86" and tags.
Minimal Example:
#Input:
e #0utput:
#include <stdio.h> TTx86
int main() { Jtext
printf("Hello, World!\n"); .globl main
return 0; .type main,
main:
.L_main_entry:
endbré4
pushg %rbp
movg %rsp, %rbp
leaq .LCO(%rip),
call printf@PLT
movl $0, %eax
popg %rbp
ret
.L_print_hello:
.string "Hello, World!"

(need many to evaluate),

@function

%rdi

#Input:

©
double interp_weno7(double phim3, double phim2, double phiml, double phi,
double phipl, double phip2, double phip3){

const double pO = (-1.0/4.0)%phim3 + (13.0/12.0) % phim2 + (-23.0/12.0) *
phiml + (25.0/12.0)phi;

const double pl = (1.0/12.0)#phim2 + (-5.0/12.0)*phiml + (13.0/12.0)*phi
+ (1.0/4.0)*phipl;
const double p2 =
(-1.0/12.0)*phip2
const double p3 =
(1.0/12.0)*phip3;
const double betal =
1854 0%phi)

+ phim2%(7043.0%phim2 - 17246.0%phiml + 7042.0%phi)

+ phim1x(11003.0%phinl - 9402.0%phi)

+ 2107.0%phixphi);

const double betal =(phim2#(267.0%phim2 - 1642.6%phiml + 1602.0%phi -
494 .0%phipl)

+ phimlx(2843.0%phiml - 5966.0%phi + 1922.0%phipl)

+ phix(3443.0%phi - 2522.0%phipl)

+ 547.0%phiplxphipl);

const double beta2 = (phiml(547.0%phiml - 2522.0%phi + 1922.0%phipl -
494 .0%phip2)

+ phix(3443.0%phi -5966.0%phipl + 1602.0%phip2)

+ phipl#(2843.0%phipl - 1642.0%phip2)

+ 267.0%phip2% phip2
const double beta3 =
1854. 0%phip3)

+ phip1*(11003.0%phipl - 17246.0%phip2 + 4642.0%phip3)
+ phip2%(7043.0%phip2 - 3882.0%phip3)

+ 547.0%phip3*phip3);

const double alpha®

(-1.09/12.0)*phiml + (7.0/12.0)%phi + (7.0/12.0)%phipl +

(1.0/4.0)*phi + (13.0/12.0)*phipl + (-5.0/12.0)*phip2 +

(phin3*(547.0%phin3 - 3882.0%phim2 + 4642.0%phiml -

(phi*(2107.0%phi - 9462.0%phipl + 7042.0%phip2 -

(1.0/35.0)/((betad + 1le-10) % (betad + 1le-10));
const double alphal (12.0/35.0)/((betal + 1le-10) * (betal + le-10));
const double alpha2 (18.0/35.0)/((beta2 + 1e-10) * (beta2 + le-10));
const double alpha3 = (4.0/35.0)/((beta3 + le-10) x (beta3 + le-10));
const double alpha_sum_inv = 1.8/(alpha® + alphal + alpha2 + alpha3);
const double w® = alpha® * alpha_sum_inv;

const double wl alphal alpha_sum_inv;

const double w2 = alpha2 * alpha_sum_inv;

const double w3 = alpha3 alpha_sum_inv;

return w@ * pO + wl * pl + w2 * p2 + w3 * p3;

*
*
*
+

Output:

Guidel Output: numerical, long, order

_Triggered CoT: IV‘lrldblL Mapping, Control Block, Values Collection ‘)

- /

Variable Mapping: 1)
phi 8(%rbp), phi; 6(%rbp), phim1: -24(%rbp), phi: -32(%rbp), phip1: -40(%rbp),
phip2: -48(%rbp), phip3: -56(%rbp), p0: -64(%rbp), p1: -72(%rbp), p2: -80(%rbp), p3: -
88(%rbp), betal: -96(%rbp), betal: -104(%rbp), beta2: -112(%rbp), beta3: -120(%rbp), nlph:l)
-128(%rbp), alphal: -136(%rbp), alpha2: -144(%rbp), alpha3: -152(%rbp), alpha_sum,
168(%rbp), wW: -176(%rbp), w1: -184(%rbp), w2: -192(%rbp), w3: -200(%rbp)

Control Block:
double interp_weno7(double phim3, double phim2, double phiml, double
phi, double phipl, double phip2, double phip3){
// partl
const double p@ = (-1.0/4.0)%phim3 + (13.0/12.0) * phim2 + (-
23.0/12.0) % phiml + (25.0/12.0)%phi;
const double pl = (1.0/12.0)%phim2 + (-5.0/12.0)%phinl +
(13.0/12.0)%phi + (1.0/4.0)*phipl;
const double p2 = (-1.0/12.0)*phiml + (7.0/12.0)*phi +
(7.0/12.0)*phipl + (-1.0/12.0)%phip2;
const double p3 = (1.0/4.0)*phi + (13.0/12.0)*phipl + (-
5.0/12.0)%phip2 + (1.0/12.0)*phip3;
// part2
const double betal = (phim3x(547.0%phim3 - 3882.0%phim2 +
4642.0%phinl - 1854.0%phi)
+ phim2#(7043.0%phin2 - 17246.0%phinl + 7042.0%phi)
+ phimlx(11003.0%phiml - 9402.0%phi)
+ 2107.0%phi*phi);
const double betal =(phim2x(267.0xphim2 - 1642.0%phiml + 1602.0%phi -
494 . 0xphipl)
+ phim1*(2843.0%phiml - 5966.0%phi + 1922.0%phip1)
+ phix(3443.0%phi - 2522.0%phipl)
+ 547.0%phipl#phipl) ;
const double beta2 =
- 494.0%phip2)
+ phix(3443.0%phi -5966.0%phipl + 1602.0%phip2)
+ phiplx(2843.0%phipl - 1642.0%phip2)
+ 267.0%phip2% phip2);
const double beta3 = (phix(2107.0%phi - 9402.%phipl + 7042.0%phip2 -
1854.0%phip3)
+ phip1*(11003.0%phipl - 17246.0%phip2 + 4642.0%phip3)
+ phip2x(7043.0%phip2 - 3882.0%phip3)
+ 547 0%phip3*phip3):
// part3
const double alpha® = (1.0/35.0)/((betad + 1e-10) * (betad + le-10));
const double alphal = (12.0/35.0)/((betal + le-10) * (betal + le-10));
const double alpha2 = (18.0/35.0)/((beta2 + le-10) * (beta2 + le-10));
const double alpha3 = (4.0/35.0)/((beta3 + 1e-10) * (beta3 + le-10));
const double alpha_sum_inv = 1.0/(alpha@ + alphal + alpha2 + alpha3);
parts

const double wo@ alpha® * alpha_sum_inv;
const double wl alphal * alpha_sum_inv;
const double w2 alpha2 * alpha_sum_inv;

*

+

(phim1*(547.0%phiml - 2522.0%phi + 1922.0%phipl

const double w3 = alpha3 alpha_sum_inv;
return w@ * pO + wl % pl + w2 % p2 + w3 * p3;
+

n LEGO Compilation W

#collected values

data .LC_neg_23/12
e ne _1/4: _double -1.916667 # -23.0/12.0
.double -0.25 # -1.08/4.0 .LC_25/12:
.LC_13/12: .double 2.0833333 # 25.0/12.0

.double 1.0833333 # 13.0/12.0

Calculate p@

movsd -8(%rbp), %xmmo

movsd .LC_neg_1/4(%rip), %xmml
mulsd %xmml, %xmmO

movsd -16(%rbp), %xmml

.text

.globl interp_weno?7

.type interp_weno7, @function
interp_weno7:

LFBO: movsd .LC_13/12(%rip), %xmm2
y} ppuiugue mulsd %xmm2, %xmml

endbré4 addsd %xmml, %xmmO

pushg %rbp movsd -24(%rbp), %xmml

movsd .LC_neg_23/12(%rip), %xmm2
mulsd %xmm2, %xmml

addsd %xmml, %xmmO

movsd -32(%rbp), %xmml

movqg %rsp, %rbp
subg $480, %rsp
movsd %xmm@, -8(%rbp) # phim3

movsd %xmml, -16(%rbp) # phim2 A

movsd %xmm2, -24(%rbp) # phiml ""’{Sg B'GLE*?/;Z(%;I")' Hxmmz
movsd %xmm3, -32(%rbp) # phi "'sdsd %x"‘"'l' %x"‘"‘ﬂ

movsd %xmm4, -40(%rbp) # phipl :uvzd %12:3' 7:?'29“[7 Y # po
movsd %xmm5, -48(%rbp) # phip2 ey p) # !
movsd %xmmé6, -56(%rbp) # phip3 P

Calculate p2
Calculate p3

part4 assembly

part2 assembly | part3 assembly |

Figure 5: Example workflow for LEGO-Compiler on a full ExeBench example: source code anal-
ysis triggers thoughts, including variable mapping, splitting control blocks and value collection

illustrated.

D METHOD AND EVALUATION DETAILS

This section provides more details figures, tables and further explanations about LEGO-Compiler

design and experiment evaluation.

D.1 LEGO-COMPILER: DETAILED DESIGNS

As depicted in LEGO-Compiler is designed to perform a series of thoughts guided by
compiler expert knowledge, however, not all CoTs are necessary for each input code, so in our
design, we have an analyze-then-think approach. First, we will perform an analyzing pass to scan

26

Under review as a conference paper at ICLR 2025

Table 2: Hardest 10% subset of ExeBench, further breakdown using DeepseekCoder

Ablation1 Baseline Pass@k Feedback CoT LEGO Translation
DeepseekCoder 63.5% 75.5% 86.0% 96.5% 98.5%

Ablation2 Baseline CoT Feedback LEGO Translation Pass@k
DeepseekCoder 63.5% 83.5% 90.5% 97.0% 98.5%

the whole program, whose output flags would trigger necessary Chain-of-Thoughts that will be used
in the following process. In this example, the code pattern is majorly about double-precision floating
point calculations (numerical) and complicated expression evaluation (order), besides, the code is
too long for direct translation method to handle (long). Thus, based on the analysis, we applied the
following CoTs:

 Values collection: A necessary thought, collecting all variables, numericals in a scanning
pass, the numerical flag will teach the LLM about assembly knowledge to save numerical
values.

* Variable mapping: Another necessary thought, which will base on the scanned variables
and their types, and form a variable mapping table (SymbolTable) for later compilation.

* Control Block: the LEGO translation methodology is applied triggered by long, where the
entire code is considered too long and will be split into control-block level code snippets via
it’s noteworthy that the order flag from analysis will suggest the LLM to split
the program into finer-grained blocks so that they can focus more on the order of operations
within each block, in there is just one basic block, the flag suggests LLM to
split into 4 sequential parts. Then these parts are translated with the aid of SymbolTable
individually. Finally, these compiled results are composed together to form a full LEGO
compilation.

With different input code, the triggered CoTs will be different, this is helpful because not all thoughts
will be useful if no such features appeared in the code, for example, if a code is simple and only has
one basic block with a few sequential stmts, then there will be no need to perform LEGO translation
related CoTs, because direct translation will be sufficient enough.

D.2 EXEBENCH BREAKDOWN

shows the complexity ablation on the test set of ExeBench, where we use LLM to cate-
gorize all cases into three types of complexity based on certain attributes, like code length, expres-
sion complexity, control flow complexity, unusual operations occurance, etc. The ablation results
show LLMs despite of their models’ differences, all get improved on these three categories, where
pass@5 and feedback can improve most of the simple cases and some of the medium cases, but can
hardly improve on hard cases. While the annotation-based CoT method significantly improve these
hard cases, even these mini LLMs can have significant accuracy improvement, except for Codestral
model, which fail to follow the CoT correctly, so the result of Codestral for annotation method is a
fallback of previous run.

A concern is on whether LLM can categorize code well, so we also perform traditional breakdown,
using llvm toolchain (LLVM Project,|2024a) as the frontend analyzer. Based on the analyzed results
on basic block count, total instructions and max instructions within a block, we choose the hardest
10% subset of ExeBench for further breakdown. As illustrated in the breakdown char-
acterizes the ExeBench dataset and its hardest 10% subset, which show the subset is significantly
harder in total instruction count and basic block count, while the difficulty within each basic block
is not significant. After characterization, we use DeepseekCoder as the LLM for evaluation. As
depicted in[Table 2] although we do find all accuracy degrades due to harder cases, the result further
show effectiveness on Feedback, CoT and LEGO translation methods, as the improvement of these
methods become more significant.

Furthermore, the hard cases can be majorly categorized into three types:

27

Under review as a conference paper at ICLR 2025

7000
3000
5000
6000
2500
s000
s000
g Z 2000 g
£ o0
£ 4000 £ 1500 < 3000

1000

2000

2000
500 1000
ol 0 0

4 so 6 70 & 0 1 20 30 4 S0 6 70 8 0 25 50 75 100 125 150 175 200
B8 Count Max Instructions in B& Total Insts Count

0 10 20 30 4 S50 6 70 8 6 10 20 30 4 S0 6 70 8 [100 200 300 400 500 600
Hard B8 Count Hard Max Instructions in B8 Hard Total Insts Count

Figure 6: Complexity breakdown of ExeBench and its hard 10% (roughly) subset, we use llvm as
the analysis tool, then filter the subset with the following conditions: number of basic blocks(BB) >
10 or max instructions in BB > 80 or total instructions > 200. Upper figures characterize the overall
of Exebench and Lower figures characterize the hard 10% subset.

* The insufficiency on some language-specific features, for example, lacking the knowledge
of certain operations, which can be definitely improved with more data in the next model
pretrained or by providing external knowledge to aid its generation.

* The unsuccessful reasoning during the annotation-based CoTs. This method require the
LLMs to reason arithmetic computation and capture specific code patterns in the code to
form intermediate results to aid the generation. If the reasoning process generates incor-
rectly, the CoTs will fail. However, the reasoning capabilities required for this method is
not high, majorly the addition and multiplication of integer values within 1000(typically).
As LLMs keep improving their abilities in reasoning and math, this type of failures will
reduce significantly.

* Very long code reasoning and follow-up generation, where LLMs fail to generate a very
large output at once. The first reason is the limitation of current LLMs themselves, al-
though advanced LLMs have increased their context limits into hundreads of thousands
tokens, their single generation capability is still limited, to either 4096, 8192 or 16384
tokens. The second reason is the difficulty to generate a long, error-prone output(like as-
sembly languages) at once, this is an intrinsic drawback of direct generation method itself,
and can be solved with the proposed LEGO translation/compilation method. LEGO trans-
lation can reduce the complexity to control block level, or at maximum, statement level,
however, if the statement itself is very long and complicated to evaluate (which is very
rare, but potential in modern programming paradigms), our methods will not help, which
is a limitation in our work.

D.3 EVALUATION ON LONGFUNCTION

LongFunction dataset is madeup of 50 C functions in 5 types, where each of them are derived from
a certain program pattern like in by alternating the repeated n, we could get code size
varying from 317 to 238737 tokens, all the token counting is performed by the tiktoken python
library, where a gpt-3.5-turbo-0613 vocabulary table is used, although not exactly the token size
for each LLM. When evaluating the cases for neural compilation, we compare the neural-compiled
results with oracle-compiled results directly since the code is self-contained. As for code transla-
tion, we directly test the behavioral output of the translated code and the original code, all compiled
by oracle compilers(gcc for C, g++ for C++, CPython runtime for python execution and rustc for

28

Under review as a conference paper at ICLR 2025

#include <stdio.h> T
int arr1[101[10]; H
typedef struct { 1 - . K
float f1; 1 for (4 =0; i<10; i++) {
int i1; 1 for (3 = 0; j < 10; j++) {
} mystructl; : arrl[i][j] += res->s2->ii;
1 ¥
1
1
1
1
1
1
1
1
1

o 1

Repeat pattern continue :

1

1

1

1

1

typedef struct { 1
+ 1
|

1

1

1

|

1

1

1

P |

// op2

mystructl *s1;
int i2; // op3
double di;
double d2;
mystructl *s2;
} mystruct2;

for (1 = 0; i < 10; i++) {
for (3 = 0; j < 10; j++) {
arr1[i][j] += (int)(res->d1 / res->d2);

void longfunctionl(mystruct2 *res) {

int i, j, k; // repeat n times(n in 2,4,8,16,32,64,128,256,512)
// init // will inject a needle in a later repeat pattern
for (i = 0; i < 10; i++) { // e.g: += -> -= in op3
for (3 = 0; j < 10; j++) { return;
arrl[i][j] = ©; +

} int main() {
l'/'/'&,f """""""""" = mystructl s1 = {1.0, 2};
1 for (i =0; i< 10; i++) { mystructl s2 = {3.0, 4};
for (5 = 0; § < 10; j++) { mystruct2 result_struct = {&s1, 3, 18.0, 5.0, &s2};
longfunctionl(&result_struct);
printf("arrl[0]1[0] = %d\n", arrl[0][0]);
// other print
return 0;

for (k = 0; k < res->i2; k++) {
arrl[i][j] += res->sl1->il;

} +

1
1
I

1
i :
1 1
1 I
1 I
: } I
1
1 I
1 1
1 1
1 I

Repeat pattern

Figure 7: LongFunction example code: the code is synthesized by repeating certain patterns with n
times, and inject a needle in one of the repeating patterns.

rust). It’s worth noting that the cases in LongFunction are inspired by needle-in-the-haystack exper-
iment (Kuratov et al.,[2024), where a needle in the long context must be correctly picked out. In our
LongFunction dataset, this is a small, hard to notice modification of the code pattern, for example,
replacing a ’+=" with ’-=’. The ability to identify the needle and translate/compile it correctly could
significantly support the LLMs with stronger long-context learning ability.

However, if direct translation/compilation is applied, all the models, despite of their long context
limits, fail to translate a near 5k token case, and compile a 2.6k token case in LongFunction, and
no need to handle all the above. It’s probably LLMs training bias to let it omit similar patterns no
matter how we instruct it to step by step thinking and translating.

Our LEGO translation/compilation method, however, can significantly overcome such limitations.
Because each time, only a proper sized code snippet is provided to the LLM for further compila-
tion/translation, so theoretically, however long the code is, the LEGO translation method can handle
it sufficiently, because small-sized code translation/compilation is assumed to be well-pretrained
and proved by results. The splitting and rebuilding processes, although currently not able to be
performed all by LLM itself(due to the single output limitation), are simply rule-based and can be
well executed by the LEGO-Compiler system, where the splitting process is using the [Algorithm T]
algorithm, and the rebuilding process is more simply, concatenating results together.

An easier evaluation can also be performed. By providing an arbitrary code snippet of the long
program split following the we translate/compile it with the help of globally visible
SymbolTable messages and code position markers, if any part of the translation/compilation is se-
mantically correct, then the concatenation of all parts will be correct. This can be easily performed
using any LLM api or LLM chat website, and we also provide examples to support this claim.

As aresult, all three LLMs (Claude-3.5-sonnet, GPT-40 and DeepseekCoder), successfully translate
or compile all the cases in the LongFunction dataset. We also test the capability of newest LLM:
ol-preview, although limited to its strict daily usage capacity, it can significantly translate/compile
larger sized code snippet, no wonder it can pass all the cases as well.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

LEGO-Compiler evaluation on Ansibench

8001 © i
@ cot ®
@ lego
@ fail
700 °
@
600
® °
500 {J
w
2
S
£
]
£ 400 e ®
£
z
e
300
[
e)
200 e ® ®
%o ‘e
e © L
100
o 09 ©
[
of e
0 500 1000 1500 2000 2500 3000 3500

Token Count

Figure 8: AnsiBench evaluation results using Claude-3.5-Sonnet, the best performant model we
evaluated in ExeBench. The token count only computes the input length of C code, and typically,
the output assembly will be 3-6 times larger in token size.

D.4 ANSIBENCH: MORE REAL-WORLD CODEBASE EVALUATION

Except CoreMark, we conduct additional real-world codebases evaluation, we use Ansi-
Bench [2029), a collection of well-known ANSI C standard benchmark suites
[& Snell] [1995} [Dongarra et al} 2003) besides CoreMark, benchmarking a wide variety of systems

and compilers, including a number of classic, industry-standard benchmarks as well as some select
programs that can be used as benchmarks.

We evaluate the whole AnsiBench collection with our LEGO-Compiler, using similar evaluation
settings of CoreMark. We list the details of every function we compiled in [Figure §] totally we
have 96 functions in total, except for a few utility functions that are easy to compile, many of
them represents real-world codebase complexity. We ablate the translation methods we applied to
showcase both the effectiveness of annotation-based Chain-of-Thoughts and LEGO translation.

LEGO translation method significantly improve the translation scalability of real-world code by near
an order of magnitude. In total, we pass 94 out of 96 cases in Ansibench across 7 different codebases,
including Whetstone, Dhrystone, Hint(one failure), Linpack, Tripforce(one failure), Stream and
CoreMark.

There are majorly three types of errors where the first two types are where LEGO translation out-
performs the others significantly.

* The first type is lengthy code input with over a thousand token size (typically), where the
output size is truncated by the limits of output model itself. besides, the coarse-grained
translation itself is prune to bugs as a simple mistake can cause either compilation error,
segmentation fault or silence error. LEGO translation method can significantly reduce such
errors, the case in which LEGO translation also fails is the main function of Hint bench-
mark, which is more complex than the main function of CoreMark. We analyze its failure,
where the reasoning step of the stack allocation fails to generate a correct mapping, there-
fore, causing the afterwards failure. Despite this, LEGO translation handles all the other
lengthy code correctly as it can breakdown the translation complexity.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

struct SO {
uintg_t f0;
i i i int32_t f1;
%tatlc uint8_t func_1(void) Uintis t o
inté4_t 1_2[11; H
int32_t 1.3 = 0 xF37831E4L;
int32_t 1_6[3]; struct S1 {
int i; struct SO f0;
for (1 = 0; < 1; i++) uint32_t 1;
1.2[1] = 0xEC2EOCF5720E83C7LL struct SO _f2;
for (1= 0; i < 3; i++) uintle_t f3;
fok_%{i% - STA%%Dézéng); 1.3 -= 1) ?{atic struct S1 func_1(void)
i = (- . uint32_t 1_4 = OxFO54A20AL;
125%8-5 %—é = E %t%: int32_t 1_5 = Ox4BO3E386L;
1n i ! U1nt8_tsl_6[3]; ;
1= = . struct S1 1_11 =
@]((1{2[l 31 1= 10L) <= 1.4); {0x8EL,0x36DC9922L,0xC436L},
} 4294967295UL,
1.6[2] = 1.3: {1UL,BxC3FCO233L,0xD52ALY,
return 1_610]; 'BXZBBDL
} b
! return 1.11;

Figure 9: Csmith example code, the major body part of the right hand side code is omitted. This
example characterizes the necessity of both the Chain-of-Thought reasoning of structs and stack
allocation and the LEGO translation method to overcome the complexity of coarse-grained transla-
tion.

* The second type of errors is caused possibly by long context forgetting, where the model
can not match the current processing assembly with the source code faithfully, LEGO trans-
lation method, on the other hand, can handle these cases efficiently as the complexity of
each translation is reduced and there are less misleading long contexts to cause these ran-
dom errors. Besides, finer-grained translation also gives LLMs more attention to faithful
translation of operations, the order of operations and implicit conversions.

e The third type is also a limitation our methods can not fully cover: the training
bias due to insufficient pretraining in LLMs, which counts for the error in Tripforce’s
generate_password function, where the translation fails to translate the multiple line
strings correctly, which is an insufficient training error in Claude-3.5-Sonnet model itself.
Another example is, Claude-3.5-Sonnet model is likely to translate the order of the follow-
ing expression wrongly: (x - col % 6), when itis a postfix of a lengthy expression,
it is likely to generate the subtraction instruction first then the multiplication (causing fail-
ures), which is not the case for GPT-40 model and Deepseek model. However, for these
models, they have more other training bias that make themselves worse than Claude-3.5-
Sonnet model. Using Pass@k and feedback correction can mitigate such failures. Besides,
we can be positive about these failures because as LLMs advance, these failures will grad-
ually disappear.

D.5 CSMITH: RANDOMLY GENERATED PROGRAMS EVALUATION

Except for AnsiBench evaluation. We further perform evaluations on randomly generate programs
with sufficient complexity. We use Csmith [20TT), a random generator of C programs
which is widely used for finding compiler bugs using differential testing as the test oracle. Typically,
Csmith examines compilers with random programs with corner case features and numbers, testing
the robustness of compilers. Code examples generated from Csmith are illustrated in[Figure 9

As depicted in [Figure 10} randomly generated programs by Csmith are very hard for both baseline
and CoT-only methods to translate. In a test suite of 25 cases LEGO translation successfully pass,
we find baseline translation can only pass 4 cases, with CoT translation, only 9 more cases can
be passed. Besides, the complexity of cases only passed by LEGO translation method are signif-

31

Under review as a conference paper at ICLR 2025

Token Count by Function

baseline [] o
@ cot
@ lego
1000+
(]
‘€ 8004
3
5]]
c
g
% o
= 6004 = e
° ® o ¢
Py o
(] [
400+ o o [e
(]
[o 0
T T
> o A QS > o A Q D
o@\, o‘& o‘g) N o‘é’> & o@% oq & @Q’ S & é‘e’ & & ésb é@ 60 63'\, (éfv @q’:) 6@ 60:9
LT ST T T T T T FFFFLLFLFLTIFILTLTLTEIEEESE
R SO CANR G G GO OO O O O N R P PP S
Function
Basic Block Count by Function
Py [] baseline
201 @ cot
@ lego
0
(]
304
£ 30 o
o
o
~
S
°
@ 504
2
2 (] []
“ ¢ o o o o
o
10 (] o (]
()
(]
04 () {|) o
T T
> J Q> > " o A g S Q > Qv J > \J o A 2) N N 92 I D 5
& L C LS RO YT DYDY
F LTI ELTE T F T F T
R SO CANR CARNEE CARE GO OO O O S R POV S
Function
Total Instructions by Function
200 1 baseline o e
@ cot
1754 @ lego [|]
(]
150+
w
s
£ 1251 o
=
g 100 4
% 0
8 () Ld
=73 () (| PN
o
50) o ©
() ° [
1 ° °
o
T T
> o A QS > o A Q D
0@\, S o‘g) N <§é’> & 0@% o‘(9 & &Q’ S & é‘e’ & & é‘\"b é(@ é@ 63'\, é(fv @f) é@ éio
& & & & & & (\6 & & O O N N N I ORI N N AN N NS
R SO G CARN G G GO P O PO S S N P O S S SOl
Function

Figure 10: Csmith random generated code statistics, where the practical utility of the LEGO method
is show clearly by passing significantly more complex cases.

32

Under review as a conference paper at ICLR 2025

4 N Y4 Y4
Task Description: Task Description: Task Description: Task Description:
Analyze every struct in Based on {struct annotation}, Based on {src}jcode, split Based on {src}code, find
the {src} code, generate find all variable definitions in [the code into middle-sized || all numerical values and
the {struct annotation}. the {src} code, generate the {control blocks}. literals and save it as
{variable mapping}. ¢ .
{value collection}.
Example Example Example Example
SRC: SRC: SRC: SRC:
typedef struct { VOZ:Ld ﬂ_)o(rqystructz *res) { 27; (11_ =0; 1< 10; iv) %?gsg/foggl'ﬁhgg;
float 1; int i, 3, k; printf (xxx) ; +(13.0/12.0)*phin2
int i1; . 11w // sequential code +(-23.0/12.0)*phiml
} mystructl; ¥ if(it < I/ .} +(25.0/12.0)*phi;
- - - Control Blocks: Values Collection:
Struct Annotation: Variable Mapping: /7 partt 13
for (i = 0; i < 10; i++) # Literals "~ Goypte 13.0
typedef struct { izint,[-4,0),-4(%rbp) size 4 /L :}_2_ _________ ’_’d!gs .Ltaiﬁ;ﬂe 1o
float f1;//offsetd,size4 3 t‘[:B"Qéisf’l‘;?;r)‘ésilziie 4 n.pi;E). .LC_neg_one: ¢ neg_23:
int i1;//offset4, size4 padting Tode, 2izy P 771” XX)t("l g .double -1.0" gouble -23.0
} mystructl;// size 8 res:ptr, [-24,-16),24(%rbp) size 8 Sequential code _ _ _ -LC_four: .LC_25:
parts -double 4.8 goupte 25.0
if(ir] < K4/ W}
& AN AN AN J

Figure 11: Annotation-based Chain-of-Thoughts prompts for neural compilation

Table 3: Ablation study: impact of temperature on Pass@1 and Pass@5 performance

Pass@1 Pass@5
Model
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
GPT-40 1% 3% T2% T2% T72% T9% 83% 86% 89% 92%

Claude-3.5-Sonnet 87% 91% 93% 88% 89% 91% 92% 96% 94% 96%
DeepseekCoder 8% 88% 86% 8T% 88% 92% 92% 92% 93% 92%

GPT-40-mini 64% 61% 61% 60% 60% T1% T1% 7T9% T3% 80%
Claude-3-Haiku 9% T6% 18% T2% T3% 82% 84% 85% 86% 86%
Codestral 3% 66% 41% - - 84% 90% 3% - -

icantly larger than others, which can be characterized by token count, basic block count and total
instructions in the three subfigures respectively.

During Csmith evaluation, we also identify several kinds of errors during LEGO-Compiler transla-
tion. For example, overflow value assignment is a kind of error which doesn’t usually occur in daily

programming but can be found during compiler testing. Taking intl6._t x 0x56671485;
as an example, it will trigger errors because LLMs directly generate movw $0x56671485, x’s

address, which fails to check whether the value (overflows the 16 bit word) can be represented
through movw instruction. Another example is, when handling with implicit type conversions,
LLMs may not promote the type correctly, this is critical for floating point computation as oper-
ations with wrong precision will cause numerical errors.

D.6 OTHER EVALUATION DETAILS

shows the impact of temperature when using LLMs for neural compilation. LLMs have
better Pass@1 accuracy when temperature is low, but higher Pass@5 accuracy when temperature is
high. This is as expected, since temperature influences the decoding process, with higher temper-
ature, the results are more diverse, allowing LLMs to jump out of pretraining bias, however, this
could also cause more errors by choosing sub-optimal decoding tokens that may cause errors.

explains how we prompt LLMs to do the annotation-based Chain-of-Thoughts to aid the
neural compilation process.

33

Under review as a conference paper at ICLR 2025

E LIMITATIONS

Optimization Capabilities: The current focus of LEGO-Compiler is on functional correctness
rather than code optimization. Traditional compilers excel at producing highly optimized code, a
capability not yet matched by our neural approach. Future work could explore integrating optimiza-
tion techniques into the neural compilation process.

Performance Overhead: As noted in the discussion, the computational cost of neural compilation
is significantly higher than traditional methods. This limitation may restrict its practical application
in scenarios where compilation speed is critical.

Complex Expression Handling: The paper acknowledges challenges in managing highly complex
expressions, proposing external tool integration or expression decomposition as potential solutions.
This indicates a current limitation in LLMs’ ability to handle intricate code structures independently.

Architecture-Specific Knowledge: While the paper demonstrates success with x86, ARM, and
RISC-V architectures, expanding to a broader range of architectures, especially more specialized
ones, may require significant additional training or fine-tuning of the LLMSs, or by providing large
RAG database to provide such knowledge in the context.

Security and Reliability: The stochastic nature of LLM outputs raises concerns about the consis-
tency and security of the generated assembly code. Ensuring deterministic outputs and preventing
potential vulnerabilities introduced by the neural compilation process remains a challenge.

Handling of Language-Specific Features: The paper primarily focuses on C-like language com-
pilation, and proves the availability of functionality in neural compilation through both theoretical
and empirical results. However, extending the approach to other programming languages can result
in more tailored problems, for example:

* RAII idiom: Languages with class properties, like C++, have an important programming
idiom called Resource Acquisition Is Initialization(RAII), which pose significant chal-
lenges for LLMs. For instance, constructor and destructor functions in these languages are
implicitly called based on scope. This implicit behavior is difficult for LLMs to accurately
model and implement in assembly code, but this could be solved using external mangling
tools like c++filt (Free Software Foundation, [2023).

* Name Mangling:Languages like C++ and Rust use name mangling mechanisms for func-
tion overloading and template instantiation. This requires special handling of global sym-
bols such as function names during compilation, which may be challenging for LLMs to
consistently implement without explicit training on these concepts.

* Dynamic Language Features: Some language features violate the composability principle
that LEGO translation relies on. For example, Python’s exception handling mechanism,
which can cross scope boundaries, would make the LEGO translation method ineffective
for such features.

It’s important to note that many of these challenges are not unique to neural compilation. Traditional
compilers also struggle with highly dynamic features like exception handling and Run-Time Type
Information (RTTI). Languages like Python achieve their flexibility by sacrificing native code gen-
eration in favor of interpretation or JIT compilation. Therefore, these limitations are not specific to
our work but rather inherent to any approach based on static compilation analysis.

The ability to handle these diverse language features represents an area for future research in neural
compilation. It may require developing specialized techniques or combining neural methods with
traditional compiler approaches to address these complex language-specific challenges.

Scalability to Very Large Codebases: While the LEGO translation method significantly improves
scalability, handling entire large-scale software projects or operating systems may still be beyond
the current capabilities of this approach. However, It is noteworthy that repository complexity is nat-
urally reduced into files or functions, therefore, LLM-based compilers and translators are potential
to translate them with more advanced models and more carefully designed methods.

34

	Introduction
	Methods
	Problem Definition
	LEGO Translation: Core Method
	LEGO-Compiler:the functional neural compiler
	Control Flow Annotation
	Struct Annotation
	Variable Annotation
	Self-correction through error feedback

	Experiments
	Experimental Setup
	ExeBench Evaluation
	CoreMark Evaluation, a case study
	LongFunction Evaluation

	Conclusion
	Related Work
	Code Translation
	Other Related Work

	Composability of C-like Language Constructs
	Definitions and Language Structure
	Composability of Basic Statements
	Composability of Basic Control Structures
	Composability of Complex Structures
	Scope and Limitations of the Proof

	Discussions
	Universality of LEGO translation
	Managing Highly Complex Expressions
	Computational Cost, Effectiveness, and Future Prospects

	Method and Evaluation Details
	LEGO-Compiler: detailed designs
	ExeBench breakdown
	Evaluation on LongFunction
	AnsiBench: more real-world codebase evaluation
	Csmith: randomly generated programs evaluation
	Other evaluation details

	Limitations

