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Abstract
In this paper, we theoretically investigate the ef-
fects of noisy labels in offline alignment, with a
focus on the interplay between privacy and robust-
ness against adversarial corruption. Specifically,
under linear modeling assumptions, we present
a unified analysis covering both reinforcement
learning from human feedback (RLHF) and direct
preference optimization (DPO) under different
privacy-corruption scenarios, such as Local differ-
ential privacy-then-Corruption (LTC), where hu-
man preference labels are privatized before being
corrupted by an adversary, and Corruption-then-
Local differential privacy (CTL), where labels are
corrupted before privacy protection. Our analysis
leverages a reduction framework that reduces the
offline alignment problem under linear modeling
assumptions to parameter estimation in logistic
regression. This framework allows us to establish
an interesting separation result between LTC and
CTL, demonstrating that LTC presents a greater
challenge than CTL in offline alignment, even un-
der linear models. As important by-products, our
findings also advance the state-of-the-art theoreti-
cal results in offline alignment under privacy-only
or corruption-only scenarios.

1. Introduction
The alignment training process in language models that
utilizes a human-labeled preference dataset has been instru-
mental in producing more helpful, harmless, and honest
responses (Bai et al., 2022). Leveraging an offline prefer-
ence dataset, two prominent paradigms have emerged. The
first is the indirect approach, such as Reinforcement Learn-
ing from Human Feedback (RLHF) (Ziegler et al., 2019;
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Ouyang et al., 2022), which learns an intermediate reward
model before optimizing the policy. The second is the direct
approach, exemplified by Direct Preference Optimization
(DPO) (Rafailov et al., 2023), which directly optimizes the
policy via supervised learning on the preference dataset.

It is clear that the performance of both RLHF and DPO
is significantly influenced by the quality of the preference
labels in the dataset. However, in practice, these labels are
often noisy due to various factors (Lambert et al., 2023).
One potential noise source is corruption or misspecifica-
tion during label generation or data collection, e.g., data
poisoning attack (Casper et al., 2023). Additionally, pri-
vacy concerns in human preference (as illustrated in Feng
et al. (2024)) may prompt individuals to provide noisy or
privatized preferences rather than their true rankings.

From a theoretical perspective, understanding the impact
of these noisy labels—resulting from both corruption and
privacy—is essential for improving offline alignment. Re-
cent studies have made some initial attempts to address
this issue (Mandal et al., 2024; Chowdhury et al., 2024;
2023; Bukharin et al., 2024), but they face two fundamen-
tal limitations: (1) They often treat corruption and privacy
separately and focus exclusively on either RLHF or DPO,
while, in practice, noisy labels can stem from both factors
simultaneously; (2) The theoretical guarantees provided by
these studies are often suboptimal, even when privacy and
corruption are separately considered. Motivated by these
limitations and practical scenarios, we are particularly inter-
ested in the following question:

Can we provide a unified analysis of the interplay between
privacy and robustness in both RLHF and DPO?

We provide an affirmative answer to the above question by
presenting the following contributions:

1. A Unified Theoretical Framework. We present a unified
theoretical framework for analyzing the interplay between
privacy and robustness in offline alignment, covering both
RLHF and DPO. Specifically, for privacy protection, we con-
sider Local Differential Privacy (LDP) (Kasiviswanathan
et al., 2011; Duchi et al., 2013) for preference labels, while
for robustness, we consider the strong adversary corrup-
tion model (Diakonikolas & Kane, 2023), where an adap-
tively chosen fraction of labels can be corrupted. Our frame-

1



A Unified Theoretical Analysis of Private and Robust Offline Alignment: from RLHF to DPO

work can simultaneously handle three privacy-corruption
scenarios for both RLHF and DPO: Corruption-then-LDP
(CTL), LDP-then-Corruption (LTC), and Corruption-LDP-
Corruption (CLC), capturing different ways privacy and
corruption may interact in practice.

2. Reduction to Logistic Regression. Our unified analyt-
ical framework leverages a reduction that transforms the
offline alignment problem, under certain linear modeling
assumptions, into parameter estimation in logistic regres-
sion. This reduction enables us to establish suboptimality
bounds for both RLHF and DPO by focusing on parameter
estimation in logistic regression under private and corrupted
labels across different scenarios. Moreover, it highlights
key differences between RLHF and DPO, providing insights
into practical design considerations.

3. Separation between CTL and LTC. A key takeaway
from our study of the interplay between privacy and robust-
ness to corruption is that LTC is a more challenging setting
than CTL, illustrating that the order in which privacy and
corruption interact with each other significantly impacts the
performance of offline alignment.

4. New State-of-the-art Guarantees. Our results, when
reduced to privacy-only or corruption-only settings, set new
state-of-the-art results on theoretical guarantees for RLHF
and DPO. For instance, for DPO under “corrupted” labels,
our result is the first one that achieves O(1/

√
n) rate (where

n is the size of preference dataset), matching the standard
rate without noise. Additionally, as a by-product of our
reduction approach, we provide the first results on parameter
estimation error in logistic regression under both private and
corrupted labels, which may be of independent interest.

Finally, we remark that, as in many previous related works,
e.g., Zhu et al. (2023); Chowdhury et al. (2023), we con-
sider linear modeling assumptions for the sake of theoretical
analysis. However, we believe that our results could serve
as important benchmarks for more general function classes.
In fact, we have also verified our separation result between
CTL and LTC in the general case via experiments on GPT2-
large, see Appendix D for a detailed discussion.

2. Related Work
In the main body, we only focus on the most related work
on robust and private offline alignment, while relegating an
additional discussion to Appendix A.

Provably robust alignment under corruption. Mandal
et al. (2024) considers offline RLHF with corrupted pref-
erence datasets and establishes upper bounds on the sub-
optimality gap under various coverage assumptions of the
offline dataset. As will be discussed in Section 6.1, their
results are either suboptimal or lack rigor due to gaps in their

proof. For robust DPO, Chowdhury et al. (2024) considers a
strictly weaker corruption model and derives a suboptimal-
ity bound of rate O(1/n1/4). In contrast, our general result,
when reduced to the same corruption model, achieves a bet-
ter rate of O(1/

√
n). Bukharin et al. (2024) also considers a

specific corruption model in the label generation process of
RLHF but only provides the estimation error of the reward
model, without a performance guarantee for the final policy.

Provably Private Alignment. The most related work in this
aspect is Chowdhury et al. (2023), which mainly focuses
on the reward model estimation in RLHF under various
privacy constraints (i.e., local and central label differential
privacy). Our intermediate result on estimation error (Sec-
tion 5) recovers the one in Chowdhury et al. (2023) when the
corruption parameter is set to zero. Moreover, compared to
the implicit suboptimality bound in Chowdhury et al. (2023),
we provide the first explicit bound in terms of the relative
condition number (Agarwal et al., 2021), which parallels
similar results in standard (robust) offline RL (Zhang et al.,
2022), i.e., reward-based rather than preference-based.

3. Preliminaries
Background on Offline Alignment. The goal of offline
alignment is to further tune the Supervised Fine-Tuning
(SFT) model to match human preferences using an of-
fline preference dataset. The preference dataset D =
(si, a

0
i , a

1
i , yi)

n
i=1 consists of n samples, each has one con-

text/state si (e.g., prompt), two actions a0i , a
1
i (e.g., two

answers from language models) and label/preference feed-
back yi ∈ {0, 1} indicating which one is preferred by hu-
mans. We assume si to be sampled independently from a
distribution ρ. A widely used approach for modeling yi is
Bradley-Terry model (Bradley & Terry, 1952):

P
{
yi = l|si, a0i , a1i

}
=

exp(r⋆(si,a
l
i))

exp(r⋆(si,a0
i ))+exp(r⋆(si,a1

i ))
, (1)

for l ∈ {0, 1}, where r⋆(·, ·) is a ground truth reward model.

Based on this preference dataset, offline alignment aims to
learn a good policy π̂. In particular, the performance of
the learned policy π̂ is evaluated by the suboptimality gap
between π̂ and a comparator policy π†, defined as

SubOpt(π̂, π†) = J(π†)− J(π̂), (2)

where J(π) := Es∼ρ,a∼π(·|s) [r
⋆(s, a)] and π† is not neces-

sarily the optimal policy.

RLHF and DPO. As already mentioned, there are two
major paradigms in alignment for finding π̂: indirect and di-
rect approaches. The former, exemplified by RLHF (Ziegler
et al., 2019), involves an intermediate reward model learning
process from preference dataset D before the policy opti-
mization. The latter, represented by DPO (Rafailov et al.,
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2023), employs a direct policy optimization, i.e., using a
supervised-learning loss function to optimize the policy di-
rectly over the preference dataset D.

Privacy Protection in Human Feedback. The prefer-
ence signal yi in D could reveal sensitive personal infor-
mation (Feng et al., 2024; Chowdhury et al., 2023), hence
requiring a rigorous privacy protection. To this end, we con-
sider the local label Differential Privacy (DP) (Chaudhuri &
Hsu, 2011; Ghazi et al., 2021), which means that the learner
now only has access to a privatized label rather than the raw
one. More specifically, we have the following definition.

Definition 3.1 (Label DP in Local Model (Chowdhury et al.,
2023)). Let ε > 0 and δ ∈ [0, 1]. If each label is privatized
by a local randomizer R, which satisfies for any y, y′ and
any subset S in the range of R that

P{R(y) ∈ S} ≤ eε · P{R (y′) ∈ S}+ δ,

then we say R is an (ε, δ)-label differentially private local
randomizer, and this privatized dataset is called label-private
preference dataset. The entire alignment process that oper-
ates with the privatized dataset is said to satisfy local label
DP. When δ = 0, we simply say it is a ε-local label DP.

Remark 3.2 (Randomized Response). Given the binary data
of the true label, we would like to maintain the binary data
property after privatization. Thus, we will adopt the stan-
dard randomized response mechanism (Warner, 1965) as
our local randomizer, which essentially injects controllable
noise in labels by a random flipping. Here, by “controllable,”
we mean the noise injection method, and noise level is under
our control based on the privacy parameter ε.

Corruption in Human Feedback. The human feedback
yi can often be noisy and even be corrupted in the source
or during the data collection process, which deviates from
the assumed true generation process in (1). To this end,
the final learned policy π̂ needs to be robust with respect
to corruption in labels. We consider a corruption model
similar to strong corruption model from robust statistics
literature (Diakonikolas & Kane, 2023), which roughly says
that an adversary can adaptively corrupt the labels of a
fraction of samples, by inspecting the samples.

Definition 3.3 (Label Corruption Model). Let α ∈ [0, 1/2].
We consider an α-corruption model: an adversary can in-
spect the samples in a preference dataset of size n and then
assign any label value of 0 or 1 to at most αn samples.

Interplay between Privacy and Robustness. One key
theme of this paper is to study the interplay between pri-
vacy and robustness in offline alignment. In particular, we
are interested in the impact of the order between privacy
protection and corruption in the labels on the suboptimality
gap (cf. (2)), for both RLHF and DPO. To this end, we will
mainly consider the following settings.

Definition 3.4 (CTL and LTC). Given a raw preference
dataset D = (si, a

0
i , a

1
i , yi)

n
i=1, we consider the following

settings that differ in the order of privacy protection (see
Definition 3.1) and corruption (see Definition 3.3). In all
cases, the final input dataset for the learning algorithm will
be denoted by Din = (si, a

0
i , a

1
i , zi)

n
i=1.

Corruption-then-LDP (CTL): An adversary first corrupts
the labels in D to ȳi. Then, each label ȳi is privatized by a
local randomizer.

LDP-then-Corruption (LTC): Each label yi in D is first
privatized by a local randomizer, resulting in the private
label ỹi. Then, the preference dataset with private labels is
further corrupted by an adversary.

Remark 3.5. As a last setting, one may also consider the set-
ting where corruption happens both before and after privacy
protection, which turns out to be a simple combination of
the results for CTL and LTC, hence omitted in our results.

4. Reduction to Parameter Estimation
In this section, we will show that the key to establishing the
suboptimality guarantees in both RLHF and DPO is a tight
parameter estimation in logistic regression, under certain
modeling assumptions. This allows us to focus on a single-
parameter estimation problem under different settings (i.e.,
CTL and LTC) for both RLHF and DPO. More importantly,
this unified perspective also enables us to easily see the
connection and difference between RLHF and DPO.

Logistic Regression. Recall that given a feature vector
xi ∈ Rd, under logistic regression, the label yi ∈ {0, 1} is
generated according to the following probability:

P{yi = 1|xi} = σ (⟨θtrue, xi⟩) , (3)

where σ(z) = 1
1+e−z is the sigmoid function, θtrue ∈ Rd

is the unknown true parameter and ⟨·, ·⟩ denotes the inner
product of two vectors.

4.1. RLHF with a Linear Reward Model

We show that when the reward model in (1) is a linear func-
tion, the key to bounding the suboptimality gap in RLHF is
the parameter estimation in a logistic regression problem.
To start with, we formally state the linear reward model,
following common definitions used in prior work (Zhu et al.,
2023; Xiong et al., 2024; Cen et al., 2024; Chowdhury et al.,
2023; Mandal et al., 2024).

Assumption 4.1 (Linear Reward with Boundedness). We
assume that the ground truth reward r⋆ is linear, i.e.,
r⋆(s, a) = ⟨ϕ(s, a), θ⋆⟩, where ϕ(s, a) : S × A → Rd

is some known and fixed feature map and S, A are the
state space and the action space, respectively. We also as-
sume the following standard boundedness conditions. For
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all s ∈ S and a ∈ A, without loss of generality, we assume
∥ϕ(s, a)∥ ≤ 1. Moreover, we assume θ⋆ ∈ ΘB = {θ ∈
Rd : ⟨1, θ⟩ = 0, ∥θ∥ ≤ B}, where the condition ⟨1, θ⟩ = 0
is to ensure the identifiability of θ⋆.

Under the above assumption, we consider the standard of-
fline RLHF algorithm, but with an additional parameter η.
In particular, we consider two alternative outputs: When
η = 0, the output policy is π̂ = argmaxπ Ĵ(π) where
Ĵ(π) = Es∼ρ,a∼π(·|s)[⟨θ̂, ϕ(s, a)⟩], that is essentially a
greedy algorithm with respect to an estimate θ̂; When η = 1,
the output is π̂ = argmaxπ Ĵ(π), where the objective func-
tion is defined via the principle of pessimism (Zhu et al.,
2023; Jin et al., 2021; Li et al., 2024) as

Ĵ(π) = min
θ∈Θ(θ̂,λ)

Es∼ρ,a∼π(·|s)[⟨θ, ϕ(s, a)⟩]

− Es∼ρ,a∼πref (·|s)[⟨θ, ϕ(s, a)⟩],

by constructing a confidence set around an estimate θ̂:

Θ(θ̂, λ) =
{
θ ∈ ΘB |

∥∥θ̂ − θ
∥∥
Σ̂+λI

≤ Γ(n, d, δ, λ)
}
.

For completeness and due to space limitations, the full algo-
rithm is given in Algorithm 2 in the Appendix B.

Here, we use a reference policy πref because the confidence
set only measures the uncertainty of the difference in reward.
That is, it does not measure the uncertainty for a single state-
action pair.

We have the following key theoretical result on Algorithm 2,
with its proof in Appendix E.1.

Proposition 4.2. Under Assumption 4.1, the labels
{yi}i∈[n] in the preference dataset of RLHF follow the
logistic regression model with θtrue = θ⋆ and xi =
ϕ(si, a

1
i )− ϕ(si, a

0
i ). Algorithm 2 with η = 0 achieves

SubOpt(π̂, π⋆) ≤ 2
∥∥∥θ̂ − θtrue

∥∥∥
2
, (4)

where π⋆ = argmaxπ J(π). Further, let Σ̂ := 1
n

∑
i xix

⊤
i

and λ > 0 and suppose with probability at least 1− δ the
estimate θ̂ satisfies∥∥∥θ̂ − θtrue

∥∥∥
Σ̂+λI

≤ Γ(n, d, δ, λ) . (5)

Then, setting η = 1 in Algorithm 2, we have for any π† and
ρ, with probability at least 1− δ,

SubOpt(π̂, π†) ≤ 2Γ(n, d, δ, λ)

×
∥∥Es∼ρ[ϕ(s, π

†(s))− ϕ(s, πref(s))]
∥∥
(Σ̂+λI)−1 , (6)

for any reference policy πref , where we define ϕ(s, π(s)) :=
Ea∼π(·|s)[ϕ(s, a)].

We can further simplify the result in (6) by introducing the
following relative condition number, which can be viewed
as the natural extension of standard one (Zhang et al., 2022;
Agarwal et al., 2021) to the RLHF setting.

Definition 4.3 (Relative Condition Number). For π1, π2 and
a feature map ϕ, we define ψ(s, a, a′) = ϕ(s, a)− ϕ(s, a′)
and Σπ1,π2

as

Es∼ρ,a∼π1(·|s),a′∼π2(·|s)ψ(s, a, a
′)ψ(s, a, a′)⊤ . (7)

For any comparator policy π† and any given reference policy
πref , we define

κ(π†, πref) := sup
w∈Rd

w⊤Σdiff
π†,πref

w

w⊤Σdiff
πsft,πsft

w
. (8)

We can now simplify our previous suboptimality bound
using the relative condition number above in the following
corollary, with its proof given by Appendix E.2.

Corollary 4.4. Let the same assumption in Proposition 4.2
hold and further assume λ ≥ Ω

(
d
n · ln(n/δ)

)
. For any

given comparator policy π† with κ(π†, πref) <∞, we can
upper bound (6) as follows:

SubOpt(π̂, π†) ≤ 2
√
3 · Γ(n, d, δ, λ) ·

√
d · κ(π†, πref).

4.2. DPO with a Log-Linear Policy Class

In this section, we will show that for a log-linear policy class
(defined below), the suboptimality in DPO is also related to
the parameter estimation in logistic regression.

We begin with a brief recap of DPO, following the origi-
nal paper (Rafailov et al., 2023). The key idea is to repa-
rameterize the reward model by the optimal policy of a
KL-regularized problem. In particular, for the following
KL-regularized optimization objective (with β > 0)

Jβ(π) = Es∼ρ,a∼π(·|s)

[
r⋆(s, a)− β ln

π(a|s)
πsft(a|s)

]
,

the optimal solution has the closed-form expression

π⋆(a|s) = 1

Zβ(s)
πsft(a|s) exp(r⋆(s, a)/β), (9)

where Zβ(s) =
∑

a∈A πsft(a|s) exp(r⋆(s, a)/β) is the nor-
malization factor. This allows us to rewrite the reward r⋆ in
terms of π⋆ as follows

r⋆(s, a) = β ln
π⋆(a|s)
πsft(a|s)

+ β lnZβ(s) . (10)

With the above re-parametrization of the reward using policy
in (10) and BT preference model in (1), DPO (Rafailov et al.,

4



A Unified Theoretical Analysis of Private and Robust Offline Alignment: from RLHF to DPO

2023) directly minimizes the following log-loss function:

L(π;πsft) :=

−
n∑

i=1

1(yi = 0) lnσ
(
β ln

π(a0
i |si)

πsft(a0
i |si)

− β ln
π(a1

i |si)
πsft(a1

i |si)

)
−

n∑
i=1

1(yi = 1) lnσ
(
β ln

π(a1
i |si)

πsft(a1
i |si)

− β ln
π(a0

i |si)
πsft(a0

i |si)

)
.

(11)

In this paper, we consider the log-linear policy class for the
sake of theoretical analysis.

Assumption 4.5 (Log-linear Policy Class). We assume that
the optimal policy in (9) satisfies π⋆ ∈ Π and πsft ∈ Π
where

Π =

{
πθ(a|s) =

exp(⟨θ, ϕ(s, a)⟩)∑
a′∈A exp(⟨θ, ϕ(s, a′)⟩)

}
, (12)

is the log-linear class for some known feature map ϕ(s, a) :
S×A → Rd with ∥ϕ(s, a)∥ ≤ 1. Moreover, θ⋆ correspond-
ing to π⋆ satisfies that θ⋆ ∈ ΘB = {θ ∈ Rd : ⟨1, θ⟩ =
0, ∥θ∥ ≤ B}, where the condition ⟨1, θ⟩ = 0 is to ensure
the identifiability of θ⋆.

The above policy realizability assumption is equivalent to
the reward model realizability. In particular, by plugging
log-linear policy into (11), we can establish that the labels yi
again follow from the logistic regression in (3) with proper
choices of θtrue and xi. In particular, we have the following
formal statement, with its proof in Appendix E.3.

Proposition 4.6. Under Assumption 4.5, the labels
{yi}i∈[n] in the preference dataset of DPO follow the logis-
tic regression model with θtrue = β(θ⋆ − θsft) with β > 0
and xi = ϕ(si, a

1
i ) − ϕ(si, a

0
i ). Suppose with probability

at least 1− δ, there exists an estimate θ̂ that satisfies∥∥∥θ̂ − θtrue

∥∥∥
Σ̂+λI

≤ Γ(n, d, δ, λ), (13)

where Σ̂ := 1
n

∑
i xix

⊤
i and λ > 0. Then, let θ̂′ = θ̂/β +

θsft and λ ≥ Ω
(
d
n · ln(n/δ)

)
, the corresponding policy

π̂ = πθ̂′ with probability at least 1− δ satisfies

SubOpt(π̂, π⋆) ≤
√
3√
2
·
√
κΠ ·B · Γ(n, d, δ, λ),

where κΠ := maxπ∈Π κ(π, π) is the maximum relative
condition number across the entire policy class.

Remark 4.7. One can also rewrite the above bound using
the maximum value of the implicit reward function, rmax as

SubOpt(π̂, π⋆) ≤ c ·
√
κΠ · rmax

β
· Γ(n, d, δ, λ),

for some constant c > 0 and log-linear policy Π.

Remark 4.8 (single-policy vs. all-policy concentrability).
One nice thing about the above reduction is that it allows us
to easily see the key difference between RLHF and DPO. In
particular, from Corollary 4.4 and Proposition 4.6, we can
see that the key (and only) difference lies in the choice of
relative condition number (especially when considering the
typical scaling of B = O(

√
d) for the parameter), which is

also closely related to the “concentratability coefficient” in
offline RL (Munos, 2007; Jin et al., 2021). In particular, due
to the use of pessimism in offline RLHF, one can achieve
a bound in terms of κ(π†, πref), which is related to the
“single-policy concentratability” (Rashidinejad et al., 2021;
Jin et al., 2021) for any comparator policy π†. On the
other hand, due to the lack of uncertainty characterization
in DPO, one needs “all-policy concentratability” (Chen &
Jiang, 2019) κΠ in the upper bound, which is often much
larger. In fact, this kind of dependence in standard DPO is
shown to be necessary (Song et al., 2024).

5. Parameter Estimation Under Private and
Corrupted Labels

As motivated by the last section, we now turn to designing
algorithms for providing label privacy while accurately esti-
mating the unknown parameter θtrue in logistic regression,
even under corrupted labels. As we will see, the key to the
design is a new loss function, which allows us to adaptively
handle the privacy-robustness interplays in a unified way.
To facilitate the upcoming discussion, we formally state the
general problem setup for logistic regression under private
and corrupted labels.
Definition 5.1 (Private and robust parameter estimation
problem). Let D be a dataset of i.i.d samples {xi, yi}ni=1

where xi ∼ µ and yi follows from the logistic regres-
sion model in (3). The input dataset Din = {xi, zi}ni=1

is the private and corrupted version of D, following Def-
inition 3.4. The goal here is to design a local random-
izer R for privatizing labels (cf. Definition 3.1) as well
as an analyzer A that receives Din outputs an estimate θ̂
that is close to the underlying true parameter θtrue, mea-
sured by a proper choice of norm. We assume the following
boundedness conditions: for any i ∈ [n], ∥xi∥ ≤ 1 and
θtrue ∈ ΘB′ = {θ ∈ Rd : ⟨1, θ⟩ = 0, ∥θ∥ ≤ B′}.
Remark 5.2. The boundedness assumption essentially fol-
lows from the reduction in the last section. Here, we assume
∥xi∥ ≤ 1 rather than upper bounded by 2 for simplicity and
B′ can be properly chosen for RLHF and DPO, respectively.

5.1. Our Algorithm

As mentioned, our choice of local randomizer R for privacy
protection is the simple Random Response (RR) mechanism
with parameter ε > 0 (Warner, 1965). That is, the binary
output from RR equals the input with probability σ(ε) =
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Algorithm 1 Private and Robust Estimation
1: Procedure: ε-local label DP mechanism R
2: //Input: Ui ∈ {0, 1}, parameter: ε

3: Random response: Ũi =

{
Ui w.p. eε

eε+1

1− Ui w.p. 1
eε+1

4: Return Ũi

5: Procedure: Analyzer A
6: //Input: {(xi, zi)}ni=1, parameter: ε
7: Let c(ε) = 1

2σ(ε)−1 = eε+1
eε−1

8: Compute θ̂ = argminθ∈ΘB′ (θ) − 1
n

∑n
i=1 ℓ̃i(θ) where

ℓ̃i(θ) = ln(1− σ(θ⊤xi)) + (zi + σ(ε)− 1)c(ε)θ⊤xi

9: Return θ̂

eε

1+eε ; otherwise, the privatized binary output differs from
the input. RR satisfies the ε-local label DP guarantee (cf.
Definition 3.1) (Dwork & Roth, 2014).

We now turn to the design of the analyzer A, which is re-
sponsible for outputting an estimate θ̂. We first point out
that in the non-private non-corrupted case, the standard max-
imum likelihood estimator (MLE) that minimizes the loss
function L(θ) = − 1

n

∑n
i=1 ℓi(θ) enjoys a good concentra-

tion (Zhu et al., 2023) with respect to θtrue, where ℓi(θ) is
the standard log-loss:

ℓi(θ) = yi log(σ(θ
⊤xi)) + (1− yi) log(1− σ(θ⊤xi))

= log(1− σ(θ⊤xi)) + yiθ
⊤xi.

However, due to the private labels, our analyzer is designed
to minimize a new loss L̃(θ) = − 1

n

∑n
i=1 ℓ̃i(θ) where

ℓ̃i(θ) = ln(1−σ(θ⊤xi))+(zi+σ(ε)−1)c(ε)θ⊤xi, (14)

and c(ε) := 1
2σ(ε)−1 = eε+1

eε−1 . The key difference lies in the
“shifting and scaling” of the received labels zi, which, in fact,
enjoys exactly the same “shifting and scaling” intuition as
in mean estimation under RR, i.e., it is an unbiased estimate.
Putting the above choices of R and A together, yields the
final Algorithm 1 above.
Remark 5.3. We remark that a similar loss (up to some
scaling) has been considered in Chowdhury et al. (2023;
2024). However, they are motivated from a different per-
spective (e.g., logit) rather than our connection to standard
mean estimation under RR for local privacy (i.e., shifting
and scaling). The form we use here in (14) has not appeared
before. This new form not only makes it easy to see that our
new loss is an unbiased estimate of the standard log loss,
but also allows us to easily show that our single algorithm is
adaptive to different privacy-corruption settings, i.e., it does
not know the specific setting in advance.

5.2. Estimation Error Bounds

In this section, we will establish the estimation error bounds
achieved by Algorithm 1. Throughout this section, we will
let θ̂CTL, θ̂LTC be the estimates outputted by Algorithm 1
under CTL and LTC respectively. Our first result is the
following theorem, which characterizes the estimator error
in terms of a weighted norm, with proof in Appendix E.4.

Theorem 5.4. Consider the problem in Definition 5.1. For
any ε > 0, α,∈ [0, 1/2), δ ∈ (0, 1), and λ > 0, with
probability at least 1−δ, the output of Algorithm 1 achieves∥∥θ̂CTL − θtrue

∥∥
Σ̂+λI

≤ ΓCTL(n, d, δ, λ)

:= C

(√
α

γ
+
c(ε)

γ

√
d+ ln(1/δ)

n
+B′

√
λ

)
,∥∥θ̂LTC − θtrue

∥∥
Σ̂+λI

≤ ΓLTC(n, d, δ, λ)

:= C

(
c(ε)

√
α

γ
+
c(ε)

γ

√
d+ ln(1/δ)

n
+B′

√
λ

)
,

where Σ̂ = 1
n

∑n
i=1 xix

⊤
i , c(ε) = eε+1

eε−1 , γ = 1/(2 +
exp(−B′) + exp(B′)), and C is a universal constant.

Remark 5.5. First, when there is no corruption, our result
matches the one in previous work on private parameter esti-
mation (Chowdhury et al., 2023). Second, when corruption
exists, the order of corruption and local privacy matters. In
particular, LTC has an additional cost c(ε) in the first cor-
ruption term compared to CTL, highlighting the interplay
between privacy and robustness.

Our second result is a concentration result under L2-norm
with the additional condition of uniform coverage, which
has been leveraged in prior work as well (Mandal et al.,
2024; Zhang et al., 2022; Chowdhury et al., 2023).

Assumption 5.6 (Uniform Coverage). There exists a pos-
itive constant ξ > 0 such that the minimum eigenvalue
λmin(Σ) ≥ ξ, where Σ := Ex∼µ[xx

⊤].

Under the above assumption, we can have another estima-
tion error bound for the underlying parameter, which is now
in terms of L2-norm, with proof in Appendix E.5.

Theorem 5.7. Under Assumption 5.6, for any ε > 0, α ∈
[0, 1/2), δ ∈ (0, 1), and n ≥ 8 ln(d/δ)

ξ , with probability at
least 1− δ, Algorithm 1 under CTL and LTC achieves

∥∥θ̂CTL − θtrue
∥∥
2
≤ C

 α

γξ
+
c(ε)

γξ

√
ln 1

δ

n

 ,

∥∥θ̂LTC − θtrue
∥∥
2
≤ C

c(ε)α
γξ

+
c(ε)

γξ

√
ln 1

δ

n

 .

Here, we see that the separation between CTL and LTC still
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exists, with an additional factor of c(ε) in LTC, illustrating
a negative impact of LDP on robustness.

6. Putting It All Together: Suboptimality
under RLHF and DPO

In this section, we are ready to present our main results on
the suboptimality gap under RLHF and DPO by combining
our reduction results with estimation error bounds.

6.1. Private and Robust RLHF

Theorem 6.1. Under the conditions of Corollary 4.4 and
Theorem 5.4, RLHF (Algorithm 2) achieves the following
suboptimality with probability at least 1− δ

SubOptCTL(π̂, π
†) ≤ C

√
d · κ(π†, πref)

×

√
α

γ
+
c(ε)

γ

√
d+ ln 1

δ

n
+B

√
λ

 ,

SubOptLTC(π̂, π
†) ≤ C

√
d · κ(π†, πref)

×

c(ε)√α
γ

+
c(ε)

γ

√
d+ ln 1

δ

n
+B

√
λ

 ,

for any comparator policy π† and λ ≥ Ω
(
d
n · ln(n/δ)

)
.

The proof follows directly from the reduction result in Corol-
lary 4.4 and estimation error bound in Theorem 5.4. To the
best of our knowledge, this is the first result on the subop-
timality performance of RLHF under both privacy and cor-
ruption. In particular, let λ = Θ̃(d/(B2γ2n)) ≥ Ω̃(d/n),
the sample complexity part in the bounds (i.e., the last two
terms) approaches zero with a rate of Õ(

√
d/n), but with

a multiplicative factor of c(ε) that captures the cost of pri-
vacy. Meanwhile, due to strong corruption, a non-vanishing
bias term exists in all three cases in terms of corruption pa-
rameters, which illustrates an interesting interplay between
privacy and robustness, discussed below.

Separation between CTL and LTC. One key observation
is that LDP before corruption leads to an additional c(ε)
factor in the bias term, which mimics the same phenomena
in private and robust mean estimation problems (Zhou &
Zhang, 2024; Cheu et al., 2021).

Comparisons with Prior Work. We now highlight our
contributions even in robust-only or private-only RLHF, by
comparing our result above with existing ones where privacy
and robustness are separately considered.

1. Robust RLHF: To our best knowledge, only recent
work (Mandal et al., 2024) establishes theoretical subopti-
mality bounds for RLHF under adversarial corruption. In

particular, it takes a linear MDP view (rather than our lin-
ear bandit view) of RLHF under strong corruption of both
features and labels. Under the same relative condition num-
ber assumption, their dependence on α is O(α1/4) when
reduced from MDP to bandit. In contrast, our result gives
a better dependence O(

√
α), although only with label cor-

ruption. It is worth noting that this O(
√
α) dependence is

state-of-the-art even in the easier setting of standard offline
reinforcement learning (Zhang et al., 2022). Moreover, our
Algorithm 1 is much simpler than the one in (Mandal et al.,
2024). Thus, a fair conclusion here could be that our result
offers a better algorithm and theoretical result in the easier
label-only corruption setting.

2. Private RLHF: To our best knowledge, we are unaware
of prior work that explicitly states the private suboptimality
of RLHF in terms of relative condition number, often used
in the standard offline RL. The most related one is Chowd-
hury et al. (2023), which generalizes the non-private RLHF
in Zhu et al. (2023) to the same locally private one as ours.
However, both Chowdhury et al. (2023) and Zhu et al. (2023)
state their suboptimality as

SubOpt(π̂, π⋆) ≤∥Es∼ρ[ϕ(s, π
⋆(s))− v]∥(Σ̂+λI)−1

× 2F (n, d, δ, λ), (15)

for any chosen reference vector v ∈ Rd and some function
F . This is similar to our intermediate result in (6) but has
some key differences. One potential issue in (15) is that
it does not offer clear guidance on choosing the important
vector v. In particular, if v = 0, then the suboptimality
may not converge to zero as n → ∞. This is because in
both papers, λ has to be on the order of 1/n so as to ensure
that F (n, d, δ, λ) ≤ O(1/

√
n). However, in this case, if the

minimum eigenvalue of the empirical matrix Σ̂ is small, the
norm term ∥Es∼ρ[ϕ(s, π

⋆(s))− v]∥(Σ̂+λI)−1 can be on the
order of

√
n, given the choice of λ. To partially address

this, Zhu et al. (2023) suggest a heuristic way of selecting
v as the most common feature vector that appears in the
data set. In contrast, we consider a reference policy πref
and offer a theory-grounded rule for selecting it via relative
condition number along with Corollary 4.4.

Our next result is the suboptimality in RLHF under the
assumption of uniform coverage (cf. Assumption 5.6).

Theorem 6.2. Under the conditions of Proposition 4.2 and
for n ≥ 8 ln(d/δ)

ξ , RLHF (Algorithm 2) achieves the follow-
ing suboptimality with probability at least 1− δ

SubOptCTL(π̂, π
⋆) ≤ C

 α

γξ
+
c(ε)

γξ

√
ln 1

δ

n

 ,

SubOptLTC(π̂, π
⋆) ≤ C

c(ε)α
γξ

+
c(ε)

γξ

√
ln 1

δ

n

 .
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The proof follows directly from Proposition 4.2 and Theo-
rem 5.7. Compared with Theorem 6.1, the corruption term
becomes α (with a factor of 1/ξ) rather than

√
α while the

concentration part has no explicit dependence on d but with
1/ξ factor, which however implicitly depends on d. As
before, a separation exists between CTL and LTC, due to
the additional c(ε) factor in LTC. It is worth noting that
the O(α/ξ) dependence matches the best existing result in
standard offline RL under corruption in Zhang et al. (2022).

Comparisons with Prior Work. Mandal et al. (2024) also
consider the uniform coverage case and establish a bias
corruption term on the order of

√
dα1−o(1)

ξ when reduced
from their MDP to bandit setting. In contrast, in our label-
corruption setting, we have no explicit dependence on d
and a better dependence on α. Moreover, we highlight that
the missing dependence of 1/γ in Mandal et al. (2024) is
actually due to an error in their proof (see Appendix G for
a detailed discussion). That is, the correct bound of their
algorithm also has a 1/γ factor. In the context of private
RLHF under uniform coverage, our bound matches the state-
of-the-art in Chowdhury et al. (2023) when the corruption
parameter is zero.

6.2. Private and Robust DPO

Thanks to our reduction result, we can also leverage the es-
timation error bound to give the first result on suboptimality
in DPO-style algorithms under privacy and corruption.

Theorem 6.3. Under the conditions of Proposition 4.6, the
policy corresponding to the output of Algorithm 1 achieves
the following suboptimality with probability at least 1− δ

SubOptCTL(π̂, π
⋆) ≤ C ·B

√
κΠ

×

√
α

γ
+
c(ε)

γ

√
d+ ln 1

δ

n
+ βB

√
λ

 ,

SubOptLTC(π̂, π
⋆) ≤ C ·B

√
κΠ

×

c(ε)√α
γ

+
c(ε)

γ

√
d+ ln 1

δ

n
+ βB

√
λ

 ,

for β > 0, λ ≥ Ω
(
d
n · ln(n/δ)

)
, γ = 1/(2 + exp(−βB) +

exp(βB)), and some universal constant C > 0.

Remark 6.4. The policy in the above theorem in fact cor-
responds to the output of the algorithm rDPO proposed
in Chowdhury et al. (2024) with a log-linear policy class,
see Appendix C for more details. That is, while Chowdhury
et al. (2024) only shows a suboptimal rate for rDPO, we are
the first to attain O(1/

√
n) rate, see more discussion below.

The proof follows from Proposition 4.6 and Theorem 5.4
with B′ = O(βB). To our knowledge, this is the first the-
oretical result on DPO-style algorithms under privacy and

corruption. As before, we can see that the interplay of local
privacy and adversarial corruption introduces a separation
between CTL and LTC by a factor of c(ε). Moreover, our re-
sult also significantly advances the state-of-the-art for DPO-
style algorithms under privacy or corruption separately, as
discussed in detail below.

Private DPO. Consider α = 0, λ = Θ̃(d/(β2B2γ2n)) ≥
Ω̃(d/n), we obtain the first suboptimality for private DPO
with rate Õ(1/γ · c(ε)

√
d/n · √κΠ), where c(ε) is the ad-

ditional cost due to local privacy. The rate matches the best
possible non-private one as ε→ ∞ (Song et al., 2024).

Robust DPO. To the best of our knowledge, only the recent
work by Chowdhury et al. (2024) provides a formal theoreti-
cal bound on the suboptimality of rDPO under label corrup-
tion. In particular, it considers the random-flipping corrup-
tion model (i.e., with some known probability, the true label
is flipped). This is a much weaker model than ours and, in
fact, is equivalent to local privacy after re-parameterization.
Under this weaker model, Chowdhury et al. (2024) only
established a suboptimal rate of Õ(1/n1/4) in the general
case, while our result implies a rate of Õ(1/n1/2) (by using
our private DPO result above) under the same corruption
model. Moreover, moving from this weaker corruption
model to a corruption model in the robust statistics literature
(i.e., strong corruption model), our result above shows that
rDPO now suffers a non-vanishing bias term.

Practical Implementation and Experiments. Given that
Theorem 6.3 establishes the SOTA theoretical results of
rDPO in both private and corruption cases, under the log-
linear policy. One may also interested in its empirical per-
formance in general with neural nets as the policy class. We
have a series of experiments (see Appendix D for details),
which demonstrate some interesting results.

7. Discussion and Conclusion
While we present only upper bound results in the main body,
we briefly discuss their tightness here; for further details,
please refer to Appendix C. First, when α = 0, the ad-
ditional factor c(ε) due to privacy matches the minimax
lower bound established in Chowdhury et al. (2023). Fur-
thermore, the dependence on 1/γ = Θ(eB) = Θ(ermax)
appears in nearly all existing results on both offline and
online RLHF (Zhu et al., 2023; Zhan et al., 2023; Xie et al.,
2024; Pacchiano et al., 2021; Chen et al., 2022), stemming
from the non-linearity of the Bradley-Terry model. Second,
in the limit ε→ ∞ (non-private case), our dependence on
α is O(

√
α) and O(α/ζ) (under uniform coverage), both of

which align with state-of-the-art results in standard offline
RL settings, where rewards rather than preferences are ob-
served. In fact, we conjecture that the O(α/ζ) dependence
is optimal. Third, regarding the separation between CTL

8
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and LTC, the conclusion is nuanced. We tend to believe that
the additional factor c(ε) in the uniform coverage case is
tight, as it matches the known result in mean estimation and
offline bandits (Zhou & Zhang, 2024). However, under the
O(

√
α) dependence without coverage, we hypothesize that

achieving an O(
√
c(ε)) separation—rather than O(c(ε))—

is possible, presenting an exciting direction for future work.
Looking ahead, our reduction analysis and new results on
private and robust alignment may serve as key benchmarks
and inspire further research in this domain.
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A. Additional Related Work
We discuss here more relevant work that do not fit in the main text. In addition to the work discussed below, we refer readers
to Huang et al. (2024) for theoretical results on standard offline alignment, to the survey Casper et al. (2023) for a more
comprehensive overview of RLHF, and to Wang et al. (2024) for the overview of LLM alignment in general.

Provably robust alignment under corruption. We would like to remark that our use of the strong corruption model from
robust statistics literature is motivated by its popularity in robust offline and online reinforcement learning (i.e., when the
actual rewards are observed) (Zhang et al., 2022; 2021), as well as the recent interest in examining its interplay with local
differential privacy across various statistical tasks (Li et al., 2023; Cheu et al., 2021; Chhor & Sentenac, 2023). Moreover,
this corruption model allows us to consider corruption occurring in both data generation and collection.

Provably robust offline RL. Without privacy constraints, our work can be seen as a non-trivial extension of the results in
corruption-robust offline RL (Zhang et al., 2022) to the setting of offline RLHF, where only relative rankings, rather than
true rewards, are observed. As will be discussed in Appendix C, the lower bounds established for robust offline RL, along
with their proof techniques, can be applied or adapted to derive lower bounds for offline RLHF.

Robust logistic regression under corruption. Among those works on logistic regression under adversary corruption (Feng
et al., 2014; Prasad et al., 2020; Chen et al., 2020; Awasthi et al., 2022), the most relevant one is Awasthi et al. (2022)
that considers Binomial regression under label corruption, which includes logistic regression as a special case. Awasthi
et al. (2022) propose an alternating minimization method that achieves a recover rate of O(α ln(1/α)) in L2 norm, where
α ∈ [0, 1/2) is the corruption parameter. In contrast, our intermediate result in Section 5 implies a rate of O(α). Moreover,
our rate is achieved by the simple maximum likelihood estimator rather than the inefficient trimmed maximum likelihood
estimator in Awasthi et al. (2022).

B. Algorithm

Algorithm 2 Offline RLHF

1: Input: The current parameter estimate θ̂, the empirical covariance matrix Σ̂, the regularizer λ, the concentration bound
Γ(n, d, δ, λ), a reference policy πref and a tuning parameter η ∈ {0, 1}.

2: if η = 0 then
3: Ĵ(π) = Es∼ρ,a∼π(·|s)[⟨θ̂, ϕ(s, a)⟩]
4: return π̂ = argmaxπ Ĵ(π)
5: else
6: Construct confidence set

Θ(θ̂, λ) =
{
θ ∈ ΘB |

∥∥θ̂ − θ
∥∥
Σ̂+λI

≤ Γ(n, d, δ, λ)
}

Compute pessimistic expected value

Ĵ(π) = min
θ∈Θ(θ̂,λ)

Es∼ρ,a∼π(·|s)[⟨θ, ϕ(s, a)⟩]− Es∼ρ,a∼πref (·|s)[⟨θ, ϕ(s, a)⟩]

7: return π̂ = argmaxπ Ĵ(π)
8: end if

C. Discussions
In this section, we discuss the tightness of our suboptimality bounds. In particular, we primarily focus on the result in
Theorem 6.1, as it offers stronger guarantees compared to Theorem 6.3.

Dependence on 1/γ. The dependence on 1/γ = Θ(eB) = Θ(ermax) is present in nearly all existing results on both offline
and online RLHF (Zhu et al., 2023; Zhan et al., 2023; Xie et al., 2024; Pacchiano et al., 2021; Chen et al., 2022). This
stems from an intrinsic feature of the Bradley-Terry model, namely, the non-linearity of the sigmoid function.

The privacy cost of c(ε). Compared to the non-private (non-corrupted) case, our bound includes an additional multiplicative
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factor of c(ε), which we believe to be tight when ε ∈ [0, 1], i.e., c(ε) = Θ(1/ε). First, this factor appears even in simple
mean estimation, where a matching lower bound is provided in Duchi et al. (2018). Second, a more concrete argument can
be made by modifying the existing lower bound proof for the non-private case to show that c(ε) is necessary. Specifically,
the key insight is that any LDP mechanism is a contraction of the KL divergence, as stated in Duchi et al. (2018, Theorem 1).
Thus, in the lower bound proof for the private case, the non-private KL divergence is replaced with the private one, which is
smaller by a factor of (eε − 1)2, eventually leading to a factor of 1/ε.

The separation between CTL and LTC. We observe an additional factor of c(ε) in the corruption under LTC compared to
CTL. We conjecture that this is tight for all ε > 0, especially for the one in Theorem 6.2. First, the separation result is also
seen in the mean estimation problem and is shown to be tight (Zhou & Zhang, 2024). Second, a more concrete argument can
be made by modifying the lower bound for standard offline linear bandits under corruption (Zhang et al., 2022).1 This lower
bound is valid for offline RLHF under CTL,2 as offline RLHF is at least as hard as offline linear bandits, and CTL is harder
than corruption-only settings. To demonstrate the additional c(ε) factor under LTC, a key fact is that any LDP mechanism
contracts the total variation distance by a factor of c(ε) (cf. Lemma H.4). Using a standard coupling argument, one can then
derive a lower bound with the additional factor of c(ε) for the LTC setting.

Dependence on α. Our current
√
α dependence matches the best existing result, even in standard offline RL (Zhang et al.,

2022). However, this
√
α dependence does not align with the existing Ω(α) lower bound (Zhang et al., 2022). On the

other hand, under the uniform coverage assumption, our result in Theorem 6.2 achieves the optimal dependence on α.
Furthermore, we conjecture that the 1/ξ factor preceding α is optimal. Our reasoning is as follows: due to boundedness, we
have ξ ≤ 1/d. In the best case, when ξ = 1/d, our upper bound matches the lower bound of dα in Zhang et al. (2022),
which was established for standard offline linear RL, except for the difference of 1/γ due to the non-linearity.

Practical implementations. For the sake of theoretical analysis, we adopt linear modeling in the main paper. Nevertheless,
we mention that our proposed method can be readily extended to the case with general function classes (albeit losing the
current formal theoretical guarantees). Take DPO for an example, we can solve the following optimization problem:

π̂ = argmin
π∈Π

−

(
n∑

i=1

ln(1− σ(rπ,πsft

β,i )) + (zi + σ(ε)− 1)c(ε) ln

(
σ(rπ,πsft

β,i )

1− σ(rπ,πsft

β,i )

))
, (16)

where

rπ,πsft

β,i := β ln
π(a1i |si)
πsft(a1i |si)

− β ln
π(a0i |si)
πsft(a0i |si)

.

Some sanity checks are in order. First, for the standard case (i.e., ε → ∞ and α = 0), we have σ(ε) = c(ε) = 1 and
zi = yi, which leads us back to the standard DPO loss, see (11). Second, if we consider log-linear policy, (16) reduces
to (14) (up to some scaling of β). Third, if there is only privacy (or similar random flipping noise with a known flipping rate
as in Chowdhury et al. (2024)), one can verify that the above loss is equivalent to the one in Chowdhury et al. (2024) (see
their Eq. 12, which is called rDPO), up to some simple rescaling. Thus, in this sense, compared to the sub-optimal rate of
O(1/n1/4) for the log-linear policy class established in Chowdhury et al. (2024), we give the first O(1/

√
n) rate for private

or “robust” DPO. One can also follow a similar approach as above by simply replacing the policy-parameterized reward
rπ,πsft

β,i by a reward function in a reward function class for RLHF. Then, a similar method as in Algorithm 1 of Zhan et al.
(2023) can be adopted for introducing pessimism.

D. Experiments on DPO and rDPO under Privacy and Corruption
As mentioned in the last section, we provide the first results for rDPO (Chowdhury et al., 2024) under both privacy and
corruption with a log-linear policy class (cf. Theorem 6.3). In this section, we would like to empirically demonstrate its
performance with a general function class, i.e., neural nets.

1Note that the hard instance in Zhang et al. (2022) only requires corruption in rewards, not both features and rewards. Hence, it can be
used for our setting.

2With a factor of two in the sample complexity.
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D.1. Experiment Setup

Dataset. We utilize GPT-4o to generate a synthetic dataset, referred to as finance preference, which comprises
1697 preference samples. Each sample includes a prompt related to a financial scenario and two possible responses, where
“rejected” represents the high-risk option and “chosen” represents the low-risk option. This labeling can be viewed as
private or sensitive information. For illustrative examples from our dataset, please refer to Appendix I. For SFT training, we
construct the finance sft dataset by simply concatenating the prompt with the corresponding “chosen” response.

SFT Training. We begin by fine-tuning GPT2-large using the finance sft dataset to obtain the SFT policy, πsft. For
this, we directly utilize the SFT trainer from the Transformer Reinforcement Learning (TRL) library (von Werra et al., 2020),
with the hyperparameters listed in Table 3.

DPO and rDPO Training. For alignment training, we split the dataset into 85% for training, 5% for validation, and 10%
for testing. For DPO, we utilize the implementation provided in the TRL library, using the hyperparameters listed in Table 4.
Similarly, for rDPO, we leverage the TRL implementation, which corresponds to DPO with lose type set to “robust.” In
the private setting with a privacy budget of ε, one can simply set label smoothing to the flip rate, given by 1

eε+1 . This
setting recovers the same algorithm presented in our main paper when the policy class is log-linear. Finally, we use the same
set of hyperparameters for rDPO as in DPO training.

CTL and LTC Settings. The LDP mechanism follows the randomized response model, where the flip rate is given by 1
eε+1 .

For corruption, we assume that a randomly sampled subset of O(αn) labels are always flipped compared to the true label. To
implement both privacy and corruption, we introduce a mask variable initialized to 0 for each sample. The LDP mechanism
flips the mask variable with probability 1

eε+1 , while the corruption mechanism sets the mask to 1 with probability α. Finally,
after CTL or LTC processing, labels (“chosen” and “rejected”) are flipped if the corresponding mask value is 1. At this
point, an astute reader may notice that LTC results in a higher number of 1s in the final mask variables compared to CTL

Evaluation. We evaluate our trained models πDPO, πrDPO, and πSFT by generating responses for the test dataset using
the hyperparameters listed in Table 5. To assess performance, we employ the llama3:70b model as a judge, comparing
responses from πDPO and πrDPO against those from πSFT. Finally, we use the win rate from these comparisons as our
primary performance metric, following the methodology outlined in the DPO paper (Rafailov et al., 2023). We compute the
average and standard deviation across five seeds.

D.2. Results

Private Case. We first compare the performance of DPO and rDPO in the private setting, as shown in Table 1. Due
to the “shifting and scaling” loss used in rDPO, we observe that rDPO outperforms standard DPO in the private case.
Interestingly, we make an additional observation: in the non-private setting, if we still introduce random label flips at a rate
of approximately 1/(e1+1), rDPO achieves even better performance than DPO. This suggests that deliberately adding noise
to labels can enhance performance, resembling the well-known effect of label smoothing in classification tasks. We also
tend to believe that this injected noise also somewhat help to address the overoptimization issues in DPO-style algorithms.
We plan to further explore this phenomenon on a larger dataset. Finally, we note that this observation does not contradict our
main theoretical result, which provides an upper bound in the worst case.

Private and Corruption Cases. We now examine whether the separation between CTL and LTC persists beyond the
linear setting. As shown in Table 2, rDPO demonstrates better performance under CTL compared to LTC. Furthermore, the
performance gap widens as ε decreases. These observations are consistent with the theoretical insights derived from the
linear setting.

Table 1. Comparison of win rates (%) for DPO and rDPO across different values of privacy budget ε.

ε rDPO winrate (%) DPO winrate (%)

0.1 59.0 ± 4.7 55.4 ± 1.1
0.5 65.8 ± 5.6 60.4 ± 3.0
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Table 2. Comparison of win rates (%) for rDPO under CTL and LTC.

(ε, α) win rates (%) under CTL win rates (%) under LTC

(1, 0.1) 69.6 ± 5.1 65.4 ± 5.0
(0.5, 0.1) 64.4 ± 2.8 58.6 ± 2.6

E. Proofs
This section presents the proofs for our main results in previous sections.

E.1. Proof of Proposition 4.2

Proof. By definition, for any π†, we have

SubOpt(π̂, π†) = J(π†)− J(π̂)

= J(π†)− Ĵ(π†)︸ ︷︷ ︸
T1

+ Ĵ(π†)− Ĵ(π̂)︸ ︷︷ ︸
T2

+ Ĵ(π̂)− J(π̂)︸ ︷︷ ︸
T3

,

holds for any function Ĵ(·). For the first case when η = 0, we have Ĵ(π) = Es∼ρ,a∼π(·|s)[ϕ(s, a)
⊤θ̂]. By the greedy

algorithm in Algorithm 2, we have T2 ≤ 0. Further, under Assumption 4.1, we can rewrite T1 and T3 as

T1 = Es∼ρ,a∼π†(·|s)[ϕ(s, a)
⊤(θ⋆ − θ̂)], T3 = Es∼ρ,a∼π̂(·|s)[ϕ(s, a)

⊤(θ̂ − θ⋆)] .

By the boundedness assumption, both terms can be upper bounded by
∥∥θ̂ − θ⋆

∥∥
2
, which implies the first result by the fact

that θtrue = θ⋆.

For the second case when η = 1, we introduce the following notation

J(π; θ⋆) := Es∼ρ,a∼π(·|s)[ϕ(s, a)
⊤θ⋆] = J(π) . (17)

Thus, we have Es∼ρ,a∼π(·|s)[⟨θ, ϕ(s, a)⟩] − Es∼ρ,a∼πref (·|s)[⟨θ, ϕ(s, a)⟩] = J(π; θ) − J(πref ; θ). Let θinfπ =

argminθ∈Θ(θ̂,λ) J(π; θ)− J(πref ; θ). Hence Ĵ(π) = J(π; θinfπ )− J(πref ; θ
inf
π ). Then, we have

SubOpt(π̂, π†) = J(π†)− J(π̂)

= J(π†; θ⋆)− J(πref ; θ
⋆)− (J(π̂; θ⋆)− J(πref ; θ

⋆))

(a)

≤
(
J(π†; θ⋆)− J(πref ; θ

⋆)
)
−
(
J(π†; θinfπ† )− J(πref ; θ

inf
π† )
)

+
(
J(π̂; θinfπ̂ )− J(πref ; θ

inf
π̂ )
)
− (J(π̂; θ⋆)− J(πref ; θ

⋆))

(b)

≤
(
J(π†; θ⋆)− J(πref ; θ

⋆)
)
−
(
J(π†; θinfπ† )− J(πref ; θ

inf
π† )
)

=
(
J(π†; θ⋆)− J(πref ; θ

⋆)
)
−
(
J(π†; θ̂)− J(πref ; θ̂)

)
︸ ︷︷ ︸

T4

+
(
J(π†; θ̂)− J(πref ; θ̂)

)
−
(
J(π†; θinfπ† )− J(πref ; θ

inf
π†

)
︸ ︷︷ ︸

T5

,

where (a) holds by the greedy algorithm; (b) holds by the definition of θinfπ̂ and the fact that θ⋆ ∈ Θ(θ̂, λ) by (5). To bound
T4 and T5, we use the definition in (17), the concentration in (5) and the definition of Θ(θ̂, λ) with θinfπ† ∈ Θ(θ̂, λ), and
obtain that

T4 + T5 ≤ 2Γ(n, d, δ, λ)
∥∥Es∼ρ[ϕ(s, π

†(s))− ϕ(s, πref(s))]
∥∥
(Σ̂+λI)−1 ,

where we let ϕ(s, π(s)) := Ea∼π(·|s)[ϕ(s, a)]. This finishes the proof.
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E.2. Proof of Corollary 4.4

Proof. We need only focus on the last term in (6). Note that

Es∼ρ[ϕ(s, π
†(s))− ϕ(s, πref(s))] = Es∼ρ,a∼π†(·|s),a′∼πref (·|s)[ϕ(s, a)− ϕ(s, a′)] .

Thus, we have∥∥Es∼ρ[ϕ(s, π
†(s))− ϕ(s, πref(s))]

∥∥2
(Σ̂+λI)−1

=
∥∥Es∼ρ,a∼π†(·|s),a′∼πref (·|s)[ϕ(s, a)− ϕ(s, a′)]

∥∥2
(Σ̂+λI)−1

(a)

≤ 3
∥∥Es∼ρ,a∼π†(·|s),a′∼πref (·|s)[ϕ(s, a)− ϕ(s, a′)]

∥∥2
(Σdiff

πsft,πsft
+λI)−1

(b)

≤ 3 · κ(π†, πref) ·
∥∥Es∼ρ,a∼π†(·|s),a′∼πref (·|s)[ϕ(s, a)− ϕ(s, a′)]

∥∥2(
Σdiff

π†,πref

)−1

(c)

≤ 3 · κ(π†, πref) · Es∼ρ,a∼π†(·|s),a′∼πref (·|s)

[
(ϕ(s, a)− ϕ(s, a′))⊤

(
Σdiff

π†,πref

)−1

(ϕ(s, a)− ϕ(s, a′))

]
(d)
= 3 · κ(π†, πref) · trace(I),

where (a) holds by Lemma H.1 for λ ≥ Ω
(
d
n · ln(n/δ)

)
; (b) follows by the definition of κ(π†, πref) in (8); (c) holds by

Jensen’s inequality; (d) simply follows from the interchange of trace and expectation along with the cyclic property of trace.
Taking the square root, yields the required result.

E.3. Proof of Proposition 4.6

Proof. We first show that under Assumption 4.5, the labels are generated via a logistic regression model. This follows from
a direct computation. In particular, by (1), (10), (12) , we have

P
(
yi = 1|si, a0i , a1i

)
=

1

1 + exp(r⋆(si, a0i )− r⋆(si, a1i ))

= σ(r⋆(si, a
1
i )− r⋆(si, a

0
i ))

= σ

(
β ln

π⋆(a1i |si)
π⋆(a0i |si)

− β ln
πsft(a

1
i |si)

πsft(a0i |si)

)
= σ

(
⟨β(θ⋆ − θsft), ϕ(si, a

1
i )− ϕ(si, a

0
i )⟩
)
.

Thus, with θtrue = β(θ⋆ − θsft) and xi = ϕ(si, a
1
i )− ϕ(si, a

0
i ), we have that each label yi follows from logistic regression

in (3).

We now turn to the suboptimality part.

SubOpt(π̂, π⋆) = Es∼ρ,a∼π⋆ [r⋆(s, a)]− Es∼ρ,a∼π̂[r
⋆(s, a)]

(a)

≤ ∆maxEs∼ρ [TV(π⋆(·|s), π̂(·|s))]
(b)

≤ ∆maxEs∼ρ

[√
1/2 ·KL(π⋆(·|s), π̂(·|s))

]
(c)

≤ ∆max

√
1/2 · Es∼ρ [KL(π⋆(·|s), π̂(·|s))],

where in (a) we have ∆max = maxs,a (r
⋆(s, a)− β lnZβ(s)) ≤ 2βB, (b) follows from Pinsker’s inequality, and (c) holds

by Jensen’s inequality.

Then, since both π⋆ and π̂′ are log-linear policies with parameters θ⋆ and θ̂′, respectively, by a direct calculation and Taylor
expansion, we have

KL(π⋆(·|s), π̂(·|s)) = 1

2
(θ̂′ − θ⋆)⊤As(θ)(θ̂

′ − θ⋆),
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where As(θ) := Ea∼πθ(·|s)[ϕ(s, a)ϕ(s, a)
⊤] − Ea∼πθ(·|s)[ϕ(s, a)]Ea∼πθ(·|s)[ϕ(s, a)] for some θ between θ⋆ and θ̂′. By

independently sampling of a, a′ ∼ πθ(·|s), we have Es∼ρ[As(θ)] =
1
2Σ

diff
πθ,πθ

(cf. (7)). Combing all of the above with the
definition of κΠ in Definition 4.3, yields that

SubOpt(π̂, π⋆) ≤
√
κΠ · ∆max

2
√
2

·
∥∥∥θ̂′ − θ⋆

∥∥∥
Σdiff

πsft,πsft

.

Note that Σdiff
πsft,πsft

is the corresponding population matrix of Σ̂. Thus, by Lemma H.1, for λ ≥ Ω
(
d
n · ln(n/δ)

)
, we have

SubOpt(π̂, π⋆) ≤
√
κΠ ·

√
3∆max

2
√
2

∥∥∥θ̂′ − θ⋆
∥∥∥
Σ̂+λI

.

Finally, note that θ̂′ − θ⋆ = (θ̂ − θtrue)/β. Then, by (13) and ∆max ≤ 2βB, we have the final result

SubOpt(π̂, π⋆) ≤
√
3√
2
·
√
κΠ ·B · Γ(n, d, δ, λ) .

E.4. Proof of Theorem 5.4

Proof. We divide the proof into CTL, LTC, and CLC cases. Before that, we will present some common properties of our
new loss, which will be used in all three cases.

Recall that our new loss is given by

L̃(θ) = − 1

n

n∑
i=1

ℓ̃i(θ) where ℓ̃i(θ) = ln(1− σ(θ⊤xi)) + (zi + σ(ε)− 1)c(ε) · θ⊤xi,

where c(ε) := 1
2σ(ε)−1 = eε+1

eε−1 . We will need its gradient and Hessian in our proof, given by

∇θL̃(θ) = − 1

n

n∑
i=1

[
c(ε)(zi + σ(ε)− 1)− σ(θ⊤xi)

]
xi, (18)

∇2
θL̃(θ) =

1

n

n∑
i=1

[
σ(θ⊤xi)(1− σ(θ⊤xi))

]
xix

⊤
i , (19)

where we use the simple fact that σ′(z) = σ(z)(1− σ(z)).

Let ∆ := θ̂ − θtrue, by the fact that θ̂ minimizes the loss and (19), we have

γ ∥∆∥2Σ̂ ≤ L̃(θtrue +∆)− L̃(θtrue)− ⟨∇L̃(θtrue),∆⟩ ≤ −⟨∇L̃(θtrue),∆⟩

≤
∥∥∥∇L̃(θtrue)

∥∥∥
(Σ̂+λI)−1

∥∆∥Σ̂+λI , (20)

where γ = 1/(2 + exp(−B′) + exp(B′)) by the boundedness condition. Thus, the key is to bound the term∥∥∇L̃(θtrue)
∥∥
(Σ̂+λI)−1 , which will be handled separately for each case later.

For now, let us suppose we have the following high probability bound:∥∥∇L̃(θtrue)
∥∥
(Σ̂+λI)−1 ≤ f(n, d, δ, λ), (21)

for some function f , and proceed to establish the final bound. In particular, by the boundedness condition for ΘB′ and (20),
we have

γ ∥∆∥2Σ̂+λI ≤
∥∥∥∇L̃(θtrue)

∥∥∥
(Σ̂+λI)−1

∥∆∥Σ̂+λI + 4γλB′2,

which implies that ∥∥∥θ̂ − θtrue

∥∥∥
Σ̂+λI

= ∥∆∥Σ̂+λI ≤ C

(
1

γ
· f(n, d, δ, λ) +B′

√
λ

)
, (22)
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for some universal constant C.

Thus, it remains to establish the high probability bound in (21) under the three settings. To this end, we will fully utilize the
following claims. See Appendix F for the proofs.

Claim E.1. Let ηi be zero-mean i.i.d sub-Gaussian with parameter σ, condition on xi. Then, for any δ ∈ (0, 1) and λ > 0,
with probability at least 1− δ, ∥∥∥∥∥ 1n

n∑
i=1

ηixi

∥∥∥∥∥
(Σ̂+λI)−1

≤ C · σ ·
√
d+ ln(1/δ)

n
,

for some universal constant C.

Claim E.2. Let b = (b1, . . . , bn) be a vector that at least 1 − αn elements are zero, and the rest are bounded by some
constant ζ > 0, i.e., |bi| ≤ ζ. Then, we have ∥∥∥∥∥ 1n

n∑
i=1

bixi

∥∥∥∥∥
(Σ̂+λI)−1

≤ ζ
√
α .

With the above claims in hand, we are going to establish (21) for CTL, LTC and CLC, respectively.

CTL case. In this case, we rewrite the gradient in (18) as follows

∇L̃(θtrue) = − 1

n

n∑
i=1

[
c(ε)(zi + σ(ε)− 1)− ȳi + ȳi − yi + yi − σ(θ⊤xi)

]
xi,

where recall that under CTL, the true label yi is first corrupted to ȳi, which will then be privatized to generate zi. Thus, we
have ∥∥∇L̃(θtrue)

∥∥
(Σ̂+λI)−1

≤

∥∥∥∥∥ 1n∑
i

[c(ε)(zi + σ(ε)− 1)− ȳi]xi

∥∥∥∥∥
(Σ̂+λI)−1︸ ︷︷ ︸

Tprivacy

+

∥∥∥∥∥ 1n∑
i

(ȳi − yi)xi

∥∥∥∥∥
(Σ̂+λI)−1︸ ︷︷ ︸

Tcorruption

+

∥∥∥∥∥ 1n∑
i

[
yi − σ(θ⊤xi)

]
xi

∥∥∥∥∥
(Σ̂+λI)−1︸ ︷︷ ︸

Tstandard

. (23)

For Tprivacy and Tstandard, we can apply Claim E.1 due to zero-mean and sub-Gaussian with parameters O(c(ε)) and 1,
respectively. Thus, we have with probability at least 1− δ,

Tprivacy + Tstandard ≤ C1 · c(ε) ·
√
d+ ln(1/δ)

n
,

for some universal constant C1 > 0.

For Tcorruption, we can apply Claim E.2 with ζ = 1, and obtain that

Tcorruption ≤
√
α .

Thus, combining these bounds with (21) and (22), yields the bound under CTL.

LTC case. In this case, we rewrite the gradient in (18) as follows

∇L̃(θtrue) = − 1

n

n∑
i=1

[
c(ε)(zi + σ(ε)− 1 + ỹi − ỹi)− σ(θ⊤xi)

]
xi,

= − 1

n

n∑
i=1

[
c(ε)(zi − ỹi) + c(ε)(ỹi + σ(ε)− 1)− σ(θ⊤xi)

]
xi,

18
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where recall that under LTC, the true label yi is first privatized to be ỹi, which will then be corrupted to generate zi. Thus,
we have ∥∥∇L̃(θtrue)

∥∥
(Σ̂+λI)−1

≤

∥∥∥∥∥ 1n∑
i

[c(ε)(zi − ỹi)]xi

∥∥∥∥∥
(Σ̂+λI)−1︸ ︷︷ ︸

Tcorruption

+

∥∥∥∥∥ 1n∑
i

[
c(ε)(ỹi + σ(ε)− 1)− σ(θ⊤xi)

]
xi

∥∥∥∥∥
(Σ̂+λI)−1︸ ︷︷ ︸

Tprivacy

. (24)

Similarly, for Tprivacy, we can again apply Claim E.1 due to zero-mean and sub-Gaussian with a parameter O(c(ε)). Thus,
we have with probability at least 1− δ,

Tprivacy ≤ C1 · c(ε) ·
√
d+ ln(1/δ)

n
,

for some universal constant C1 > 0.

For Tcorruption, we can apply Claim E.2 with ζ = c(ε), and obtain that

Tcorruption ≤ c(ε)
√
α .

Thus, combining these bounds with (21) and (22), yields the bound under LTC.

CLC case. With the results of the previous two cases in hand, we can now easily analyze the CLC case, as it is essentially
the summation of the CTL and LTC. More specifically, we will now rewrite the gradient in (18) as follows

∇L̃(θtrue) = − 1

n

n∑
i=1

[
c(ε)(zi + σ(ε)− 1)− c(ε)(ỹi + σ(ε)− 1) + c(ε)(ỹi + σ(ε)− 1)− ȳi + ȳi − σ(θ⊤xi)

]
xi

= − 1

n

n∑
i=1

[
c(ε)(zi − ỹi) + c(ε)(ỹi + σ(ε)− 1)− ȳi + ȳi − σ(θ⊤xi)

]
xi,

where recall that under CLC, the true label is first corrupted to ȳi (with parameter α1) and then it is privatized to ỹi, which
will then further corrupted to zi (with parameter α2). By a direct utilization of the bounds in (24) and (23) (along with
c(ε) ≥ 1), we have with probability at least 1− δ,

∥∥∇L̃(θtrue)
∥∥
(Σ̂+λI)−1 ≤ C ′ · c(ε) ·

√
d+ ln(1/δ)

n
+ c(ε)

√
α2 +

√
α1,

for some universal constant C ′. Thus, combining these bounds with (21) and (22), yields the bound under CLC.

E.5. Proof of Theorem 5.7

Proof. As before, we present some common steps and results in all three cases. Similar to (20), we have

γ ∥∆∥2Σ̂ ≤ L̃(θtrue +∆)− L̃(θtrue)− ⟨∇L̃(θtrue),∆⟩ ≤ −⟨∇L̃(θtrue),∆⟩ ≤
∥∥∥∇L̃(θtrue)

∥∥∥
2
∥∆∥2 .

Suppose for now we have the following high probability bound∥∥∇L̃(θtrue)
∥∥
2
≤ g(n, δ), (25)

for some function g, and proceed to establish the final bound. In particular, we need a lower bound on ∥∆∥2Σ̂ in terms
of ∥∆∥2. To this end, by Lemma H.3 with Xi = xix

⊤
i , H = 1, µmin = nξ, we have with probability at least 1 − δ,

λmin(Σ̂) ≥ ξ/2, when n ≥ 8 ln(d/δ)
ξ . Thus, we have

γξ

2
∥∆∥22 ≤ g(n, d, δ, λ) ∥∆∥2 ,
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which implies that ∥∥∥θ̂ − θtrue

∥∥∥
2
= ∥∆∥2 ≤ 2

γξ
g(n, δ) . (26)

Thus, it only remains to establish the bound in (25) under three cases. To this end, we will leverage the following two claims,
the counterparts of our previous two claims, but in L2 norm.

Claim E.3. Let ηi be zero-mean i.i.d sub-Gaussian with parameter σ, condition on xi. Then, for any δ ∈ (0, 1) and λ > 0,
with probability at least 1− δ, ∥∥∥∥∥ 1n

n∑
i=1

ηixi

∥∥∥∥∥
2

≤ C · σ ·
√

1 + ln(1/δ)

n
,

for some universal constant C.

Claim E.4. Let b = (b1, . . . , bn) be a vector that at least 1 − αn elements are zero, and the rest are bounded by some
constant ζ > 0, i.e., |bi| ≤ ζ. Then, we have ∥∥∥∥∥ 1n

n∑
i=1

bixi

∥∥∥∥∥
2

≤ ζα .

We are left to establish (25) for CTL, LTC, and CLC, respectively.

CTL case. Following the same process as before, replacing the weighted norm by L2 norm and leveraging the new claims,
yields the following result ∥∥∇L̃(θtrue)

∥∥
2
≤ g(n, δ) = C1 · c(ε) ·

√
1 + ln(1/δ)

n
+ α,

which implies the final result by (26).

LTC and CLC cases. Both of them follow the same process as above, which gives the final result by (26).

F. Proofs for Claims
Proof of Claim E.1. As in Zhu et al. (2023), the proof mainly utilizes the concentration in Lemma H.2. To this end, we let
X ∈ Rn×d where xi ∈ Rd is its i-th row and let η = (η1, . . . , ηn) be a column vector. Then, we have∥∥∥∥∥ 1n

n∑
i=1

ηixi

∥∥∥∥∥
2

Σ̂+λI

= η⊤Mη, where M :=
1

n2
X(Σ̂ + λI)−1X⊤.

With simple linear algebra, we can have

trace(M) ≤ d

n
, trace(M2) ≤ d

n2
, and ∥M∥ ≤ 1

n
.

Thus, by Lemma H.2, we have with probability at least 1− δ,∥∥∥∥∥ 1n
n∑

i=1

ηixi

∥∥∥∥∥
(Σ̂+λI)−1

≤ C · σ ·
√
d+ ln(1/δ)

n
,

for some universal constant C > 0.

Proof of Claim E.2. By a direct computation and recall M = 1
n2X(Σ̂ + λI)−1X⊤ with ∥M∥ ≤ 1/n in the above proof,

we have ∥∥∥∥∥ 1n
n∑

i=1

bixi

∥∥∥∥∥
2

(Σ̂+λI)−1

= b⊤Mb ≤ ∥M∥ ∥b∥2 ≤ 1

n
· αn · ζ2,

which implies the result by taking the square root.
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Proof of Claim E.3. The proof also relies on Lemma H.2. As before, we let X ∈ Rn×d where xi ∈ Rd is its i-th row and
let η = (η1, . . . , ηn) be a column vector. Then, we have∥∥∥∥∥ 1n

n∑
i=1

ηixi

∥∥∥∥∥
2

2

= η⊤Mη, where M :=
1

n2
XX⊤.

With simple linear algebra, we can have

trace(M) ≤ 1

n
, trace(M2) ≤ 1

n2
, ∥M∥ ≤ 1

n
.

Thus, by Lemma H.2, we have with probability at least 1− δ,∥∥∥∥∥ 1n
n∑

i=1

ηixi

∥∥∥∥∥
2

≤ C · σ ·
√

1 + ln(1/δ)

n
,

for some universal constant C > 0.

Proof of Claim E.4. This simply holds by algebra:∥∥∥∥∥ 1n
n∑

i=1

bixi

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥xi∥ |bi| ≤ ζα,

which holds by the boundedness assumption of ∥xi∥ ≤ 1.

G. Discussion on the Gap in Prior Work
As we have pointed out in the main paper, the current stated result in Mandal et al. (2024) (in particular, their Theorem 3.3)
misses the 1/γ factor. This is due to a gap in their proof of Lemma 3.2. This happens on the last chain of equations on Page
20. In particular, the first inequality below has the wrong direction.

= − 1

N

∑
n∈Ŝ∩T

1

(exp(−on⟨θ, x⟩/2) + exp(on⟨θ, x⟩/2))2
xnx

⊤
n

⪯ − 1

4N

∑
n∈Ŝ∩T

xnx
⊤
n ,

where they claim to use eu + e−u ≥ 2. Notice that due to the negative sign, the inequality direction should be reversed. In
order to have the right direction, we need to introduce γ, which in turn introduces 1/γ in the final bound.

H. Auxiliary Results
Lemma H.1 (Concentration of Covariances, Lemma 39 in (Zanette et al., 2021)). Let ϕ1, . . . , ϕn ∈ Rd be i.i.d samples
from a distribution µ with ∥ϕi∥ ≤ 1. Let Σ := Eϕ∼µϕϕ

⊤ be the population matrix. If λ ≥ Ω
(
d
n · ln(n/δ)

)
, then with

probability at least 1− δ,

1

3
(Σ + λI) ⪯

(
1

n

n∑
i=1

ϕiϕ
⊤
i + λI

)
⪯ 5

3
(Σ + λI) .

Lemma H.2 (Tail bound for quadratic forms, Theorem 1 in (Hsu et al., 2011)). Let A ∈ Rm×n be a matrix and let
Σ := A⊤A. Suppose {xi}ni=1 is i.i.d3 sub-Gaussian with parameter σ and let x = (x1, . . . , xn) be a column vector. Then,
for any δ ∈ (0, 1), with probability at least 1− δ,

∥Ax∥2 = x⊤Σx ≤ σ2
[
trace(Σ) + 2

√
trace(Σ2) ln(1/δ)) + 2 ∥Σ∥ ln(1/δ)

]
.

3The original version can handle non-independent case.
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Lemma H.3 (Matrix Chernoff, Theorem 5.1.1 in (Tropp, 2015)). Consider a finite sequence {Xi} of independent random,
symmetric matrices in Rd×d. Assume that λmin(Xi) ≥ 0 and λmax(Xi) ≤ H for each i. Let Y =

∑
iXi and µmin denote

the minimum eigenvalue of the expectation E [Y ], i.e., µmin = λmin(
∑

i E [Xi]). Then, for any ε ∈ (0, 1), it holds

P {λmin(Y ) ≤ εµmin} ≤ d · exp
(
−(1− ε)2

µmin

2H

)
.

Lemma H.4 (Corollary 2.9 in (Kairouz et al., 2014)). For any ε > 0, let Q be any ε-LDP mechanism. Then, for any pair of
distributions P1 and P2, the induced marginals M1 and M2 via Q satisfy

TV(M1M2) ≤
eε − 1

eε + 1
TV(P1P2) .

I. Additional Details on Experiments
I.1. Samples in Our Dataset

Below, we present a selection of examples from our generated financial dataset across various categories. Each example
demonstrates a prompt alongside “Chosen” and “Rejected” responses, illustrating the alignment of decisions with risk levels
and priorities.

Category: Lifestyle & Personal Planning
Prompt: “You’re saving $3,000 to host a family talent show. How do you proceed?”
Chosen: “Rent a small venue and create DIY props and prizes.”
Rejected: “Spend on professional staging and lighting for a one-time event.”

Category: Home Improvement & Maintenance
Prompt: “You’re saving $10,000 to add an outdoor kitchen. How do you proceed?”
Chosen: “Install a grill, sink, and storage with weather-resistant materials.”
Rejected: “Spend on high-end appliances that exceed your budget.”

Category: Investments
Prompt: “You’re saving $12,500 to invest in green construction funds. How do you proceed?”
Chosen: “Choose funds with diverse holdings in sustainable building materials.”
Rejected: “Invest in speculative green startups with limited financial history.”

Category: Small Business Ventures
Prompt: “You’re saving $10,000 to start a custom clothing line. How do you proceed?”
Chosen: “Focus on affordable designs and use an online platform to sell.”
Rejected: “Spend on a luxury boutique storefront before establishing demand.”

Category: Education & Skill Development
Prompt: “You’re saving $5,000 to attend a data visualization course. How do you proceed?”
Chosen: “Enroll in a course with interactive projects and industry relevance.”
Rejected: “Choose a program with limited hands-on training.”

Category: Debt Management
Prompt: “You’re saving $12,000 to pay off a business loan. How do you proceed?”
Chosen: “Apply the funds directly to reduce the principal and future interest.”
Rejected: “Use the funds for operational expenses while extending the loan term.”

Category: Miscellaneous
Prompt: “You want to save $4,500 to organize a youth art festival. How do you proceed?”
Chosen: “Partner with local sponsors and focus on cost-effective exhibits.”
Rejected: “Spend heavily on promotional campaigns without engaging artists.”
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These examples illustrate the structured nature of our dataset and its alignment with decision-making scenarios across
diverse financial categories.

I.2. Hyperparameters

The hyperparameters for the experiments are outlined below. Any hyperparameters not explicitly mentioned use the default
values in the TRL library.

Table 3. Hyperparameters used for SFT training.

Parameter Value

learning rate 1e-5
batch size 8
num train epochs 3

Table 4. Hyperparameters used for DPO and rDPO training.

Parameter Value

beta 0.1
learning rate 1e-6
batch size 8
num train epochs 1

Table 5. Hyperparameters used for response generation.

Parameter Value

temperature 0.25
max length 50
truncation True
do sample True
top k 30
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