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Abstract

In our study, we explore methods for detecting unwanted content lurking in visual
datasets. We provide a theoretical analysis demonstrating that a model capable of
successfully partitioning visual data can be obtained using only textual data. Based
on the analysis, we propose Hassle-Free Textual Training (HFTT), a streamlined
method capable of acquiring detectors for unwanted visual content, using only syn-
thetic textual data in conjunction with pre-trained vision-language models. HFTT
features an innovative objective function that significantly reduces the necessity for
human involvement in data annotation. Furthermore, HFTT employs a clever tex-
tual data synthesis method, effectively emulating the integration of unknown visual
data distribution into the training process at no extra cost. The unique characteristics
of HFTT extend its utility beyond traditional out-of-distribution detection, making
it applicable to tasks that address more abstract concepts. We complement our anal-
yses with experiments in out-of-distribution detection and hateful image detection.
Our codes are available at https://github.com/Saehyung-Lee/HFTT

1 Introduction

We are currently in the midst of what is known as the large-scale AI era. The growth in both the size
of deep neural networks and training datasets led to unparalleled achievements in a wide array of tasks
[4, 43]. However, this transition to large-scale AI presents new, unforeseen challenges. Particularly,
the recent reports on the biased behavior of large AI models raise significant concerns surrounding the
continuously expanding size of training datasets without proper quality control and regulation [2, 41].
The massive scale of visual training datasets necessary to train large-scale models presents a challenge
in curating data to ensure unbiased and safe datasets. This is primarily due to the impracticality of
manually selecting and removing unwanted content from such an extensive collection of images.
This issue of data curation has traditionally been addressed by: (i) creating a supervised dataset for a
specific objective; (ii) training a model on this dataset; and then (iii) utilizing the model to develop
a larger dataset [28]. However, this approach exploits considerable human labor and needs to be
re-initiated from the beginning whenever there are changes in the training objective.
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Figure 1: Overview of our proposed method. Task embeddings define the task to be performed. For example, in
the case of hateful image detection, hate speeches would serve as task embeddings, while in OOD detection, the
names of classes from the training distribution would be the task embeddings. Trainable embeddings are the
only parameters that are trained in our method, defined in the joint embedding space. During the training phase,
only textual data are used, and in the testing phase, these trained parameters are employed to classify images.
Detailed explanations are provided in Sections 3.

The field of out-of-distribution (OOD) detection, which aims identify OOD data that lie outside the
training data distribution, can be considered a sub-branch of data curation research. Recent works
in OOD detection utilize vision-language models (VLMs) [40, 29, 30] to take advantage of the
rich and human-aligned representations learned by these models. For instance, Esmaeilpour et al.
[11] augmented the pre-trained CLIP model [40] with an additional decoder module, trained on a
vision-language dataset, for visual OOD detection. In a similar vein, Wang et al. [49] incorporated an
extra “no” text encoder, trained on a vision-language dataset, into CLIP. These previous approaches,
however, suffer from a significant limitation: They require a vast amount of additional vision-language
data. Using data samples targeted for detection can improve sample efficiency, but this leads to the
dilemma of needing to collect unwanted data for the purpose of removing them.

In this work, we propose a novel method that no longer relies on additional visual data or a compu-
tationally expensive training process. We first outline our theoretical rationale, particularly demon-
strating that with a successfully trained model on a bimodal dataset, like CLIP, one can obtain a
classifier to partition data from one mode using solely the data from the other mode. Building upon
our motivation, we propose a method called Hassle-Free Textual Training (HFTT). HFTT consists of a
newly proposed loss and a clever textual data synthesis method, updating trainable parameters defined
in the joint embedding space to improve the detection of undesirable visual content. Specifically, we
decompose the weighted cross-entropy loss into a formula that includes a regularization term, which
is tailored to our use. Additionally, to achieve higher detection accuracy, we introduce the concept of
focal loss [33]. Moreover, our textual data synthesis method, which combines prompt templates and
words, can effectively imitate the involvement of the entire visual data distribution in the training
process. We illustrate an overview of our proposed method in Figure 1.

The proposed loss function brings considerable convenience in achieving our objective. To train an
unwanted data detection model, it is necessary to define out-distribution for a given data distribution
(in-distribution), which is not always straightforward due to vague boundaries between the two.
For instance, in hateful content detection tasks [13], the divide between what is hateful and what
is not is influenced by various contexts, e.g., historical and social backgrounds. Our proposed loss
eliminates the need for human labor to annotate out-distribution data because it does not involve a
clearly defined set of out-distribution data. Furthermore, our textual data synthesis method requires
no cost, employing a rule-based approach using only prompt templates and a set of words.

Based on the principle that HFTT can detect out-distribution samples by merely defining the in-
distribution in natural language, we propose that this method can be extended to tasks beyond
traditional OOD detection, including hateful image detection. Current OOD detection methods often
fail in such extended tasks for two main reasons: firstly, they are based on the assumption of a distinct
boundary between in- and out-distributions, which is unsuitable for tasks with abstract concepts.
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Secondly, methods requiring training images may lead to ethical concerns. Our proposed method,
however, is not subject to these limitations.

Through empirical validation, we verify that HFTT can enhance the performance of VLMs in
identifying unwanted visual data, whether it be OOD instances or hateful images. Additionally, we
demonstrate through feature visualization results that HFTT, despite not observing any visual data in
the training phase, appears to have been trained as if it had. Furthermore, we provide various analyses
of HFTT, including comparative results of using different textual data synthesis methods.

In summary, our contributions are as follows: (i) We theoretically demonstrate how textual data
can serve as a substitute for visual data in our scenario; (ii) We introduce a new loss function. Its
use eliminates the need for labor in annotating out-distribution data; (iii) We propose a textual data
synthesis method that can efficiently imitate the visual data distribution in our training; (iv) We
empirically analyze HFTT, a method composed of the above proposals. Our experiments show that
HFTT is effective in a range of scenarios, from traditional OOD detection to situations involving
abstract concepts, like the identification of hateful images.

2 Related Work

Vision-language models. With the advancements in deep learning, tackling sophisticated tasks
that demand an understanding of both vision and language modalities has become viable. The
methodologies employed to encode image and text data exhibit notable distinctions owing to their
inherent differences. Prominent within this domain are dual-stream models exemplified by CLIP [40],
ALIGN [23], and FILIP [51]. These models employ separate encoders for text and image data,
optimizing them through contrastive objectives to align semantically similar features across heteroge-
neous modalities. Primarily, VLMs integrate transformer-based encoders for text data, while a variety
of architectures, encompassing convolutional neural networks [25, 15] and vision transformers [9],
are deployed for image encoding. The success of CLIP-like models has spurred numerous subsequent
inquiries, with a focus on enhancing data efficiency and adaptability for diverse downstream tasks.
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Figure 2: Overview of Section 3.1. The red and blue col-
ors symbolize the two classes −1 and +1, respectively.
In our theoretical model, u and v can be interpreted as
text and image, respectively.

Out-of-distribution detection. Traditionally,
OOD detection has evolved by defining post-
hoc OOD scores [18, 32, 27, 34] or formulating
learning algorithms based on outlier exposure
methods [26, 20, 10]. With the advancement of
VLMs, methods for OOD detection that lever-
age both image and text embeddings have also
progressed. Post-hoc OOD score methods based
on VLM typically involve utilizing the OOD
class name [12, 11] or defining OOD scores us-
ing the top similarity values between images
and class names [37]. In the case of outlier
exposure, which requires a training algorithm,
some approaches employ prompt learning or
fine-tune the image encoder [45] of models like
CLIP. Transitioning from conventional methods
to VLM-based approaches, none of these meth-
ods have attempted text-only training and sub-
sequently applied their techniques to tasks such
as hateful image detection.

Text-only training for vision tasks. Given the progress in VLMs, there have been numerous
studies aimed at replacing images with textual representations in vision and multimodal tasks. Textual
data presents the advantage of being easily collectible compared to visual data. Previous studies have
demonstrated the effectiveness of using only textual information for various vision tasks, including
image classification [38], image captioning [31], and multi-label image recognition [14]. Our work
represents a pioneering effort in applying text-only supervision to unwanted visual data detection.
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3 Method

In this section, we propose a new textual training method for the convenient and successful removal
of unwanted visual data. In Section 3.1, we theoretically demonstrate, through a motivating example,
that when there is a well-trained model on a bimodal dataset, such as CLIP, it is possible to train
a binary classifier successfully partitioning data from one mode using only data from the other.
This theoretical revelation leads us to our novel loss function that allows hassle-free training of an
unwanted visual data detector in Section 3.2. Lastly, in Section 3.3, we present our proposed method
that includes a simple yet effective synthesis of textual data. The proposed method is executable even
without access to the parameters of the backbone model, making it lightweight and applicable to
black-box foundational models.

3.1 A Motivating Example

We theoretically demonstrate that when there exists a well-trained bimodal model F : G ×H −→ Z
for a given bimodal data distribution, it is possible to train a classifier successfully partitioning data
from one mode (H) using only the dataset from the other mode (G). To align with the operations of
VLMs like CLIP in our scenario, we assume that the output vectors of F are normalized. We define a
bimodal dataset D as follows:

D = {(gi, hi, yi)}Ni=1, where y
u.a.r.∼ {−1,+1} and (g, h)

i.i.d.∼ Gy ×Hy.

(gi, hi) represents the input vectors from the two modes for a given data sample, where yi denotes
the binary class of the i-th sample. We can partition the dataset D as follows:

D = D−1 ∪D+1, where Dy = {(gi, hi) |y = yi}.

We assume that samples belonging to the same class in the dataset D exhibit similar semantic patterns.
Given F that successfully builds the joint embedding space for the bimodal data distribution, we can
posit the following:

u⊤
+1v+1 > u⊤

+1v−1 and u⊤
−1v+1 < u⊤

−1v−1, where uy = E
u∈Uy

[u] , vy = E
v∈Vy

[v] ,

Uy = {F (gi) |gi ∈ Dy}, and Vy = {F (hi) |hi ∈ Dy}.

Uy and Vy are class-conditional embedding sets for each of the two modes, respectively. For simplicity,
we assume that the variances of the angular distributions relative to their mean vectors are equal for
sets U−1 and U+1, as well as for sets V−1 and V+1.

We investigate whether the cosine-similarity classifier θ⋆ trained solely on the unimodal dataset
(gi, yi)

N
i=1 using F can successfully be applied to (hi, yi)

N
i=1. We establish the following theorem:

Theorem 1. For the quadratic loss function L (u, y; θ) =
(
1− yθ⊤u

)2
, the optimal cosine-similarity

classifier θ⋆ that classifies sets U−1 and U+1 is

argmin
θ

E
u∈U−1

[L (u,−1; θ)] + E
u∈U+1

[L (u,+1; θ)] =
u+1 − u−1

∥u+1 − u−1∥
.

Proofs are in Appendix A. Theorem 1 demonstrates the optimal classifier θ⋆ is orthogonal to u−1 +
u+1. We present an illustration in Figure 2 to enhance understanding of both the problem under
investigation and the results of our analysis.

Applying the classifier θ⋆ trained to classify U−1 and U+1 to distinguish between V−1 and V+1 leads
to the following:
Corollary 1. The classifier θ⋆, with respect to V−1 and V+1, satisfies the double inequalities of

E
v∈V−1

[
θ⋆⊤v

]
< 0 < E

v∈V+1

[
θ⋆⊤v

]
.

This implies that we can successfully classify V−1 and V+1 by observing the cosine similarities with
θ⋆. Motivated by these theoretical examples, we hypothesize that classifiers obtained solely using
textual data can operate on visual data as well. Section 4 empirically demonstrates that the arguments
developed based on our theoretical model can be applied to modern machine-learning settings.
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3.2 Our Proposed Loss Function

Our objective is to distinguish in-distribution data samples (Din), conforming to given data distribu-
tion, from out-distribution data samples (Dout). The development of our new loss function begins
with defining the binary cross-entropy loss L as follows:

L(u, y) = −1 + y

2
log p (u)− 1− y

2
log (1− p(u)) .

We employ the notations introduced in Section 3.1. p(u) denotes the probability that the label of an
embedding u is +1, where +1 signifies an out-distribution. With respect to datasets U−1 and U+1,
we minimize ∑

u∈U−1

λL (u,−1) +
∑

u∈U+1

(1− λ)L (u,+1) . (1)

We introduce a hyper-parameter, λ ∈ [0, 1], to adjust the balance between in-distribution learning
(the first term) and out-distribution learning (the second term). Equation (1) can be reformulated as

=
∑

u∈U−1

L (u,−1)−
∑

u∈U−1

(1− λ)L (u,−1) +
∑

u∈U+1

(1− λ)L (u,+1) . (2)

The second term can be understood as regularization for in-distribution learning. As λ approaches 0,
in-distribution learning is more heavily impeded. Rather than employing the original regularization
term, −

∑
u∈U−1

(1− λ)L (u,−1), we propose changing it to∑
u∈U−1

(1− λ)L (u,+1) .

Before analyzing the significance of this modification to the objective function, we first examine
the effects resulting from this change. Along with the modification, our objective function can be
formulated as follows:∑

u∈U−1

L (u,−1) +
∑

u∈U−1

(1− λ)L (u,+1) +
∑

u∈U+1

(1− λ)L (u,+1)

=
∑

u∈U−1

L (u,−1) +
∑

u∈U−1∪U+1

(1− λ)L (u,+1) .
(3)

To minimize Eq. 2, it is imperative to distinguish between the in-distribution dataset and the out-
distribution dataset. In-distribution data aligns with the objective of the given task, and any data not
included in it becomes out-distribution data. However, in real-world scenarios, distinguishing between
these distributions is not straightforward. For instance, if we consider U as the text embedding space,
collecting out-distribution texts for a given set of in-distribution texts involves considerations such
as homonyms, synonyms, and various forms of linguistic variations. Particularly, in tasks where
the boundaries between in-distribution and out-distribution are ambiguous, as seen in challenges
such as hate content detection [13], constructing a dataset for Eq. 2 becomes difficult and requires
considerable human labor. However, the utilization of Eq. 3 alleviates us from such challenges. In
other words, the union of the two sets U−1 ∪ U+1 in Eq. 3 allows us to treat all data samples as
out-distribution without the need to ponder their relationship with the in-distribution, providing a
solution to the intricacies involved in dataset construction. The distinction between Eq. 2 and 3
becomes evident when comparing the gradient signals produced by the two different regularization
terms. Gradients of the regularization terms in Eq. 2 and 3 can be computed as follows:

(original) −
∑

u∈U−1

∂L (u,−1)
∂p(u)

=
∑

u∈U−1

−1
1− p(u)

,

(proposed)
∑

u∈U−1

∂L (u,+1)

∂p(u)
=

∑
u∈U−1

−1
p(u)

.

The original regularization term weakly regularizes in-distribution samples that were sufficiently
learned by the model (i.e., samples with low p(u)). However, the proposed regularization term
does the exact opposite; it imposes stronger regularization on in-distribution samples with low
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p(u). In essence, our proposed regularization prevents the model from exhibiting high confidence in
in-distribution samples and enforces the decision boundary to be created near the in-distribution.

Recent studies show that the closer the decision boundary of the out-distribution data detector is
to the in-distribution, the more effective the detector is at identifying various out-distribution data
[26, 19, 10, 39]. Subsequent research efforts have been directed at obtaining out-distribution samples
that reside close to the in-distribution while training a detector to bring its decision boundary closer
to the in-distribution. For instance, Lee et al. [26] utilizes a generative adversarial network to acquire
samples placed on the in-distribution boundary. Du et al. [10] models the in-distribution using
a Gaussian distribution and samples embeddings from the low-likelihood regions of the defined
Gaussian distribution. Likewise, we focus on training samples situated in the region close to the
in-distribution by incorporating an additional focal loss.

The focal loss was initially proposed to forcefully suppress the gradients for background pixels, which
dominate the image, and intensify the learning signals from foreground pixels. Under our scenario,
the in-distribution, like foreground pixels, tends to inhabit a small portion of the entire embedding
space. In light of the similarity between the in-distribution and foreground pixels, we utilize the focal
loss to restrain the loss from far out-distribution samples and amplify learning signals from samples
near the in-distribution. The proposed loss can thus be defined as:
Definition 1. Let B−1 = {xi}Ni=1 and B = {x̃i}Ni=1 denote mini-batches that are respectively drawn
from the specified in-distribution and the overall data distribution. Let L be the cross-entropy loss.
Then, our proposed loss function is∑
xi∈B−1

L (xi,−1) + (1− λ)
∑
xj∈B

βjL (xj ,+1) ; βj =
Nαj∑
xk∈B αk

and αj = (1− p (xj))
γ
. (4)

p (x) is the predictive probability of x belonging in out-distribution. γ ≥ 0 is treated as a hyperpa-
rameter of the focal loss. In Section C, we compare the results of using loss terms in Eqs. 2 and 3 and
demonstrate the particular effectiveness of the focal loss.

3.3 Hassle-Free Textual Training (HFTT)

So far, we have assumed access to data sampled from the out-distribution. However, we may not
always be able to anticipate the out-distribution in advance, and even if we can, sampling a subset
of data that is representative of the entire distribution is not a straightforward problem in nature. In
our scenario, we solely utilize textual data to learn an unwanted visual data detector. Therefore, the
proposed scenario requires texts to define the in-distribution and a comprehensive corpus of textual
data that can replace the entirety of visual data. VLMs, such as CLIP, obtained impressive zero-shot
classification accuracy on diverse visual data benchmarks through the usage of prompts, e.g., “a
photo of a {}.” Inspired by the success of prompting in VLMs, we conjecture that all visual data can
be expressed textually through prompts. This assumption allows the textual dataset to replace the
unknown visual data distribution by integrating words associated with the visual data into prompts,
drastically simplifying the process of textual data sampling in our method. One example of a prompt
design utilized in our approach is: “This is a photo of a {}.” To emulate the effect of using the entire
visual data distribution, we adopt a word set3 that includes approximately 370k English words. We
report the results of using other prompt designs or textual data acquisition processes in Appendix C.
While the optimization procedure in our method additionally requires in-distribution textual data
according to Eq. 4, these can be obtained with minimal effort by creating arbitrary sentences or
prompts related to the given task. Section 4 details how in-distribution textual data are attained for
each experimental setting. Even though the task of unwanted visual data detection is a type of binary
classification problem, learning a plain linear classifier in the embedding space of pre-trained VLMs
through approaches like linear probing is not necessarily compatible with our task because the in-
and out-distributions are not expected to be linearly separable. To accurately estimate the probability
that input x belongs in the out-distribution p (x), we must take advantage of the informative signals
in the text encoder of pre-trained VLMs. In our method, p (x) is computed as follows:

1. Obtaining embeddings {win
i }Ki=1 for K texts that effectively represent in-distribution visual data is

equivalent to defining the task. This process is akin to obtaining zero-shot classifiers using VLMs.
We will refer to these text embeddings as task embeddings.
3https://github.com/dwyl/english-words?tab=readme-ov-file
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Algorithm 1 Hassle-Free Textual Training (HFTT)

Require: word set W , prompt templates P , in-distribution textual data G−1, task embeddings
{win

i }Ki=1, trainable embeddings {wout
j }Nj=1, pre-trained model F , hyper-parameter λ

1: Initialize the trainable embeddings {wout
j }Nj=1

2: for mini-batches (B−1,words) ∼ (G−1,W) do
3: B ← word2data(words, P) # textual data synthesis (the entire data distribution)
4: Compute the proposed loss by Eq. 4
5: Update {wout

j }Nj=1 # the incurred cost is negligible
6: end for
7: Output: out-distribution data detector

(
F, {win

i }Ki=1, {wout
j }Nj=1

)
2. With a pre-trained vision-language model F and the set of N trainable embeddings {wout

j }Nj=1

defined in the joint embedding space, p (x) is obtained as∑N
j=1 exp

(
F (x)

⊤
wout

j

)
∑K

i=1 exp
(
F (x)

⊤
win

i

)
+
∑N

j=1 exp
(
F (x)

⊤
wout

j

) .
Our method minimizes the custom loss defined in Eq. 4 by learning {wout

j }Nj=1 only with textual data
with the task embeddings {win

i }Ki=1 and the model F kept frozen. Because the trainable embeddings
are tuned in the output space of the backbone network, the proposed method results in little memory
and computational cost. Furthermore, no need to access the parameters of the backbone network
makes the proposed method extensible to black-box foundation models. The overall procedure of the
proposed method is summarized in Algorithm 1.

4 Experimental Results and Discussion

4.1 Experimental Setup

We complement our analysis with case studies conducted on OOD and hateful image detection. For
the OOD detection task, ImageNet-1k [7] is treated as in-distribution, and the following datasets are
used as out-distribution data: iNaturalist [47], SUN [50], Places [52], and Textures [5]. We specifically
utilize OOD datasets that are carefully curated to be disjoint from ImageNet, as described in [22]. For
hateful image detection, we utilize a dataset containing 892 Antisemitic/Islamophobic images and
420 phrases (Hate) [13]. The Hate dataset is a human-annotated dataset whose usage is limited to
individuals with academic purposes to prevent its unethical and unregulated use.

We adopt CLIP, the most extensively studied VLM, specifically using ViT-B/16 as the vision back-
bone. Unless specified otherwise, we set the batch size=256, learning rate=1.0, epoch=1, γ=1.0 (the
focal loss hyper-parameter), λ=0, and N=10 (the number of trainable embeddings) for all experi-
ments. Note that in the majority of scenarios, there is a substantial predominance of out-distribution
textual data compared to in-distribution textual data, and our approach involves mini-batch sampling.
Consequently, given the rarity of in-distribution data sampling, the training on in-distribution data
remains largely unaffected even though λ = 0. All values presented in the tables of this paper are the
average results over five runs. We conduct a comparative analysis of our approach against existing
methods requiring in-distribution images, namely Mahalanobis [27], MSP [18], KNN [44], and NPOS
[46]. Additionally, we include methods that do not necessitate in-distribution data, Energy [34], ZOC
[11], MaxLogit [21], and MCM [36], in our comparison. The evaluation is performed using OOD
scores proposed by the aforementioned works, as well as the scores introduced in this paper (refer to
p (x) in Sec 3.3). The calculation of Area Under the Receiver Operating Characteristic (AUROC)
and False Positive Rate at 95% True Positive Rate (FPR95) is based on these scores.

HFTT training and inference costs. The backbone model for HFTT remains untrained, while only
trainable parameters (trainable embeddings) defined in the model output space are updated. Thus,
the cost of this update process is almost equivalent to the forward propagation cost of the synthetic
textual data. For the corpus (∼370k samples) and CLIP utilized in the experiments, the update process
takes less than 2 minutes with a single V100 GPU. During inference time, the computation of HFTT
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Table 1: Comparison of HFTT and competitive baselines with and without in-distribution image requirements on
the ImageNet-1K dataset. The best and second-best results are indicated in bold and underlined, respectively.
Our method surpasses even strong baselines that utilize in-distribution images. This complements our analysis in
Section 3.1, demonstrating that textual data can substitute for visual data in such tasks.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR AUROC FPR AUROC FPR AUROC FPR AUROC FPR AUROC

In-distribution images required
Mahalanobis 99.33 55.89 99.41 59.94 98.54 65.96 98.46 64.23 98.94 61.51

MSP 40.17 89.76 63.99 79.40 63.50 80.19 67.01 79.33 58.67 82.17
KNN 29.17 94.52 35.62 92.67 39.61 91.02 64.35 85.67 42.19 90.97
NPOS 16.58 96.19 43.77 90.44 45.27 89.44 46.12 88.80 37.94 91.22

In-distribution images not required
Energy 34.70 90.55 32.33 90.58 40.29 89.32 51.24 72.36 39.64 85.70

MaxLogit 35.03 89.46 32.86 90.33 41.15 89.60 68.17 75.63 44.30 86.26
ZOC 87.30 86.09 81.51 81.20 73.06 83.39 98.90 76.46 85.19 81.79
MCM 34.33 91.36 32.27 91.86 47.48 88.68 50.90 87.52 41.25 89.86

HFTT (ours) 27.44 93.27 19.24 95.28 43.54 90.26 43.08 88.23 33.33 91.76

involves obtaining cosine similarities between trainable embeddings and input embeddings. This cost
amounts to 2×(batch size)×(embedding dimension)×(the number of trainable embeddings) FLOPS,
which is negligible compared to the inference cost of the entire model.

4.2 Out-of-Distribution Detection

Figure 3: UMAP [35] visualization of the joint embed-
ding space of CLIP. The dispersed, transparent markers
represent the OOD data samples used in our experiment
(iNaturalist: brown; SUN: grey; Places: pink; Texture:
purple; NINCO [3]: red). The trained embeddings (blue
stars) are located in a sub-region of the embedding space
occupied by OOD data. We trained 2000 embeddings
for this plot. It is important to note that these trainable
embeddings did not incorporate any information about
the OOD data during their training time.

In OOD detection experiments, we utilize
weights of zero-shot classifiers of pre-trained
VLMs as task embeddings for HFTT. In-
distribution textual data are obtained via com-
binations of various prompt templates and class
names of in-distribution data, which, in our ex-
perimental setting, are equivalent to 1,000 Ima-
geNet classes. We adopt the prompt set released
by OpenAI for prompt ensembling4 as prompt
templates. The comparison results are reported
in Table 1. Despite the simple and lightweight
nature of the proposed method, it outperforms
even strong baselines that utilize images, on av-
erage.

To understand how the trained embeddings pro-
vide the task embeddings with informative sig-
nals for identifying OOD data points, we visu-
ally analyze the joint embedding space of CLIP
in Figure 3. Even though visual OOD data were
not involved in the training process, the trained
embeddings are positioned on a sub-region of
the embedding space inhabited by OOD data
and thus can function as additional pointers for
where OOD data lie in the joint embedding
space. Therefore, this deliberate positioning of
trained embeddings precludes the task embeddings from accidentally confusing out-distribution
data as in-distribution by refining the decision boundary to intricately separate in-distribution and
out-distribution regions.

4https://github.com/openai/CLIP

8

https://github.com/openai/CLIP


Table 2: Comparison of HFTT with state-of-the-art methods for OOD detection that do not require in-distribution
images, conducted on the Hate dataset. The best result in each column is in bold. HFTT outperforms baseline
approaches, showing that it can effectively be used for the general purpose of unwanted data detection.

Method
Innocuous Dataset AverageiNaturalist SUN Places Texture NINCO

FPR AUROC FPR AUROC FPR AUROC FPR AUROC FPR AUROC FPR AUROC

Energy 12.30 97.53 3.88 98.51 13.87 97.40 39.70 94.98 26.89 96.12 17.43 97.10
MaxLogit 23.65 96.89 18.49 97.49 27.84 96.48 33.33 96.00 33.03 95.99 25.82 96.71

ZOC 87.76 71.05 66.51 85.23 69.96 82.57 65.48 83.22 81.06 78.36 74.15 84.09
MCM 80.53 76.70 87.54 69.38 81.37 74.12 60.39 84.97 81.95 78.00 77.45 76.29
CLIPN 47.71 92.78 36.36 95.16 40.62 94.52 53.36 92.36 68.40 89.58 49.29 92.88

NegLabel 0.03 99.84 1.09 99.10 5.16 98.50 3.56 98.82 12.62 97.86 4.49 98.82
HFTT (ours) 0.17 99.44 1.05 99.13 4.38 98.60 1.73 99.08 4.18 98.52 1.83 99.06

This visualization result can be attributed to two methodological characteristics that are unique to
our method. First, our method directly optimizes the trainable embeddings and is not bounded by
the modality gap between texts and images. Second, our method successfully places the trained
embeddings on top of OOD data only through textual data; this consolidates that textual data can
replace visual data, providing strong empirical support for the theory presented in Section 3.1.
Together, these two aspects of HFTT yield the joint embedding space as illustrated in Figure 3.

4.3 Hateful Image Detection

In this task, the hateful data that contains offensive content against Muslims and Jews is treated as
in-distribution data, whereas innocuous data void of such content is treated as out-distribution data.
Consequently, embeddings of distinct phrases from a collection of offensive and hateful phrases,
provided as part of the Hate dataset, are utilized as task embeddings. The entire set of offensive and
hateful phrases is employed as in-distribution textual data.

The Mahalanobis, MSP, KNN, and NPOS methods necessitate the construction of an in-distribution
image dataset. Therefore, they should not be used as methods for unethical image detection tasks
such as hate image detection, as doing so would require the construction of unethical image datasets,
leading to numerous ethical problems such as direct or indirect leakage of sensitive information. In
contrast, HFTT requires no usage of any image, thus it can be applied to any unethical image detection
task without ethical concerns. To highlight the differences between traditional OOD detection methods
and HFTT, we include two additional baselines [49, 24] and one extra dataset [3].

In Table 2, we can observe that most OOD detection methods show significantly lower performance
compared to HFTT. These results arise because OOD detection methods assume a classification prob-
lem with clear distinctions between classes. In tasks dealing with abstract concepts, the boundaries
between data clusters within the in-distribution are ambiguous, which results in the underperformance
of existing OOD detection methods. NegLabel shows different results compared to traditional OOD
detection methods but still falls short of our proposed approach. We provide a further comparison of
our method to CLIPN [49] and NegLabel [24] in Appendix B.

To further study the generalizability of HFTT, we observe the effectiveness of HFTT in low-quality
image detection [17] and within the medical image domain [6, 16, 48]. The findings demonstrate the
potential extension of HFTT’s applicability beyond conventional OOD detection tasks. The results of
these experiments and an ablation study on hyper-parameters are provided in Appendices B and C.

5 Conclusion and Limitation

In this paper, we proposed a novel methodology for identifying undesirable content hidden within
visual datasets. Close theoretical scrutiny of the joint embedding space of VLMs led to the devel-
opment of HFTT, an efficient framework for training detectors to automatically identify unwanted
visual content by leveraging solely textual data together with pre-trained VLMs. HFTT is comprised
of a creative objective function that markedly diminishes human involvement in data annotation
and the textual data synthesis technique in HFTT that can simulate the usage of unknown visual
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data distributions in the training process without additional cost. The distinctive attributes of HFTT
broaden its applicability from a clearly-scoped OOD detection task to a far more general set of tasks
that are more abstract. Because HFTT requires some type of VLM as the base model, its capabilities
are bounded by the representative capacity of pre-trained VLMs. This dependency on pre-trained
VLMs makes the use of HFTT in tasks that VLMs struggle with challenging.

Impact Statements. This paper contributes to the growing field of data curation and selection
research. As datasets for training large AI models expand without adequate safeguards, identifying
unwanted data points, such as biased or offensive content, from training datasets is becoming crucial.
We believe our work will make a positive contribution to this area, opening up new possibilities for
the effortless removal of unwanted visual data. While our method could potentially be misused for
content censorship, we believe the positive impact it provides significantly outweighs these concerns.
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A Proofs

Theorem 1. For the quadratic loss function L (u, y; θ) =
(
1− yθ⊤u

)2
, the optimal cosine-similarity

classifier θ⋆ that classifies sets U−1 and U+1 is
argmin

θ
E

u∈U−1

[L (u,−1; θ)] + E
u∈U+1

[L (u,+1; θ)]

= argmin
θ

(
1 + θ⊤u−1

)2
+
(
1− θ⊤u+1

)2
=

u+1 − u−1

∥u+1 − u−1∥
.

Proof. Our assumption validates the following equations:

θ⊤θ = u⊤u = v⊤v = 1,Σ+1 +Σ−1 = ϵI, ∥u+1∥ = ∥u−1∥,
where Σy and I denote the covariance matrix of Uy and the identity matrix, respectively, and ϵ > 0 is
a constant. Then,
argmin

θ
E

u∈U−1

[L (u,−1; θ)] + E
u∈U+1

[L (u,+1; θ)]

= argmin
θ

E
u∈U−1

[(
1 + θ⊤u

)2]
+ E

u∈U+1

[(
1− θ⊤u

)2]
= argmin

θ

(
E

u∈U−1

[
1 + θ⊤u

])2

+

(
E

u∈U+1

[
1− θ⊤u

])2

+ θ⊤Σ+1θ + θ⊤Σ−1θ

= argmin
θ

(
E

u∈U−1

[
1 + θ⊤u

])2

+

(
E

u∈U+1

[
1− θ⊤u

])2

+ 2ϵ

= argmin
θ

(
1 + θ⊤u−1

)2
+

(
1− θ⊤u+1

)2
.

The gradient of the objective function with respect to θ is

−2
(
1− θ⊤u−1

)
u−1 + 2

(
1 + θ⊤u+1

)
u+1.

Therefore, the optimal cosine-similarity classifier θ⋆ satisfies the following equation:(
1− θ⋆⊤u−1

)
u−1 =

(
1 + θ⋆⊤u+1

)
u+1.

Then,
1− θ⋆⊤u−1 = 1 + θ⋆⊤u+1 or 1− θ⋆⊤u−1 = −1− θ⋆⊤u+1.

The second equation is not true for any u−1 and u+1. Hence,

θ⋆⊤ =
u+1 − u−1

∥u+1 − u−1∥
.

Corollary 1. The classifier θ⋆, with respect to V−1 and V+1, satisfies the double inequalities of

E
v∈V−1

[
θ⋆⊤v

]
< 0 < E

v∈V+1

[
θ⋆⊤v

]
.

Proof. Based on the inequalities u⊤
+1v+1 > u⊤

+1v−1 and u⊤
−1v+1 < u⊤

−1v−1,

E
v∈V−1

[
θ⋆⊤v

]
=

u⊤
+1v−1 − u⊤

−1v−1

∥u+1 − u−1∥
< 0 < E

v∈V+1

[
θ⋆⊤v

]
=

u⊤
+1v+1 − u⊤

−1v+1

∥u+1 − u−1∥
.

B Additional Experiments

Low-quality image detection. We additionally demonstrate the applicability of our method, HFTT,
in detecting low-quality images, which are commonly unwanted visual data beyond OOD and
hate images. Specifically, we assume the task of detecting corrupted images lurking within a raw
visual dataset consisting of 1000 ImageNet classes. For this experiment, we employ ImageNet and
ImageNet-C as in-distribution and out-distribution data, respectively. As shown in Table 3, HFTT
consistently surpasses existing methods in the detection of corrupted images.
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Table 3: Comparison of HFTT with baselines on the low-quality image detection.

Method FPR AUROC

MSP 64.17 83.94
Energy 99.99 09.16

MaxLogit 78.01 68.47
MCM 51.54 89.06

HFTT (ours) 42.13 92.81

Table 4: Comparison of HFTT with MCM on the medical image datasets.

Method
OOD Dataset

PVQA PCAM

FPR AUROC FPR AUROC

MCM 95.44 47.10 71.49 68.74
MCM + description 86.84 60.39 84.50 43.44

HFTT 22.58 93.60 8.07 96.94
HFTT + description 13.72 97.05 4.95 98.35

HFTT + description + corpus engineering 6.24 98.69 4.33 98.73

Medical image domain. We compare the performance of HFTT and MCM in the medical image
domain. Specifically, we treat the ISIC-18 skin lesion diagnosis dataset [6] as in-distribution and
the PathVQA [16] and PatchCamelyon [48] datasets as out-distribution. The ISIC-18 skin lesion
diagnosis dataset is an image classification benchmark for seven skin disease categories. We apply
MCM and HFTT to CLIP on the seven disease categories. Table 4 reveals a significantly low detection
performance of MCM, attributed to the limited medical domain knowledge of CLIP. Even appending
descriptions (generated by GPT-4) to the disease names does not yield favorable results for MCM
(+ description). In contrast, our proposed method achieves significantly better results by leveraging
the model knowledge and the medical-related information in the corpus. The utilization of medical-
related information within the corpus by HFTT is evidenced by the fact that further improvements
can be achieved by modifying the corpus to align with the medical domain (+ corpus engineering).

The experimental results on other pre-trained models. As discussed in Section 3.1 of our paper,
our method assumes that text and image are well-aligned through contrastive learning, similar to
CLIP. Therefore, if CLIP is used as the vision encoder, the text encoder must also be CLIP. If text
and image are well-aligned, our method can be applied to models other than CLIP. Here, we provide
the results for CLIP-L/14, BLIP-B/16, and BLIP-L/16 in addition to the CLIP-B/16 used in our study.
Table 5 demonstrates that our method is effective across various vision-language models.

HFTT vs. CLIPN and NegLabel. NegLabel [24] constructs an OOD corpus by selecting texts
distant from the in-distribution texts from a predefined corpus, then compares the distances between
the input image and those texts in the CLIP embedding space to detect OOD. While NegLabel
shows high OOD detection performance on ImageNet (see Table 7), it has the following limitations
compared to our method: 1) Although NegLabel does not require training additional parameters,
it must compute the embeddings of all texts in the corpus and measure their similarity to the in-
distribution texts to find the optimal OOD corpus for a given in-distribution. Our training method
also requires nearly the same cost as obtaining the embeddings of all texts within a predefined corpus
and calculating the similarities between those embeddings and the task+trainable embeddings, as
discussed in Section 4.1. Thus, NegLabel and our method require the same level of optimization cost;
2) Since NegLabel uses the embeddings of the determined OOD corpus as they are, it falls behind our
method, which has trainable parameters, in terms of generalization. To demonstrate this, we further
compare our method and NegLabel in the medical image domain. Specifically, we treat the ISIC-18
skin lesion diagnosis dataset [1] as in-distribution and the PathVQA [16] and PatchCamelyon [48]
datasets as out-of-distribution. The ISIC-18 skin lesion diagnosis dataset is an image classification
benchmark for seven skin disease categories. Table 6 illustrates the limitations of NegLabel in terms
of generalization. While NegLabel fails to construct an effective OOD corpus for the medical image
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Table 5: Comparison of HFTT and competitive baselines on the ImageNet-1K dataset. The best result in each
column is in bold. Our method outperforms all baselines on both variants of CLIP and BLIP, demonstrating that
it can be used to improve the OOD detection performance of various VLMs.

Model Method
OOD Dataset

iNaturalist SUN Places Texture NINCO

FPR AUROC FPR AUROC FPR AUROC FPR AUROC FPR AUROC

CLIP-B

MSP 34.63 91.35 32.06 91.86 47.62 88.86 49.78 87.65 72.83 71.98
Energy 34.70 90.55 32.33 90.58 40.29 89.32 51.24 72.36 70.06 73.85

MaxLogit 35.03 89.46 32.86 90.33 41.15 89.60 68.17 75.63 68.96 74.24
MCM 34.33 91.36 32.27 91.86 47.48 88.68 50.90 87.52 73.26 71.98

HFTT (ours) 27.32 93.28 19.68 95.20 43.24 90.32 43.26 88.20 70.08 74.61

CLIP-L

MSP 26.66 94.20 22.37 94.37 36.82 92.45 52.83 86.57 67.27 78.70
Energy 30.84 91.25 25.94 94.10 32.94 92.30 64.33 79.26 63.49 79.72

MaxLogit 32.76 90.96 26.48 92.96 31.88 92.39 72.08 73.85 60.67 81.07
MCM 26.96 94.19 22.77 94.37 36.74 92.44 52.66 86.56 68.16 78.65

HFTT (ours) 24.10 94.58 17.80 95.39 33.83 93.09 52.06 86.58 69.19 78.98

BLIP-B

MSP 64.70 82.22 30.38 91.06 71.40 78.82 76.99 81.30 71.47 72.07
Energy 67.15 79.30 45.21 89.07 70.28 77.49 91.24 75.38 80.29 77.20

MaxLogit 69.57 75.44 69.57 71.19 69.86 76.26 93.55 60.31 88.58 56.37
MCM 64.41 82.29 30.21 91.05 70.53 79.32 75.84 81.55 71.56 72.02

HFTT (ours) 63.28 82.22 19.16 95.12 68.48 79.50 63.74 84.53 72.12 73.86

BLIP-L

MSP 51.20 87.91 22.37 93.86 61.63 84.68 64.85 85.28 65.96 78.29
Energy 45.63 87.23 33.94 90.29 55.73 85.91 72.38 82.16 71.23 77.49

MaxLogit 44.59 86.94 35.56 86.45 50.96 86.46 86.38 71.22 79.78 67.59
MCM 50.75 88.03 22.34 93.88 60.88 85.38 64.71 85.39 66.04 78.32

HFTT (ours) 44.24 89.88 6.81 98.40 62.20 84.16 63.35 83.39 64.82 80.46

Table 6: OOD detection in the medical image domain.

Method PVQA PCAM
FPR AUROC FPR AUROC

CLIPN 35.47 84.64 3.10 98.76
NegLabel 37.44 94.11 48.07 94.86

HFTT (ours) 13.72 97.05 4.95 98.35

dataset, our method achieves significantly higher performance by learning optimal embeddings for
detection.

CLIPN utilizes an additional "no" text encoder alongside CLIP. This additional text encoder predicts
the probability that a given object is not present in an image. Thus, CLIPN predicts whether a
given image is in-distribution or out-distribution by using the original CLIP text encoder and the
"no" text encoder to estimate the probabilities, respectively. Images with a low probability of being
in-distribution and a high probability of being out-distribution are identified as OOD.

Although CLIPN achieves high OOD detection performance on ImageNet (see Table 7), it has the
following limitations compared to our method:

1) CLIPN requires significantly higher inference costs due to the use of an additional text encoder;
2) While our method requires lightweight training that does not involve images, CLIPN demands
extensive and expensive training of the "no" text encoder on large vision-language datasets; 3) CLIPN
can only be applied to tasks where the distinction between in-distribution and out-distribution is
clear and straightforward, such as classification datasets. This is because all training images must be
classified as either "yes" or "no" images. Therefore, it is unsuitable for tasks dealing with abstract
concepts, such as hateful image detection, as discussed in Section 4.3 of our paper; 4) Our method can
be easily applied to any detection task defined in natural language, whereas CLIPN shows significantly
degraded performance for in-distribution tasks that fall outside the training distribution of the "no"
text encoder. In terms of applicability, our proposed method surpasses CLIPN. To demonstrate this,

16



Table 7: OOD detection performance on ImageNet in-distribution (average for Texture, Places, SUN, and
iNaturalist).

Method FPR AUROC

CLIPN 31.10 93.10
NegLabel 25.40 94.21

HFTT (ours) 33.33 91.76

Table 8: Results of using different textual data synthesis methods. HFTT outperforms other methods that are
more complex.

Method
OOD Dataset AverageiNaturalist SUN Places Texture NINCO

FPR AUROC FPR AUROC FPR AUROC FPR AUROC FPR AUROC FPR AUROC

WTO 29.26 92.23 23.31 93.93 40.18 90.77 42.96 88.01 69.07 76.54 40.96 88.30
CTO 27.53 91.66 38.41 86.78 43.31 89.31 60.13 79.64 76.25 69.08 49.13 83.29
DTO 29.32 92.32 24.57 94.04 43.37 89.63 42.26 89.34 70.36 74.76 41.98 88.02

Caption 54.07 79.49 57.15 74.23 63.44 77.04 41.21 91.12 89.30 56.42 47.65 86.28
Dedupl. 28.17 93.03 21.08 94.75 43.67 90.10 42.69 88.54 68.86 75.22 40.89 88.33

Ours 27.44 93.27 19.24 95.28 43.54 90.26 43.08 88.23 70.15 74.48 40.69 88.30

we further compare our method with CLIPN in the medical image domain. Table A illustrates the
limitations of CLIPN in terms of generalization. While CLIPN effectively detects PCAM, it exhibits
very low detection performance on PVQA. In contrast, our method achieves high performance on
both OOD tasks.

C Ablation Study

In this section, we analyze how different components affect the performance of HFTT.

Textual data synthesis method. While we propose a textual data synthesis method that incurs
no additional cost, alternative approaches beyond this can also be explored. We apply the following
methods in conjunction with HFTT and list their results in Table 8:

1. WTO, CTO, DTO: Recently, Park et al. proposed a method that utilizes textual outliers instead of
visual outliers in outlier exposure [19]. For our experiments, we use word-level textual outliers
(WTO) generated using in-distribution images along with CLIP and BERT [8], caption-level
textual outliers (CTO) generated by an image captioning model [30], and description-level textual
outliers (DTO) created using a large language model.

2. Caption: We can consider the extensive use of image captions from LAION-400M [42] to substitute
for the entire visual data distribution.

3. Deduplication: To experimentally compare Eq. 2 and 3, we applied HFTT after removing words
from our word set that have meanings identical to ImageNet classes as much as possible.

Table 8 reveals that textual outliers generated using additional models and in-distribution images
show comparable or inferior performance to our textual data synthesis method. Furthermore, the
captions results suggest that heavily relying on image captions does not effectively enhance the
average detection performance for various OOD data. Lastly, there appears to be no discernible
performance difference between the application of Eq. 1 and 4. This indicates that our proposed loss
minimizes the need for human labor by eliminating the process of selecting out-of-distribution data
without sacrificing performance.

The focal loss hyper-parameter. HFTT incorporates the concept of focal loss to shape the decision
boundary of detectors near the in-distribution. We observe its effect by incrementally increasing
the focal loss hyper-parameter γ from zero. Table 9 demonstrates that using the focal loss (γ > 0)
generally leads to better performance compared to not using it (γ = 0).
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Table 9: Results of using different values of γ for the focal loss. The performance of HFTT appears to be
relatively robust to changes in the choice of γ, with the adoption of focal loss with γ > 0 generally leading to
improved results.

γ
OOD Dataset AverageiNaturalist SUN Places Texture NINCO

FPR AUROC FPR AUROC FPR AUROC FPR AUROC FPR AUROC FPR AUROC

0 27.67 93.08 20.62 94.98 43.97 90.12 44.42 87.57 69.23 75.22 41.18 88.19
1 27.44 93.27 19.24 95.28 43.54 90.26 43.08 88.23 70.15 74.48 40.69 88.30
2 27.10 93.32 19.48 95.20 43.17 90.32 42.95 88.33 70.19 74.40 40.58 88.31
3 27.03 93.32 19.56 95.17 43.21 90.32 42.82 88.38 70.42 74.26 40.61 88.29

Table 10: Results of changing the temperature of the final Softmax layer.

Temp.
OOD Dataset AverageiNaturalist SUN Places Texture NINCO

FPR AUROC FPR AUROC FPR AUROC FPR AUROC FPR AUROC FPR AUROC

1.0 94.97 46.92 76.17 48.52 93.00 55.90 99.80 23.96 94.96 56.42 91.78 46.34
0.1 93.52 50.17 95.22 51.30 91.67 58.43 99.75 25.37 94.62 56.93 94.96 48.44
0.01 27.44 93.27 19.24 95.28 43.54 90.26 43.08 88.23 70.15 74.48 40.69 88.30

Temperature. In HFTT, a temperature parameter is utilized for computing p (x). CLIP learns a
temperature parameter during their pre-training phase, and we employ these same learned temperature
values in all of our experiments. Table 10 illustrates that modifying the temperature value may reduce
the efficacy of HFTT.

The number of trainable embeddings. If the dimensionality of the data manifold in the joint
embedding space of VLMs is low, HFTT can be effective even with a small number of trainable
embeddings. To validate this, we present the OOD detection performance of HFTT in Table 11,
illustrating how it varies with the number of trainable embeddings (N ). Remarkably, HFTT can
improve OOD detection performance on ImageNet, which has 1,000 classes, even with a very limited
number of trainable embeddings. This is possible due to the inherently low dimension of data in the
actual model output space [1].

Table 11: Results of shrinking or expanding the number of trainable embeddings (N ).

N
OOD Dataset AverageiNaturalist SUN Places Texture NINCO

FPR AUROC FPR AUROC FPR AUROC FPR AUROC FPR AUROC FPR AUROC

5 27.50 93.26 19.96 95.07 43.55 90.25 43.07 88.23 70.15 74.38 40.85 88.24
10 27.44 93.27 19.24 95.28 43.54 90.26 43.08 88.23 70.15 74.48 40.69 88.30
100 27.40 93.30 19.63 95.14 43.67 90.28 42.93 88.27 70.14 74.53 40.75 88.30

2000 27.32 93.28 19.68 95.20 43.24 90.32 43.26 88.20 70.08 74.61 40.72 88.32
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Answer: [Yes]
Justification: Section 5
Guidelines:
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: URL in Abstract and Section 4
Guidelines:

• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.
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the architecture clearly and fully.
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authors are welcome to describe the particular way they provide for reproducibility.
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to have some path to reproducing or verifying the results.
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tions to faithfully reproduce the main experimental results, as described in supplemental
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• The answer NA means that paper does not include experiments requiring code.
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//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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proposed method and baselines. If only a subset of experiments are reproducible, they
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Guidelines:
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7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We report the results over five runs. The variances of the results are close to
zero so reporting them would be redundant.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
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• The paper should disclose whether the full research project required more compute
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Section 5
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
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mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release any data or model.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
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Answer: [Yes]
Justification: URL in abstract and Section 4
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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Answer: [NA]
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tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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