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Abstract

Brains learn robustly, and generalize effortlessly between different learning
tasks; in contrast, robustness and generalization across tasks are well known
weaknesses of artificial neural nets (ANNs). How can we use our accelerating
understanding of the brain to improve these and other aspects of ANNs?
Here we hypothesize that (a) Brains employ synaptic plasticity rules that
serve as proxies for Gradient Descent (GD); (b) These rules themselves
can be learned by GD on the rule parameters; and (c) This process may
be a missing ingredient for the development of ANNs that generalize well
and are robust to adversarial perturbations. We provide both empirical
and theoretical evidence for this hypothesis. In our experiments, plasticity
rules for the synaptic weights of recurrent neural nets (RNNs) are learned
through GD and are found to perform reasonably well (with no backpropa-
gation). We find that plasticity rules learned by this process generalize from
one type of data/classifier to others (e.g., rules learned on synthetic data
work well on MNIST/Fashion MNIST) and converge with fewer updates.
Moreover, the classifiers learned using plasticity rules exhibit surprising
levels of tolerance to adversarial perturbations. In the special case of the
last layer of a classification network, we show analytically that GD on the
plasticity rule recovers (and improves upon) the perceptron algorithm and
the multiplicative weights method. Finally, we argue that applying GD to
learning rules is biologically plausible, in the sense that it can be learned
over evolutionary time: we describe a genetic setting where natural selection
of a numerical parameter over a sequence of generations provably simulates
a simple variant of GD.

1 Introduction

The brain is the most striking example of a learning device that generalizes robustly
across tasks. Artificial neural networks learn specific tasks from labeled examples through
backpropagation with formidable accuracy, but generalize quite poorly to a different task,
and are brittle under data perturbations. In addition, it is well known that backpropagation
is not biorealistic — it cannot be implemented in brains, as it requires the transfer of
information from post- to pre-synaptic neurons. This is not, in itself, a disadvantage of
backpropagation — unless one suspects that this lack of biorealism limits ANNs in important
dimensions such as cross-task generalization, self-supervision, and robustness.

We believe that the quest for ANNs that generalize robustly between learning tasks has much
inspiration to gain from the study of the way brains work. In this paper we focus on plasticity
rules (Dayan and Abbott, 2001) — laws controlling changes of the strength of a synapse
based on the firing history as seen at the post-synaptic neuron. We provide evidence, both
experimental and theoretical, that (a) In the case of RNNs, plasticity rules can successfully
replace backpropagation and GD resulting in versatile, generalizable and robust learning;
and (b) These rules can be learned efficiently through GD on the rule parameters.

Plasticity Rules. Hebbian learning (“fire together wire together” Hebb (1949)) is the
simplest and most familiar plasticity rule: If there is a synapse (i, j) from neuron i to neuron
j, and at some point i fires and shortly thereafter j fires, then the synaptic weight of this
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(a) 3-layer ANN (b) RNN

Figure 1: Feedforward networks vs RNNs

synapse gets an increment. Over the seven decades since Hebb, many forms of plasticity
have been observed experimentally and/or formalized analytically, many of them quite
sophisticated and complex, see Dayan and Abbott (2001) for an exposition. All of them
dictate a change – increment or decrement – in the synaptic weight of a synapse (i, j) provided
neurons i and j both fired in some pattern. Intuitively, the decision for the application of a
plasticity rule takes place at the post-synaptic neuron j, since j receives information from
the firing of both i and itself. This is consistent with our understanding of the molecular
mechanisms that determine synaptic strength, all of which are complex chemical phenomena
taking place at (the dendrite of) j.

In this paper we consider plasticity rules as objects that can be learned. This fits with the view
that existing mechanisms have presumably changed over evolutionary time and are known to
differ in their details from one animal species to another. We show experimentally that an
RNN can meta-learn a plasticity rule that allows it to learn to perform a classification task
without backpropagation. This meta-learning is done by GD on the parameters of the rule.
Interestingly, the same plasticity rule then performs well on very different tasks and data
sets. There are many ways to parameterize a plasticity rule, from full table specifications
to small neural networks that take as input observed activation sequence at both ends of a
synapse and output the change to the synaptic weight.

Why RNNs? RNNs are inspired by, and can model, recurrent activity observed in the
brain; they are also especially well-suited to plasticity rules. To illustrate, suppose that we
want to train the feed-forward ANN in Figure 1(a) with a plasticity rule. It is clear that
the space of possible rules is rather meager. In order to change the weight of link (i, j) after
each labeled example, node j will decide the nature of the change based on local information,
namely, whether i or j or both fired during this epoch. Thus any learned plasticity rule must
be some slight generalization of Hebb’s rule1.

But suppose instead that the three hidden layers have been collapsed into one, resulting in
the RNN shown in Figure 1(b), and this collapsed layer fires three times before readout,
roughly simulating a feedforward 3-layer network. Now node j knows much more about
what happened to link (i, j) during these three epochs; such information was inaccessible in
the feedforward setting. Any 23 × 23 matrix of reals is a possible plasticity rule, where 23

is the number of possible firing patterns — such as “fired in the first round, did not fire in
the second, fired in the third,” or “101” — for each of i and j, and the entries of the matrix
denote increments/decrements, additive or multiplicative, of the weight of link (i, j). If one
updates the entries of this rule by training on a task, it is possible that this rule may be an
adequate proxy for the update calculated by backpropagation. Furthermore, we might hope
that this rule may even generalize well, performing far above baseline on very different tasks.
Evolution. We proposed to replace GD in deep learning by biorealistic plasticity rules, and
then we use GD to learn the plasticity coefficients. Are we contradicting ourselves? After all,
the brain did not develop its plasticity rule(s) through GD, but through evolution. But since

1We could update all incoming links to node j based on the firing status of all of them; Zenke
et al. (2015) suggests that such complex rules may be indeed at work in the animal brain. See the
discussion for more on this intriguing research direction.
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GD apparently produces good plasticity rules, the question arises, is evolution at all like
GD? In Section C we address this question analytically. In particular, we prove a general
result (which is of some interest by itself in Evolution) stating that the evolution of any
real parameter of the phenotype affecting fitness (such as the parameters of the plasticity
function) is approximately equivalent to a simple (and suboptimal) variant of GD, as long as
the parameter is expressed as the sum of a large number of small genetic contributions (as is
known to be the case for many common traits, such as height in humans); the full details
are in Appendix C. Hence, it is reasonable to assume that the tuning of such parameters
could have been achieved over evolutionary time.

Summary of Results. Could such plasticity rules serve as effective learning algorithms? As
we show in the following sections, the answer is affirmative: in the special case of the simplest
possible network, with no hidden layer and applied to a binary classification task, learning
the plasticity rule through GD recovers two classical supervised learning algorithms, the
Perceptron algorithm and the Multiplicative Weights (or Winnow) algorithm. We proceed
to experiment with learning more complex plasticity rules in a general RNN, establishing
that learning plasticity rules leads to performance that is quite good. Even though the
performance is not at the same level as ANNs, our experimens show that learning through
plasticity has three important benefits: (1) It generalizes well across learning tasks; (2) its
convergence to a good classifier is more rapid, i.e., the number of updates (measured by the
total number of samples) needed is significantly fewer; and (3), and perhaps more striking,
classifiers learned this way appear to be considerably more robust to adversarial perturbations
than classifiers learned using GD. An intriguing result here is that the robustness appears to
increase significantly with the depth (number of rounds) of the RNN.

1.1 Related work

Plasticity Rules. Motivated by the brain, learning with plasticity rules has also been
studied in machine learning. Early work of Bengio et al. (1990) suggested genetic algorithms
for doing so, and later Bengio et al. (1992) explored gradient-based methods as well.Floreano
and Urzelai (2000) applied evolving Hebbian plasticity rules to randomly initialized weights
for a robot navigation task, while Miconi et al. (2018) introduced differentiable plasticity with
a plasticity parameter for every edge of a network, which also evolves over time, and applied
this to large, high-dimensional data sets. More recently, work by Yaman et al. (2019) is in a
similar spirit as ours but with important differences: they apply plasticity rule updates to a
specific small 2-layer ANN and find it beneficial; we focus on how rules learned for one task
on one network apply to other tasks on other networks, and on the robustness properties of
learning through plasticity.

Other Update Schemes. There is a variety of mechanisms other than plasticity available
to modulate the brain’s synaptic weights. Rather than trying to learn more complex plasticity
rules, Lillicrap et al. (2020) argue that hand-designed local update rules are sufficient in the
presence of feedback connections, and that these are a plausible mechanism for learning in
the brain. Whereas backpropagation directly calculates each parameter’s contribution to the
overall loss, a feedback path with appropriate learned weights can approximate this signal in
its stead (such feedback paths are known to be present in the visual cortex). In particular,
Metz et al. (2018) learned an update rule which trains both the forward and backward
paths and generalizes effectively across tasks, while a body of previous work (see Sacramento
et al. (2017); Guerguiev et al. (2017)) has demonstrated that well-known mechanisms from
neurobiology can coordinate these forward and backward paths to learn in an online fashion.

Taking a different tack, Wang et al. (2018) train an RNN to implement a general reinforcement
learning algorithm, which bears some conceptual similarities to our scheme of learning a
general plasticity rule. Here, the meta-learning procedure by which the network’s weights are
updating is analogous to the action of the dopamine system on the neurons of prefrontal cortex,
but when applied to novel tasks the network’s weights are frozen. Finally, Andrychowicz
et al. (2016) and more recently Maheswaranathan et al. (2020) parameterize a gradient-based
optimizer and then optimize these parameters, which is similar in implementation to our
strategy for learning plasticity rules.
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Meta-Learning with Evolution. The plausibility of optimizing meta-learning parameters
through evolution has been studied in the literature under the term neuroevolution, see
Floreano et al. (2008); Stanley et al. (2019). In particular, evolving plasticity rules is a
fruitful line of research in its own right (see Soltoggio et al. (2018) for a review), although
it uses genetic algorithms to explicitly evolve better architectures and learning rules. Here
we use standard models in population genetics to show that the evolution of a numerical
parameter can be done in a GD-like fashion.

Adversarial Robustness. Lastly, the existence of adversarial perturbations, and in particu-
lar learning to avoid them, has been an active topic in recent years, beginning with Goodfellow
et al. (2014) and continuing with Madry et al. (2018); Ilyas et al. (2019). Crucially, these
methods achieve robust classification by explicitly regularizing the objective function of the
network to counter an adversarial attack. We focus on learning methods which by themselves
happen to converge to minima that are robust to adversarial perturbations without explicitly
searching for them.

2 Learning (with) Plasticity Rules

Define the RNN plasticity rule r : {0, 1}T × {0, 1}T → < to be a function that maps a pair
of binary vectors to a real number. The binary vectors correspond to the firing patterns
of two neurons i, j connected by a synapse (i, j) in a T -round recurrent network. Similarly
the output layer plasticity rule is defined by ro : {0, 1}T × {0, 1}, the binary vector again
describing the firing pattern of a neuron, and the 0/1 value describing whether a node
in the output layer corresponds to the true label or not. The functions r, ro indicate the
change to the synapse weight, which can be additive or multiplicative. For example, Hebbian
plasticity corresponds to the AND function with T = 1. During supervised learning, the
plasticity rules are applied independently to each synapse. There are two alternatives here:
(1) apply plasticity rules only in the event of disagreement between the network’s output
and the true label of the training example. That is, we assume that, besides the local firing
information, the plasticity mechanism also receives a signal about the loss of the current
training example; it is known from animal experiments such as Yagishita et al. (2014) that
this does happen in the mammalian striatum and cortex through the excretion of dopamine.
(2) we apply training rules on all training examples. This requires even lesser coordination,
and the time-scales of dopamine action are not an issue. In our experiments, we find that
both modes perform equally well (see Fig. 6 in the Appendix). Moreover, the second mode
incorporates error information only at the output layer (where the correct label is known),
making it completely unsupervised throughout the rest of the network. To learn a plasticity
rule, we select a model and a dataset to train with, and then randomly initialize a rule.
We apply a standard loss function to the output of this network (e.g. cross-entropy loss
for classification), but as a function of the parameters of the rule. GD can then be used to
update these parameters to minimize the loss function.

Training. Our architecture is similar to an RNN. The network consists of an input layer
connecting the input to a directed graph G = (V,E), and a fully-connected output layer
connecting G to the output nodes. We generate G at random, choosing each edge with
probability p. Let A ∈ <d×|V | denote the weights of the input layer, W ∈ <|V |×|V | the
weights of G, and U ∈ <|V |×l the weights of the output layer. Over the course of T rounds, we
maintain a hidden vector h ∈ <|V | initialized to zero, and updated as h← ck(σ(W ·h+A ·x))
where x ∈ <d is the input, σ is ReLU activation function, and ck : <|V | → <|V | is a notion
of a cap, a biologically plausible activation function implementing the excitatory-inhibitory
balance of a brain area, see Papadimitriou and Vempala (2019). Given a vector u, ck(u)
returns a copy of u with only the highest k entries remaining; the rest are set to zero. If at
the end of a round hi is nonzero, we say that the corresponding unit has fired. The output
layer consists of linear combinations U of the hidden vector components (one output per
label), and a final softmax is then applied. We will refer to this particular architecture as
the simple RNN. Given plasticity rules, we train a network as follows. For each individual
example in the dataset, we run the forward pass and keep track of the firing sequences of
each node. Using these firing sequences, we update the graph using the RNN rule r, and the
output layer according to ro as described previously.
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Landscape of rules. Any function which maps appropriate binary vectors to real numbers
defines a rule. An RNN rule can be any function r : {0, 1}T × {0, 1}T → <, and the output
rule can be any ro : {0, 1}T × {0, 1} → <. We consider two different parameterizations: (1)
Table: r and ro are look-up tables of size 2T × 2T and 2T × 2, respectively. The entries
are the parameters we learn. (2) Small NN: r and ro are defined by small auxiliary neural
networks. These networks take as input the activation sequences, say the concatenation
of s1, s2, and output the update value, r(s1, s2). In this case, the weights of the auxiliary
network are the parameters we learn.

Efficiency. Using tables to represent the plasticity rules is more expressive but requires
an exponential number, (2T )2, of parameters. On the other hand, the complexity of the
second method depends only on the size of the auxiliary network, which is independent of
the simple RNN size, and its input, the activation sequence, grows linearly as 2T . We found
that training using plasticity rules converges with a significantly smaller number of updates
compared to GD. See Fig 2 for a comparison of the two methods.

Figure 2: On the standard MNIST data set, we trained the same underlying RNN with
T = 1, |V | = 1000 with an output layer plasticity rule, and separately with GD (using the
standard Adam optimizer, learning rate 10−2) on the output weights. Note that we did not
optimize hyperparameters such as batch size and learning rate. This is only meant to show
that plasticity-based training is competitive with gradient methods.

Data sets. We use six different datasets. In the first four, 10,000 points are generated from a
10-dimensional normal distribution and assigned binary labels by a linear threshold function
(Halfspace), two different ReLU networks each with a single hidden layer of width 1000 and
randomly initialized weights (ReLU1 and 2), and a simple RNN with T = 3, |V | = 100, k = 50.
The last two datasets are the MNIST and Fashion MNIST benchmarks.

3 Cross-task Generalization with Plasticity Rules

GD is a general method of optimization, capable of improving the performance of any model
for which gradients can be computed. The obvious question is whether plasticity rules
offer similarly general strategies for updating the weights of a network. We find that rules
learned from simple, low-dimensional datasets generalize to accurately classify data in higher
dimensions labeled by much more complex functions, see Fig 3. First, we examine the
empirical evidence, and exhibit experiments which demonstrate the remarkable capability of
these rules to generalize across tasks. Then we analyze output-layer rules, capturing well-
known provable methods for learning linear threshold functions. To test the generalization
abilities of these plasticity rules, we learn a rule for a particular network and dataset, and
then use it to train other architectures to classify other datasets. In the first experiment,
we separately learn output and RNN rules for small networks. With these fixed rules in
hand, we then re-train a feedforward and a recurrent network of both small and large sizes
on all six of our datasets. The results are clear (see Fig 3); all four models perform well
on other datasets, although the large recurrent network consistently outperforms the other
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Figure 3: Comparison of various models on different datasets trained using the same plasticity
rules. We first learned a plasticity rule for the output weights of a small feedforward network
(i.e. |V | = 100, T = 1) on the Halfspace dataset, and a plasticity rule for the graph weights of
a small recurrent network (i.e. |V | = 100, T = 3) on the ReLU1 dataset. We then hold these
rules fixed and use them to re-train both of the small models and additionally large models
(|V | = 1000) on all six datasets, restricting MNIST and Fashion-MNIST to only a random
10,000 training examples in the interest of fair comparison. Averages of 10 re-trainings for
each model/dataset combination are shown above.

three models. We have empirically observed a significant increase in accuracy as compared
to a network of the same size when using a recurrent network with its weights updated by a
plasticity rule (Fig. 3), with the improvement most obvious on the more nonlinear datasets.
Significantly, on certain datasets the small recurrent network even outperforms the large
feedforward network, suggesting that learned recurrent weights can compensate for fewer
neurons. Moreover, a rule learned on one dataset appears to generalize well to others. Thus,
it appear that an appropriate RNN plasticity rule represents a general strategy for producing
separable representations, although an explanation of how these rules work, let alone whether
they are optimal, remains elusive.

3.1 Analyzing the output layer plasticity rule

We first examine update rules for the output layer alone, with the goal of learning a synaptic
plasticity rule to update the output layer weights. It is well-known that training just the
output layer to minimize well-known loss functions is a convex optimization problem that can
be solved efficiently; GD provably works with specialized variants under different assumptions
on the data. It has also been established that training just the output layer of a feedforward
network, with random weights and a sufficiently wide penultimate layer can provably achieve
high classification accuracy (Rahimi and Recht, 2008; Vempala and Wilmes, 2019).

The classical perceptron algorithm for learning an linear threshold function `(x) = sign(w∗ ·x)
is the following iteration, starting with w = 0:

While there is a misclassified example x, w ← w + x`(x).

This is guaranteed to converge to a halfspace consistent with all the labels in at most
‖w∗‖22 maxx ‖x‖22/(minx ‖w∗ · x‖)2 iterations Rosenblatt (1962); Minsky and Papert (1969).
To map this to our setting, we learn a network with a single output neuron, and assume
each xi ∈ {−1, 1}. Then this corresponds to the output layer rule in Fig. 1, which depends
on the (incorrect) prediction value p(x) = sign(w · x). This is an additive update rule. The

Perceptron (additive) MW (multiplicative)
p(x) = −1 p(x) = 1

xi = −1 −1 1
xi = 1 1 −1

p(x) = −1 p(x) = 1
xi = 0 1 1
xi = 1 2 1

2

Table 1: The plasticity rules for the Perceptron and MW algorithms

Multiplicative Weights algorithm Littlestone (1987) can be mapped to a similar multiplicative
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plasticity rule. Recall that MW only acts on examples where the current hypothesis predicts
incorrectly, and then on variables that are "ON", doubling the corresponding weight if the
true label is 1, and halving if the true label is −1.

Our first theorem is that very similar plasticity rules for the output layer can be automatically
discovered in a general setting, i.e., an effective output layer rule can be provably meta-learned.
Theorem 1. GD on an additive output rule, from any starting rule, and network weights
initialized to zero, converges to a rule with sign pattern [−,+; +,−].

In fact, GD provably optimizes the output layer rule. The next theorem follows from the
observation that the cross-entropy loss is a convex function of the outer layer weights, which
are linear functions of the output layer rule for any fixed graph and sequence of examples.
Theorem 2. The problem of finding the output layer update rule that minimizes the cross
entropy loss is a convex optimization problem.

To explain the generalization itself, we offer a modest (but rigorous) guarantee. In the next
section, we will extend this to data that is not perfectly separable.
Theorem 3. Let r = [−a, a; b,−b] be an output layer plasticity rule with b ≥ a > 0. For
data in {−1, 1}n that are strictly linearly separable by a unit vector w∗ with

∑n
i=1 w

∗
i = 0,

applying this rule to the weights of a linear threshold network converges to a correct classifier.

4 Adversarial Robustness of Learning with Plasticity Rules

A prevalent attack method is the Fast Gradient Sign Method, first proposed in Goodfellow
et al. (2014), which uses the following single step update: x+ α · sign(∇xL(x, y)) where L is
the loss function, x is the input we wish to perturb, and y is the true label. We use a more
powerful adversary, allowing for (1) multiple gradient steps as in Madry et al. (2018), (2)
moving directly in the direction of the gradient, instead of using only its sign, as in Rozsa
et al. (2016), and (3) targeting a specific class y′ that we wish to misclassify the image with:

xt+1 = Πx+S(xt − α · ∇xL(x, y′))

where S is the set of allowed perturbations, and Πx+S(v) is the projection of a vector v onto
the set x + S. For a given network and image, we generate nine adversarial images, one
for each value of y′ 6= y. If any of the nine resulting perturbations become misclassified,
then we count the original image as misclassified under perturbation (see Appendix A.3
for details). For MNIST, we restrict to perturbations that lie within an ε ball around the
original x, and to pixel values in the interval [0, 1]. We generate an adversarial dataset for
both plasticity and gradient trained networks for increasing values of ε. Figure 4 shows
adversarial images for a rule-trained network need to be considerably more noisy than their
GD-trained counterparts.

Figure 4: Adversarial perturbations on MNIST (left) and FashionMNIST (right) for a
GD-trained network, and a plasticity-trained network. Original images are in the top row.

Figure 5 clearly shows that plasticity rules create more robust classifiers than GD. Madry
et al. (2018) explored the relationship between model capacity and adversarial robustness,
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Figure 5: The same network with |V | = 1000, cap = 500 was trained with plasticity rules for
T = 1, 3, and with GD. For each trained network, we generate adversarial data-sets with
increasing perturbation magnitude.

noting that a larger capacity is needed in order to be robust than to simply classify benign
examples. We observe that deeper networks are more robust than shallow ones.

How to explain this robustness? One possible explanation is the following: the RNN finds a
rich representation, one in which the examples with different labels can be separated with
large margins. More precisely, for most correctly labeled data points, ε-balls around them are
also classified with the same label. Large margin learning, a celebrated success of Support
Vector Machines (Cortes and Vapnik, 1995; Vapnik, 1998), could explain robustness if large
margins exist in a suitable kernel space. We show that a similar result holds for a small
plasticity based learning, provided we also update on correctly classified examples that are
within a small margin of the threshold (see Theorem 4 in the Appendix). The success of
RNN plasticity rules in finding a representation amenable to more robust classification is
intriguing and merits rigorous explanation.

5 Discussion

Learning is the modification of the long-term state of an organism or other system caused by
experience; such modification is effected by the system’s learning mechanism. Meta-learning
then must be the structure or parameters of the learning mechanism that remain invariant
across learning experiences. In animal brains, synaptic plasticity is just about the only
mechanism that qualifies; if meta-learning happens in the animal brain, we propose that it is
done through plasticity.

Can these lessons be useful for ANNs? Here we focus on RNNs, because they afford a richer
space of synaptic plasticity mechanisms, and we demonstrate that plasticity rules can be
learned through GD which (1) achieve reasonably effective learning on a variety of training
data without backpropagation; (2) the same rules learned on a data set also perform quite
well on new data of a different sort, and on a graph with a different wiring; and (3) these rules
can train models which are naturally and significantly more robust to adversarial attacks.
Furthermore, in the case of the rules for the output layer, GD produces plasticity rules
which recover basic learning algorithms such as the Perceptron and Winnow. We also make
the point that learning plasticity rules through GD is biologically plausible, in the sense
that learning of any parameter through evolution is, under assumptions, possible through a
process which is tantamount to a variant of GD.

We believe that our ideas and results point to a rich and promising field of inquiry. Plasticity
in the input layer would probably enhance learning, but would it hurt generalization? Can
plasticity rules more complex than the output rule also be dissected analytically? Can
plasticity rules work for feed-forward networks? Our observation in Footnote 1 makes this
direction worthy of further experimental exploration. Are there ways to combine plasticity
with backpropagation to enhance generalization while maintaining learning performance?
In our experiments, much of the improvement in accuracy is achieved by the output layer,
yet learned RNN rules still provide a small but constitent increase in accuracy over random
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# Rounds MNIST Acc. Fashion MNIST Robustness on MNIST
T = 3 87% 77% ε = 2 : 60%, ε = 4 : 36%
T = 1∗ 93% 81% ε = 2 : 12%, ε = 4 : 0%
T = 1 85% 70% ε = 2 : 00%, ε = 4 : 0%

Table 2: Each experiment uses graphs with |V | = 1000, k = 500 and 2 epochs of training.
We ran two separate runs for T = 1. The starred entry has all entries of the input weights
equal to one (normally, we let these be random from a normal distribution). It is unclear
why such an initialization produces such a stark improvement in accuracy on MNIST.

fixed weights; we suspect that larger experiments with more than two iterations of the
RNN would result in higher accuracy through RNN plasticity. On evolution, are there more
general, and more parsimonious, schemes for which evolution is tantamount to GD? Does
plasticity also enable self-supervision — for example, the creation of powerful representations
from unlabeled corpora, as happens both in the language module of the human brain and
in modern NLP? Output-layer plasticity can be interpreted in terms of familiar learning
algorithms. How can we interpret the much more complex RNN plasticity rules learned? So
far, we have been able to only make partial sense out of them. Finally, what is the full range
of algorithms that can be realized as synaptic plasticity rules? Does this view, motivated by
neural plausibility, yield an interesting complexity-theoretic viewpoint?
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A Experimental Methods

In this section, we give complete details of our experimental procedure. The accompanying code
can be found here: https://github.com/BrainNetwork/BrainNet.git.

Next, we experimentally show that a rule learned on a specific data set generalizes to new data sets.
We learn rules on simple data sets, such as data labelled by a linear threshold function, then use
this rule to train a simple RNN on more complex data-sets generated by ReLu networks, simple
RNN’s, MNIST and Fashion-MNIST.

Then, networks trained by plasticity rules are empirically shown to be more robust than ones trained
by GD. Furthermore, as depth increases, so does robustness to adversarial attacks.

Finally, We also describe alternative, arguably more bio-plausible schemes for updating weights
during training.

A.1 Training and Testing Procedure

Rule-based training. First suppose that we are already given output layer plasticity rule
ro : {0, 1}T × {0, 1} → < and an RNN rule r : {0, 1}T × {0, 1}T → <. We can now take any simple
RNN with T rounds and any data X = (x(1), . . . , x(n)), and train using these rules. Of course, in
the case that T = 1, there would be no RNN rule.

1. In the case of additive updates, initialize the graph weights W and output layer weights U
to zero. In the case of multiplicative updates, initialize these to 1.

2. For each example xi, perform the forward pass, and keep track of the firing sequence of the
nodes.

3. Given the firing sequences of each node, update W according to RNN rule r and U ,
according to output layer rule ro. We scale down the magnitudes of the rule updates by a
factor of η, the step size.

4. The final weights provide the trained simple RNN.

GD to Learn a Rule. We now want to learn a rule specific to a particular data set. For this,
we do the following.

1. For each epoch, randomly split the data into batches (we used size 100 or 1000).

2. For each batch, train a network using the current rule as described above.

3. Using the resulting network, compute the cross entropy loss on this batch.

4. Compute the gradient of this loss with resp of choice ect to the parameters of the rules.

5. Update the rules according to the optimizer of choice.

The experiments we have run used the Adam optimizer, with l2 regularization (with a constant of
0.01).

A.2 Generalization experiments.

We used six different data sets: Halfspace data is labeled by a simple linear threshold function.
ReLU1 and ReLU2 data are labeled by two different ReLU feedforward networks, each with a single
hidden layer of width 1000 and randomly initialized weights, and two output neurons, and the
argmax of the two output neurons was taken to label each example. The simple RNN data was
generated by a random simple RNN with T = 3, |V | = 100, k = 50, p = 0.5. Each dataset has both
training and testing data, each consisting of ten thousand examples. Lastly, we used the standard
benchmark MNIST and Fashion-MNIST datasets, with their 28x28 pixel images vectorized to 784
dimensions, where we selected ten thousand random images out of the sixty thousand in each of
their training sets.

We began with a simple RNN with |V | = 100, k = 50, p = 0.5. Using this network with T = 1, we
learned an output layer plasticity rule using GD on the Halfspace dataset.

Next, we used a network of the same size with T = 3 and ReLU1 data to train, this time learning
an RNN plasticity rule parameterized by a single-hidden layer neural network, in addition to the
output layer rule.
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For each of the two models, we created a new network with a larger graph, |V | = 1000, k = 500, p =
0.5. We did not learn new rules specific to these particular graphs, but rather retained the previously
learned rules.

Using each model’s respective rule(s), we trained the models on the ten thousand training examples
from each of the six data sets. Note that this training only consists of initializing the weights of the
graph and output layers to 0, and for each misclassified example, update the weights according to
the rule, completely without using GD. We did this ten times for each data-set, with the order of
examples randomly shuffled each time. We reported the average testing and training accuracy in
the figure. In every experiment a learning rate of η = 10−2 was used, corresponding to weighting
the weight update proposed by the rule by a factor of η.

A.3 Robustness Experiments

We generated a simple RNN with |V | = 1000 and cap of 500, and trained it separately with plasticity
rules and with GD.

We performed two experiments with a rule, one for T = 1 and one for T = 3. In both cases, the
same perceptron-style output rule was used. For T = 3, we utilized a small two layer feedforward
network to act as the rule. This had a hidden layer of size 20. To train this auxiliary network, we
used the method described earlier, however we did so on a smaller simple RNN with |V | = 200, and
cap of 100.

Once we trained each of the three networks, one hundred random images were chosen to be
adversarially perturbed. For a given network and image, we generate nine adversarial images
according to the following multi-step attack method previously described, one for each value of
y′ 6= y:

xt+1 = Πx+S(xt − α · ∇xL(x, y′))

If any of the nine resulting perturbations become misclassified, then we count the original image as mis-
classified under perturbation. We perform this process for each ε = 0.0, 0.5, 1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
allowing a perturbation up to a magnitude of ε in the l2 norm.

A.4 Alternative Schemes

Updates on each example. Instead of applying the rules only when we misclassify an example,
a more biologically plausible updating scheme would be to perform the rule updates for every example,
regardless of the current model’s prediction.

Experimentally, this approach has had results very similar to those when updating only for mis-
classified examples. For instance, Figure 6 is a comparison of the accuracy curves on MNIST when
applying the same perceptron update rule on all examples, and on only misclassified examples.

Figure 6: Updating on all examples provides similar results as updating only on misclassified
data for a T = 3, |V | = 1000, k = 500 simple RNN on MNIST.

Updates to all edges. Our output layer rule only updates edges which lead either to the node
corresponding to the true label of the example or to the prediction. Instead, we could apply the rule
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to all edges - the first column of the rule indicating the update to the edge leading to the correct
label, and the second column indicating the update to the remaining edges. Note that this only
affects the multi-label case. For the MNIST data set, we have again had comparable results.

Using both schemes. Using both schemes described above (updating at each example, and
updating all weights), we provide a computationally efficient analytic solution to finding the optimal
output rule (given all else is fixed) with respect to a mean-squared error loss (MSE loss). See
Section B.

In the case of our binary classification data, the accuracy we achieve with this optimal rule is
comparable to that of our original model, which would update only on misclassified data.

However, when combining both schemes on MNIST data, we begin to see a decline in accuracy. The
usual perceptron rule which originally achieved 92% accuracy is now only reaching 88-89%. The
optimal rule reached a similar 89% accuracy.

Note that this “optimal” rule is only optimal with respect to the MSE loss, which in general is not
particularly well-suited for classification tasks. Additionally, this rule is not necessarily of the same
sign pattern

B Mathematical proofs

The next theorem is inspired by Freund and Schapire (1999).
Theorem 4. Let (x1, y1), . . . , (xm, ym) be a training data set in <n with binary labels such that
‖x‖ ≤ R, and D2 =

∑m
i=1 max{0, γ − yi(w∗ · x)} for some unit vector w∗. Suppose we sequentially

apply an output layer rule of the form [−a, a; b,−b], with b ≥ a > 0 to any example whose label is
incorrectly predicted or with γ of the threshold. Then the number of incorrectly predicted labels is
bounded by

O

(
b2

a2
· R

2 +D2 + 2γ

γ2

)
.

Proof of Theorem 1. For analysis, we assume that we compute the loss after applying the update
rule to a random example. For the cross entropy loss, we minimize

L(r,W ) = Ex∼D
(
− log f`(x)(r,W, x) | p(x) 6= `(x)

)
Let `c(x) = 1 if `(x) = c and `c(x) = 0 otherwise. pc(x) is defined similarly for the prediction of x.
Since the rest of the network is fixed, we can view L and f as functions of just the output layer
weight matrix W , consisting of weight vectors wc for each output class c. Now fc is the output
neuron value for class c, i.e., the result of softmax applied to a linear combination of previous layer
outputs. So we have,

fc(r,W, x) =
ewc(r)·y∑
c′ e

wc′ (r)·y

where y is the vector of penultimate layer outputs and wc(r) is the weight after the rule update, i.e.,

wc(r) · y = η
∑
i

yi
∑

a,b∈{0,1}

r(a, b) Pr(y′i = a, pc(x) = b | p(x) 6= `(x)).

With f(z) = ezi/
∑
j e
zj , we have

∂(− ln f(x))

∂zj
=

∂

∂zj
(ln(

∑
k

ezk )− ln ezi)

=
ezj∑
k e

zk
− χ(i = j).

We then compute the gradient of L with respect to r:

∂L

∂r(a, b)
= Ex∼D

(
−
∂ log f`(x)(r, w, x)

∂r(a, b)
| p(x) 6= `(x)

)
= Ex∼D

(∑
c

(
∂wc(r) · y
∂r(a, b)

(fc(r,W, x)− χ(c = `(x))

)
| p(x) 6= `(x)

)
.
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In the case of two labels, we get:

∂L

∂r(a, b)
= Ex∼D

(
f¯̀(x)(r,W, x)

(
∂w¯̀(x)(r) · y
∂r(a, b)

−
∂w`(x)(r) · y
∂r(a, b)

)
| p(x) 6= `(x)

)
.

where ¯̀(x) is label opposite `(x). Note that

∂wc(r) · y
∂r(a, b)

= η
∑
i

Ey′(χ(y′i = a, pc(x) = b, `c(x) 6= b))yi.

Therefore, ∂L
∂r(a,b)

is

ηEx∼D

(
f¯̀(x)(r,W, x)

∑
i

yi
(
Pr(y′i = a, pc̄(x) = b | `c̄(x) 6= b)− Pr(y′i = a, pc(x) = b | `c(x) 6= b)

))
.

From this, we can get the sign of each entry of the rule matrix. First, it is clear that the entries for
first and second columns (corresponding to b = 0, 1, i.e., the updates to the “correct" and “incorrect"
labels) have opposite sign. Next if the gradient for (0, b) is positive, then the gradient for (1, b) is
negative, since entries in the second row are negations of the first row minus a positive constant.
Then, since we use a standard squared Euclidean norm regularizer, at optimality, the overall gradient
is a matrix with the above sign pattern plus the current rule matrix r. For this to be zero (at a
point with zero gradient), the rule r and the gradient must have the opposite sign pattern. Let
P (a, c) = Pr(y′i = a, `(x) = c). Then, since every y′i used to update is misclassfied, each coefficient
r(1, 0) and multiplier P (1, c̄)− P (1, c) must have the same sign, so if we have r(1, 0) negative, then
the P term is negative and the gradient with a = 0, b = 0 has positive sign and the rule has negative
sign. The signs of the other entries follow similarly.

Proof of Theorem 3. The proof is inspired by the classical proof of the Perceptron algorithm. For
data labeled by an unknown linear threshold function sign(w∗ · x) with margin γ. we consider the
invariant w · w∗/‖w‖2. Then on a misclassified example x whose true label is 1, the update is

wi ←

{
wi − a if xi = −1

wi + b if xi = 1.

Therefore the numerator goes from w∗ · w to

w∗ · w − a
∑

i:xi=−1

w∗i + b
∑
i:xi=1

w∗i

=w∗ · w + a(w∗ · x) + (b− a)
∑
i:xi=1

w∗i .

Then, since x has label 1 we have −
∑
i:xi=−1 w

∗
i +

∑
i:xi=1 w

∗
i ≥ γ. Also, by assumption,

∑
i w
∗
i =∑

i:xi=−1 w
∗
i +

∑
i:xi=1 w

∗
i = 0. Therefore,

∑
i:xi=1 w

∗
i ≥ γ/2. It follows that the increase in w∗ · w

in t iterations is at least taγ. On the other hand, consider the squared norm of the denominator.
After one updated it goes from ‖w‖2 to∑

i:xi=−1

(wi − a)2 +
∑
i:xi=1

(wi + b)2

≤‖w‖2 + b2n+ 2b
∑
i:xi=1

wi − 2a
∑

i:xi=−1

wi

=‖w‖2 + b2n+ 2(b− a)
∑
i:xi=1

wi + 2a(w · x)

≤‖w‖2 + b2n+ 2(b− a)
∑
i:xi=1

wi

where the last step uses the fact that x is misclassified and so w · x < 0. We can thus bound
the increase in ‖w‖2 in t iterations by Ct for some constant C ≤ b2n + 2(b − a)

√
n. Now since

|w∗ · w|/‖w‖ ≤ 1, we must have
t2a2γ2 ≤ tC

or t < 2b2n
a2γ2

.
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Optimal Output Layer Rule for Mean Squared Error Loss

We derive an analytic solution to finding the optimal output layer rule given that all else is fixed.
By optimal, we mean the rule minimizing the mean-squared error loss of the model after training:

L(r) =
1

n

n∑
i=1

(
1

l

l∑
c=1

(fc(r, x
(i))− lc(x(i)))2

)

where we have n data points x(1) . . . x(n) and l labels. Unlike previously, we do not apply a final
softmax to the output, so

fc(r, x
(i)) = wc(r) · y(i)

where again y(i) is the vector of penultimate layer outputs corresponding to x(i) and wc(r) is the
final weight vector corresponding to label c.

Previously, we have only updated the weights of the output layer if our prediction was incorrect. In
this situation, we will instead be updating the weights for every example. Doing so, the final output
weights will be independent of the order of the data. Given that the initial weights are initialized at
0, the final weights can be explicitly described by

wc(r) = η
∑

a,b∈{0,1}

r(a, b)
∑

lc(x(i) 6=b)

χa(y(i))

where χ1(y) is the standard indicator function. That is (χ1(y))i = yi if yi 6= 0 and (χ1(y))i = 0
otherwise. On the other hand, (χ0(y))i = 1 if yi = 0 and 0 otherwise. Note that yi must be
nonnegative since it is the result of a ReLu activation.

For instance, consider the r(1, 0), and term contributing to wc(r):

r(1, 0)
∑

lc(x(i))6=c

χ1(y(i))

Recall that r(1, 0) describes the update of an edge (i, j) if node i fired, and node j is the output
node corresponding to the true label. We have lc(x) 6= 0 whenever the true label of x is equal to c.
And, we are updating the weight (wc(r))j by r(1, 0) whenever the jth node fires, as expected.

Now, we compute the gradient of L with respect to r:

∂L

∂r(a, b)
=

2

n · l
∑
i

∑
c

(wc(r) · y(i) − lc(x(i)))
∂wc(r) · y(i)

∂r(a, b)

Notice that for each i the last term is independent of r, and evaluates to a real number:

∂wc(r) · y(i)

∂r(a, b)
= y(i) ·

∑
lc(x(j))6=b

χa(y(j))

Finally, note that the remaining term wc(r) · y(i) − lc(x(i)) is a linear combination of the entries in r
plus some constant. Hence, so must be ∂L

∂r(a,b)
.

To find the rule r minimizing the loss, we simply set the gradient to zero. Since each ∂L
∂r(a,b)

= 0 is a
linear equation in r, we have a simple 4× 4 system of linear equations. Its solution is the optimal
rule.

Furthermore, it is computationally efficient to determine the optimal rule, taking O(n · l · d) time,
where d is the dimension of the penultimate layer, y. This can be done by directly computing the
4× 4 linear system as described above. Solving the system afterwards simply takes constant time.

16



Under review as a conference paper at ICLR 2021

C Evolution can simulate (a variant of) GD

We have shown that plasticity rules can be computed though GD in RNNs, and learning is enhanced
significantly as a result. On the other hand, plasticity in animals evolves. Can we demonstrate
analytically that, indeed, plasticity rules can also be learned through evolution? And is there a
connection between these two paths on plasticity, namely evolution and GD? Could it be that
evolution simulates GD in this case?2

Here we show, using the standard mathematical models of population genetics and evolution, that
any real parameter such as each of the plasticity coefficients can be adapted by evolution by having
such a parameter be the sum of many genetic contributions. This is rather common in genetics
— for example, height in mammals seems to be effected additively by over 200 genes, hence the
Gaussian nature of height distributions, see Signer-Hasler et al. (2012). Furthermore, we show that
the evolution equations ultimately point to GD!

Consider a model in which a haploid organism has n genes g1, . . . , gn each with two alleles {+ε,−ε},
and suppose that a parameter Y of the phenotype — for example, a coefficient of the plasticity rule
— is represented as the sum of these n values. To study the evolution of such organism, consider a
sequence of generations indexed by t, where at each generation we denote by xti the frequency of
allele i in the population, and thus for each individual in the population the expectation of Y is
Ȳ = ε ·

∑
i(2xi − 1). At each generation, a population is sampled from this distribution, and each

individual’s performance on the learning task partly determines the individual’s fitness — intuitively,
its expected number of offspring. We assume that the contribution of this particular parameter to
fitness is small — this is reasonable, as there are many other traits contributing to fitness, such as
locomotion and digestion. This is known as the weak selection regime of evolution Nagylaki (1993);
Chastain et al. (2014), and the population genetics equations of how the xi’s (the genetic make-up
of the species) evolve are:

xt+1
i =

1

Zt+1
[xti − θ · (L(Ȳ )− L(Ȳ|+ε))].

(A similar equation holds for the frequency of the other allele, (1−xi)t−1.) Zt+1 is a normalizer to be
defined soon, L(Y ) is the expected loss of the test data when the parameter is Y , and θ, assumed to
be a very small positive number, is the amount by which aptitude in this learning task will enhance
the individual’s chance of surviving and procreating. That is, the frequency of the i-th gene changes
by θ times the difference between some reference expected loss, taken to be L(Ȳ ), and the expected
loss when the i-th gene of parameter Y is conditioned to be +ε. The function of Zt+1 is to keep the
allele frequencies adding to one: Zt+1 = 1 + θ[xi(L(Ȳ )− L(Ȳ|+ε)) + (1− xi)(L(Ȳ )− L(Ȳ|−ε))].

Since 1
1+a

= 1− a+O(a2), the above expression is within O(θ2) equal to:

xti − θ · [(L(Ȳ )− L(Ȳ|+ε)(1− x2
i )− (L(Ȳ )− L(Ȳ|−ε))xi(1− xi)]

Now notice that Ȳ|ε, the expectation of Y conditioned on the value of the gene i being +ε, is
(Ȳ − ε(1− 2xi)) + ε. To see this, the parenthesis is the expectation of the remaining genes besides
gene i, and then ε is added to that; and similarly Ȳ|−ε = Ȳ − 2εx.

Finally, we can approximate the difference (L(Ȳ )−L(Ȳ − ε(1− x2
i )) by ∂L

∂Ȳ
ε(1− x2

i ) +O(ε2 · | ∂
2L
∂Ȳ 2 |),

and similarly for the other difference, to finally obtain, by the chain rule and the fact that ∂Ȳ
∂xi

= 2ε,

xt+1
i = xti − θ

∂L

∂xti
(2− 2xti) +O(θ2 + ε2 · | ∂

2L

∂Ȳ 2
|).

Notice now that, ignoring the error term, which is by assumption small, this is GD on gene frequency
xi, with the extra factor 2− 2xi, a factor which slows the GD at large values of xi and accelerates it
at small values. Alternatively, this equation is precisely GD on the new variable zi = 2xi − x2

i , the
integral of the factor 2− 2xi — note that, appropriately for a variable change, the defining function
of zi is strictly monotone for xi in [0, 1].

This result holds for the scenario in which each plasticity coefficient is represented by the additive
contributions of many genes. What happens in the setting, less wasteful genetically, in which these
genes are shared between the plasticity coefficients? That is, let us assume that each coefficient is a
random linear function of a random subset of these coefficients. That situation is much harder to
analyze and compare to GD, but it does work as an effective evolutionary mechanism, see Gorantla
et al. (2019), Theorem 1.

2Recall that Geoff Hinton opined in his Turing award lecture (Hinton, 2019) that “evolution can’t
get gradients.”
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