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Point-GCC : Universal Self-supervised 3D Scene Pre-training via
Geometry-Color Contrast

Anonymous Author(s)

ABSTRACT
Geometry and color information provided by the point clouds are
both crucial for 3D scene understanding. Two pieces of informa-
tion characterize the different aspects of point clouds, but exist-
ing methods lack an elaborate design for the discrimination and
relevance. Hence we explore a 3D self-supervised paradigm that
can better utilize the relations of point cloud information. Specifi-
cally, we propose a universal 3D scene pre-training framework via
Geometry-ColorContrast (Point-GCC), which aligns geometry and
color information using a Siamese network. To take care of actual
application tasks, we design (i) hierarchical supervision with point-
level contrast and reconstruct and object-level contrast based on the
novel deep clustering module to close the gap between pre-training
and downstream tasks; (ii) architecture-agnostic backbone to adapt
for various downstream models. Benefiting from the object-level
representation associated with downstream tasks, Point-GCC can
directly evaluate model performance and the result demonstrates
the effectiveness of our methods. Transfer learning results on a
wide range of tasks also show consistent improvements across all
datasets. e.g., new state-of-the-art object detection results on SUN
RGB-D and S3DIS datasets. Codes will be released on Github.

CCS CONCEPTS
• Computing methodologies → Unsupervised learning; Scene
understanding; 3D imaging.

KEYWORDS
3D scene point cloud; 3D self-supervised learning; deep clustering

1 INTRODUCTION
3D Self-supervised learning (SSL) has received abundant attention
recently because of remarkable improvement on various down-
stream tasks. 3D scene datasets are tiny compared to the 2D field
because 3D point cloud labeling is time-consuming and labor-
intensive, which dramatically impedes the improvements of super-
vised methods. Hence many works [23, 39, 55, 57, 67, 69] explore
pre-training models out of 3D labeled data to transfer knowledge
for downstream tasks. The goal of self-supervised learning can be
summarized as learning rich representations from unlabeled data
and helping to improve performance on downstream tasks with la-
beled data. Most existing works follow the paradigm in the previous
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Input Ground Truth Our Prediction

Figure 1: The visualization of unsupervised semantic segmen-
tation results. For better visualization, we use the Hungarian
matching alignment to project the pseudo-labels to ground-
truth labels.

2D field, such as contrastive learning [26, 27, 57, 70] and masked
autoencoder (MAE) [36, 39, 63, 68]. After standing on the shoulders
of giants in the 2D field, we could further see the particularity of
3D representation learning as follows:
• Unique information. 3D scene point cloud contains various

information such as geometry and color, which makes 3D point
cloud data different from 2D image data. Most existing methods
[26, 57, 70] treat all information of each point as an entirety in
model architecture design. We argue that directly concatenating
all information can not adapt the model to discriminately learn
different aspects of point clouds. Although some works [52, 62]
propose the two-stream architecture that encodes point cloud
by 3D network and images by 2D network, it needs extra 2D
data, and 3D network can not clearly learn the discrimination
between different information. Considering these additional dif-
ferences may be beneficial for effective representation learning.

• Mismatch between pretraining and downstream tasks.
Previous pre-training works [26, 36, 57, 68] design their self-
supervised point-level tasks, such as contrast and reconstructing
between specific points. However, 3D scene downstream tasks
mostly focus the object representations such as object detec-
tion and instance segmentation. The gap in supervision level
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Figure 2: Overview of our Point-GCC framework. Point-GCC utilizes the Siamese network to extract the features of geometry
and color with positional embedding respectively. Then we implement the hierarchical supervision on extracted features
which contains point-level contrast and reconstruct and object-level contrast based on the deep clustering module.

between pre-training and downstream tasks may hinder the
improvements of 3D self-supervised learning.

• Architecture diversity. The 3D point cloud field has grown
rapidly in recent years [16, 33, 38, 42, 47], and the popular archi-
tecture appears changeable and specific for downstream tasks.
Hence a universal pre-training framework is important that can
implement various existing methods for all kinds of tasks and
is easy to adapt for future architecture.

To mitigate the aforementioned problems, we explore a 3D self-
supervised paradigm that can better utilize the relations of point
cloud information. Most 3D scene datasets [2, 19, 21, 49, 72] provide
geometry and color information, representing different aspects of
the point cloud. Geometry information describes the outline of
objects and can easily distinguish between them, while color infor-
mation refines the internal characteristics of objects and gives a
more accurate view of each object. What’s more, different informa-
tion has inherent relevance. For instance, we can roughly infer the
geometric structure of the object from a color photo and vice versa.
Motivated by the difference and relevance inherent in the informa-
tion, we propose a self-supervised 3D scene pre-training framework
via Geometry-Color Contrast (Point-GCC), which uses a Siamese
network to extract representations and implements elaborate hier-
archical supervision. To bridge the gap between pre-training and
downstream tasks, the hierarchical supervision contains point-level
supervision that aims to align point-wise features and object-level
supervision based on a novel deep clustering module to provide
better object-level representations strongly associated with down-
stream tasks. Additionally, the universal Siamese network is de-
signed as an architecture-agnostic backbone so that various down-
stream models can easily be adapted in a plug-and-play way.

In extensive experiments, we directly perform a fully unsuper-
vised semantic segmentation task without fine-tuning to evaluate

the quality of the pre-training model. The result outperforms the
previousmethodwith +7.8%mIoU on ScanNetV2, which proves that
Point-GCC has learned rich object representations through our par-
adigm. Furthermore, we choose a broad downstream task to demon-
strate our generality: object detection, semantic segmentation and
instance segmentation on ScanNetV2 [19], SUN RGB-D [49] and
S3DIS [2] datasets. Remarkably, our results indicate general im-
provements across all tasks and datasets. For example, we achieves
new state-of-the-art results with 69.7% AP25, 54.0% AP50 on SUN
RGB-D and 75.1% AP25, 56.7% AP50 on S3DIS datasets. Compared
with previous pre-training methods, our method achieves higher
AP50 by +3.1% on ScanNetV2 and +1.1% on SUN RGB-D. Our con-
tributions can be summarized as follows:

• Wepropose a newuniversal self-supervised 3D scene pre-training
framework, called Point-GCC, which aligns geometry and color
information via a Siamese network with hierarchical supervi-
sion. To the best of our knowledge, this is the first study to
explore the alignment between geometry and color information
of point cloud via the pre-training approach.

• We design a novel deep clustering module to generate object
pseudo-labels based on the inherent feature consistency of the
two pieces of information. The result demonstrates that Point-
GCC has learned rich object representations by clustering.

• Extensive experiments show that Point-GCC is a general pre-
training framework with an architecture-agnostic backbone,
significantly improving performance on a wide range of down-
stream tasks and achieving new state-of-the-art on multiple
datasets.
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Figure 3: (a) The deep clustering module obtains pseudo prediction for different features and enforces consistent with the
swapped partition distribution from the Sinkhorn-Knop algorithm. (b) Point-GCC generates the pseudo-labels by utilizing
cluster prediction from both branches and projects to ground-truth labels for unsupervised semantic segmentation using
Hungarian matching alignment.

2 RELATEDWORK
2.1 3D Scene Understanding
Most 3D scene understanding works are still specially designed
for downstream tasks, such as object detection [33, 35, 37, 44, 47,
48, 51, 52], semantic segmentation [11, 31, 38, 45, 46, 53, 66], and
instance segmentation [13, 25, 29, 30, 50]. The model architecture
can be summarized as a backbone module extracting the features of
point clouds, and a downstream head adapting for the special task.
According to the processing method, these works can be roughly
divided into two categories: point-based methods and voxel-based
methods. Point-based methods [11, 33, 37, 54, 71] are widely used in
point clouds thanks to the effectiveness of PointNet++ [38], which
alternately use farthest point algorithm and multi-layer percep-
tron to sample and extract the features of point. Voxel-based meth-
ods [13, 29, 30, 47, 48, 50] is recently popular because of the better
performance and efficiency on many downstream tasks than point-
based methods, which operate 3D sparse convolution on regular
voxels transformed from irregular point clouds. We pre-train on
both point-based PointNet++ and voxel-based 3D sparse convolu-
tion backbone and fine-tune on multiple downstream methods to
give a comprehensive view of our work.

2.2 3D Self-supervised Learning
Compared to 2D vision or natural language, 3D vision has a more
serious problem of data scarcity [23] which limits the downstream
performance of 3D tasks. To solve the raising problem, 3D self-
supervised learning (SSL) [1, 28, 55, 64, 69] has gotten more atten-
tion in recent years. The mainstream SSL methods can be roughly
divided into two categories: contrastive learning and reconstructive
learning. Contrastive learning is motivated to learn the invariant

representation from different paired carriers such as view augmen-
tation [14, 15, 57] or different data formats [43, 60]. Reconstruc-
tive learning is designed to reconstruct the disturbed data to learn
geometry knowledge between patches [6, 22]. Motivated by the
success of masked autoencoder in 2D [24, 59], the MAE-style self-
supervised method became popular in point cloud [36, 41, 61, 68].
Recently, some works find that the pattern difference between the
twomethods in attention area [58] and scaling performance [39, 40].
Based on previous work, we consider the color and geometry of
scene point clouds as two views for contrastive learning, and use a
swapped reconstruct strategy for reconstructive learning. Therefore,
Point-GCC achieves the integration of two methods and derives
benefits from both of them.

2.3 Deep Clustering for Self-supervised
Learning

Deep Clustering [5, 7, 9, 12, 34, 56, 65] aims to learn better fea-
tures and discover data labels using deep neural networks, which
has been broadly applied in self-supervised and semi-supervised
learning. DeepCluster [8] uses the off-the-shelf K-means algorithm
pseudo-labels as supervision which learns comparative representa-
tions for self-supervised learning. SeLa [4] proposes a simultaneous
clustering and representation learning method using the Sinkhorn-
Knopp algorithm to generate pseudo-labels with equal partitions
quickly. SwAV [10] combines contrastive learning and deep clus-
tering, which enforces consistency between cluster assignments
from different views of the same image. In this work, we attempt
to apply deep clustering in 3D self-supervised learning field, which
generates pseudo-labels based on the inherent feature consistency
of the geometry and color information of the point cloud.

3
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3 POINT-GCC: PRE-TRAINING VIA
GEOMETRY-COLOR CONTRAST

Existing methods mainly focus on geometric information, but our
goal is to enhance the 3D representation capability by better utiliz-
ing all the information discriminately in scene point clouds. There-
fore, a novel Geometry-Color Contrast method is proposed to ad-
dress this motivation. Figure 2 illustrates the overall framework
of Point-GCC. We first perform a Siamese backbone to extract the
features of the geometry and color information respectively in
Section 3.1. To carefully align the features belonging to different
information, we propose the point-level supervision via combining
the contrastive and reconstructive learning in Section 3.2, then
we design an unsupervised deep clustering module to generate
object pseudo-labels and perform object-level contrastive learn-
ing between high-confidence object samples in Section 3.3. The
final hierarchical supervision is described in Section 3.4. In Section
3.5, we propose a new method directly evaluating the pre-training
model on unsupervised semantic segmentation to demonstrate the
effectiveness of our method.

3.1 Siamese Architecture
Information split and embedding. In 3D scene datasets, a point
𝒑 is usually associated geometry information represented by the
coordinates 𝒑𝑔𝑒𝑜 and color information represented by RGB value
𝒑𝑐𝑜𝑙𝑜𝑟 . Different from previous pre-training methods regarding a
single point as an atom unit, we split the point cloud into two parts,
the geometry and color respectively. Then we project them to uni-
versal embedding space 𝒆 by Equation 1. Additionally, to distinguish
similar colors in different coord, we add an extra weakly positional
embedding 𝒆𝑝𝑜𝑠 to the color embedding with the Euclidean norm of
coord. Positional embedding helps the network distinguish differ-
ent objects that share the same color and improves generalization
in various scenarios. Note that we remove all embedding modules
in fine-tuning stage to keep our framework plug-and-play in order
that more existing methods can benefit from ours.
Siamese architecture-agnostic backbone.We use a symmetric
Siamese network F (·) to separately encode geometry features 𝒇𝑔𝑒𝑜
and color features 𝒇𝑐𝑜𝑙𝑜𝑟 . Since we attempt to help more existing
architectures learn better representations from the combination of
geometry and color information, we do not modify any backbone
architecture. So that we can directly reuse the core module for
standard segmentation with any backbone architecture. In other
words, the backbone encodes input 𝒙 ∈ 𝑅𝑁×𝐶1 and extracts feature
𝒚 ∈ 𝑅𝑁×𝐶2 . To align the two information, Siamese backbone F (·)
encodes the geometry embedding 𝒆𝑔𝑒𝑜 and color embedding 𝒆𝑐𝑜𝑙𝑜𝑟
with weakly positional embedding 𝒆𝑝𝑜𝑠 to geometry features 𝒇𝑔𝑒𝑜
and color features 𝒇𝑐𝑜𝑙𝑜𝑟 respectively:

𝒆𝑔𝑒𝑜 = E𝑔𝑒𝑜 (𝒑𝑔𝑒𝑜 ), 𝒆𝑐𝑜𝑙𝑜𝑟 = E𝑐𝑜𝑙𝑜𝑟 (𝒑𝑐𝑜𝑙𝑜𝑟 ),

𝒆𝑝𝑜𝑠 = E𝑝𝑜𝑠 (∥𝒑𝑔𝑒𝑜 ∥22),
(1)

𝒇𝑔𝑒𝑜 = F (𝒆𝑔𝑒𝑜 ), 𝒇𝑐𝑜𝑙𝑜𝑟 = F (𝒆𝑐𝑜𝑙𝑜𝑟 + 𝒆𝑝𝑜𝑠 ), (2)

where E is corresponding linear layer of each embedding, F (·) is
the Siamese network.

In our opinion, the Siamese backbone network is forced to apply
the discriminative distributions and learn the relation and distinc-
tion of different attributions from the same points. The learned
knowledge is critical for transferring to all discriminative inputs
concatenated situations in most downstream tasks.

3.2 Point-level Supervision
Inspired by the success of associating contrastive learning and
reconstructive learning in recent work [39], We propose our point-
level supervision elaborately designed for our Siamese architecture,
which first contrasts and then swapped reconstruct the features to
benefit from different paradigms.
Contrastive learning. The geometry features 𝒇𝑔𝑒𝑜 and color fea-
ture 𝒇𝑐𝑜𝑙𝑜𝑟 are point-wise aligned because they are split from the
same point cloud 𝒑 and extracted by the Siamese segmentation-
style backbone network. We apply the InfoNCE loss aiming to
pull positive pairs close, and push negative pairs away across the
geometry features and color features:

L𝑝𝑐 = −
𝑁∑︁
𝑖

log
exp

(
𝒛𝑖𝑇𝑔𝑒𝑜 · 𝒛𝑖𝑐𝑜𝑙𝑜𝑟 /𝜏

)
∑𝑁
𝑗 exp

(
𝒛𝑖𝑇𝑔𝑒𝑜 · 𝒛

𝑗

𝑐𝑜𝑙𝑜𝑟
/𝜏
) , (3)

where 𝜏 is the temperature hyper-parameter, we follow the previous
works [57] to set it as 0.4. 𝒛𝑖𝑔𝑒𝑜 and 𝒛𝑖

𝑐𝑜𝑙𝑜𝑟
correspond to matched

ℓ2-normalized feature 𝒇 𝑖𝑔𝑒𝑜 and 𝒇 𝑖𝑐𝑜𝑙𝑜𝑟 from same point 𝒑𝑖 , which
represent a pair of positive sample. And 𝒛𝑖𝑔𝑒𝑜 with other 𝒛 𝑗

𝑐𝑜𝑙𝑜𝑟

except 𝒛𝑖
𝑐𝑜𝑙𝑜𝑟

represent negative pairs.
Reconstructive learning. Based on our Siamese architecture, we
apply the reconstructive learning by swapped reconstruct strategy
instead of mask strategy, which solves the raising problem about
the distribution mismatch between training and testing data in
masked autoencoding for point cloud [32]. Specifically, we simply
project the geometry features 𝒇𝑔𝑒𝑜 and color features 𝒇𝑐𝑜𝑙𝑜𝑟 to
reconstruct color �̂�𝑔𝑒𝑜 and geometry �̂�𝑐𝑜𝑙𝑜𝑟 . The reconstructive
loss is the mean squared error (MSE) between the reconstructed
and original information of each point:

L𝑝𝑟 =
1
𝑁

∑︁
∥𝒑𝑖′𝑔𝑒𝑜 − �̂�𝑖𝑔𝑒𝑜 ∥22 +

1
𝑁

∑︁
∥𝒑𝑖′
𝑐𝑜𝑙𝑜𝑟

− �̂�𝑖
𝑐𝑜𝑙𝑜𝑟

∥22, (4)

where 𝑁 is the number of points, �̂�𝑖𝑔𝑒𝑜 and �̂�𝑖
𝑐𝑜𝑙𝑜𝑟

represent the
reconstruct prediction, 𝒑𝑖′𝑔𝑒𝑜 and 𝒑𝑖′

𝑐𝑜𝑙𝑜𝑟
represent the reconstruct

targets which both scale to between 0 and 1 for stability training
loss.

3.3 Object-level Supervision
Point-level supervision is widely applied in 3D self-supervised
learning, which provides rich representations for downstream tasks.
However, the object representation strongly associated with down-
stream tasks hasn’t been noticed before. We propose our object-
level supervision driven by the novel unsupervised deep clustering
module. The clustering module generates pseudo-label predictions
P𝑔𝑒𝑜 and P𝑐𝑜𝑙𝑜𝑟 for the geometry features 𝒇𝑔𝑒𝑜 and color features
𝒇𝑐𝑜𝑙𝑜𝑟 respectively, and enforces consistent prediction between ge-
ometry prediction P𝑔𝑒𝑜 and color prediction P𝑐𝑜𝑙𝑜𝑟 of same point
𝒑. We argue that the pseudo-labels represent more various object
features, which are not restricted by human annotations with fixed

4
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Table 1: 3D Object detection results on ScanNetV2 [20],
SUN RGB-D [49] validation set. The overall best results are
bold, and the best results with the same baseline model are
underlined. * means that we evaluate on VoteNet [37] with
the stronger MMDetection3D [17] implementation.

Method ScanNetV2 SUN RGB-D

AP25 AP50 AP25 AP50
Supervised Only

VoteNet [37] 58.6 33.5 57.7 -
GroupFree-3D [33] 66.3 47.8 - -
FCAF3D [47] 71.5 57.3 64.2 48.9
TR3D [48] 72.9 59.3 67.1 50.4

Self-supervised Pre-training

VoteNet [37] 58.6 33.5 57.7 -
+ PointContrast [57] 59.2 38.0 57.5 34.8
+ DepthContrast [70] 62.1 39.1 60.4 35.4
+ CSC [26] - 39.3 - 36.4
+ Ponder [27] 63.6 41.0 61.0 36.6
+ Point-GCC∗ 65.3 (+3.0) 44.1(+3.3) 61.3 (+1.5) 37.7 (+2.0)

VoteNet+FF [48] - - 64.5 39.2
+ Point-GCC - - 64.9 (+0.4) 41.3 (+2.1)

GroupFree-3D [33] 66.3 47.8 - -
+ Point-GCC 68.1 (+1.8) 49.2 (+1.4) - -

TR3D [48] 72.9 59.3 67.1 50.4
+ Point-GCC 73.1 (+0.2) 59.6 (+0.3) 67.7 (+0.6) 51.0 (+0.6)

TR3D+FF [48] - - 69.4 53.4
+ Point-GCC - - 69.7 (+0.3) 54.0 (+0.6)

object classes. To achieve robust supervision among these object-
level pseudo labels, we sample the high-confidence object features
based on the prediction confidence score and apply object-level
contrastive learning according to pseudo labels.
Deep clustering via swapped prediction.We apply the swapped
prediction [10] in 2D contrastive learning to our model, which
predicts the pseudo label of an image from the clustering result
of another view. In our framework, we swap the cluster target of
different information features, and predict the pseudo label from the
other information feature based on the inherent consistency of the
two types of information as shown in Figure 3(a). For pseudo label
classes 𝐾 , we use a learnable matrix C = [𝒄1, · · · , 𝒄𝐾 ] to represent
the cluster centroids, and calculate the similarity S between the
ℓ2-normalized features𝒇 and cluster centroids 𝒄 . To avoid the degen-
eration problem that all features collapse into the same prediction,
the Sinkhorn-Knopp algorithm [18] is used to generate the equal
partition cluster distribution Q from the similarity S by converting
pseudo-label generation to an optimal transport problem. And the
learnable prediction P is computed by 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (S/𝜏), where 𝜏 is
the temperature hyper-parameter. We set all hyper-parameter in
swapped prediction same to the previous works [10] in 2D. Finally,
The swapped prediction loss is the cross entropy losses between the
learnable prediction P and swapped equal partition distribution Q:

L𝑐𝑙𝑢 = ℓ (Q𝑔𝑒𝑜 ,P𝑐𝑜𝑙𝑜𝑟 ) + ℓ (Q𝑐𝑜𝑙𝑜𝑟 ,P𝑔𝑒𝑜 ), (5)

Table 2: 3D Object detection results on S3DIS [3] validation
set. † means with extra training dataset ScanNetV2 [20].

Method S3DIS

AP25 AP50
Supervised Only

FCAF3D [47] 66.7 45.9
TR3D [48] 74.5 51.7

Self-supervised Pre-training

TR3D [48] 74.5 51.7
+ Point-GCC 74.9 (+0.4) 53.2 (+1.5)

+ Point-GCC† 75.1 (+0.6) 56.7 (+5.0)

where ℓ is the cross-entropy loss between the prediction and target.
Object-level contrastive learning. For the features 𝒇 with cor-
responding pseudo prediction P and confidence score from deep
clustering, we pick features with confidence scores higher than the
picking threshold to alleviate the noise from unsupervised clus-
tering. Then we compute the mean features of high-confidence
samples from geometry and color branches, respectively. We take
the two types of mean features with the same pseudo-label as posi-
tive pairs, oppositely with different pseudo-label as negative pairs,
and apply the InfoNCE loss at object-level:

L𝑜𝑐 = −
𝑁∑︁
𝑖

log
exp

(
𝒛𝑖𝑇𝑔𝑒𝑜 · 𝒛𝑖𝑐𝑜𝑙𝑜𝑟 /𝜏

)
∑𝑁
𝑗 exp

(
𝒛𝑖𝑇𝑔𝑒𝑜 · 𝒛

𝑗

𝑐𝑜𝑙𝑜𝑟
/𝜏
) , (6)

where 𝜏 is the temperature hyper-parameter, we set it to 0.4 fol-
lowing the above-mentioned setting. 𝒛𝑖 is the ℓ2-normalized mean
feature with pseudo-label 𝑖 . 𝒛𝑖𝑔𝑒𝑜 and 𝒛𝑖

𝑐𝑜𝑙𝑜𝑟
represent a pair of

positive sample with same pseudo-label 𝑖 . And 𝒛𝑖𝑔𝑒𝑜 with 𝒛 𝑗
𝑐𝑜𝑙𝑜𝑟

corresponding different pseudo-label 𝑗 represent negative samples.
We believe the pseudo-labels represent various object features that
are not restricted by human annotations with fixed object classes
and are significant for learning rich representations.

3.4 Overall Hierarchical Loss
Our framework contains hierarchical supervision at point-level and
object-level, and the final loss is a combination of the four losses
above-mentioned:

L𝑜𝑣𝑒𝑟 = L𝑝𝑐 + 𝛼L𝑝𝑟 + 𝛽L𝑐𝑙𝑢 + 𝛾L𝑜𝑐 , (7)

where 𝛼 , 𝛽 and 𝛾 are the loss weight hyper-parameters, we set them
to 100, 100 and 1 respectively to balance the magnitude of losses.

3.5 Adapt to unsupervised semantic
segmentation

Due to the pseudo-label from object-level supervision, Point-GCC
can adapt to unsupervised downstream tasks without fine-tuning.
Meanwhile, previous pre-training methods evaluate the perfor-
mance by transfer learning on downstream tasks. The results can
be greatly affected by the fine-tuning setting and are not intuitive
between different baselines. As shown in Figure 3(b), we generate
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Table 3: 3D semantic segmentation results on ScanNetV2 [20]
dataset by different level of supervision. The overall best
results are bold. + means fine-tuning with pre-training on
the corresponding dataset.

Method Supervision Backbone Pseudo mIoUClasses

Unsupervised Method

SL3D [11] unsupervised PointNet++ 400 8.5

SL3D [11] unsupervised Point 800 10.5Transformer
Point-GCC unsupervised PointNet++ 20 18.3

Weakly-supervised Method

WyPR [45] scene-level PointNet++ 20 29.6
MPRM [53] subcloud-level KPConv 20 41.0

Supervised Method

PointNet++ [38] supervised PointNet++ 20 54.4
+ Point-GCC supervised PointNet++ 20 59.8

the final pseudo-labels by utilizing cluster prediction from geom-
etry and color branch. During the evaluation stage, we use the
Hungarian matching alignment [65] to project the pseudo-labels to
ground-truth labels because we are agnostic to the ground truth in
pre-training. Although our method is not specifically designed for
unsupervised downstream tasks, we find that the process is more
intuitive and fair for evaluating the performance of pre-training
methods.

4 EXPERIMENTS
To analyze the 3D representation learned by Point-GCC, we conduct
extensive experiments on multiple datasets and tasks described in
Section 4.1. First, we evaluate fully unsupervised semantic segmen-
tation tasks to validate the effectiveness of object representation in
Section 4.2. Then we expand experiments by transfer learning on
multiple downstream tasks and datasets in Section 4.3.

4.1 Experiment setting
Dataset.Weuse three popular indoor scene datasets: ScanNetV2 [19],
SUN RGB-D [49], S3DIS [2] in our experiments. ScanNetV2 is a
3D reconstruction dataset, which provides 1513 indoor scans with
a total of 20 classes. SUN RGB-D is a monocular RGB-D image
dataset, which provides 10335 RGB-D images from four different
sensors with a total of 37 classes. S3DIS is another 3D indoor scene
dataset, which provides 271 point cloud scenes across 6 areas with
13 classes.
Implementation details.We implement Point-GCC built upon
the MMDetection3D [17] framework. We use the AdamW opti-
mizer with an initial learning rate of 0.001 and weight decay of
0.0001. Other implementation details follow the default scheme. To
ensure fair comparability of results, we refer to selecting down-
stream models implemented by MMDetection3D. In downstream
task experiments, we decay the learning rate by 0.5, and other set-
tings follow the original implementation. The full detail settings
are provided in the Appendix.

Table 4: 3D instance segmentation results on ScanNetV2 [20]
and S3DIS [3] dataset. The overall best results are bold, and
the best results with the same baseline model are underlined.
+ means fine-tuning with pre-training on the corresponding
dataset. † means with extra training dataset ScanNetV2 [20].

Method ScanNetV2 S3DIS

AP AP50 AP25 AP AP50 Prec50 Rec50
Supervised Only

PointGroup [29] 34.8 56.7 71.3 - 57.8 61.9 62.1
HAIS† [13] 43.5 64.4 75.6 - - 71.1 65.0
SoftGroup† [50] 45.8 67.6 78.9 51.6 66.1 73.6 66.6

Self-supervised Pre-training

TD3D [30] 46.2 71.1 81.3 48.6 65.1 74.4 64.8
+ Point-GCC 47.3 71.3 81.6 50.5 65.4 75.5 65.9

TD3D† [30] - - - 52.1 67.2 75.2 68.7
+ Point-GCC† - - - 53.6 68.4 76.6 69.5

4.2 Fully unsupervised semantic segmentation
We evaluate our pre-training model on fully unsupervised semantic
segmentation tasks using the method in Section 3.5 to validate the
effectiveness of object representation. As shown in Table 3, our
method surpasses previous unsupervisedmethods by a hugemargin
and is closer to the weakly-supervised method, despite Point-GCC
being not specifically designed for unsupervised downstream tasks.
With the same backbone PointNet++, Point-GCC surpasses previous
work SL3D [11] by +9.8% mIoU, and +7.8% mIoU compared with
more powerful Point Transformer on ScanNetV2 dataset. The result
proves that Point-GCC has learned rich object representation in
unsupervised pre-training.
Fine-tuning semantic segmentation. Additionally, we fine-tune
the pre-training model for semantic segmentation to verify the con-
sistent improvement of our method. With supervised fine-tuning,
the model gains significant improvements by +5.4% mIoU on the
ScanNetV2 dataset, which proves that our method has learned in-
trinsic representations of the point cloud.

4.3 Transfer learning on downstream tasks
3D Object detection. For 3D object detection task, we pre-train
the PointNet++ [38] backbone for VoteNet [37], VoteNet+FF [48]
and GroupFree-3D [33] and the MinkResNet [16] backbone for
TR3D [48], TR3D+FF [48] respectively. Table 1 and 2 shows the
results on ScanNetV2, SUN-RGBD, and S3DIS datasets. Our method
gains stable and significant improvements for various settings. Com-
pared with previous 3D self-supervised methods with the common
baseline model VoteNet, our method achieves higher AP50 than
the previous highest model Ponder [27] by +3.1% on ScanNetV2
and +1.1% on SUN RGB-D. For more recent models, our model also
significantly boosts VoteNet+FF, GroupFree-3D, TR3D, TR3D+FF
on multiple datasets and achieves new state-of-the-art results with
69.7% AP25, 54.0% AP50 on SUN RGB-D and 75.1% AP25, 56.7% AP50
on S3DIS datasets.
3D Instance segmentation. For 3D instance segmentation task,
we pre-train the MinkResNet backbone for TD3D [30] on ScanNet
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Table 5: Additional detection comparison with different infor-
mation on ScanNetV2 [20] validation set. * means the VoteNet
with a stronger MMDetection3D [17] implementation.

Method Input Object Detection

AP25 AP50
VoteNet [37] xyz+height 58.6 33.5
VoteNet∗ xyz+height 62.3 40.8
VoteNet∗ xyz+color 61.8 39.9
+ Point-GCC∗ xyz+color 65.3 (+3.0) 44.1(+3.3)

GroupFree-3D [33] xyz 66.3 47.8
GroupFree-3D [52] xyz+color 66.3 47.0
+ Point-GCC xyz+color 68.1 (+1.8) 49.2 (+1.4)

Table 6: Ablation study of the hierarchical supervision. -
means the model can’t perform the unsupervised segmenta-
tion task due to the lack of the pseudo-label.

Point-level Object-level Unsupervised
Segmentation

Object
Detection

Contra. Recon. Cluster. Contra. mIoU AP25 AP50
✗ ✗ ✗ ✗ - 62.3 40.8
✗ ✓ ✗ ✗ - 63.3 42.7
✓ ✗ ✗ ✗ - 64.4 42.8
✓ ✓ ✗ ✗ - 64.8 43.0
✓ ✓ ✓ ✗ 16.07 65.0 43.6
✓ ✓ ✓ ✓ 18.27 65.3 44.1

and S3DIS datasets. Table 4 shows the results on ScanNetV2 and
S3DIS validation sets. Downstream models gain remarkable perfor-
mance by +1.1% AP on ScanNetV2, +1.9% on S3DIS and +1.5% on
S3DIS with extra train data, demonstrating our method’s general
improvement across multiple settings.

Interestingly, the improvements for the PointNet++ [38] back-
bone widely surpass the MinkResNet [16] backbone. We guess that
sparse convolution architecture implicitly aligns the color informa-
tion from features and the geometry information from fine-grained
sparse voxel operation. It may be a kind of explanation for why
3D sparse convolution has better performance and efficiency on
various tasks.
Additional comparison Some baseline models [33, 37] do not
use color information. Table 5 shows the additional baseline model
with color information for a fair comparison from our reproduction
and other works [27, 52], which get slight improvement and even
decrease. The results prove what we mentioned in the main paper:
directly concatenating all information can not adapt the model to
learn different aspects of point clouds discriminately, demonstrating
our work’s necessity.

4.4 Ablation study And Discussion
To analyze the effectiveness of our approach, we further explore
additional experiments to measure the contribution of each compo-
nent to the final representation quality. For efficiency, all ablation
experiments are implemented with VoteNet setting on pre-training
and object detection.
Hierarchical supervision. To further explore the improvement
of our hierarchical supervision, we conduct ablation studies with
different components. Table 6 shows the unsupervised semantic
segmentation results with pre-training and object detection results
with fine-tuning. The results show that both contrastive learning
and reconstructive learning at point-level contribute to the final
results. Even though just with point-level supervision, our method
has achieved higher AP25 and AP50 than the previous best model
Ponder by +1.2% and +2.0%. Furthermore, the swapped prediction
and object-level contrastive learning also provide remarkable im-
provements for AP50 and AP25, especially AP50. Intuitively, the

improvement of AP50 is more significant than AP25, demonstrat-
ing that object-level supervision improves the model with a more
precise view of objects.
Weakly positional embedding The color information is vague
for precise geometry reconstruction, and some backbone networks
are translational equivariant and hard to predict a global coordinate
only with color information embedding, i.e., some different objects
partly share the same color can not be distinguished. The weakly
positional embedding is designed to add to color information em-
bedding to provide blurry global position information. Positional
embedding provides implicit global information to help reconstruct
precise geometry from vague color information, which balances
the task difficulty between two branches. It also helps the network
distinguish different objects that share the same color and improves
generalization among various scenarios.

We conduct an additional ablation study with different settings
to explore the improvement of positional embedding further. Ta-
ble 7 shows the object detection results with different positional
embedding. no pos means without positional embedding. xy pos
means with the positional embedding of x and y, and the corre-
sponding task aims only to reconstruct z, i.e., height estimation task.
The results show that our model has stable effects under different
position encoding conditions. This may be because we remove the
positional embedding and adjust the input channel in the down-
stream fine-tuning stage so that the impact on the downstream task
is reduced.
Geometry-ColorContrast.To verify the importance of Geometry-
Color Contrast approach, we compare the results with a single
reconstruction branch setting. Table 8 shows object detection re-
sults with different pre-training branches. The results show that the
performance with a single branch of whether geometry or color re-
construction obviously declines, which proves our Geometry-Color
Contrast plays an essential role in the significant performance.
Object sampling strategy. The result in table 6 shows that object-
level supervision provides the most obvious boost for AP50. We
compare the results with different object sampling strategies to
analyze the object samples used in object-level contrastive learning.
The results in table 9 show that the more confident object samples
are, the greater performance we achieve. However, the performance
decays only using the maximum score sample because of over-
fitting.
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Table 7: Ablation study of the positional
embedding. xy pos means only x and y
are used for positional embedding.

Positional Embedding Object Detection

AP25 AP50
no pos 64.5 43.7
xy pos 64.7 43.8
norm pos 65.3 44.1

Table 8: Ablation study of the Geometry-
Color Contrast approach.

Color Geometry Object Detection

Branch Branch AP25 AP50
✗ ✗ 62.3 40.8
✓ ✗ 62.5 39.4
✗ ✓ 62.4 40.9
✓ ✓ 64.8 43.0

Table 9: Ablation study of the Object sam-
pling strategy.

Object Picking Object Detection

Threshold AP25 AP50
1.5 / class num. 64.2 43.2
1.8 / class num. 64.4 43.7
2.0 / class num. 65.3 44.1
only max score 64.5 43.0

Ground Truth Color Reconstruction Geometry Reconstruction

Figure 4: The visualization of reconstruction results from
Point-GCC. Note that we decrease the point size in geometry
reconstruction to avoid the block from noisy points.

4.5 Visualization
Unsupervised semantic segmentation visualizationWe pro-
vide visualization results of unsupervised semantic segmentation.
Figure 1 shows that our method can clearly distinguish the main
parts of different objects without supervision. However, for small
or complex objects, the segment may be merged into others or
ignored because of the equal partition cluster distribution from the
Sinkhorn-Knopp algorithm [18]. The result demonstrates that our
pre-training approach helps the model learn object representations
to enhance performance on downstream tasks.
Object sampling strategy visualization From the following ex-
periments, we can find that the quality of points used for object-
level contrastive learning is important for performance. We believe
that the quality of object-level features depends on the trade-off
between quantity and quality of point-level features. For a more
intuitive perspective, we visualize points used after different thresh-
olds in Figure 5. Shrinking the threshold helps retrieve more accu-
rate points that belong to the same semantic class, but the lack of
quantity makes it difficult to reveal the essential object-level feature.
However, simply relaxing the threshold will introduce more noise
that belongs to different semantic classes, inevitably degrading
object-level feature quality.
Geometry and color reconstruction visualization Figure 4
shows the visualization of geometry and color reconstruction re-
sults. The results show that our method can consistently generate
high-quality complements from one type of information in the
point cloud. The method may contain potential applications such
as depth estimation and texture generation.

1.8 /class 2.0 /class 2.2 /class

Figure 5: The visualizations of used points after the different
thresholds.

5 FUTUREWORK
As mentioned above, most of the limitations come from our compro-
mise to general adaptation. Global coordinates make it easy for our
work to adapt to different model architectures and datasets but may
also cause the distribution mismatch problem. The preferred aim of
this work is to help improve various existing downstream methods.
Our future exploration will consider more elaborate architectural
designs for better point cloud understanding and performance, such
as geometry and color information embedding and pre-training
tasks.

6 CONCLUSIONS
In this paper, we propose a new universal self-supervised 3D scene
pre-training framework viaGeometry-ColorContrast (Point-GCC),
which utilizes an architecture-agnostic Siamese network with hier-
archical supervision. Extensive experiments show that Point-GCC
significantly improves performance on unsupervised tasks with-
out fine-tuning and a wide range of downstream tasks, especially
achieving new state-of-the-art results on multiple datasets.

To the best of our knowledge, Point-GCC is the first study to
explore the self-supervised paradigm that can better utilize the
relations of different point cloud information, hence we elaborately
design our plug-and-play pre-training framework to help improve
various existing downstream methods, instead of directly designing
a new architecture. We hope our work could attract more attention
to the discriminative information of point clouds, whichmay inspire
future point cloud representation learning works.
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