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Abstract

Partial differential equations (PDEs) fitting scientific data can represent physical
laws with explainable mechanisms for various mathematically-oriented subjects.
The data-driven discovery of PDEs from scientific data thrives as a new attempt to
model complex phenomena in nature, but the effectiveness of current practice is
typically limited by the scarcity of data and the complexity of phenomena. Espe-
cially, the discovery of PDEs with highly nonlinear coefficients from low-quality
data remains largely under-addressed. To deal with this challenge, we propose
a novel physics-guided learning method, which can not only encode observation
knowledge such as initial and boundary conditions but also incorporate the basic
physical principles and laws to guide the model optimization. We empirically
demonstrate that the proposed method is more robust against data noise and spar-
sity, and can reduce the estimation error by a large margin; moreover, for the first
time we are able to discover PDEs with highly nonlinear coefficients.

1 Introduction

Partial differential equations (PDEs) are ubiquitous in many areas, such as physics, engineering, and
finance. PDEs are highly concise and understandable expressions of physical mechanisms, which are
essential for deepening our understanding of the world and predicting future responses. The discovery
of some typical PDEs is considered as milestones of scientific advances, such as the Navier-Stokes
equations and Kuramoto–Sivashinsky equations in fluid dynamics, the Maxwell’s equations and
Helmholtz equations in electrodynamics, and the Schrödinger’s equations in quantum mechanics.
Nevertheless, there are still a lot of unknown complex phenomena in modern science such as the
micro-scale seepage and turbulence governing equations that await PDEs for description.

Traditionally, PDEs are mainly discovered by: 1) mathematical derivation based on physical laws or
principles (e.g., conservation laws and minimum energy principles); and 2) analysis of experimental
observations. With the increasing dimensions and nonlinearity of the physical problems to be solved,
the PDE discovery is becoming increasingly challenging, which motivates people to take advantage of
machine learning methods. Pioneering works [1, 2] use symbolic regression to reveal the differential
equations that govern nonlinear dynamical systems without using any prior knowledge. More recently,
the representative SINDy[3] and STRidge [4] algorithms are proposed assuming that the dynamical
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Figure 1: Schematic diagram of PDE coefficients. From left to right, the complexity of coefficient
fields increases: (a) a constant value 1, (b) −1/x, (c) −1/x + sin y, (d) complex coefficient field
described by the Karhunen-Loève expansion of plenty of smooth basis functions [11, 12].

systems are essentially controlled by only few dominant terms. Through sparse regression, feature
selection from candidate terms is performed to estimate the PDE model [5, 6]. Further attempts make
use of observation knowledge such as boundary conditions of PDEs [7–9] and low-rank property of
scientific data [10], which greatly reduce the amount and quality of data needed for PDE discovery.

Although the aforementioned works show promise in discovering PDEs with constant coefficients
(PDEs-CC) as shown in Fig. 1(a) and some simple instances of parametric PDEs (PDEs with variable
coefficients, PDEs-VC) as shown in Fig. 1(b)-(c), they do not yet suffice to discover more complex
PDEs (e.g., PDEs with highly nonlinear coefficients) from scarce and noisier data. An example of
highly nonlinear coefficients is the permeability random field [11, 12] shown in Fig. 1(d) for the
spatial derivative terms in the PDEs of the seepage problems. Moreover, the PDEs obtained purely
based on data-driven methods can only minimize the estimation error, but these methods may not
consider the satisfaction of physical principles, such as the conservation of energy, momentum, etc.

To address these challenges, we rethink how the traditional PDE discovery works. Based on physical
principles, scientists ensure that a newly discovered PDE aligns with the physical world. For example,
the Navier-Stokes (NS) equation originates from the conservation of momentum, thus each term can
relate to a certain physical meaning like convective accumulation or viscous momentum. Inspired by
this, we propose a physics-guided learning framework that not only uses observation knowledge such
as initial conditions and assumed terms for certain problems but also uses basic physical principles
that are universal in nature as learning constraints to guide model optimization. Under this framework,
a spatial kernel sparse regression model is proposed considering the principles of smoothness (as
a first principle in PDEs) and conservation to impose smoothing of adjacent spatial coefficients for
discovering PDEs with highly nonlinear coefficients.

Experimental results demonstrate that the proposed method can increase the overall accuracy of PDE
estimation and the model robustness by a large margin. In particular, we consider the discovery of
PDEs of different structure complexities with comparisons to baselines. Our method can discover
the PDE structures of all instances that align well with the existing physical principles, while other
baselines yield false equation structures for some complex PDEs with excessively high estimation
errors. In summary, our contributions are:

• We propose a novel physics-guided framework for discovering PDEs from sparse and
noisy data, which not only encodes observation knowledge but also incorporates physical
principles to decrease errors and alleviate data quality issues. We propose a spatial kernel
sparse regression model that considers conservation and differentiation principles. It presents
excellent robustness in spite of noise compared to previous baselines, and can apply to
sparse data in continuous spaces without fixed grids.

• We report experiments on representative datasets of nonlinear systems with comparison to
strong baselines. The results show that our method has a lower coefficient estimation error
and can discover all the test PDEs with variable coefficients even when the data is extremely
noisy while previous baselines cannot. We also show that the discovered PDEs align well
with existing physical principles and can reflect physical meanings.
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2 Preliminary

2.1 Problem description

A physical field dataset u(x, y, t) is defined with respect to some input coordinates (x, y, t), where
x ∈ [1, ..., n] and y ∈ [1, ...,m] are spatial coordinates and t ∈ [1, ..., h] is a temporal coordinate. An
example of physical field data is shown in the observation data in Fig. 3. We consider the task of
discovering two kinds of PDEs: (1) PDEs with constant coefficients, PDEs-CC; and (2) PDEs with
variable coefficients, PDEs-VC. For simplicity, partial derivative terms are denoted by forms like ux

and uxx, which are equivalent to ∂u
∂x and ∂2u

∂x2 . The time derivatives such as ut (i.e., ∂u
∂t ) of a PDE

nearly always exist [13], therefore we follow prior works and set ut as the regression label. Let p
denote the number of partial derivative candidate terms considered in the task.
Definition 1 (PDEs with constant coefficients, PDEs-CC). PDEs-CC are the simplest PDEs, whose
coefficients ξi are fixed along all coordinates:

ut =

p∑
i=1

Θ(u)iξi, Θ(u)i ∈ [1, u, ux, uy, uxx, ..., uux, ...]. (1)

Definition 2 (PDEs with variable coefficients, also known as parametric PDEs or PDEs-VC). The
coefficients of PDEs-VC are changing in some dimensions, e.g., the spatial dimensions:

ut =

p∑
i=1

Θ(u)iξi(x, y), Θ(u)i ∈ [1, u, ux, uy, uxx, ..., uux, ...]. (2)

A simple example of explicit function is ξi(x, y) = sinx+cos y and other ξi(x, y) may be anistropic
random fields [14] that are hard to express by explicit functions.

We can see that a PDE has two parts: the set of Θ(u)i for ∀i is the PDE structure, while the set of
ξi(x, y) for ∀i is the PDE coefficients. Here, each Θ(u)i represents a monomial basis function of u
or the combination of two monomial basis functions of u. We consider monomial basis functions
only up to the third derivative since higher-order derivatives can be inaccurate due to differential
precision [4]. In Eqs.(1-2), the coefficient ξ(x, y) changes w.r.t. spatial coordinates x and y. In this
paper, we discuss the case of spatial variations. If the task is to capture variations in the temporal
dimension, we can simply replace ξ(x, y) with ξ(t).

Accordingly, the goal of PDE discovery is to determine:

• Terms: which coefficient ξi is nonzero so that the term Θ(u)i exists in the PDE structure;
• Coefficients: the exact values of all nonzero coefficients at each spatial coordinate.

Naturally, the accuracy of coefficient estimation would affect the correctness of determining which
coefficient is nonzero. This coupling motivates us to choose methods that can perform structure
learning and coefficient estimation simultaneously (e.g., sparse regression). Moreover, since the
simplicity of PDE is important, we are looking for the PDE with the fewest terms. For example,
ut = ux is simpler than ut = ux + uy under similar data fitting.

2.2 Sparse Regression for PDE Discovery

Sparse regression is widely adopted in previous works to estimate both the terms and coefficients
of PDEs. For parametric PDEs with variable coefficients across spatial dimensions, many linear
regressions are separately performed for coefficients at different spatial coordinates (x, y):

Y = XW + ϵ, ϵ ∼ ηN (0, σ2) ∈ Rh, (3)

Ŵ = argmin
W

∥Y −XW∥22 + λ ∥W∥22 , (4)

where Y = [Y1, Y2, ..., Yh]
⊤ ∈ Rh denotes ut of all the h samples along the temporal dimension,

Xji denotes Θ(u)i of the j-th sample in X ∈ Rh×p, W = [W1,W2, ...,Wp]
⊤ ∈ Rp denotes all

the coefficients ξi of the p candidate terms, and ϵ denotes the inevitable noise in data. The above
expression describes the scheme where we aim at discovering one PDE from one physical field u,
which can also extend to the discovering of multiple PDEs from multiple physical fields. Here, Eq.3
and Eq.4 repeat n×m times along the spatial dimensions x and y to get every Ŵ [x,y].
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Figure 2: The linear dependent observations and data quality issues cause the overfitting of baselines
such as SGTRidge. The estimated PDE coefficients are fairly irregular and cannot match the ground
truth. Although it can fit the training data well, it fails to generalize to the test data.

2.3 The Challenge of Coefficient Estimation

Though the above methods have been effective for some PDEs with simple variable coefficients
[5, 15, 16, 13, 6], they still have difficulty in discovering PDEs with highly nonlinear coefficients
due to overfitting. To illustrate this, we use the mean absolute error (MAE) to measure the error of
target (ut) fitting across training, development, and test sets. With the correctness of PDE structure
and accurate coefficient estimation, we shall obtain low target fitting MAE on test sets. As shown
in Fig. 2 (a) and extensively mentioned in the literature [4, 14, 10], many physics observations
are linearly dependent along the temporal dimension since the coefficient fields that determine the
observation are not changing along time. Linear-dependent observations make the linear equation
Y = XW with rank(X) ≤ p an underdetermined system that causes overfitting. Furthermore, data
sparsity and noise also impair the data quality and exacerbate the problem. Fig. 2 (b) shows that the
estimated coefficients by baseline sparse regression models such as SGTRidge [5] are irregular and
cannot match the ground truth, and the estimation of the target ut cannot generalize to test sets. The
overfitting deviates the model from searching for the correct coefficients and terms, despite its good
performance on the training set. Data details of Fig. 2 are shown in Section 4.3 and Appendix D.

3 Physics-Guided Spatial Kernel Estimation

While various PDE terms and coefficients could overfit the training data, scientists are only interested
in the PDE that is interpretable in terms of physics and can stably describe the natural phenomena.
In this paper, we incorporate physical principles into the PDE learning model. First, we consider
smoothness [11, 14], which is a first principle as PDEs must involve computing derivatives. A "first
principle" refers to a basic assumption that cannot be deduced from any other assumption, which is
the foundation of theoretical derivation. Here, we state the local smooth principle in Definition 3 that
ensures the basic accuracy of differentiation. This aligns well with our observation of many physical
data, such as the locally smooth coefficient fields in Fig. 1 and the ground-truth coefficients and data
in Fig. 2. On the contrary, the coefficient estimation and data fitting of SGTRidge are irregular as
shown in Fig. 2, because the estimation of coefficients is separate at each spatial point, which does
not consider the smoothness of coefficients across spatial dimensions. Naturally, we expect that a
smooth nonlinear function on spatial dimensions can help model the nonlinear coefficients.

Definition 3 (Local smoothness). Given coefficient ξ(x, y), the coefficients within a local area (with
radius r) can be considered as a k-Lipschitz continuous function. Given the spatial distance of any
two adjacent coordinates Dist = ∥S(x, y)− S(x′, y′)∥ ≤ r where S(x, y) is the spatial coordinate

vector, the slope of the coefficient function is bounded by α ≥ 0 as |ξ(x,y)−ξ(x′,y′)|
∥S(x,y)−S(x′,y′)∥ ≤ α.

Considering the principles of smoothness, we propose a local kernel estimation in the sparse regres-
sion that correlates the coefficient estimation at each spatial coordinate to the adjacent coefficient
estimation. A spatially symmetrical kernel (i.e., spatial rotation invariance) for all coordinates (i.e.,
spatiotemporal translation invariance) would estimate coefficients with respect to conservation laws.
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Figure 3: Diagram of the physics-guided discovery of PDEs with highly nonlinear coefficients.

A schematic diagram of the physics-guided learning framework is shown in Fig. 3. We expect it to
enhance the model robustness for learning PDEs with highly nonlinear coefficients.

We prove that the proposed sparse regression with local kernel estimation can reduce the coefficient
estimation error and reduce the error caused by noise when the coefficient fields comply with the
local smoothness principle, with theorems and proofs in the Appendix B. Furthermore, as long as
the spatial coordinates of the coefficients are provided, this local kernel estimation is mesh-free for
spatiotemporal data, so nonlinear coefficients can be modeled even with irregularly sparse data.

For each (x, y), the proposed model considers all (x′, y′) that ∥S(x, y)− S(x′, y′)∥ < r to compute

Ξ̂ = argmin
Ξ

∥Y −XΞ∥22 , Ξ̂
[x,y]
i =

∑
K

[x′,y′]
i Ŵ

[x′,y′]
i∑

K
[x′,y′]
i

. (5)

K
[x′,y′]
i = exp(−D[x′,y′]

2γ
), D[x′,y′] = ∥S(x, y)− S(x′, y′)∥22 . (6)

where [x, y] denotes the spatial coordinate of the estimated coefficient while [x′, y′] denotes each
spatial coordinate of the adjacent coefficients. r denotes the radius of the local area. Here, W ∈ Rn×m

denotes the model parameters introduced in Eq.3, while Ξ ∈ Rn×m is an intermediate tensor replacing
W to represent the estimated coefficients. γ and q are both hyperparameters. We denote the spatial
coordinate vector as S(x, y) and denote the distance between two spatial coordinates (x, y) and
(x′, y′) as ∥S(x, j)− S(x′, y′)∥. The proposed coefficient estimation only takes the spatial distance
as input information and is thus mesh-free to apply to continuous spaces for use in real practices.

We use the local kernel estimated Ξ of spatially adjacent coefficients instead of W as the regression
weight to optimize the model Ŷ = XΞ. The learning of W at each spatial coordinate is dependent on
adjacent X and Y , as W at each spatial coordinate participates in the calculation of all Ξ within the
local area. Therefore, the proposed method calculates adjacent coefficients with nonlinearity when
performing sparse regression, which leverages the physical principles to enrich data information and
address overfitting. Here we can choose Radius Basis Function (RBF) kernel as K.

4 Experiments

4.1 Experimental Setting

Setup. Our experiments aim to discover PDEs terms and coefficients. The proposed method is
compared with PDE-net [15], Sparse Regression (we compare with SGTRidge [5] here; SINDy
[3, 17] is also an example of sparse regression) and A-DLGA [6]. We split the first 30% data in
the time axis as the training set, the next 30% data as the development set, and the last 40% as the
test set. We perform an additional experiment on the model robustness by adding Gaussian noise in
Appendix E. For each model on each dataset, we tune the hyperparameters, i.e. γ, q and λ, via grid
search, so that it has the lowest target ut fitting error on the development (Dev, i.e. validation) set.
The algorithm outline and the implementation details are presented in Appendix C.
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Datasets. To test how well the proposed model performs on the discovery of PDEs-CC, we consider
the Burgers’ equation, the Korteweg-de Vries (KdV) equation, and the Chaffe-Infante equation. For
PDEs-VC, we consider the convection diffusion equation and the governing equation of underground
seepage where two cases are spatiotemporal 2D PDEs with simple variable coefficients (see Fig. 1(c))
and five cases are spatiotemporal 3D PDEs with different highly nonlinear coefficient fields (see Fig.
1(d)) that are hard to express explicitly. The data details are provided in Appendix D.

Evaluation Metrics. We use three metrics for evaluation:

1. Recall of the discovered PDE terms compared to ground truth;
2. The mean absolute error of coefficient ξ estimation;
3. The mean absolute error of target ut fitting.

The recall rate of PDE terms and the coefficient estimation error indicate whether the discovered PDE
is close to the ground-truth PDE that can generalize to future responses with the correct physical
mechanism. Target fitting error tests how well the discovered PDE generalizes to the target ut.

4.2 Results on PDEs with constant coefficients

We present the discovered PDEs with estimated PDE coefficients shown in the brackets and PDE
terms discovered correctly. We use irregular samples to simulate sparsity in the continuous space.

Burgers’ equation. We consider the discovery of the spatiotemporal 3D Burgers’ equation with
two physical fields u and v. For the sparse regression, we prepare a group of candidate functions that
consist of polynomial terms {1, u, v, u2, uv, v2}, derivatives {1, ux, uy, vx, vy,∆u,∆v} and their
combinations. Following the physics-guided learning, we set diffusion terms as known a priori. The
dimensionality of the dataset is 100× 100× 200. We irregularly sample 10000 data and add 10%
Gaussian noise. The discovered PDEs are shown below and the coefficients are averaged for each
term. The recall, coefficient error, and target fitting error are shown in Table 1, which shows that our
model performs well even with noisy, 3D, irregularly sampled data and multiple physical fields.

ut = 0.005(0.005015)uxx + 0.005(0.004990)uyy − 1(1.0152)uux − 1(1.0085)vuy,

vt = 0.005(0.005018)vxx + 0.005(0.004984)vyy − 1(1.0097)uvx − 1(1.0125)vvy.
(7)

Table 1: Model performance under different noisy levels for PDEs with constant coefficients.

Metrics Recall (%) Coefficient Error (×10−3) Fitting Error (×10−3)

Noise Level 0% 10% 20% 0% 10% 20% 0% 10% 20%

Burgers’ Equation 100 100 100 2.603 6.124 6.946 0.205 0.356 1.004

KdV Equation 100 100 100 1.417 7.385 14.36 3.729 187.8 375.5

C-I Equation 100 100 100 3.623 12.69 25.38 1.691 11.85 23.71

Korteweg-de Vries (KdV) equation. We consider the discovery of spatiotemporal 2D Korteweg-de
Vries (KdV) equation. We prepare a group of candidate functions that consist of polynomial terms
{1, u, u2}, derivatives {1, ux, uxx, uxxx} and their combinations. The dimensionality of the dataset
is 512× 201. We irregularly sample 5000 data and add 10% Gaussian noise. The discovered PDEs
are shown in below and the coefficients are averaged for each term for the constant coefficient. The
recall, coefficient error and target fitting error are shown in Table 1.

ut = −1(1.0011)uux − 0.0025(0.002506)uxxx. (8)

Chaffe-Infante equation We consider the discovery of spatiotemporal 2D Chaffe-Infante equation.
We prepare a group of candidate functions that consist of polynomial terms {1, u, u2, u3}, derivatives
{1, ux, uxx} and their combinations. The dimensionality of the dataset is 301× 201. We irregularly
sample 5000 data and add 10% Gaussian noise. The discovered PDEs are shown below and the
coefficients are averaged for each term for the constant coefficient. The recall, coefficient error, and
target fitting error are shown in Table 1. The coefficient of uxx is less accurate as uxx is very small.

ut = 1(0.9212)uxx − 1(0.9996)u+ 1(1.0337)u3. (9)
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Figure 4: Comparison of estimated and correct nonzero coefficients of 1-HNC. Three rows represent
the results of Ground Truth, our model and their residual error, respectively. Four columns represent
four ξi that are nonzero in reality. Approximately, |ξ∗ − ξ̂|/|ξ∗| = 1%.

4.3 Results on PDEs with variable coefficients

Convection diffusion equation. We consider the discovery of the spatiotemporal 2D convection
diffusion equation with two different variable coefficient fields. We prepare a group of candidate
functions that consist of polynomial terms {1, u, u2}, derivatives {1, ux, uxx, uxxx} and their combi-
nations. The dimensionalities of the two cases are all 100× 251. We randomly sample 5000 data to
simulate mesh-free sparsity and add 10% Gaussian noise. The discovered PDEs are shown below
and the relative coefficient errors of the two cases are less than 0.3%. The recall of terms is 100%
and the average ut fitting error for the two cases are 1.8274× 10−4, and the coefficient estimation
is visualized in Fig. A3 in Appendix F. Our model can discover the terms correctly and estimate
coefficients accurately for the parametric convection diffusion equation from noisy and sparse data.

ut = ξ̂1ux + ξ̂2uxx; |ξ − ξ̂| < 3× 10−3, |ξ − ξ̂|/|ξ| < 0.3%. (10)

The governing equation of underground seepage. We consider the discovery of the spatiotem-
poral 3D governing equation of underground seepage with five different highly nonlinear variable
coefficients, namely 1-HNC, 2-HNC, ..., 5-HNC. We prepare a group of candidate functions that
consist of polynomial terms {1, u, u2}, derivatives {1, ux, uxx, uxxx} and their combinations. The
dimensionality of the fives cases are all 50 × 50 × 51. We irregularly sample 10000 data and add
5% Gaussian noise. The discovered PDEs are shown below, and the relative coefficient errors are
less than 1% for the five cases. The recall of terms and target ut fitting errors are shown in Table
2. Our model can discover the terms correctly from noisy and irregularly sampled sparse data and
can generalize to future data for all the five cases with highly nonlinear coefficients. The coefficient
estimation of 1-HNC is visualized in Fig. 4 as an example, with the visualizations of more cases in
Appendix F showing that the relative coefficient estimation error is less than 1%.

ut = ξ̂1ux + ξ̂2uy + ξ̂3uxx + ξ̂4uyy; |ξ − ξ̂| < 1.8513, |ξ − ξ̂|/|ξ| < 1% (11)

The discovered PDEs contain convection terms and diffusion terms along spatial dimensions, which
align well with the ground-truth PDEs of underground seepage derived from the conservation of
mass and Darcy’s law [18]. On the contrary, all the other baselines render false PDE terms; the test
target fitting errors of baselines are much larger than their training errors, reflecting overfitting. The
test fitting errors of our model are much smaller than baselines, showing that our model effectively
reduces the estimation error. To test the robustness of our model, we include results under noise
from 5% to 20%. In most previous works for PDEs-CC [4, 17, 8] or PDEs-VC [5, 15, 10], the model
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robustness to 5% or 10% noise is tested. Comparatively, the noise scale we test for our model is fairly
large. We show that our model performs well for most cases under 10% noise. When the noise level
goes up to 20%, in many cases one out of four PDE terms discovered would be wrong as

ut = ξ̂1uux + ξ̂2uy + ξ̂3uxx + ξ̂4uyy, or ut = ξ̂1ux + ξ̂2uy + ξ̂3uxx + ξ̂4uuyy. (12)

We find that even under extremely large noise, our model can discover PDEs that can generalize well
to future data on test sets, since uux and ux are very similar when u is not rapidly changing along
spatial dimensions, which is visualized in Fig. A2 in Appendix E. Moreover, we find that the model
performs well in a wide range of hyperparameters, with details in Appendix E. Overall, our model
shows excellent robustness against overfitting, especially with sparse and noisy data.

Table 2: Target fitting errors and recalls by different methods.

Datasets Metric SGTRidge PDE-Net A-DLGA The Proposed Model
Noise 5% 5% 5% 5% 10% 20%

1-HNC

Train Err (×10−3) 1.148 2.190 16.70 3.314 6.283 11.88
Dev Err (×10−3) 3.907 10.85 47.39 3.919 6.373 12.10
Test Err (×10−3) 28.25 31.80 136.8 3.686 6.367 12.29

Recall (%) 50 50 25 100 100 75

2-HNC

Train Err (×10−3) 2.283 2.697 19.83 3.794 5.676 8.329
Dev Err (×10−3) 26.87 42.23 43.04 3.794 5.674 8.332
Test Err (×10−3) 106.1 169.2 123.8 3.585 5.499 8.318

Recall (%) 25 25 25 100 100 75

3-HNC

Train Err (×10−3) 0.134 0.129 1.033 0.331 0.583 0.969
Dev Err (×10−3) 1.588 1.563 2.661 0.342 0.588 0.997
Test Err (×10−3) 9.095 9.005 7.872 0.343 0.589 1.018

Recall (%) 25 25 50 100 100 75

4-HNC

Train Err (×10−3) 0.336 0.301 21.50 1.733 2.235 3.662
Dev Err (×10−3) 11.52 10.13 37.61 1.729 2.302 4.037
Test Err (×10−3) 94.47 85.60 150.0 1.703 2.521 7.505

Recall (%) 0 0 0 100 75 25

5-HNC

Train Err (×10−3) 1.218 1.506 20.66 1.940 3.139 4.438
Dev Err (×10−3) 6.624 7.508 42.72 1.984 2.984 4.254
Test Err (×10−3) 13.63 15.17 109.6 1.733 3.049 4.345

Recall (%) 50 50 50 100 100 100

5 Conclusion and Future Work

How to discover Partial Differential Equations (PDEs) with highly nonlinear variable coefficients
from sparse and noisy data is an important task. To address the overfitting of coefficients caused by
data quality issues in previous baselines, we propose a physics-guided spatial kernel estimation in
sparse regression that aligns well with the local smooth principle in PDEs and conservation laws. The
proposed model incorporates physical principles into a nonlinear smooth kernel to model the highly
nonlinear coefficients. We theoretically prove that it strictly reduces the coefficient estimation error of
previous baselines and is also more robust against noise. With spatial coordinates of coefficients, the
model can apply to mesh-free spatiotemporal data without grids. In experiments, it demonstrates the
ability to find various PDEs from sparse and noisy data. More importantly, it for the first time reports
the discovery of PDEs with highly nonlinear coefficients, while previous baselines yield false results.
Our model performs well with a wide range of hyperparameters and noise level up to 20%. With the
state-of-the-art performance, our method brings hope to discover complex PDEs that comply with the
continuously differentiable and local smoothness principles to help scientists understand unknown
complex phenomena. In the future, how to avoid the intervention of correlated similar terms and
improve the accuracy of differentiation remain important. Our method works for PDEs that comply
with the principles, but may remain intractable for more rarely complex coefficient fields. Also, how
to discover equations without the prior knowledge of time-dependent target term is not discussed yet.
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Appendix

A Related Work

Dynamical system modeling Machine learning is widely leveraged to predict the future response
of desired physical fields from data [19, 20]. As an alternative, scientists can also obtain the future
response by solving a partial differential equation (PDE) that describes the dynamical system. Early
pioneering works [21, 22] using neural networks to simulate dynamical systems can date back to
three decades ago. More recent machine learning algorithms [23–26] can be mainly divided into
two branches: the mesh-based discrete learning and the meshfree continuous learning of simulation.
Within the meshfree learning branches, pure data-driven approaches [27, 15] are mainly based on
high-quality data and physics-informed approaches [7, 28–30] use physics knowledge to enhance
models to adapt to noisier and sparser data. Recent studies on neural operators [31, 32] also use
neural networks to learn the meshfree and infinite-dimensional mapping for dynamical systems.
Within the mesh-based learning branches, convolutional networks are widely adopted [33, 34] to
simulate PDEs for spatiotemporal systems [35–38]. The geometry-adaptive learning of nonlinear
PDEs with arbitrary domains [39–41] and the particle-based dynamical system modeling [42, 43] by
graph neural networks rises as a promising direction. Moreover, deep learning also renders giving
symbolic representation of solutions to PDEs[44] possible and demonstrate higher accuracy [45–47].

Data-driven discovery Early trials for equation discovery in the last century [48] uses inductive
logic programming to find the natural laws. Two research streams have been proposed to search the
governing equations. The first stream aims at identifying a symbolic model [49] that describes the
dynamical systems from data, which uses symbolic regression [1, 2] and symbolic neural networks
[50, 51] to discover functions by comparing differentiation of the experimental data with analytic
derivatives of candidate function. The second stream is mainly to incorporate prior knowledge
[52, 9, 8] and perform sparse regressions [4, 53, 3, 54, 35] to discover PDEs by selecting term
candidates. Evolutionary algorithm [13] is also proposed to start with an incomplete library and
evolve through generations.

While these algorithms only discover the equation structure for PDEs with constant coefficients,
later works also start to work on the discovery of PDEs with variable coefficients. For PDEs with
variable coefficients, we need to determine their PDE structures (the partial derivative terms that
form the PDE) and coefficients (the variable coefficients that multiply partial derivative terms in the
PDE) at the same time. Sequential Group Threshold Regression [5] combines coefficient regression
and term selection to find PDEs with variable coefficients. PDE-Net [15, 16], Graph-PDE [55] and
Differential Spectral Normalization [56] are proposed to use neural blocks such as convolution to
discover the PDEs models. In addition, DLrSR [10] solves the noise problem by separating the clean
low-rank data and outliers. A-DLGA [6] proposes to alleviate data linear dependency at the sacrifice
of estimation error. Up until now, the current state-of-the-art approaches have proven to discover
some PDEs with variable coefficients, but the discovery of PDEs with highly nonlinear coefficients
remains a challenge [5, 6, 16] due to the overfitting of the sparse regressions and data quality issues.

B Theoretical Analysis

In this section, we introduce the theoretical analysis to demonstrate the advantages of our model.
We provide several theorems in the following with proofs. The proposed spatial kernel estimation
(See Eqs.5 and 6) uses the spatial distance to estimate the probability density function of coefficients
with nonlinearity. To help understand its advantage, we first introduce a spatial averaging estimation
with linearity here. We intend to show that the spatial averaging estimation can have an estimation
error upper bounded by the upper limit of coefficient difference between adjacent coordinates. The
coefficient estimation error without such spatial averaging estimation, on the contrary, has no upper
bound (i.e., can be fairly large). Furthermore, we will show that our proposed spatial kernel estimation
has a lower estimation error than the spatial averaging estimation. We also prove that the estimation
error caused by noise can be greatly alleviated by the spatial kernel. The analysis not only proves that
our proposed spatial estimation strategy can reduce estimation errors but also demonstrates that the
kernel estimation with nonlinearity is very suitable for the tasks.
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The local averaging estimation is defined as follows. For each (x, y), the spatial averaging estimation
considers all (x′, y′) that ∥S(x, y)− S(x′, y′)∥ < r to compute

Ξ̂(avg) = argmin
Ξ

∥Y −XΞ∥22 , Ξ̂
[x,y]
(avg) =

∑
(x′,y′) Ŵ

[x′,y′]∑
(x′,y′) 1

. (13)

where W has the same definition as used in the spatial kernel estimation, i.e. model parameters, as
described by Eqs. 3 and 4. We use Ξ̂(avg) to denote the estimated coefficients and ξ to denote the
ground-truth coefficients. To express its upper bound error, we introduce the Lipschitz continuity to
express the local smoothness with a Lipschitz constant α ≥ 0, as introduced in Definition 3. Here,
we consider the upper limit of coefficient difference between adjacent coefficients within the local
area for all x, y, x’, and y’ as

α ≥ |Ŵ [x′,y′] − Ŵ [x,y]|
∥S(x, y)− S(x′, y′)∥

≥ |Ŵ [x′,y′] − Ŵ [x,y]|
r

. (14)

According to the local smoothness principle stated in Definition 3, the coefficient variation along the
spatial dimensions is an increasing function. In the worse case, we have all the coefficients on only
one side with differences approximating αr. Therefore, the upper bound of estimation error is

sup(|Ξ̂[x,y]
(avg) − ξ[x,y]|) = Ŵ [x,y] −

∑
(x′,y′) Ŵ

[x,y] − αr∑
(x′,y′) 1

= αr. (15)

While the spatial averaging coefficient estimation has a upper bound of coefficient estimation error,
the spatially independent estimation in Eqs. 3 and 4 practiced by many baselines cannot guarantee to
match the ground-truth coefficients even if Eq. 4 is optimized due to the existence of many linearly
dependent observations. We assume that the spatial averaging estimation can avoid this issue by using
extra data from adjacent coordinates within the local area in the sacrifice of introducing the estimation
error as described in Eq. 15. We can also easily demonstrate that the local averaging estimation has
a lower estimation error than the strategy practiced in A-DLGA [6] that makes coefficients grids
coarser by merging grids within each spatial area into one grid, which also uses extra adjacent data to
alleviate the issue caused by linearly independent observations. We formalize this in Theorem 1.
Theorem 1 (Reduction on coefficient error by local averaging estimation). With respect to the local
smoothness principle, the coefficients estimated by the spatial averaging estimation has strictly lower
upper-bound coefficient estimation error than A-DLGA.

Proof. Assume that the Local smooth Principle in Definition 3 applies, we consider the estimation of
coefficient ξ(x, y). We denote the estimated coefficients of A-DLGA as Ŵ †. For the Ŵ †, the upper
bound of estimation error should be the case where (x, y) locates at the edge of a local area, instead
of at the center as in the spatial averaging estimation, so that the upper limit of coefficient difference
between coordinates within the area would be 2αr. For each (x, y), A-DLGA considers all (x′, y′)
that ∥S(x′′, y′′)− S(x′, y′)∥ < r, where ∥S(x′′, y′′)− S(x, y)∥ < r. Therefore,

sup(|Ŵ † − ξ|) = Ŵ [x,y] −
∑

(x′,y′) Ŵ
[x,y] − 2αr∑

(x′,y′) 1
= 2αr > αr = sup(|Ξ̂(avg) − ξ|). (16)

We further demonstrate in Theorem 2 that our proposed spatial kernel estimation with nonlinearity
reduces the coefficient estimation error of the local averaging estimation with linearity. Our model is
more accurate than local averaging estimation, so it is more accurate than A-DLGA.
Theorem 2 (Reduction on coefficient error by local kernel). With respect to the local smooth principle,
the coefficients estimated by the spatial kernel estimation has strictly lower coefficient estimation
error than the spatial averaging estimation.

Proof. Assume that the Local smooth Principle in Definition 3 applies, we consider the estimation
of coefficient ξ(x, y). Because the coefficient function is a k-Lipschitz continuous function, the
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coefficient difference increases with spatial distance: the closer the coordinates, the smaller the
coefficient difference. The spatial kernel estimation is stated in Eqs. 5 and 6. We denote the estimated

coefficients as Ξ. Note that the kernel value defined as K [x′,y′] = exp(−∥S(x,y)−S(x′,y′)∥2

2

2γ ) in Eq. 6
decreases in the spatial distance, so closer coefficients give more contributions. Therefore, we have

|Ξ̂[x,y] − ξ[x,y]| =
∑

K [x′,y′](Ŵ [x′,y′] − Ŵ [x,y])∑
K [x′,y′]

(17)

∝
∑

K [x′,y′]δ(∥S(x, y)− S(x′, y′)∥)∑
K [x′,y′]

(18)

≤
∑

δ(∥S(x, y)− S(x′, y′)∥)∑
1

(19)

= |Ξ̂[x,y]
(avg) − ξ[x,y]|. (20)

The above equations and inequalities prove that the coefficient estimation error of spatial kernel
estimation is strictly lower than the coefficient estimation error of spatial averaging estimation.

Moreover, the spatial kernel estimation reduces the coefficient estimation error caused by noise in
the sparse regression, which is proved in Theorem 3. This makes the PDE discovery more robust.
For coefficient at a spatial coordinate (x, y), its estimation is affected by both the noise in its Y and
the noises in Y at adjacent coordinates within the local area. We only discuss the estimation error
caused by noise here, so we assume Ξ̂ = Ŵ = ξ if η = 0, ϵ = 0, which means that the estimation of
coefficients must be with a balance distribution of adjacent coefficients. This allows us to discuss
the noise effect alone without the error caused by kernel discussed in Theorem 2. We prove that the
weighted addition of independent Gaussian noises by kernel estimation has a lower error than the
original sparse regression and the error is lower when more adjacent coefficients are considered.
Theorem 3 (Reduction on coefficient error caused by noise). Assume that the coefficient estimation
error is only caused by noise so that Ξ̂ = Ŵ = ξ if η = 0, ϵ = 0, then we must have |Ξ̂−ξ| < |Ŵ−ξ|
if η ̸= 0, ϵ ∼ ηN (0, σ2) ∈ Rh.

Proof. Consider ϵ ∼ ηNh(0, σ
2) in estimation that Ŵ = (XTX + λI)XT (Y + ϵ). |Ŵ − ξ| =

(XTX + λI)XT ϵ. We assume Ξ̂ = Ŵ = ξ if η = 0, ϵ = 0, which means for each Ξ̂[x′,y′] there
must always be another Ξ̂[x′′,y′′] such that 1) they have the same distance to Ξ̂[x,y] so they have the
same kernel value, i.e. ∥S(x′, y′)− S(x, y)∥ = ∥S(x′′, y′′)− S(x, y)∥, and 2) they are symmetrical
to the value of ξ[x,y] so that their biases can be offset, i.e. ξ[x,y] − ξ

[x′,y′]
i = ξ[x

′′,y′′] − ξ[x,y]. Based
on this, for all (x′, y′) that ∥S(x, y)− S(x′, y′)∥ < r, the estimated coefficients should be

|Ξ̂[x,y] − ξ[x,y]| =
∑

(x′,y′) K
[x′,y′]ϵ(x′,y′)∑

(x′,y′) K
[x′,y′]

.

For each ϵ(x′,y′) ∼ ηN(0, σ2) that is i.i.d., as
∑

ϵ ∼ ηN(0,
∑

σ2
i ), we have |Ξ̂[x,y] − ξ[x,y]| ∼

ηN(0,
∑

(x′,y′)
K[x′,y′]σ2

K[x′,y′] ). As each σ is the same for all adjacent coefficients within the area, we

have |Ξ̂[x,y] − ξ[x,y]| ∼ η∑
(x′,y′) 1

N(0, σ2). However, |Ŵ [x,y] − ξ[x,y]| ∼ ηN(0, σ2). Therefore,

|Ξ̂− ξ| < |Ŵ − ξ| and |Ŵ−ξ|
|Ξ̂−ξ|

=
∑

(x′,y′) 1.

C Algorithm Details

C.1 Iterative One-Out Sparse Regression

We use an iterative one-out regression that filters out one X;,i which gives the least Akaike information
criterion (AIC) at each iteration of coefficient estimation. If we use M to denote the set of indexes of
reserved coefficients, the formula of AIC is approximately used as follows

AIC(M) = 2
∑
i∈M

1− 2ln

∥∥∥∥∥Y −
∑
i∈M

X:,iΞi

∥∥∥∥∥
2

2

 . (21)
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The iteration ends when there are only L coefficients left in the regression. This aims to filter out
the most irrelevant ξi that maximize the least square errors to avoid its intervention in estimating
coefficients. The iterative one-out regression repeats

M = M − [i] if AIC(M − [i]) = min(AIC(M − [j])) for ∀ j ∈ M, (22)

Ξ̂ = argmin
Ξ

∥∥∥∥∥Y −
∑
i∈M

X:,iΞi

∥∥∥∥∥
2

2

. (23)

Iterative one-out regression is an approximation of sparse group regression that improves the accuracy
in determining the nonzero ξi without the interference of irrelevant terms, as a similar method has
pointed out [5]. The overall algorithm is expressed in Algorithm 1.

Algorithm 1 The physics-guided spatial kernel sparse regression approach.
Require: Target time derivative term ut(x, y, t) and candidate equation terms Θ(u)i(x, y, t) w.r.t. x ∈

[1, ..., n], y ∈ [1, ...,m] and t ∈ [1, ..., h]. p that M = [1, 2, ..., p], i ∈ M , λ, γ, q, L.
1: For convenience, denote ut as Y and denote Θ(u)i as X:,i.
2: while size(M) > L do
3: Compute Ξ̂ by Eqs.(3-6) using all X:,i and Y with i ∈ M ;
4: M = M − [i] if AIC(M − [i]) = min(AIC(M − [j])) for ∀ j ∈ M ;
5: end while
6: Compute Ξ̂best by Eqs.(3-6) using all X:,i and Y with i ∈ M .
7: return M , Ξ̂best.

D Data statistics

We introduce the governing equation of underground seepage in the following. The subsurface flows
in the field of fluid mechanics with different coefficients are taken as (1-5)-HNCs to perform the
experiments. The governing equation for the data is:

Ss
∂u

∂t
=

∂

∂x
(K(x, y)

∂u

∂x
) +

∂

∂y
(K(x, y)

∂u

∂y
).

where Ss denotes the specific storage; K(x, y) denotes the hydraulic conductivity field; and u denotes
the hydraulic head. In our work, u is the physical field the desired PDE describes and K is the
coefficient field. This equation is also used by PDE-net [15] but its coefficient field is much simpler.
The two variable coefficient fields used in PDE-net are 0.5(cos(y) + x(2π − x) sin(x)) + 0.6 and
b(x, y) = 2(cos(y) + sin(x)) + 0.8. The hydraulic conductivity field K(x, y) in the governing
equation is set to be heterogeneous to better simulate real situations in practice. The heterogeneous
fields are often regarded as random fields with higher complexity following a specific distribution
with corresponding covariance [11, 12, 14, 57].

In detail, in our paper a two-dimensional transient saturated flow in porous medium is considered.
The domain is a square, which is evenly divided into 51 × 51 grid blocks and the length in both
directions is 1020 [L], where [L] denotes any consistent length unit. The left and right boundaries
are set as constant pressure boundaries and the hydraulic head takes values of Hx=0 = 202 [L]
and Hx=1020=200 [L], respectively. Furthermore, the two lateral boundaries are assigned as no-
flow boundaries. The specific storage is assumed as a constant, taking a value of SS=0.0001 [L-1].
The total simulation time is 10 [T], where [T] denotes any consistent time unit, with each time
step being 0.2 [T], resulting in 50 time steps. The initial conditions are Ht=0,x=0 = 202 [L] and
Ht=0,x ̸=0 = 200 [L]. The mean and variance of the log hydraulic conductivity are given as 0 and
1, respectively. In addition, the correlation length of the field is 408[L]. The hydraulic conductivity
field is parameterized through KLE and 20 terms are retained in the expansion. Therefore, this
field is represented by 20 random variables ξ = ξ′1(τ), ξ

′
2(τ), ..., ξ

′
20(τ) in the considered cases. An

example of conductivity field obtained through KLE is shown in Fig. A1(a), which exhibits strong
anisotropy. MODFLOW software is adopted to perform the simulations to obtain the dataset, and the
data distributions at two time steps are presented in Fig. A1(b) and (c) as an example.

16



Figure A1: Color maps of conductivity field hydraulic pressure field.

For the two convection diffusion equation cases, we simulate the two-dimensional PDEs ut =
− 1

xux + 0.1uxx and ut = − 1
(x+sinπx)ux + 0.1uxx with variable coefficients − 1

x and − 1
(x+sinπx)

that can be expressed explicitly and do not have physical meanings or references in the nature,
respectively. These two equations are also generated by MODFLOW. All the data used are available
in the Supplementary Materials. We use a single GPU machine of GTX1080 and the error variation
to random seeds is statistically insignificant.

E Hyperparameter and Robustness Analysis

In addition to the main experiment and the robustness experiment, we also conduct a hyperparameter
analysis to discuss the suitable range of hyperparameters to ensure model performance. We set the
radius r within [2, 5, 10] and set the γ value of the Gaussian kernel within [0.03, 0.1, 0.3, 1] to
find out whether our model is stable over a wide hyperparameter range. The γ value determines the
variance of the kernel. When γ → 0, the kernel estimation is equivalent to the averaging estimation
introduced in Appendix B. When γ → ∞, the kernel estimation degrades to separate regression at
each spatial coordinate. We find that as the value of γ decreases, the coefficient error increases. This
reflects the gradual approximation to the local averaging estimation when the values of the kernel
function at each coordinate are almost the same. The increasing error aligns well with the Theorems
2 and 3 in Appendix B that local averaging estimation has larger estimation error.

Although a wide range of hyperparameters can all give the correct PDE structure, we can tune
the hyperparameters for each specific case to obtain the best performance. Table A5 shows that
r = 5, γ = 1 is the best hyperparameter setting for 1-HNC in the experiment. The radius r here is the
spatial distance that is normalized for each dataset. These kernel functions that have tiny coefficient
estimation error mainly rely on the most adjacent coefficients for estimation. The optimal values
of both r and γ are determined by the graininess of the local smooth principle in real practice. If
the radius is too large, the kernel will no longer be "local" to match the principle. In all, our model
performs well within a wide range of hyperparameters. The hyperparameters we use in the main
experiments are r = 10, γ = 1. We show the full results of hyperparameter analysis of (1-5)-HNCs
in the following.
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Table A1: PDE structures and coefficients discovered w.r.t. hyperparameters for 1-HNC.

Hyperparameters PDE structure Recall Coefficient error

r = 10, γ = 1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.7090
r = 10, γ = 0.3 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 2.2296
r = 10, γ = 0.1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 5.2279
r = 10, γ = 0.03 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 8.2493
r = 5, γ = 1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.5962
r = 5, γ = 0.3 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 1.4790
r = 5, γ = 0.1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 2.0122
r = 5, γ = 0.03 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 2.2271
r = 2, γ = 1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 1.7029
r = 2, γ = 0.3 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 2.6926
r = 2, γ = 0.1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 3.0050
r = 2, γ = 0.03 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 3.1153

Table A2: PDE structures and coefficients discovered w.r.t. hyperparameters for 2-HNC.

Hyperparameters PDE structure Recall Coefficient error

r = 10, γ = 1 ut = ξ̂1ux + ξ̂2uxx + ξ̂4uy + ξ̂4 uyy 100% 0.1183
r = 10, γ = 0.3 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.3749
r = 10, γ = 0.1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.8757
r = 10, γ = 0.03 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 1.3561
r = 5, γ = 1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.5962
r = 5, γ = 0.3 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 1.4790
r = 5, γ = 0.1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 2.0122
r = 5, γ = 0.03 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 2.2271
r = 2, γ = 1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 1.7029
r = 2, γ = 0.3 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 2.6926
r = 2, γ = 0.1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 3.0050
r = 2, γ = 0.03 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 3.1153

Table A3: PDE structures and coefficients discovered w.r.t. hyperparameters for 3-HNC.

Hyperparameters PDE structure Recall Coefficient error

r = 10, γ = 1 ut = ξ̂1ux + ξ̂2uxx + ξ̂4uy + ξ̂4 uyy 100% 0.0272
r = 10, γ = 0.3 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.0874
r = 10, γ = 0.1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.2093
r = 10, γ = 0.03 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 1.3561
r = 5, γ = 1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.0206
r = 5, γ = 0.3 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.0514
r = 5, γ = 0.1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.0701
r = 5, γ = 0.03 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.0776
r = 2, γ = 1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.0933
r = 2, γ = 0.3 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.1478
r = 2, γ = 0.1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.1650
r = 2, γ = 0.03 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.1711
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Table A4: PDE structures and coefficients discovered w.r.t. hyperparameters for 4-HNC.

Hyperparameters PDE structure Recall Coefficient error

r = 10, γ = 1 ut = ξ̂1ux + ξ̂2uxx + ξ̂4uy + ξ̂4 uyy 100% 0.0416
r = 10, γ = 0.3 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.1317
r = 10, γ = 0.1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.3103
r = 10, γ = 0.03 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.4879
r = 5, γ = 1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.0330
r = 5, γ = 0.3 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.0823
r = 5, γ = 0.1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.1121
r = 5, γ = 0.03 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.1242
r = 2, γ = 1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.1046
r = 2, γ = 0.3 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.1656
r = 2, γ = 0.1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.1848
r = 2, γ = 0.03 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.1916

Table A5: PDE structures and coefficients discovered w.r.t. hyperparameters for 5-HNC.

Hyperparameters PDE structure Recall Coefficient error

r = 10, γ = 1 ut = ξ̂1ux + ξ̂2uxx + ξ̂4uy + ξ̂4 uyy 100% 0.0270
r = 10, γ = 0.3 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.0871
r = 10, γ = 0.1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.2169
r = 10, γ = 0.03 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.3618
r = 5, γ = 1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.0304
r = 5, γ = 0.3 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.0756
r = 5, γ = 0.1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.1030
r = 5, γ = 0.03 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.1140
r = 2, γ = 1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.1156
r = 2, γ = 0.3 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.1828
r = 2, γ = 0.1 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.2039
r = 2, γ = 0.03 ut = ξ̂1ux + ξ̂2uxx + ξ̂3uy + ξ̂4 uyy 100% 0.2114

Figure A2: The similar distributions of partial derivative term ux and uux, respectively. Correlated
terms like these can be challenges for the filtering process of the iterative sparse regression.

The main experiments are mostly conducted with up to 20% noise. Here, we conduct a robustness
analysis to discuss whether the proposed model can handle even larger noise of 25% and 30%. We
find that for some PDE cases with constant coefficients, our model can perform well even under 30%
noise. We report the discovered PDE structure and coefficient error of the 1-HNC dataset in Table
A6. In the table, C-I equation denotes the Chaffe-Infante equation and C-D equation denotes the first
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case of convection diffusion equation. From the table, we find that our model performs well under
30% noise for Burgers’ equation and KdV equation, which outperforms the robustness reported in
previous baselines. Compared to results in Table. 1, we find that the coefficient errors and fitting error
of Burgers’ equation and KdV equation are close to the results under 20%. However, for C-I equation
and convection diffusion equation, the coefficient errors and fitting errors increases drastically since
the discovered PDE terms are partially wrong. The wrongly discovered PDE terms for C-I equation
is {u, u2, uxx} instead of {u, u3, uxx}. The wrongly discovered PDE terms for the first case of C-D
equation is {u, ux} instead of {ux, uxx}. We also show in Fig. A2 that some terms such as ux and
uux are highly correlated and have similar distributions. Correlated terms and coefficients like these
increase are challenging for data-driven machine learning models to identify correct PDE terms.

Table A6: Model performance under larger noisy levels for PDEs.

Metrics Recall (%) Coefficient Error Fitting Error

Noise Level 25% 30% 25% 30% 25% 30%

Burgers’ Equation 100 100 0.008 0.011 0.001 0.002

KdV Equation 100 100 0.018 0.021 0.466 0.559

C-I Equation 66 66 6.145 6.270 0.302 0.359

C-D Equation 50 50 1.254 1.276 0.043 0.050

F More Experimental Results

In this section, we visualize the estimated coefficients and compare them with the ground-truth
coefficients. The visualized residual errors of the estimated coefficients show that the proposed our
model is very accurate in coefficient estimation. The results of 1-HNC is shown in Fig. 4 in the
main manuscript, so we only show the results of the other four cases of the governing equation of
underground seepage here and the two cases of the convection diffusion equation. The estimated
coefficients of all datasets are all obtained with the optimal hyperparameters tuned for each dataset.
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𝜉2 𝜉3

2−𝐕𝐂

Figure A3: Comparison of estimated and correct nonzero coefficients of the two convection diffusion
equation cases. Three rows represent the results of Ground Truth, our model and their residual
errors, respectively. The two columns in each side represent two ξi that are nonzero in reality. Each
sub-figure shows the value at each (x,) spatial coordinate. The scales in some sub-figures are different.
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Figure A4: Comparison of estimated and correct nonzero coefficients of 2-HNC. Three rows represent
the results of Ground Truth, our model and their residual error, respectively. Four columns represent
four ξi that are nonzero in reality. Each sub-figure shows the value at each (x,y) spatial coordinate.
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Figure A5: Comparison of estimated and correct nonzero coefficients of 3-HNC. Three rows represent
the results of Ground Truth, our model and their residual error, respectively. Four columns represent
four ξi that are nonzero in reality. Each sub-figure shows the value at each (x,y) spatial coordinate.
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Figure A6: Comparison of estimated and correct nonzero coefficients of 4-HNC. Three rows represent
the results of Ground Truth, our model and their residual error, respectively. Four columns represent
four ξi that are nonzero in reality. Each sub-figure shows the value at each (x,y) spatial coordinate.
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Figure A7: Comparison of estimated and correct nonzero coefficients of 5-HNC. Three rows represent
the results of Ground Truth, our model and their residual error, respectively. Four columns represent
four ξi that are nonzero in reality. Each sub-figure shows the value at each (x,y) spatial coordinate.

22


	Introduction
	Preliminary
	Problem description
	Sparse Regression for PDE Discovery
	The Challenge of Coefficient Estimation

	Physics-Guided Spatial Kernel Estimation
	Experiments
	Experimental Setting
	Results on PDEs with constant coefficients
	Results on PDEs with variable coefficients

	Conclusion and Future Work
	Related Work
	Theoretical Analysis
	Algorithm Details
	Iterative One-Out Sparse Regression

	Data statistics
	Hyperparameter and Robustness Analysis
	More Experimental Results

