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ABSTRACT

To be able to predict a molecular graph structure (W ) given a 2D image of a
chemical compound (U ) is a challenging problem in machine learning. We are
interested to learn f : U →W where we have a fully mediating representation V
such that f factors into U → V → W . However, observing V requires detailed
and expensive labels. We propose graph aligning approach that generates rich or
detailed labels given normal labels W . In this paper we investigate the scenario
of domain adaptation from the source domain where we have access to the ex-
pensive labels V to the target domain where only normal labels W are available.
Focusing on the problem of predicting chemical compound graphs from 2D im-
ages the fully mediating layer is represented using the planar embedding of the
chemical graph structure we are predicting. The use of a fully mediating layer
implies some assumptions on the mechanism of the underlying process. However
if the assumptions are correct it should allow the machine learning model to be
more interpretable, generalize better and be more data efficient at training time.
The empirical results show that, using only 4000 data points, we obtain up to 4x
improvement of performance after domain adaptation to target domain compared
to pretrained model only on the source domain. After domain adaptation, the
model is even able to detect atom types that were never seen in the original source
domain. Finally, on the Maybridge data set the proposed self-labeling approach
reached higher performance than the current state of the art.

1 INTRODUCTION

Chemical compounds are often represented by a graph representation of their chemical structure.
These graph representations are actually a simplification of the chemical compound as it loses some
information about the electronic structure of the molecule. However, in the field of drug discovery
this graph representation is often used as valuable input for machine learning pipelines. Examples
of formats describing the graph representation of a chemical compounds are SMILES [36] and
MOLfile [5]. However, especially in patents but also in scientific literature the chemical compound
is only described using an image format. Automatically recognizing the chemical structures on these
images is valuable for machine learning approaches to be able to process these sources of chemical
compounds.

Learning to recognize a graph structure from 2D images of chemical compounds seems like a fairly
simple task for humans. However, for machine learning models it seems that generalization to new
domains of images (e.g. different line width, font face) [21] is not happening naturally. When we
humans see an image with a graph structure that we do not recognize completely, we start reasoning
and analyzing the part of the graph we are not sure about. We humans automatically align the graph
part we recognized on the image with the complete graph including the unrecognized part of the
graph. One way to finish our graph prediction is to guess the unknown nodes or edges after which
we check for correctness. If the graph prediction was correct we know that this guess was most
probably correct and we could try to apply this new knowledge to other images.

To be able to do this reasoning on for example images using graph alignment in machine learning
we need a detailed (on pixel level) representation. Therefore we assume a fully mediated model
[2] where we are interested to learn f : U → W having a fully mediating representation V such
that f factors into U → V → W , which is visualized in Figure 1. Thus, in order to predict
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Figure 1: We are interested to learn f : U → W having a fully mediating representation V such
that f factors into U → V → W . In the case of optical graph recognition of chemical compounds
from 2D images, the fully mediating layer is represented using the planar embedding of the chemical
graph structure we are predicting.

W from U we first need to pass the fully mediating layer, no side paths are allowed. When a fully
mediating representation is used some assumptions [23; 26; 25] are made about the mechanism of the
underlying process. This mechanistic prior restricts the space of possible models to all the models
that follow the mechanistic assumption. We hypothesize that the use of this richer representation
(fully mediating representation) enables for a better generalization. Additionally, as an interesting
side effect, we observe that the mechanistic assumption allows for a better interpretability of the
underlying model.

In the case of optical graph recognition of chemical compounds from 2D images, the fully mediating
layer is represented using the planar embedding of the chemical graph structure we are predicting. In
order to learn the planar embedding of a chemical graph structure, we start from a model described
in Oldenhof et al. [21] which has two steps: an image segmentation and an image classification
step. To train this model, pixel-wise labels are needed for every image describing precise locations
of nodes and edges in the graph (planar embedding) which we will call rich or detailed labels in
our setup. However, these rich labels are not always available and implies a manual process where
intermediate organic chemistry knowledge is required. In the more common cases, data sets only
contain 2D images of chemical compounds (U in Figure 1) and on the other side the final output
in SMILES[36] or MOLfile[5] format (W in Figure 1). These formats describe the graph structure
of the chemical compound but not the particular planar embedding of this graph structure (V in
Figure 1) in the context of the image. To solve this problem, we propose a graph aligning approach
that generates rich labels V given normal labels W . This method would enable learning of the fully
mediating representations given only normal labels W .

In section 4 we empirically evaluate our domain adaption method. We observe that compared to the
non-adapted model we drastically increase accuracy even on atoms and bond that were not present
in source domain.

Key contributions: (1) we propose a novel rich labeling framework by introducing the use of fully
mediating representations, (2) in the case of graph recognition we show that the rich labeling can
be performed by graph alignment, (3) we show it enables data efficient domain adaption and (4)
reaches state-of-the-art performance on Maybridge compound data set.
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2 RELATED WORK

Structural scene representation and visual reasoning. Our work has similarities with research
done on structural scene representation and visual reasoning [11; 41; 19]. The disentanglement of
the reasoning and the representation described in Yi et al. [41] enables the model to solve com-
plex reasoning tasks. In our work the complex reasoning task would be graph alignment which is
disentangled from the optical graph recognition.

Slot Attention. Our method is related with a method called slot attention [17] where the Hungarian
algorithm [16] is incorporated in a model for object detection. This Hungarian algorithm is limited
to only sets while in our case we need to map more complicated structures composed of different
atoms connected with different bond for which we need graph alignment in order to adapt iteratively
a model to a new target domain.

Image to Graph methods. In the field of computational chemistry there are several tools avail-
able [22; 34; 20; 7; 21; 18; 33] to convert an 2D image of a chemical compound to a SMILES [36]
format or similar which in fact represents a graph structure of a chemical compound. Also for road
extraction from satellite images there are several methods available [3; 8; 12]

Graph Matching. In computer vision graph alignment is usually known as graph matching. It
can be useful to (1) locate objects from features [10], (2) to transfer knowledge [42] and (3) to find
matches in database [13]. Also for comparing social networks graph matching can be very important
to allow to uncover identities of communities [14]. In chemistry, comparing graphs can be helpful to
identify identical chemicals, substructures or maximum common part of chemicals. In the work of
Willett et al. [37] an overview is presented about the use of similarity searches in chemical databases.

Domain Adaptation In the work of Kouw & Loog [15] a comprehensive overview is given for
domain adaptation methods when labels for the target domain are not available. Our method has
some similarities with semi-supervised iterative self-labeling [4; 27] approaches where predictions
on a data set of a new domain of a pre-trained model are used as pseudo-labels and used to retrain the
model again iteratively until convergence. In the work of Das & Lee [6] even a graph matching loss is
first used to learn a domain invariant representation for source and target domain after which the use
of pseudo-labels show a significant improvement of performance. In our work the graph matching
is used for a different purpose as opposed to the the work of Das & Lee [6]. Graph matching is used
in our work to generate rich labels given the ’normal’ labels we have from the target domain. This
is where our method also differs from other semi-supervised methods for domain adaptation when
no target label information at all is assumed and no distinction is made between rich and ’normal’
labels.

Weak Supervision In our setup we use the term ’rich’ or ’detailed’ labels to differentiate from the
normal labels. We would like to contrast these ’rich’ labels with the term ’strong labels’ used in
the setting of weak supervision. For example, in the machine learning task of image segmentation
pixel-wise labels are needed which are expensive and often not readily available. Therefore, weak
supervision methods have been developed to address this issue. Weak supervision can be used to
help image segmentation by only using image labels (no pixel-wise labels) [35; 38]. A more general
framework was presented in Xu et al. [39] to be able to learn semantic segmentation from a variety
of types of weak labels (e.g., image tags, bounding boxes and partial labels). Another approach is to
augment the strong labeled data set using weakly labeled data [40]. However, the main difference
with all of the methods mentioned above is that our method does not work on weak labels because
our end goal is different. The main goal of our machine learning approach is to help to predict
’normal’ labels by using rich labels.

Front Door Criterion Our framework exploits fully mediating variables. A variable is called a me-
diator when it meets several conditions regarding the relationship with other variables as described in
Baron & Kenny [2]. Another perspective of the mediating relationship is given by Pearl [23]; Pearl
et al. [26]; Pearl [25] who introduce the front door criterion where the mediator actually enables to
estimate unbiased causal effects. A more formal interpretation of these causal effects is presented
in Pearl [24]. In order to use a mediating model the mediator needs to be identified or assumed
first, which is not always straightforward. In our setup (see Figure 1), the assumption means that
the relation between input u ∈ U and planar embedding v ∈ V is a map and as well as the relation
between v and the final graph w ∈W . Furthermore, we assume no side paths from u to w.
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(a) Example of 2 chemical compounds with graph edit
distance of 2 node substitutions.

(b) Example of 2 chemical compound with graph edit
distance of 1 edge substitution.

Figure 2: Two examples of chemical compounds graphs with their graph edit distance. The nodes
of the graphs are first aligned before computing the graph edit distance. The node alignments are
marked with the gray dashed arrows. The differences after graph alignment are highlighted and the
substitutions are marked with the red dashed arrows.

3 SELF-LABELING OF FULLY MEDIATING REPRESENTATIONS

Our goal is to learn f : U → W assuming a fully mediating representation V such that f factors
into U → V → W . In order to learn the first part of f (U → V ) we need labels for V which are
expensive in the case of optical graph recognition of chemical compounds from 2D images where V
is represented as the planar embedding of the chemical graph structure. Our method tries to address
this issue by iteratively updating the model using self-labeled labels for V by graph aligning the
graph predictions using the model from previous iteration with the given true graphs (labels W ).

3.1 GRAPH ALIGNMENT

A possible and often used closeness score to compare graphs is the graph edit distance [29]:
given 2 graphs, not necessarily of equal size and a set of operations, that are O =
{vertex/edge/label insertion/deletion/substitution}, and a cost function c : O 7→ R, so we
find the cheapest sequence of operations that convert G1 into G2, which translates to an optimization
problem:

min
{ei}ki=1∈Ok:G2=(ek◦...◦e1)×G1

k∑
i=1

c(ek),

Although there are some efficient algorithms available [30; 31; 32] in order to compute the graph
edit distance, it remains a computational hard problem.

Closely related with the concept of graph edit distance we introduce for our method the map E(v)
which gives the allowed operations on a given graph v given a specific constraint. This constraint
is a parameter which can be tuned for a specific data set or problem domain. Examples of such
constraints are maximum 2 node substitutions or maximum 1 edge substitution as shown in Figure 2.

3.2 METHOD

Let us now say we have a trained neural network model for f : U → V , a projection φ : V → W ,
a pair (u,w) of input u ∈ U and normal label w ∈ W and we would like to infer rich label v ∈ V
from the given datapoint (u,w). We also assume the map E(v) which gives all allowed graph edits
for the graph v. Let v̂ = f(u) be the predicted rich label from the model, then we define a term
correcting edit as

Definition 3.1 Edit e is a correcting edit if when e is applied to the prediction v̂ and then projected
to the W space the resulting graph is the true graph w (up to isomorphism), i.e.,

φ(e× v̂) ∼= w,

where × is the application of edit to the planar embedded graph v̂.
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Notice that for a given v̂ and w there can be multiple edits that are correcting edits which create a
dilemma of choosing the best correcting edit. Therefore, we make the following assumption:

Assumption 3.1 The probability that a correcting edit e results in the true underlying rich label v
is monotonely decreasing with respect to the size of edit e (i.e., |e|).
In other words, if we take two correcting edits e1, e2 then we assume the following:

|e1|< |e2| ⇒ P (e1 × v̂ = v) > P (e2 × v̂ = v)

The assumption is based on the fact the probability of any individual mistake in a graph by the
model is low. This is because if the probability of a mistake would be high the model would not be
able to produce a graph with a total of 1-2 edit distance. Thus, the graphs with few edits have low
mistake probability and for them the Assumption 3.1 is valid.

Then we use the following optimisation problem to find the best correcting edit e to convert v̂ to rich
label v for input u:

E∗ = argmin
e∈E(v̂)

|e| such that φ(e× v̂) ∼= w,

where argmin returns the set of minimal solutions or the empty set if no solutions exist.

There are three possible outcomes of last mentioned optimization problem: (1) no solution is found,
(2) a single e is found or (3) multiple equal size e are found. In the optimal case (2) a single e is
found so we can label a new v for our given datapoint (u, v). In the case of (1) when no solution is
found, no new v is labeled. In the last case (3) when multiple equal size solutions are found there
are four options we could do. First (3.1), we could discard the solutions and not label u. Second
(3.2), we could take e that results in the highest likelihood for e × v̂ based on the model f . Third
(3.3), a solution e is picked uniformly randomly in order to generate the rich label label v. Fourth
(3.4), pick e randomly according to the likelihood of e× v̂ in the model f .

This process is repeated for every datapoint (u,w) we have available from the target domain. Thus,
several new labels v are found for different datapoints. Once all datapoints are processed these new
rich labeled datapoints are added to the training data set after upsampling and our model can be
retrained. After this, a new iteration begins and all available datapoints (u, v) are again processed to
find even more new rich labels v and we can retrain the model again. This iterative process can be
repeated until convergence (see Algorithm 1).

Algorithm 1: Iterative algorithm for Self-Labeling of Fully Mediating Representations
Data:
Target domain data L = {(uti, wt

i)}ni=1
Source domain data S = {(usj , vsj )}mj=1 (rich labels)
Result: f : U → V
repeat

// Inferring rich labels for target data
T = [];
for (u,w) in L do

v̂ ← f(u);
E∗ ← argmin

e∈E(v̂)

|e| such that φ(e× v̂) ∼= w;

if E∗ is a not empty then
e← choose(E∗);
v ← e× v̂;
appendRichLabels(T, (u, v));

end
end
T← UpSample(T);
f ← RetrainModel(S,T);

until Converged(f);
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Dataset Orig. Size Tot. #samples Cand. rich labeling #samples Test #samples

Indigo 50,000 5,000 4,000 1,000
Maybridge 5,740 5,000 4,000 1,000

Table 1: Summary of datasets from the 2 different target domains

4 EXPERIMENTS

For the experiments we focus on the problem of predicting chemical compound graphs from 2D
images where the fully mediating layer is represented using the planar embedding of the chemical
graph structure we are predicting. In order to measure empirically the performance of our method
of self-labeling fully mediating representations we perform three steps. (1) We pre-train (training
details in Appendix A.2) a ChemGrapher [21] model (summarized in Appendix A.1) wherefore,
corresponding to the pipeline described in the work of Oldenhof et al. [21], we sample around
130K chemical compounds from ChEMBL [9] in SMILES format and artificially generate, using
an RDKit fork [1], a rich labeled dataset with 2D images of chemical compounds. (2) Secondly, we
test the baseline performance of this pre-trained model on two different test sets from two different
target domains than the source domain of the pre-trained model. (3) Thirdly, we apply our domain
adaptation method and measure performance again on the two target domains.

For the first target domain we take a data set from the work from Staker et al. [33], which we will
call Indigo data set. For the second target domain we take the data set which was published by
the developers of MolRec [18] which we will call the Maybridge data set. Both data sets provide
2D images from a chemical compound together with corresponding identifier of a the chemical
compound like SMILES [36] or MOLfile [5]. These identifiers describe the graph structure of
the chemical compound however they do not provide the planar embedding of the graph (e.g. no
information about the pixel coordinates of every node or edge in the image). Visually we can also
observe that the Maybridge dataset contains images where the style is closer related to the training
images style used for the pre-trained model compared with the images in Indigo dataset where the
style of images is quite different. Therefore we expect a significant worse starting performance of
the pre-trained model on the Indigo dataset compared with the Maybridge dataset.

From both data sets we randomly sample 5,000 datapoints which are split in 4,000 datapoints used
for our method and 1,000 datapoints to measure performance on (summarized in Table 1). When
processing the 4,000 datapoints our method will be able to generate rich labels for the datapoints
where the graph prediction could be graph aligned with the true graph. As the number of rich
labeled datapoints this way is maximum 4,000 we will upsample them (x number of copies) before
adding them to the training data set. In our experiments we differentiate between two strategies of
upsampling. One way is to upsample all the rich labeled data points equally from the target domain
to a fixed number, for example 20,000. Another way is to take into account, while upsampling, the
number of atom types that are rich labeled and make sure that the rare atom types are upsampled to
a specific threshold.

One important tuning parameter in our method is the number of allowed operations. For our ex-
periments we will try two different values for this parameter. Firstly, we set this parameter to zero
meaning we do not allow any operation for graph alignment. We will call this exact graph align-
ment. Secondly, we allow a maximum of 2 node substitutions or a maximum of 1 edge substitution
for graph alignment, which we will call correcting graph alignment.

In total we will measure the performance of 4 variations of our method (varying allowed operations
and upsampling strategy) on both data sets. The performance we will measure is the accuracy of
U → W as we only have access to the normal labels of target domain. However, we assume that
if the final graph prediction is correct (W ) it is highly likely that also the planar embedding (V ) is
correct. As our method is an iterative method we will report results for every iteration starting with
the initial performance before applying our method. The results of these experiments are summa-
rized in Figure 3. We observe that all variations of our method are able to improve performance
on target domain compared with initial pre-trained model on source domain. On the Indigo data
set the best variation is even able to obtain 4x improvement. The best variation of our method on
the Indigo data set was using correcting graph alignment without upsampling of rare atom types
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(a) Results on Indigo data set (b) Results on Maybridge data set

Figure 3: Comparison performance of methods on Indigo and Maybridge data set. Self-labeling by
correcting graph alignment is clearly better performing than when exact graph alignment is used.
Sometimes upsampling of rare atoms to a specific threshold (note postfix rare) before retraining of
model can boost performance. Performance on target domain at iteration 0 is the performance of
pre-trained (on source domain) ChemGrapher before domain adaptation.

while on the Maybridge data set the best variation was also using correcting graph alignment but
with upsampling of rare atom types. Some of the underperforming variations of our method were
stopped early in order to save computational resources.

(a) Results on Indigo data set (b) Results on Maybridge dataset

Figure 4: We take the best performing methods and analyze their performance on different atom
and bond types per iteration. We observe that for some atom types the method is able to increase
performance even though initial performance was 0%. This is the case in for example R-groups in
Indigo data set or superatom NO2 in Maybridge data set.

We choose the best variation of our method for every data set and analyze the performance on
different atom and bond types per iteration. We measure for every atom or bond type the percentage
of graphs predicted correctly from the total number of graphs containing that specific atom or bond
type per iteration, which is visualized in Figure 4. Most of the performances of the different atom
and bond types increase per iteration for both data sets even when initial performance was 0%.
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(a) Input image (b) Initial Segmentation (c) Final Segmentation

Figure 5: Comparison initial segmentation with final segmentation after applying self-labeling of
fully mediating representations for Indigo data set. We observe that the initial model is making
mistakes on the R-group atom type and carbon represented with a ’C’. In the final model we see that
now predictions are all correct.

(a) Input image (b) Initial Segmentation (c) Final Segmentation

Figure 6: Comparison initial segmentation with final segmentation after applying self-labeling of
fully mediating representations for Maybridge data set. The initial model predicts the superatom
NO2 as two separate atoms O and N which is chemically not correct. The final model makes the
correct prediction.

The atom types where initial performance was 0% are atom types never seen before in source do-
main. For example in the Indigo data set there are compounds with atom labels like R1, R2 and R3
representing R-groups which were not present in the original data set from the source domain. For
illustration purposes we visualize in Figure 5 the segmentation step which forms part of the graph
recognition model used in this study. In the initial segmentation from the pre-trained model we can
clearly see that the model confuses the R-group atoms with the oxygen atom type and the hydrogen
atom type. After applying our method the model is able to make correct predictions. In the same
Figure 5 we also observe that in the Indigo data set carbon sometimes also is represented using a C
which was never the case in the original data set. The initial segmentation mainly confuses these
carbon atom types with the oxygen atom type. After applying our method the model again makes
the correct prediction.

Similarly, the superatom NO2 present in the Maybridge data set was never observed in the source
domain. However, again after applying our method the model is able to detect superatom NO2

correctly. We illustrate the segmentation step of the graph recognition model in Figure 6 for an
example image taken from the Maybridge data set. We observe that in the initial segmentation the
pre-trained model confuses NO2 with nitrogen atom and also oxygen atom which chemically is not
the correct prediction. In the final segmentation after applying two iterations of our method the
newly trained model is able to make the correct prediction.

Additionally Figure 5 and Figure 6 also show an interesting side effect when using a fully mediating
representation. Consider a classical model where input is an image and output is SMILES. When
the output prediction of the model is incorrect it is not clear in which part of the image the mistake
was made but in the case of having available the planar embedding (mediation representation) the
expert can see where and how the mistakes happened. This makes the model more interpretable.

Finally we compare in Table 2 the resulting best performance of the model after applying our method
on the Maybridge data set with several other methods available. We observe that our approach
enables to reach higher performance than the current state of the art. For the freely available tools
OSRA [7] and Molvec [28] we measured the performance using the same randomly 1000 datapoints
from the Maybridge dataset. For MolRec [18] this was not possible but we report for information
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Method Training Dataset Maybridge Test
Dataset

Accuracy

Source domain Target domain

OSRA (v2.1.0) [7] N/A N/A same random 1,000 80.4%
Molvec (v0.9.8) [28] N/A N/A same random 1,000 78.4%
ChemGrapher [21] 130K images N/A same random 1,000 72.6%
ChemGrapher [21]
(using manually
rich-labeling)

130K images 40 manually
handpicked
and rich-
labeled images
(upsampled)

same random 1,000 81.6%

Proposed domain
adaptation

130K images 4,000 non-rich
labeled

same random 1,000 86.3%

MolRec [18] N/A N/A Total 5740 83.8%from [18]

Table 2: Comparison performance on Maybridge data set. We observe that our approach enables to
reach higher performance than the current state of the art. Most of the tools available for chemical
graph recognition are rule based approaches for which a training dataset is not relevant.

the performance on the total Maybride dataset as reported in the work of M. Sadawi et al. [18].
Finally for ChemGrapher [21] we measured performance using three different training datasets.
Firstly, we measure the performance when we only have access to the source domain (generated
using RDKit [1]). Secondly, we measure performance using the same training dataset from source
domain but adding upsampled (100 copies) 20 handpicked manually rich labeled datapoints from
the target Maybridge domain (as was done in the work of Oldenhof et al. [21]). Finally, instead of
manually rich labeling datapoints, we process the 4,000 datapoints from Maybridge target domain
where our method will be able to generate rich labels for the datapoints where the graph prediction
could be graph aligned with the true graph, after which these rich labeled datapoints are added to
the training dataset.

5 CONCLUSION

Machine learning models often are faced with the problem to not generalize well to a new domain.
This is also the case for chemical graph recognition from images. We have shown that fully me-
diating layers can be exploited in machine learning models to adapt in data efficient way to new
domains, without the need of rich expensive labels as they can be generated using our method. In
the case of chemical graph recognition we empirically show that our method is able to adapt to a
new domain of chemical compounds, with previously unseen atom or bond types. Our rich-labeling
method required only 4,000 normal labeled points in the target domain to go from 10% accuracy to
39%, i.e., almost 4x improvement in the difficult Indigo data set. Furthermore, on Maybridge data
set, again using only 4,000 images, we reached high accuracy obtaining better performance than the
current state of the art.

Effective tools of chemical structure recognition from images enable access to the knowledge in
chemical literature which is currently only available through expensive chemistry databases. We
believe it as an important step towards open pharmaceutical science.

It would be interesting to apply this method to other contexts where the output of a machine learning
model could be represented with a graph structure. For example, the case of structural scene repre-
sentation, where a scene could be represented using a graph where every vertex could represent an
object and every edge would represent the relations between the objects (e.g. side-by-side, on-top-
of, under). This structural scene could be in form of 2D images or it could be even generalized to
3D models, where point clouds are available and one is interested to transform them into 3D graphs
of connected parts.
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A APPENDIX

A.1 ARCHITECTURE SUMMARY OF GRAPH RECOGNITION TOOL

Every iteration of our method we need to train the graph recognition tool described in Oldenhof
et al. [21]. This graph recognition tool is built using a combination of different convolutional neural
networks. The first part is a semantic segmentation network to pixel-wise predict every atom, bond
and charge type. The second part consists of three classification networks to classify every segment
predicted by the semantic segmentation network. After the first step of the ChemGrapher model
[21], the segmentation network, the predicted segments are processed so that for every segment the
center of mass is calculated. These centers of mass would be the atom/bond/charge candidates to be
classified by the classification networks.

Table 3: Summary of the layers of the segmentation network

Layer Kernel Nonlinearity Padding Dilation

conv1 3x3 ReLU 1 no dilation
conv2 3x3 ReLU 2 2
conv3 3x3 ReLU 4 4
conv4 3x3 ReLU 8 8
conv5 3x3 ReLU 8 8
conv6 3x3 ReLU 4 4
conv7 3x3 ReLU 2 2
conv8 3x3 ReLU 1 no dilation
last 1x1 none no padding no dilation

12

https://pubs.acs.org/doi/abs/10.1021/ci00057a005


Under review as a conference paper at ICLR 2021

Table 4: Different layers in the classification network

Layer Kernel Nonlinearity Padding Dilation

depthconv1 3x3 ReLU 1 no dilation
conv2 3x3 ReLU 2 2
conv3 3x3 ReLU 4 4
conv4 3x3 ReLU 8 8
conv5 3x3 ReLU 1 no dilation
global maxpool input size None no padding no dilation
last 1x1 None no padding no dilation

A.2 TRAINING DETAILS FOR GRAPH RECOGNITION TOOL

Training details of the graph recognition tool for every iteration of our method are summarized in
Table 5. The input images used for training of the different networks are a mix if images from source
domain and upsampled rich labeled images from target domain. For pretraining of the ChemGrapher
model only images from source domain were used. The training was performed using a compute
node with 2 NVIDIA v100 GPUs with 32GB of memory.

Table 5: Training details for different networks

Network #input images #epochs walltime minibatch size learning rate
source
domain

target domain
(upsampled)

Segm. network 114K 20K 5 24h 8 0.001
Atom Clas. 12.4K 2.6K 2 8h 16 0.001

Charge Clas. 12.4K 2.6K 2 8h 16 0.001
Bond Clas. 4.4K 2.1K 2 4h 64 0.001

A.3 COMPUTATIONAL COST PER RICH-LABELING ITERATION

In the following Table 6 the computational cost for 1 rich-labeling iteration is summarized including
all steps: (re)training, predicting and graph aligning rich-labeling.

Table 6: Computational costs per rich-labeling iteration

Training Predict Graph Aligning
Hardware 2 NVIDIA v100 GPUs 1 NVIDIA v100 GPU Intel Xeon Gold 6240 2.6Ghz
Dataset Source+Target domain Indigo/Maybride Indigo Maybridge

#datapoints see Table 5 4,000 4,000 4,000
Walltime ∼44h (details Table 5) ∼2h ∼40min ∼3min

A.4 EXAMPLES OF CASES WHERE GRAPH ALIGNMENT FAILS

We would like to showcase some examples where the constrained (max 2 node substitutions or max
1 edge substitution) graph alignment fails. At the same time it is important to note that our proposed
domain adaptation method is an iterative method, so if a graph alignment fails in a previous iteration
it could succeed in a next one when the new model makes a new graph prediction closer to the true
graph.
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(a) Input Image(U )

(b) Planar embedding prediction (V ′)

(c) Graph Prediction (W ′) (d) True Graph (W )

Figure 7: Example 1: It is clear that to align the graph prediction W ′ with the true graph W more
than 2 node substitutions are needed. So no rich labeling is possible for this example in this iteration.
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(a) Input Image(U )
(b) Planar embedding prediction (V ′)

(c) Graph Prediction (W ′)
(d) True Graph (W )

Figure 8: Example 2: It is clear that alignment of the graph prediction W ′ with the true graph W
can not be solved with only substitutions.

(a) Input Image(U ) (b) Planar embedding prediction (V ′)

(c) Graph Prediction (W ′)
(d) True Graph (W )

Figure 9: Example 3: It is clear that alignment of the graph prediction W ′ with the true graph W
can not be solved with only substitutions.
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