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Abstract

In reinforcement learning, we typically refer to unsupervised pre-training when
we aim to pre-train a policy without a priori access to the task specification, i.e.,
rewards, to be later employed for efficient learning of downstream tasks. In single-
agent settings, the problem has been extensively studied and mostly understood.
A popular approach casts the unsupervised objective as maximizing the entropy
of the state distribution induced by the agent’s policy, from which principles and
methods follow. In contrast, little is known about state entropy maximization in
multi-agent settings, which are ubiquitous in the real world. What are the pros
and cons of alternative problem formulations in this setting? How hard is the
problem in theory, how can we solve it in practice? In this paper, we address these
questions by first characterizing those alternative formulations and highlighting
how the problem, even when tractable in theory, is non-trivial in practice. Then, we
present a scalable, decentralized, trust-region policy search algorithm to address
the problem in practical settings. Finally, we provide numerical validations to both
corroborate the theoretical findings and pave the way for unsupervised multi-agent
reinforcement learning via state entropy maximization in challenging domains,
showing that optimizing for a specific objective, namely mixture entropy, provides
an excellent trade-off between tractability and performances.

1 Introduction

Multi-Agent Reinforcement Learning [MARL, |Albrecht et al., |2024] recently showed promising
results in learning complex behaviors, such as coordination and teamwork [Samvelyan et al., [2019],
strategic planning in the presence of imperfect knowledge [Perolat et al.|[2022]], and trading [Johanson
et al., |2022]. Just like in single-agent RL, however, most of the efforts are focused on tabula rasa
learning, that is, without exploiting any prior knowledge gathered from offline data and/or policy
pre-training. Despite its generality, learning tabula rasa hinders MARL from addressing real-world
situations, where training from scratch is slow, expensive, and arguably unnecessary [[Agarwal et al.,
2022]. In this regard, some progress has been made on techniques specific to the multi-agent setting,
ranging from ad hoc teamwork [Mirsky et al.,2022] to zero-shot coordination [Hu et al., 2020, but
our understanding of what can be done instead of learning tabula rasa is still limited.

In single-agent RL, unsupervised pre-training frameworks [[Laskin et al., 2021]] have emerged as a
viable solution: a policy is pre-trained without a priori access to the task specification, i.e., rewards,
to be later employed for efficient learning of downstream tasks. Among others, state-entropy
maximization [Hazan et al., 2019, |[Lee et al.| [2019] was shown to be a useful tool for policy pre-
training [Hazan et al., 2019, Mutti et al., 2021]] and data collection for offline learning [[Yarats et al.|
2022]. In this setting, the unsupervised objective is cast as maximizing the entropy of the state
distribution induced by the agent’s policy. Recently, the potential of entropy objectives in MARL was
empirically corroborated by a plethora of works [Liu et al., 2021, Zhang et al., | 2021b||Yang et al., 2021}
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Xu et al., 2024 investigating entropic reward-shaping techniques to boost exploration in downstream
tasks. Yet, to the best of our knowledge, the literature still lacks a principled understanding of how
state entropy maximization works in multi-agent settings, and how it can be used for unsupervised
pre-training. Let us think of an illustrative example that highlights the central question of this work:
multiple autonomous robots deployed in a factory for a production task. The robots’ main goal is to
perform many operations over a large set of products, with objectives ranging from optimizing for
costs and energy to throughput, which may change over time depending on the market’s condition.
Arguably, trying to learn each possible task from scratch is inefficient and unnecessary. On the other
hand, one could think of first learning to cover the possible states of the system and then fine-tune
this general policy over a specific task. Yet, if everyone is focused on their own exploration, any
incentive to collaborate with each other may disappear, especially when coordinating comes at a cost
for individuals. Similarly, covering the entire space might be unreasonable in most real-world cases.
Here we are looking for a third alternative.

Research Questions:

(Q1) Can we formulate a multi-agent counterpart of the unsupervised pre-training via state
entropy maximization in a principled way?

(Q2) How are different formulations related? Do crucial theoretical differences emerge?

(Q3) Can we explicitly pre-train a policy for state entropy maximization in practical
multi-agent scenarios?

(Q4) Do crucial differences emerge in practice? Does this have an impact on downstream
tasks learning?

Content Outline and Contributions. First, in Section 3] we address (Q1) by showing that the
problem can be addressed through the lenses of a specific class of decision making problems, called
convex Markov Games [Gemp et al., |2024] [Kalogiannis et al., |2025]], yet it can take different,
alternative, formulations. Specifically, they differ on whether the agents are trying to jointly cover
the space through conditionally dependent actions, or they neglect the presence of others and deploy
fully disjoint strategies, or they coordinate to cover the state space beforehand, but taking actions
independently as components of a mixture. We formalize these cases into three distinct objectives.
Then, in Section[d] we address (Q2), highlighting that these objectives are related through performance
bounds that scale with the number of agents. We also show that only the joint or mixture objectives
enjoy remarkable convergence properties under policy gradient updates in the ideal case of evaluating
the agents’ performance over infinite realizations (trials). However, as one shifts the attention to the
more practical scenario of reaching good performance over a handful, or even just one, trial, we show
that different objectives lead to different behaviors and mixture objectives do enjoy more favorable
properties. Then, in Section[5] we address (Q3) by introducing a decentralized multi-agent policy
optimization algorithm, called Trust Region Pure Exploration (TRPE), explicitly addressing state
entropy maximization pre-training over finite trials. Finally, we address (Q4) by testing the algorithm
on some simple yet challenging settings, showing that optimizing for a specific objective, namely
mixture entropy, provides an excellent trade-off between tractability and performances. We show that
this objective yields superior sample complexity and remarkable zero-shot performance when the
pre-trained policy is deployed in sparse reward downstream tasks.

2 Preliminaries

In this section, we introduce the most relevant background and the basic notation.

Notation. We denote [N] := {1,2,..., N} for a constant N < co. We denote a set with a calli-
graphic letter A and its size as |.A4|. For a (finite) set A = {1,2,...,4,...}, we denote —i = A/{i}
the set of all its elements but i. AT := xI_; A is the T-fold Cartesian product of A. The simplex
on Ais A4 := {pe[0,1]41]3,_ , p(a) = 1} and AE denotes the set of conditional distributions
p: A— Ap. Let X, X' random variables on the set of outcomes X" and corresponding probability
measures px, px’, we denote the Shannon entropy of X as H(X) = — >} . px(x)log(px(z))
and the Kullback-Leibler (KL) divergence as Dkr.(px|[px’) = X,cx Px (z)log(px (z)/px(2)).
We denote x = (X7, ..., Xr) arandom vector of size T and x[¢] its entry at position ¢ € [T7].



Interaction Protocol. As a model for interaction, we consider finite-horizon Markov Games [MGs,
Littman, [1994]] without rewards. AMG M := (N, S, A, P, u, T') is composed of a set of agents N,
aset S = x;enS; of states, and a set of (joint) actions A = X e[r]Ai, Which we assume to be
discrete and finite in size |S|, |.A| respectively. At the start of an episode, the initial state s; of M is
drawn from an initial state distribution . € As. Upon observing s1, each agent takes action a} € A;,
the system transitions to sy ~ P(+|s1, a1) according to the transition model P € A§, . The process
is repeated until st is reached and st is generated, being T' < oo the horizon of an episode. Each
agent acts according to a policy, that can be either Markovian when the action is only conditioned on
the current state, i.e., 7’ € Aél, or non-Markovian when the action is conditioned on the history, i.e.,
7 e AL, 4. |!| Also, we will denote as decentralized-information policies the ones conditioned on
either S; or S! x A! for agent i, and centralized-information ones the ones conditioned over the full
state or state-actions sequences. It follows that the joint action is taken according to the joint policy
Aé 3m= (ﬂ'z)ie[./\/}

Induced Distributions. Now, let us denote as S and .S; the random variables corresponding to the
joint state and i-th agent state respectively. Then the former is distributed as d™ € Ag, where d™(s) =
T 2iterr) Prise = s|m, p), the latter is distributed as dff € A, where d7 (s;) = 7 Y Pr(sei =
s;|m, p). Furthermore, let us denote with s, a the random vectors corresponding to sequences of
(joint) states, and actions of length T', which are supported in ST, AT respectively. We define p™ €
Astx ar, where p” (s, a) = [ [,cip) Pr(se = s[t], a; = a[t]). Finally, we denote the empirical state
distribution induced by K € N* trajectories {si }re[r] as dx (s) = 25 kel ] 2terr) L(sk[t] = ).

Convex MDPs and State Entropy Maximization. In the MDP setting (JAV| = 1), the problem
of state entropy maximization can be viewed as a special case of convex RL [Hazan et al., 2019,
Zhang et al.|, 2020l [Zahavy et al) 2021]. In such framework, the general task is defined via an
F-bounded concaveE] utility function F : As — (—o0, F], with F' < oo, that is a function of the
state distribution d™. This allows for a generalization of the standard RL objective, which is a linear
product between a reward vector and the state(-action) distribution [Puterman,|2014]. Usually, some
regularity assumptions are enforced on the function . In the following, we align with the literature
through the following smoothness assumption:

Assumption 2.1 (Lipschitz). A function F : A — R is Lipschitz-continuous for some constant
L < oo, or L-Lipschitz for short, if it holds | F(x) — F(y)| < Lz — y|1, V(z,y) € A2

More recently, Mutti et al.| [[2022a] noticed that in many practical scenarios only a finite number of
K € N* episodes/trials can be drawn while interacting with the environment, and in such cases one
should focus on d rather than d™. As a result, they contrast the infinite-trials objective defined as
Coo(m) := F(d™) with a finite-trials one, namely (x () := Ea,~pr. F(dx ), noticing that convex
MDPs (cMDPs) are characterized by the fact that (i (7) < (s (1), differently from standard (linear)
MDPs for which equality holds. In single-agent convex RL, state entropy maximization is defined as
solving a cMDP equipped with an entropy functional [Hazan et al.l|2019]], namely F(d™) := H (d™).

Interestingly, even in single-agent settings, the infinite-trials state entropy objective can be formulated
as a non-Markovian reward, as the value of being in a state depends on the states visited before and
after that stateE] As a consequence, it is not possible to derive Bellman operators of any kind [Takécs,
1966, [Whitehead and Lin, [1995| |[Zhang et al.| 2020]. Conversely, for finite-trials formulations, it
is possible to define a Bellman operator by extending the state representation to include the whole
trajectories of interaction. Unfortunately though, even this option is intractable as the size of such an
extended MDP will grow exponentially

3 Problem Formulation

This section addresses the first of the research questions outlined in the introduction.

'In general, we will denote the set of valid per-agent policies with II? and the set of joint policies with II.
’In practice, the function can be either convex, concave, or even non-convex. The term is used to distinguish
the objective from the standard (linear) RL objective. We will assume F is concave if not mentioned otherwise.
3By conditioning with respect to the policy, such a reward would result to be Markovian. However, the
contraction argument does not appear to hold for a Bellman operator over this kind of policy-based rewards.
“Indeed, the optimization of the finite-trial formulation is NP-hard [Mutti et al., 2023|].



(Q1) Can we formulate a multi-agent counterpart of the unsupervised pre-training
via state entropy maximization in a principled way?

In fact, when a reward function is not available, the core of the problem resides in finding a
well-behaved problem formulation coherent with the task. |Gemp et al| [2024] recently intro-
duced a convex generalization of MGs called convex Markov Games (cMGs), namely a tuple
Mz = (N,S, AP, F,u,T), that consists in a MG equipped with (non-linear) functions of the
stationary joint state distribution F(d™). We expand over this definition, by noticing that state
entropy maximization can be casted as solving a cMG equipped with an entropy functional, namely
F(-) := H(-). Yet, important new questions arise: Over which distributions should agents compute
the entropy? How much information should they have access to? Can we define objectives accounting
for a finite number of trials? Different answers depict different objectives.

Joint Objectives. The first and most straightforward way to formulate the problem is to define it as
in the MDP setting, with the joint state distribution simply taking the place of the single-agent state
distribution. In this case, we define infinite-trials and finite-trials Joint objectives, respectively

max G (m) = F(d7)] mas {e(m) = E_Fldo)} )
7T=(7T’€H")i€[N] 7T=(7T7'€H7')7;€[_N’] K~Dy

In state entropy maximization tasks, an optimal (joint) policy will try to cover the joint state space

uniformly, either in expectation or over a finite number of trials respectively. In this, the joint

formulation is rather intuitive as it describes the most general case of multi-agent exploration.

Moreover, as each agent sees a difference in performance explicitly linked to others, this objective

should be able to foster coordinated exploration. As we shall see, this comes at a price.

Disjoint Objectives. One might look for formulations that fully embrace the multi-agent setting, such
as defining a set of functions supported on per-agent state distributions rather than joint distributions.
This intuition leads to infinite-trials and finite-trials Disjoint objectives:

{ max (. (7', ) := F(d] 7‘)}1'6[/\/] { max (e (n',) = E ]:(dK’i)}ie[N] @

miellt miellt dx ~p’;*'
According to these objectives, each agent will try to maximize her own marginal state entropy
separately, neglecting the effect of her actions over others performances. In other words, we expect
this objective to hinder the potential coordinated exploration, where one has to take as step down as
so allow a better performance overall.

Mixture Objectives. At last, we introduce a problem
formulation that will later prove capable of uniquely
taking advantage of the structure of the problem.
First, we introduce the following:

Assumption 3.1 (Uniformity). The agents have the
same state space S; = S; = S,V(i,j) e N x N. ==1

|
o

Under this assumption, we will drop the agent sub-

script when referring to the per-agent states and use E=5 v a(§ )
S instead. Interestingly, this assumption allows us to o =
define a particular distribution: ﬂ_‘
. 1 - 5,
d"(s) := m Z di (5) € Ag. Figure 1: The interaction on the left induces
ie[N] different (empirical) distributions: Marginal

o o distributions for agent 1 and agent 2 over
We refer to this distribution as mixture distribution, their respective states; a joint distribution

given that it is defined as a uniform mixture of the per- gver the product space; a

agent marginal distributions. Intuitively, it describes over a common space, defined as the
the average probability over all the agents to be in  average. The mixture distribution is usually
a common state § € S, in contrast with the joint less sparse.

3One should notice that even in cMGs where this is not (even partially) the case, the assumption can be
enforced by padding together the per-agent states.



distribution that describes the probability for them to be in a joint state s, or the marginals that
describes the probability of each one of them separately. In Figure[I|we provide a visual representation
of these concepts. Similarly to what happens for the joint distribution, one can define the empirical
distribution induced by K episodes as d (§) = Wll Dieln] Ak,i(5) and d™ = Egeapr [dk]. The
mixture distribution allows for the definition of the Mixture objectives, in their infinite and finite trials
formulations respectively:

max {500(77) = F(J’r)} max {CNK(W) = E ]-"(JK)} 3)
m=(mtell?)ern m=(mtell?)je[n dg~p}

When this kind of objectives is employed in state entropy maximization, the entropy of the mix-
ture distribution decomposes as H(d™) = WH,Z%’GUW H(df) + ﬁ DielN] D.K.L(dﬂ\d”) and one
remarkable scenario arises: Agents follow policies possibly inducing lower disjoint entropies, but
their induced marginal distributions are maximally different. Thus, the average entropy remains low,
but the overall mixture entropy is high due to diversity (i.e., high values of the KL divergences). This
scenario has been referred to in |[Kolchinsky and Tracey|[2017] as the clustering scenario and, in the
following, we will provide additional evidences why this scenario is particularly relevant.

4 A Formal Characterization of Multi-Agent State Entropy Maximization

In the previous section, we provided a principled problem formulation of multi-agent state entropy
maximization through an array of different objectives. Here, we address the second research question:

(Q2) How are different formulations related? Do crucial theoretical differences emerge?

First of all, we show that if we look at state entropy maximization tasks specifically, i.e. cMGs M g
equipped with entropy functionals F(-) := H(-), all the objectives in infinite-trials formulation can
be elegantly linked one to the other though the following result:

Lemma 4.1 (Entropy Mismatch). For every cMG My, for a fixed (joint) policy ™ = (7*)iens the
infinite-trials objectives are ordered according to:

H(dﬂ-) < 1 U Jr U T
< 2 HUD) < H(dT) < sup H(dT) +log(IN]) < H(d") + log(IN
ol Vi i€[NV] o ) 12]3/\1:;] (dF) +log(JV) (d7) + log(|N'])

The full derivation of these bounds is reported in Appendix [B] This set of bounds demonstrates that
the difference in performances over infinite-trials objective for the same policy can be generally
bounded as a function of the number of agents. In particular, disjoint objectives generally provides
poor approximations of the joint objective from the point of view of the single-agent, while the
mixture objective is guaranteed to be a rather good lower bound to the joint entropy as well, since its
over-estimation scales logarithmically with the number of agents.

It is still an open question how hard it is to actually optimize for these objectives. Now, while general
c¢MGs M r are an interaction framework whose general properties are far from being well-understood,
they surely enjoy some nice properties. In particular, it is possible to exploit the fact that performing
Policy Gradient [PG, [Sutton et al., [1999| |Peters and Schaall 2008]] independently among the agents is
equivalent to running PG jointly, since this is done over the same common objective as for Potential
Markov Games [Leonardos et al.l 2022]] (see Lemma [B.5]in Appendix [B.T)). This allows us to provide
a rather positive answer, here stated informally and extensively discussed in Appendix [B.1}

Fact 4.1 ((Informal) Sufficiency of Independent Policy Gradient). Under proper assumptions, for ev-
ery cMG Mz, independent Policy Gradient over infinite trials non-disjoint objectives via centralized-

information policies of the form = = (7' € Ag‘l )ie[r] converges fast.

This result suggests that PG should be generally enough for the infinite-trials optimization, and thus,
in some sense, these problems might not be of so much interest. However, cMDP theory has outlined
that optimizing for infinite-trials objectives might actually lead to extremely poor performance as soon
as the policies are deployed over just a handful of trials, i.e. in almost any practical scenario [Mutti
et al.,2023]. We show that this property transfers almost seamlessly to cMGs as well, with interesting
additional take-outs:



Theorem 4.2 (Finite-Trials Mismatch in cMGs). For every cMG M x equipped with a L-Lipschitz
function F, let K € N* be a number of evaluation episodes/trials, and let 6 € (0, 1] be a confidence
level, then for any (joint) policy m = (m* € II')jc[nr), it holds that

2|S|1log(2T/0)

EOT/0) i (m) - G| < Ly HELBETSS)

ICk (7) — Coo(m)| < LT e 7
> x 2|S|log(27°/6)

In general, this set of bounds confirms that for any given policy, infinite and finite trials performances
might be extremely different, and thus optimizing the infinite-trials objective might lead to unpre-
dictable performance at deployment, whenever this is done over a handful of trials. This property
is inherently linked to the convex nature of cMGs, and Mutti et al.|[2023]] introduced it for cMDPs
to highlight that the concentration properties of empirical state-distributions [Weissman et al.|[2003]]
allow for a nice dependency on the number of trials in controlling the mismatch. In multi-agent
settings, the result portraits a more nuanced scene:

(i) The mismatch still scales with the cardinality of the support of the state distribution, yet, for joint
objectives, this quantity scales very poorly in the number of agentsﬂ Thus, even though optimizing
infinite-trials joint objectives might be rather easy in theory as Fact{4.T| suggests, it might result in
poor performances in practice. On the other hand, the quantity is independent of the number of
agents for disjoint and mixture objectives.

(ii) Looking at mixture objectives, the mismatch scales sub-linearly with the number of agents . In
some sense, the number of agents has the same role as the number of trials: The more the agents the
less the deployment mismatch, and at the limit, with AV — o0, the mismatch vanishes Completelym In
other words, this result portraits a striking difference with respect to joint objectives: When facing
state entropy maximization over mixtures, a reasonably high number of agents compared to the size
of the state-space actually helps, and simple policy gradient over mixture objectives might be enough.

Remark 1. Although we do not claim that the mixture objective is the one-fits-all solution, it is
nonetheless well-founded. In particular whenever the rewards the agents will face in downstream tasks
are equivalent for every agent, as it happens in relevant practical settings. When, on the other hand, the
agents will aim to visit every joint state while solving for a specific task the joint entropy objective
is preferable, although it may be impractical: We report in Appendix [A]an overall comparison of the
two options, providing a motivating example as well.

Remark 2. Fact[.]is valid for centralized-information policies only. Up to our knowledge, no
guarantees are known for decentralized-information policies even in linear MGs. Interestingly though,
the finite-trials formulation does offer additional insights on the behavior of optimal decentralized-
information policies: The interested reader can learn more about this in Appendix [B.2]

5 An Algorithm for Multi-Agent State Entropy Maximization in Practice

As stated before, a core drive of this work is addressing practical scenarios, where only a handful
of trials can be drawn while interacting with the environment. Yet, Th. implies that optimizing
for infinite-trials objectives, as with PG updates in Fact f.T| might result in poor performance at
deployment. As a result, here we address the third research question, that is:

(Q3) Can we explicitly pre-train a policy for state entropy maximization
in practical multi-agent scenarios?

To do so, we will shift our attention from infinite trials objectives to finite trials ones explic-
itly, more specifically on the single-trial case with K = 1. Remarkably, it is possible to

SIndeed, in the case of product state-spaces S = X je[A]S: the cardinality scales exponentially with the
number of agents |N].

"In this scenario, all the bounds of Lemma 4. 1|linking different objectives become vacuous.

8For instance, when for two agents the reward r(s, s') is different from 7(s’, s), i.e. the order matters.



directly optimize the single-trial objective in multi-agent cases with decentralized algorithms:
We introduce Trust Region Pure Exploration (TRPE), the first decentralized algorithm that ex-
plicitly addresses single-trial objectives in cMGs, with state entropy maximization as a spe-
cial case. TRPE takes inspiration from trust-region based methods as TRPO [Schulman et al.|
2015]] due to their ability to address brittle optimization landscapes in which a small change
into the policy parameters of each agent may drastically change the value of the objective func-
tion and the use of the trust region, like in TRPE, allows for accounting for this effectﬂWhile
the TRPE algorithm is new, the benefits of trust-region methods in multi-agent settings recently
enjoyed an ubiquitous success and interest for their surprising effectiveness [Yu et al., 2022].
In fact, trust-region analysis nicely align
with the properties of finite-trials formu-
lations and allow for an elegant exten-
sion to cMGs through the following.

Algorithm: Trust Region Pure Exploration
(TRPE)

1: Input: exploration horizon T, trajectories N,

Definition 5.1 (Surrogate Function over trust-region threshold 6, learning rate n

a Single Trial). For every cMG Mz 2: Initialize 8 = (Hi)ie[N]

equipped with a L-Lipschitz function F, 3: for epoch =1, 2, ... until convergence do

let dy be a general single-trial distribu- 4:  Collect N trajectories with mg = (ﬂ'éi)ie[ N

tion di = {di,dy;, 621}, then for any 5 for agent 7 = 1,2,... concurrently do
per-agent deviation over policies T = 6 Set datasets D* = {(s;,,ay,), (1" bne[N]
(w*, 7w~ "), ® = (7', 7w "), it is possible 7E b= 0, Gh, = @ '

8 W;é) < ddo

9

Compute £ (0} /65) via IS as in Eq. @)

fo define a per-agent Surrogate Func- while D1, (ﬂéi
tion L' (7/7) of the form L'(7/7) = B
Eg, ~pr p;/ﬂ}'(dl), where p' is the

per-agent importance-weight coefficient 10: 92-#1 = 92 + We; U(‘%/%)
P 7 (al[1]|s'[1]) 1: heh+1
Pz/m = P1 /pT = Hte[T] mi(ai[t]]si[t])" 12: end while
From this definition, it follows that — o 0,
. o X 14:  end for
the trust-region algorithmic blueprint :
15: end for

of|Schulman et al.|[2015]] can be directly
applied to single-trial formulations, with
a parametric space of stochastic differ-
entiable policies for each agent © = {r), : ' € ©" < R?}.

16: Output: joint policy mg = (7}, )icn]

In practice, KL-divergence is employed for greater scalability provided a trust-region threshold 9, we
address the following optimization problem for each agent:

max £'(6'/0") st Dgp(rh

= 7Té7) <6
e

where we simplified the notation by letting £7(8"/6%) := Li(mh,, o’ /7Tg)

The main idea then follows from noticing that the surrogate function in Def. [5.1] consists of an
Importance Sampling (IS) estimator [[Owen), [2013]], and it is then possible to optimize it in a fully
decentralized and off-policy manner [Metelli et al.,[2020, [Mutti and Restelli, | 2020]]. More specif-

ically, given a pre-specified objective of interest (; € {(1,(}, 51}, agents sample N trajectories
{(Sn>an) }nen) following a (joint) policy with parameters 8y = (65, 6y"). They then compute the
values of the objective for each trajectory, building separate datasets D* = {(s},,a;,), ({' }ne[n] and
using it to compute the Monte-Carlo approximation of the surrogate function, namely

Al (0t 7 1 i,mn n i,n 7 7 % 7 7 7
L (6h/90) = N Z pg;"//gé Cl ) pgz/g(i) = | | Traz (an [t] |Sn [t])/ﬁea (an [t] ‘Sn [t])v (4)
ne[N] te[T]

and (7' is the plug-in estimator of the entropy based on the empirical measure d; [Paninski, 2003]].

Finally, at each off-policy iteration h, each agent updates its parameter via gradient ascent 6", 1<
0 —H]V(,;'Lﬁi (6},/05) until the trust-region boundary is reached, i.e., when it holds Dxr, (7%, |7, ) > 6.

The psudo-code of TRPE is reported in Algorithm[I} We remark that even though TRPE is applied to

Previous works have connected the trust region with the natural gradient [Pajarinen et al.; 2019].

i —i

P
More precisely, L' (7j;, 7", /7o) = By propP1 T p T F(da).
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Figure 2: Single-trial Joint and Mixture Entropy induced by different objective optimization along a
T = 50 horizon. (Right) State Distributions of two agents induced by different learned policies. We
report the average and 95% confidence interval over 4 runs.

state entropy maximization, the algorithmic blueprint does not explicitly require the function F to be
the entropy function and thus it is of independent interest.

Limitations. The main limitations of the proposed methods are two. First, the Monte-Carlo
estimation of single-trial objectives might be sample-inefficient in high-dimensional tasks. However,
more efficient estimators of single-trial objectives remain an open question in single-agent convex RL
as well, as the convex nature of the problem hinders the applicability of Bellman operators. Secondly,
the plug-in estimator of the entropy is applicable to discrete spaces only, but designing scalable
estimators of the entropy in continuous domains is usually a contribution per se [Mutti et al.| 2021]].

6 Empirical Corroboration

In this section, we address the last research question, that is:

(Q4) Do crucial differences emerge in practice? Does this have
an impact on downstream tasks learning?

by providing empirical corroboration of the findings discussed so far. Especially, we aim to answer
the following questions: (Q4.1) Is Algorithm[I]actually capable of optimizing finite-trials objectives?
(Q4.2) Do different objectives enforce different behaviors, as expected from Section [3]? (Q4.3) Does
the clustering behavior of mixture objectives play a crucial role? If yes, when and why?

Throughout the experiments, we will compare the result of optimizing finite-trial objectives, either
joint, disjoint, mixture ones, through Algorithm[I]via fully decentralized policies. The experiments
will be performed with different values of the exploration horizon T, so as to test their capabilities in
different exploration efficiency regimes The full implementation details are reported in Appendix

Experimental Domains. The experiments were performed with the aim to illustrate essential features
of state entropy maximization suggested by the theoretical analysis, and for this reason the domains
were selected for being challenging while keeping high interpretability. The first is a notoriously
difficult multi-agent exploration task called secret room [MPE, |Liu et al.| 2021 ]E] referred to as
Env. (i). In such task, two agents are required to reach a target while navigating over two rooms
divided by a door. In order to keep the door open, at least one agent have to remain on a switch. Two
switches are located at the corners of the two rooms. The hardness of the task then comes from the
need of coordinated exploration, where one agent allows for the exploration of the other. The second
is a simpler exploration task yet over a high dimensional state-space, namely a 2-agent instantiation
of Reacher [MaMuJoCo, Peng et al., 2021], referred to as Env. (ii). Each agent corresponds to one
joint and equipped with decentralized-information policies. In order to allow for the use of plug-in
estimator of the entropy [Paninski, |2003|], each state dimension was discretized over 10 bins.

State Entropy Maximization. As common for the unsupervised RL framework [Hazan et al., 2019
Laskin et al 2021} |Liu and Abbeel, [2021bl Mutti et al.,2021]], Algorithm E] was first tested in her

"The exploration horizon T, rather than being a given trajectory length, has to be seen as a parameter of the
exploration phase which allows to tradeoff exploration quality with exploration efficiency.

"2We highlight that all previous efforts in this task employed centralized-information policies. On the other
hand, we are interested on the role of the entropic feedback in fostering coordination rather than full-state
conditioning, thus we employed decentralized-information policies.
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Figure 3: Effect of pre-training in sparse-reward settings. (Left) Policies initialized with either
Uniform or TRPE pre-trained policies. (Right) Policies initialized with either Zero-Mean or TRPE
pre-trained policies. We report the average and 95% c.i. over 4 runs over worst-case goals.

ability to optimize for state entropy maximization objectives, thus in environments without rewards.
In Figure we report the results for a short, and thus more challenging, exploration horizon (T = 50)
over Env. (i), as it is far more interpretable. Other experiments with longer horizons or over Env. (ii)
can be found in Appendix|C] Interestingly, at this challenging exploration regime, when looking at
the joint entropy in Figure|2a] joint and disjoint objectives perform rather well compared to mixture
ones in terms of induced joint entropy, while they fail to address mixture entropy explicitly, as seen
in Figure 2b] On the other hand mixture-based objectives result in optimizing both mixture and
joint entropy effectively, as one would expect by the bounds in Th.[4.1] By looking at the actual
state visitation induced by the trained policies, the difference between the objectives is apparent.
While optimizing joint objectives, agents exploit the high-dimensionality of the joint space to induce
highly entropic distributions even without exploring the space uniformly via coordination (Fig. 2d);
the same outcome happens in disjoint objectives, with which agents focus on over-optimizing over
a restricted space loosing any incentive for coordinated exploration (Fig. [2¢). On the other hand,
mixture objectives enforce a clustering behavior (Fig. and result in a better efficient exploration

Policy Pre-Training via State Entropy Maximization. Importantly, while metrics in Fig. 2] are
indeed interesting qualitative metrics, especially to understand how the unsupervised optimization
process works, they do not fully capture the ultimate goal in a vacuum: the ultimate goal of unsu-
pervised (MA)RL is to provide good pre-trained models for (MA)RL. As such, the most important
experimental metric to look at is the return achieve in downstream tasks, where the policy optimizing
the mixture entropy fares well in comparison to others. Thus, we tested the effect of pre-training poli-
cies via state entropy maximization as a way to alleviate the well-known hardness of sparse-reward
settings. In order to do so, we employed a multi-agent counterpart of the TRPO algorithm Schulman
et al.| [2015]] with different pre-trained policies. First, we investigated the effect on the learning curve
in the hard-exploration task of Env. (i) under long horizons (T = 150), with a worst-case goal set
on the opposite corner of the closed room. Pre-training via mixture objectives still lead to a faster
learning compared to initializing the policy with a uniform distribution. On the other hand, joint
objective pre-training did not lead to substantial improvements over standard initializations. More
interestingly, when extremely short horizons were taken into account (1" = 50) the difference became
appalling, as shown in Fig.[3a} pre-training via mixture-based objectives lead to faster learning and
higher performances, while pre-training via disjoint objectives turned out to be even harmful (Fig.[3b).
This was motivated by the fact that the disjoint objective overfitted the task over the states reachable
without coordinated exploration, resulting in almost deterministic policies, as shown in Fig. [5]in
Appendix|C] Finally, we tested the zero-shot capabilities of policy pre-training on the simpler but high
dimensional exploration task of Env. (ii), where the goal was sampled randomly between worst-case
positions at the boundaries of the region reachable by the arm. As shown in Fig. 4pl both joint and
mixture were able to guarantee zero-shot performances via pre-training compatible with MA-TRPO
after learning over 2e4 samples, while disjoint objectives were not. On the other hand, pre-training
with joint objectives showed an extremely high-variance, leading to worst-case performances not
better than the ones of random initialization. Mixture objectives on the other hand showed higher
stability in guaranteeing compelling zero-shot performance. These results are the first to extend
findings from single-agent environments [Zisselman et al.| 2023|] to multi-agent ones.

BWhile it is true that mixture objectives optimization appears to lead to slower optimization, this is the result
of such pathological behaviors.



Takeaways. Overall, the proposed experiments managed to answer to all of the experimental
questions: (Q4.1) Algorithm []is indeed able to optimize for finite-trial objectives; (Q4.2) Mixture
objectives enforce coordination, essential when high efficiency is required, while joint or disjoint
objectives may fail to lead to relevant solutions because of under or over optimization; (Q4.3) The
efficient coordination through mixture objectives enforces the ability of pre-training via state
entropy maximization to lead to faster and better training and even zero-shot generalization.

7 Related Works

Below, we summarize the most relevant work investigating related concepts.

Entropic Functionals in MARL. A large plethora of works on both swarm robotics [McLurkin
and Yamins, 2005} [Breitenmoser et al., [ 2010] and multi-agent intrinsic motivation, such as [Igbal
and Sha, 2019} |Yang et al., 2021} Zhang et al.| 2021b} 2023} |Xu et al., [2024} [Toquebiau et al.| 2024],
investigated the effects of employing entropic-like functions to boost exploration and performances
in down-stream tasks. Importantly, these works are of empirical nature, and they do not investigate
the theoretical properties of cMGs or multi-agent state entropy maximization, nor they propose
algorithms able to pre-train policies without access to extrinsic rewards Finally, while a similar
notion of cMGs was proposed in [|Gemp et al., 2024} Kalogiannis et al., 2025], their contributions are
focused on the existence and computation of equilibria and performance of centralized algorithms
over infinite-trials objectives.

State Entropy Maximization. Entropy maximization in MDPs was first introduced in|{Hazan et al.
[2019] and then investigated extensively in various subsequent works [e.g., Mutti and Restelli, [2020}
Mutti et al.l 2021} 2022b.c, Mutti, 2023} |ILiu and Abbeell 2021b,a, |Seo et al., 2021, | Yarats et al., 2021},
Zhang et al.}|2021a} |Guo et al.|[2021} [Yuan et al.,[2022| Nedergaard and Cookl [2022} Yang and Spaan)
2023, [Tiapkin et al., {2023, Jain et al.,|[2023| |[Kim et al., 2023\ Zisselman et al., 2023} L1 et al., 2024
Bolland et al., 2024} Zamboni et al., [2024blal \De Paola et al., [2025]]. Its infinite-trials formulatio
can also be seen as a particular reward-free instance of state-entropy regularized MDPs [Brekelmans
et al) 2022| |Ashlag et al.| 2025]], although this reduction does not alleviate the aforementioned
criticalities in solving such problems in multi-agent settings. To the best of our knowledge, our work
is the first to study a multi-agent variation of the state entropy maximization problem.

Policy Optimization. Finally, our algorithmic solution (Algorithm[I)) draws heavily on the literature
of policy optimization and trust-region methods [Schulman et al., 2015]). Specifically, we considered
an IS policy gradient estimator, which is partially inspired by the work of Metelli et al.| [2020]], but
considers other forms of IS estimators, such as non-parametric k-NN estimators previously employed
in Mutti et al.|[2021]].

8 Conclusions and Perspectives

In this paper, we introduce a principled framework for unsupervised pre-training in MARL via
state entropy maximization. First, we formalize the problem as a convex generalization of Markov
Games, and show that it can be defined via several different objectives: one can look at the joint
distribution among all the agents, the marginals which are agent-specific, or the mixture which is a
tradeoff of the two. Thus, we link these three options via performance bounds and we theoretically
characterize how the problem, even when tractable in theory, is non-trivial in practice. Then, we
design a practical algorithm and we use it in a set of experiments to confirm the expected superiority
of mixture objectives in practice, due to their ability to enforce efficient coordination over short
horizons. Future works can build over our results in many directions, for instance by pushing forward
the knowledge on convex Markov Games, developing scalable algorithms for continuous domains, or
performing extensive empirical investigation over large scale problems. We believe that our work can
be a crucial step in the direction of extending policy pre-training via state entropy maximization in a
principled way to yet more practical settings.

“The interested reader can refer toMutti et al.| [2021]], Liu and Abbeel|[2021b] for an extensive investigation
of the fundamental differences between intrinsic motivation and state entropy maximization.

5Conversely, the finite-trial formulation targeted by Algorithmis not studied in the literature of regularized
MDPs.
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A Further Insights on the Unsupervised Objectives.

Motivating Example. Let us envision a team of agents in a "search and rescue” task. In a
specific building (environment) the target may be found in different place (different rewards) and the
unsupervised pre-training phase aims to prepare for all of them. Mixture entropy is a good surrogate
objective in this case, as the agents will split up into different portions of the buildings to traverse in
order to find the target quickly.

Clarification on the Ideal Objective: Joint and Mixture Objectives Comparison

As in single-agent settings, the goal of unsupervised (MA)RL via state entropy pre-training is to
learn exploration for any possible task while interacting with a reward-free environment. If the tasks
is assumed to be represented through state-based reward functions, the latter translates into state
coverage: The state entropy is a proxy for state coverage [Hazan et al.| 2019, Mutti et al., [2021}, [Liu
and Abbeel, 2021Db].

As a consequence, the most natural state entropy formulation in Markov games is the joint state
entropy. However, it comes with some important drawbacks:

» Estimation. The support of the entropy grows exponentially with the number of agents
|S| W1, so does the complexity of the entropy estimation problem [Beirlant et al., [1997];

« Concentration. The empirical entropy concentrates as v K1 for K trajectories (see
Thm. @.2);

* Redundancy. When Asm. 3.1 holds and the state space |S]| is the same for every agent, the
joint entropy may inflate state coverage as (s, s’) and (s', s) are different joint states.

In other words, the problem of optimizing the joint entropy suffers from the curse of multiagency,
which is particularly relevant in practice (while their difference might not be so relevant in ideal

settings, see Fact[d.T]and Thm. [B.6).

Another potential formulation is the mixture state entropy, which has the following properties:

* Estimation. The support of the entropy and therefore the estimation complexity do not
grow with the number of agents;

* Concentration. The empirical entropy concentrates as /(K |N])~! for K trajectories (see
Thm. @.2);
* Redundancy. For the mixture entropy objective, the joint states (s, s’) and (s', s) are

contributing in the same way; therefore, there is no difference in visiting one or the other.

The latter can be a limitation when we aim to explore all the possible joint states, e.g., when the
reward functions of the agents will be different in the eventual tasks. Yet, at least the mixture entropy
is also a lower bound to the joint entropy objective with a log(]NV|) approximation (see Lem. and
thus a valid proxy also in the latter case, given the favorable estimation and concentration properties.

B Proofs of the Main Theoretical Results

In this Section, we report the full proofing steps of the Theorems and Lemmas in the main paper.

Lemma 4.1 (Entropy Mismatch). For every cMG My, for a fixed (joint) policy m = (7%);ep the
infinite-trials objectives are ordered according to:

H(dﬂ)< 1 o Jm i u
T S e 2y HdD) < H(dT) < sup H(d]) + log(IN]) < H(d™) + log(INV
W] |N|i€%\:/] (df) < H(d") e (df) +log(IN]) < H(d") + log(IN])

Proof. The bounds follow directly from simple yet fundamental relationships between entropies of
joint, marginal and mixture distributions which can be found in |Paninski [2003]], [Kolchinsky and
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Tracey| [2017], in particular:

1 1

(a)
7Hd77 < —
TRy

a ~ b
2 H(d7) < H(d™) <
i€[N]

ST H(dF) + log(IN)

i€[N]

< sup H(dT) + log(IN]) < H(d") + log(I\])
i€[N]

where step (a) and (b) use the fact that d” (s) := Wll 2ie[n) 47 (8) is @ uniform mixture over the

agents, whose distribution over the weights has entropy log(J/NV|), so as we can apply the bounds
from Kolchinsky and Tracey|[2017]]. Step (c) uses the fact that H (d™) = >3, x) H(d] |dZ;), then
taking the supremum as first ¢ it follows that sup;e ) H(df ) = H(d™) =2 ;e[ H (d]|dZ;, dT) <
H (d™) due to non-negativity of entropy. O

Theorem 4.2 (Finite-Trials Mismatch in cMGs). For every cMG M x equipped with a L-Lipschitz
function F, let K € N be a number of evaluation episodes/trials, and let 6 € (0, 1] be a confidence
level, then for any (joint) policy m = (n* € II') e[, it holds that

2|S|log(2T/5) 2|S|log(27°/6)

G () = Con(m)| < LT i C [Gie(m) = G (m)| < LTy | T2,

x > 2|S|log(2T°/6)
€ (m) — Coo(m)| < LT TNE

Proof. For the general proof structure, we adapt the steps of Mutti et al.|[2022a]] for cMDPs to the
different objectives possible in cMGs. Let us start by considering joint objectives, then:

k() = Ge(@] = | | B [F(di)] - F(a)

dr~pk

< E [|F(dk) = F(d)l]

dr ~p%

(a) T s
€ E_ [Lldx~d|)<L B [ldx—d,]
K~PR dx ~p%

(b)
<L E [max lde,: — dfl] )
dr~p% | te[T]

where in step (a) we apply the Lipschitz assumption on F to write and in step (b) we apply a
maximization over the episode’s step by noting that dx = % ZtE[T] di and d™ = % ZtE[T] dy.
We then apply bounds in high probability

Pr(?el[aT}i |ldr,e —df |, = 6) < Pr(LtJ ldr,e —df |, = 6)

(c)
<>, Pr(ldis—dfl, > )
t

<7 Pr( s~ dfl, =€),

with € > 0 and in step (c) we applied a union bound. We then consider standard concentration
inequalities for empirical distributions [Weissman et al.,|2003]] so to obtain the final bound

2151 10g(2/8') ) <5 )

Pr( ldice = dil, = | 22

By setting ¢’ = §/T, and then plugging the empirical concentration inequality, we have that with
probability at least 1 — ¢

2|S[log(27°/5)

Gk () = Golm)| < LTy F2 220,

which concludes the proof for joint objectives.
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The proof for disjoint objectives follows the same rational by bounding each per-agent term separately
and after noticing that due to Assumption the resulting bounds get simplified in the overall
averaging. As for mixture objectives, the only core difference is after step (b), where di takes
the place of dx and d™ of d™. The remaining steps follow the same logic, out of noticing that the
empirical distribution with respect to d~ is taken with respect |NV|K samples in total. Both the two

bounds then take into account that the support of the empirical distributions have size |6~‘ | and not
|S]. O

B.1 Policy Gradient in cMGs with Infinite-Trials Formulations.

In this Section, we analyze policy search for the infinite-trials joint problem (4, of Eq. (I), via
projected gradient ascent over parametrized policies, providing in Th. the formal counterpart of
Fact[.T]in the Main paper. As a side note, all of the following results hold for the (infinite-trials)
mixture objective (5, of Eq. (3). We will consider the class of parametrized policies with parameters
0; € ©;, < R?, with the joint policy then defined as 75,0 € © = X ie[A1©i- Additionally, we will
focus on the computational complexity only, by assuming access to the exact gradient. The study of
statistical complexity surpasses the scope of the current work. We define the (independent) Policy
Gradient Ascent (PGA) update as:

1

67" = argmax (oo (mgn) +( Vo Co(mor ), 6 =07 ) =5 [0 =67 | = Tlo, {07 + 1V, Colmon)} (©)
0;,€0;

where Ilg, {-} denotes Euclidean projection onto ©;, and equivalence holds by the convexity of ©;.

The classes of policies that allow for this condition to be true will be discussed shortly.

In general the overall proof is built of three main steps, shared with the theory of Potential Markov
Games [Leonardos et al., [2022]: (i) prove the existence of well behaved stationary points; (ii) prove
that performing independent policy gradient is equivalent to perform joint policy gradient; (iii) prove
that the (joint) PGA update converges to the stationary points via single-agent like analysis. In order
to derive the subsequent convergence proof, we will make the following assumptions:

Assumption B.1. Define the quantity \(f) := d", then:

(i). A(+) forms a bijection between © and \(©), where © and A(©) are closed and convex.

(ii). The Jacobian matrix VgA(#) is Lipschitz continuous in ©.

(iii). Denote g(-) := A71(:) as the inverse mapping of A(-). Then there exists £y > 0 s.t. [g(A\) —
g(A\)| < Lg|\ — N|| for some norm | - || and for all A, \' € A\(©).

Assumption B.2. There exists L > 0 such that the gradient V(o (7p) is L-Lipschitz.

Assumption B.3. The agents have access to a gradient oracle O(+) that returns V, (o (7p) for any
deployed joint policy 7g.

On the Validity of Assumption This set of assumptions enforces the objective (,(7g) to
be well-behaved with respect to € even if non-convex in general, and will allow for a rather strong
result. Yet, the assumptions are known to be true for directly parametrized policies over the whole
support of the distribution d™ [Zhang et al., 2020], and as a result they implicitly require agents to
employ policies conditioned over the full state-space S. Fortunately enough, they also guarantee ©
to be convex.

Lemma B.4 ((i) Global optimality of stationary policies [Zhang et al., 2020]). Suppose Assumption
[B.1| holds, and F is a concave, and continuous function defined in an open neighborhood containing
A(O©). Let 0% be a first-order stationary point of problem (), i.e.,

Ju* € H(FoN(B*), st (W 0—0%y<0 for VOeO. (7)

Then 6* is a globally optimal solution of problem ().
This result characterizes the optimality of stationary points for Eq. (I). Furthermore, we know

from [Leonardos et al.[[2022] that stationary points of the objective are Nash Equilibria.

Lemma B.5 ((ii) Projection Operator [Leonardos et al.l[2022]]). Let 6 := (01, ..., Oxr) be the param-
eter profile for all agents and use the update of Eq. (6) over a non-disjoint infinite-trials objective.
Then, it holds that

e {0* + nVelw ()} = (H@i{ef + ”v“’iC”(W"k)})ie[N]
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This result will only be used for the sake of the convergence analysis, since it allows to analyze
independent updates as joint updates over a single objective. The following Theorem is the formal
counterpart of Fact[d.T|and it is a direct adaptation to the multi-agent case of the single-agent proof
by|Zhang et al.| [2020], by exploiting the previous result.
Theorem B.6 ((iii) Convergence rate of independent PGA to stationary points (Formal Fact4.1))). Let
Assumptionsand hold. Denote Dy :=maxy yexo) |A—N'| as defined in Assumpti(%iii).
Then the independent policy gradient update (6) with ) = 1/L satisfies for all k with respect to a
stationary (joint) policy mgs the following
ALED?

k+1°

Coo (T3 ) — Coo (mar ) <

Proof. First, the Lipschitz continuity in Assumption [B.2]indicates that

CoA0)) — Co(AE) — (Voo (M05)).0 0] < Z10— 02

Consequently, for any # € © we have the ascent property:
L
Co(AB)) = Co(A(67)) + Vol (A7), 0 — 6°) — LA 01> = o (N(B)) — L6 — 62 (8)

The optimality condition in the policy update rule (6) coupled with the result of Lemma B3] allows
us to follow the same rational as Zhang et al.| [2020]]. We will report their proof structure after this
step for completeness.

Coo(AO")) = o (A(O")) + Vol (A(O")), 0771 — 0%) — g\\ﬁk“ — 0%

= miax o (MO)) + (Var (A(0)),0 — 0% — 20— 0P

2 max G (A(6)) — Lo — 6¥)
2 max {GoM0a)) = L0 — 041 £ 00 = g(0X(0%) + (1= @A)} ©)

«€el0,1

where step (a) follows from (8] and step (b) uses the convexity of A(©). Then, by the concavity of
(s and the fact that the composition A o g = id due to Assumption [B.I{i), we have that:

oo (A(0a)) = Cao(@A(0%) + (1 = a)A(0¥)) = aCe(A(0%)) + (1 — @) (A7)
Moreover, due to Assumption [B-I[iii) we have that:

160 — 60> = [g(a(6*) + (1 — a)A(6")) — g(A(6"))[? (10)
< APGIA0) — A0
< azﬂgD?\.

From which we get

Co(A(0%)) = Cn(M(OFT))
< min {Co(A(0%)) = Co(A(Ba)) + L[0a — 0% : 60 = g(aX(0¥) + (1 — ) A(6%))}

«€l0,1

< min (1-0)(Ge(A07) = e (A(0") + @’ LGDS (1n)

o Lo (A(mF)) = (A(7®)) C . e
We define A(mp) := A\(0), then oy, = ST D2 > 0, which is the minimizer of the RHS
"0 A
of (TI)) as long as it satisfies oy < 1. Now, we claim the following: If iy, > 1 then a1 < 1.
Further, if ay; < 1 then a11 < . The two claims together mean that (ay ), is decreasing and all

ay, are in [0, 1) except perhaps «p.

To prove the first of the two claims, assume vy, > 1. This implies that (o (A(7*)) — (oo (A(TF)) =
2L¢2D3. Hence, choosing a = 1 in (T), we get

Goo(A(B¥)) = €0 (A(6")) < LEGDS
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which implies that a1 < 1/2 < 1. To prove the second claim, we plug «y, into (TT) to get

V) k
o0 = o0+ < (1= OO EBODY @ (6% - o)

which shows that a1 < ay as required.

Now, by our preceding discussion, for k = 1,2, ... the previous recursion holds. Using the definition
of o, we rewrite this in the equivalent form

Q41 Qg Qg
<(1-%) %

2 2 2
By rearranging the preceding expressions and algebraic manipulations, we obtain
2 1 2 1 2
= =—+—F=—+1

o =5 F o]
For simplicity assume that oy < 1 also holds. Then, a—i > O%O + k, and consequenlty

k Co(A(0%)) = Con(A(6°)) _ ALLGDS
Coo()\(a*)) - COO()‘(G )) < 1+ Coo (A (0%))—Con (A(09)) Tk < k .
4L02D3

[
-5 M

A similar analysis holds when ag > 1. Combining these two gives that (o (A(7*)) — (oo (A(7F)) <
4L03 D3
E+1

no matter the value of «g, which proves the result. O

B.2 The Use of Markovian and Non-Markovian Policies in cMGs with Finite-Trials
Formulations.

The following result describes how in cMGs, as for cMDPs, Non-Markovian policies are the right
policy class to employ to guarantee well-behaved results.

Lemma B.1 (Sufficiency of Disjoint Non-Markvoian Policies). For every cMG M there exist a joint
policy T = (%) ;enr, with T € Aé; being a deterministic Non-Markovian policy, that is a Nash
Equilibrium for non-Disjoint single-trial objectives, for K = 1.

Proof. The proof builds over a straight reduction. We build from the original MG M a temporally
extended Markov Game M = (N, S, A, P,r, u, T). A state 5 is defined for each history that can be

induced, ie,5€ S «— seST. We keep the other objects equivalent, where for the extended
transition model we solely consider the last state in the history to define the conditional probability

to the next history. We introduce a common reward function across all the agents r : S — R such
that r(5) = H(d(5)) for joint objectives and r(5) = (1/N) XJ,c(p H (di(8:)) for mixture objectives,
for all the histories of length T and O otherwise. We now know that according to |Leonardos et al.
[Theorem 3.1,[2022] there exists a deterministic Markovian policy 7* = (7%)enr, 7 € Agi that is a
Nash Equilibrium for M. Since § corresponds to the set of histories of the original game, 7* maps to

a non-Markovian policy in it. Finally, it is straightforward to notice that the NE of 7* for M implies
the NE of 7* for the original cMG M. O

The previous result implicitly asks for policies conditioned over the joint state space, as happened for
infinite-trials objectives as well. Interestingly, finite-trials objectives allow for a further characteriza-
tion of how an optimal Markovian policy would behave when conditioned on the per-agent states
only:

Lemma B.7 (Behavior of Optimal Markovian Decentralized Policies). Let myy = (7, € Aé; )ie[N]
an optimal deterministic non-Markovian centralized policy and 7y = (7t € Ag‘l )ie[A] the optimal
Markovian centralized policy, namely Ty = argmax__ (mieAd )i ¢1(m). For a fixed sequence

= s Jie

s; € St ending in state s = (84, 5—4), the variance of the event of the optimal Markovian decentralized
policy my = (mhy € AL )ie(n) taking a* = mau(-|se) = Tu(-|s,t) in s; at step t is given by

Var [B(mu(a*|si, t)] = S@XE;I;NM [E [B(myu(a*s @ s))]]

+ Var _ [E[B(7u(a*|si,s—i,1))]]-

s®(,5—i)~p M
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where s®s € St is any sequence of length t such that the final state is s, i.e., s®s := (st—1 € St_l)(-Bs,
and B(x) is a Bernoulli with parameter .

Unsurprisingly, this Lemma shows that whenever the optimal Non-Markovian strategy for requires to
adapt its decision in a joint state s according to the history that led to it, an optimal Markovian policy
for the same objective must necessarily be a stochastic policy, additionally, whenever the optimal
Markovian policy conditioned over per-agent states only will need to be stochastic whenever the
optimal Markovian strategy conditioned on the full states randomizes its decision based on the joint
state s.

Proof. Let us consider the random variable A; ~ P; denoting the event “the agent ¢ takes action
af € A;”. Through the law of total variance Bertsekas and Tsitsiklis| [2002], we can write the
variance of A given se Sandt > 0 as

s 1] ~E[Als. 1]’ = E[E[4%s.1.5]| - E[E[Afs.1.s]|

S

Var [Als, t] =

E[A

[Var Als,t,s]| + E[Als,t,s] ]— F [Tr [Als, t s]]2

[Var Als, t,s ] [ [Als,t,s 2] [ [Als,t s]]2

:]E[Var [A|s,t,s]] +Vsar[IE[A|s,t,s]]. (12)

Now let the conditioning event s be distributed as s ~ p;™, so that the condition s, ¢, s becomes

s@® s where s @ s = (sg, ag, 81, - - -, 5t = s) € S, and let the variable A be distributed according to
‘P that maximizes the objective given the conditioning. Hence, we have that the variable A on the left
hand side of is distributed as a Bernoulli B(7y(a*|s,t)), and the variable A on the right hand
side of (T3) is distributed as a Bernoulli B(mym(a*|s @ s)). Thus, we obtain

Var [B(7m(a*|s,t))] = s@sEEja"NM [ Var [B(mam(a*|s®s))]]+  Var “ [E [B(mam(a*[s@s))]].

s@s~ p
(13)
We know from Lemma that the policy mny is deterministic, so that Var [B (mnm(a*|s @ s))] =0
for every s @ s. We then repeat the same steps in order to compare the two different Markovian
policies:

Var [A|si7t] = SIE [Var [A|si, S,i,t]] + Yir [IE [A‘Si, s,i,t]].

Repeating the same considerations as before we get that we can use (I3) to get:

Var [B(mu(a*|si, 1))] = WUE [Var [B(rm(a*|si,s_i,t))] + E [B(er(a*|si,s_i,t))]]
= Var [E [B(mam(a*[s @ s))]] + Var [E [B(7m(a®|si, s—i,1))]]-
s®s~p, s®(-,5—i)~p™
O

C Details on the Empirical Corroboration.

All the experiments were performed over an Apple M2 chip (8-core CPU, 8-core GPU, 16-core
Neural Engine) with 8 GB unified memory with a maximum time of execution of 24 hours.

Environments. The main empirical proof of concept was based on two environments. First, Env.
(i), the so called secret room environment by |L1u et al.|[2021]]. In this environment, two agents operate
within two rooms of a 10 x 10 discrete grid. There is one switch in each room, one in position (1, 9)
(corner of first room), another in position (9, 1) (corner of second room). The rooms are separated by
a door and agents start in the same room deterministically at positions (1, 1) and (2, 2) respectively.
The door will open only when one of the switches is occupied, which means that the (Manhattan)
distance between one of the agents and the switch is less than 1.5. The full state vector contains x, y
locations of the two agents and binary variables to indicate if doors are open but per-agent policies are
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conditioned on their respective states only and the state of the door. For Sparse-Rewards Tasks, the
goal was set to be deterministically at the worst case, namely (9, 9) and to provide a positive reward
to both the agents of 100 when reached, which means again that the (Manhattan) distance between
one of the agents and the switch is less than 1.5, a reward of 0 otherwise. The second environment,
Env. (ii), was the MaMuJoCo reacher environment |Peng et al.| [2021]]. In this environment, two
agents operate the two linked joints and each space dimension is discretized over 10 bins. Per-agent
policies were conditioned on their respective joint angles only. For Sparse-Rewards Tasks, the goal
was set to be randomly at the worst case, namely on position (£0.21, +0.21) on the boundary of the
reachable area. Reaching the goal mean to have a tip position (not observable by the agents and not
discretized) at a distance less that 0.05 and provides a positive reward to both the agents of 1 when
reached, a reward of 0 otherwise.

Class of Policies. In Env. (i), the policy was parametrized by a dense (64, 64) Neural Network
that takes as input the per-agent state features and outputs an action vector probabilities through a
last soft-max layer. In Env. (ii), the policy was represented by a Gaussian distribution with diagonal
covariance matrix. It takes as input the environment state features and outputs an action vector. The
mean is state-dependent and is the downstream output of a a dense (64, 64) Neural Network. The
standard deviation is state-independent, represented by a separated trainable vector and initialized to
—0.5. The weights are initialized via Xavier Initialization.

Trust Region Pure Exploration (TRPE). As outlined in the pseudocode of Algorithm|l} in each
epoch a dataset of IV trajectories is gathered for a given exploration horizon 7', leading to the reported
number of samples. Throughout the experiment the number of epochs e were set equal to e = 10k,
the number of trajectories N = 10, the KL threshold § = 6, the maximum number of off-policy
iterations set to Nofrier = 20, the learning rate was set to n = 10~ and the number of seeds set equal
to 4 due to the inherent low stochasticity of the environment.

Multi-Agent TRPO (MA-TRPO). We follow the same notation in|Duan et al|[2016]. Agents
have independent critics (64,64) Dense networks and in each epoch a dataset of N trajectories
is gathered for a given exploration horizon 7" for each agent, leading to the reported number of
samples. Throughout the experiment the number of epochs e were set equal to e = 100, the number
of trajectories building the batch size N = 20, the KL threshold § = 10—, the maximum number of
off-policy iterations set to nfrier = 20, the discount was set to v = 0.99.

The Repository is made available at the following Repository.
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Figure 4: Full Visualization of Reported Experiments. Experiments with longer horizons highlight
how the easier the task, the less crucial the distinction between the objectives is.
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Policies with Disjoint Objectives might justify the difference in pre-training performance even
if the performances in training are similar.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Both the theoretical and the empirical claims are explicitly covered throughout
the paper:

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The authors included an explicit section covering the limitations of the pro-
posed approach, made the assumptions underlying the models explicit and clearly stated the
aim of the empirical corroboration in providing evidences of the nature of the new problem
rather than confirming SOTA performances of the proposed algorithm.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All the assumptions are clearly stated, and the proofs are exaustively reported
in the Appendix, with references when needed.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the information needed for reproducibility has been provided in the
Appendix and the repository to the code has been provided as well.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The link can be found in the appendix.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The information can be found in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: the results are accompanied by confidence intervals.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The Appendix contains all the required information.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and confirm the paper
conform with it.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[NA |
Justification:
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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