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ABSTRACT

This paper investigates visual analogical reasoning in large multimodal models
(LMMs) compared to human adults and children. A “visual analogy” is an abstract
rule inferred from one image and applied to another. While benchmarks exist for
testing visual reasoning in LMMs, they require advanced skills and omit basic
visual analogies that even young children can make. Inspired by developmental
psychology, we propose a new benchmark of 1,400 visual transformations of ev-
eryday objects to test LMMs on visual analogical reasoning and compare them
to children and adults. We structure the evaluation into three stages: identifying
what changed (e.g., color, number, etc.), how it changed (e.g., added one object),
and applying the rule to new scenarios. Our findings show that while models like
GPT-4V, LLaVA-1.5, and MANTIS identify the “what” effectively, they struggle
with quantifying the “how” and extrapolating this rule to new objects. In con-
trast, children and adults exhibit much stronger analogical reasoning at all three
stages. Additionally, the strongest tested model, GPT-4V, performs better in tasks
involving simple surface-level visual attributes like color and size, correlating with
quicker human adult response times. Conversely, more complex tasks such as
number, rotation, and reflection, which necessitate extensive cognitive processing
and understanding of extrinsic spatial properties in the physical world, present
more significant challenges. Altogether, these findings highlight the limitations of
training models on data that primarily consists of 2D images and text. 1

1 INTRODUCTION

What is visual cognition? Humans make countless visual inferences everyday from observing objects
and scenes, quickly detecting even subtle visual changes. We generalize common patterns about
changes from different observations and use these insights to solve new problems. If we put a wool
sweater in the washing machine and it comes out smaller, we might infer that the wash shrinks wool
and avoid washing wool coat in the future. If cookies disappear, we might infer that someone is
eating our treats and and proceed to hide the chocolate elsewhere. This ability to draw parallels
between situations and apply learned patterns to a new scenario is known as analogical reasoning.
Formally defined, an analogy is a systematic comparison between structures that uses the properties
and relations of objects in a source structure to infer properties and relations of objects in a target
structure (Mitchell, 2021; Schunn & Dunbar, 1996). Analogical reasoning is a hallmark of human
intelligence and learning (Gentner, 1983; Holyoak, 2012; Mitchell, 2021; Sternberg, 1977). It is
what enables us to be flexible, adaptive and robust learners across a wide variety of settings, finding
meaning in patterns and making out-of-distribution generalizations (Chollet, 2019; Mitchell, 2021).
Analogical reasoning is already available to young children (Goddu et al., 2020; Goswami, 2013;
Sternberg & Rifkin, 1979), and is crucial for human problem-solving in various contexts, from
building scientific models to appreciating metaphors to formulating legal arguments.

Today, large multimodal (LMMs) have made significant progress, but they remain data-hungry and
require substantial human effort to adapt to new contexts (Chollet, 2019; Reizinger et al., 2024).
As analogical reasoning is instrumental for general-purpose and adaptive machines, it is crucial to
examine whether current models have such capabilities. Critically, examining analogical capabilities
does not permit models to “cheat” by merely depending on their training data because it requires

1Benchmark (code, data, models) is available at: https://anonymous.4open.science/r/KiVA-5CCF
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(a) Visual analogy domains.
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Figure 1: KiVA: Kid-inspired Visual Analogies. (a) 5 visual analogy domains examined in KiVA.
The top rows show example transformations, while the bottom rows prompt subjects to extrapolate
the identified transformations to a novel object by analogy (see Figure 3 for the full task format). (b)
Performance of children, adults & LMMs in extrapolating a transformation rule to a novel object.
context-dependent abstraction beyond general object recognition. In KiVA, the same object may
undergo different kinds of transformations, requiring models to combine familiar elements in new,
trial-specific ways. Reasoning about analogies involves first classifying relationships between object
characteristics, specifying similarities and differences, then extrapolating the same relationship to
new objects. This paper focuses on visual analogies, testing models’ ability to reason abstractly about
visual observations. See Figure 1 for a summary of the KiVA benchmark and results.

There is a growing body of work examining visual analogical reasoning capabilities in large mul-
timodal models (Ahrabian et al., 2024; Huang et al., 2024; Moskvichev et al., 2023; Petersen &
van der Plas, 2023; Webb et al., 2023). Existing benchmarks of visual analogies include (a) Con-
ceptARC (Mitchell et al., 2023; Moskvichev et al., 2023), (b) variations of Raven’s Progressive
Matrices (Huang et al., 2024) and (c) abstract spatial reasoning (Ahrabian et al., 2024) (see prior
benchmarks in Figure 2). These prior benchmarks all have several critical limitations. First, they
rely on abstract shapes and grids, lacking real-world relevance. This abstraction of stimuli neither
aligns with the training data of large multimodal models nor effectively mimics the complexity and
variability found in everyday visual tasks, making it less suitable for assessing how well AI models
can perform analogical reasoning in practical contexts. Second, the transformations examined involve
conjunctions of visual concepts such as extracting and transposing pixels according to some arbitrary
rule, which does not tap into basic visual cognition. Humans do not require the ability to solve these
specific tasks to function effectively in their daily lives nor to demonstrate their capacity for visual
analogical reasoning. Third, while we know that models often perform poorly on these benchmarks,
where they fail in the reasoning process needs to be clarified since existing evaluations focus solely
on prediction accuracy rather than the reasoning approach or what is perceived.

We propose a Kid-inspired Visual Analogies (KiVA) benchmark founded on developmental psy-
chology (Figure 1 (left)) (Goddu et al., 2020; Lehmann et al., 2014). We focus our analysis on
basic visual analogical capabilities that are present early in human development and are important
for understanding the physical world. KiVA isolates the following fundamental capabilities that
emerge early in human development: detecting changes in color (Ross-sheehy et al., 2003; Wang &
Goldman, 2016) and size (Day & McKenzie, 1981; Wang & Goldman, 2016), changes that involve
rotation and reflection (Frick et al., 2013; Quaiser-Pohl, 2003), and changes in small numbers of
objects (Cherian et al., 2023; Levine et al., 1992). KiVA stands out in the following ways:

First, our dataset utilizes real-world, physically grounded objects curated from established 3D
datasets of common household items (Downs et al., 2022) and toys that are familiar to human
children (Stojanov et al., 2021), which align more with the training distribution of computer vision
models and visual data of humans more than other visual analogical reasoning datasets (Figure 2).

Second, our approach is inspired by developmental psychology, specifically how children learn to
perform analogical reasoning not abstractly, but from simple objects in grounded contexts (Christie
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II.

III.

I.

(a) Prior benchmarks.

?

(b) Our benchmark.

Figure 2: Prior benchmarks versus KiVA for visual analogies. (a) Prior benchmarks such as I.
ConceptARC (Moskvichev et al., 2023), II. Raven’s Progressive Matrices (Huang et al., 2024), and
III. CCSE Reasoning (Ahrabian et al., 2024) involve arbitrary changes of abstract shapes and grids.
(b) By contrast, KiVA examines basic visual transformations that even three-year-olds can solve.

& Gentner, 2010; Gentner, 1983; Goddu et al., 2020). We propose a similar approach for large
multimodal models, investigating if they can perform like children on basic visual analogical reasoning
tasks related to color, size, orientation, and number – as already reported in child development
journals Coates et al. (2023); Goddu et al. (2020; 2025). Starting with simple, real-world relevant
tasks in child development allows models to develop robust reasoning abilities before tackling more
advanced tasks, providing a clearer pathway for evaluating and improving cognitive functions in AI.

Third, we break down our evaluation to examine the different steps involved in analogical reasoning
to determine which steps a model can perform and where it may fail: 1) classifying the domain of a
visual transformation, 2) specifying the transformation rule, and 3) extrapolating the inferred rule to a
new item. This three-stage evaluation (Figure 3) gives us insights into models’ reasoning processes
beyond simply selecting a correct or incorrect response at the end.

Results from KiVA demonstrate that state-of-the-art large multimodal models, i.e., GPT-4V OpenAI
(2023a), LLaVA-1.5 (Liu et al., 2024) and MANTIS (Jiang et al., 2024a), cannot solve visual
analogies like humans can. These models do not match even the capabilities of a three-year-old child
(Figure 1b). While LMMs can detect some object transformations, they cannot make extrapolations
about those transformations to new objects. In particular, GPT-4V outperforms LLaVA-1.5 and
MANTIS but also demonstrates weaker performance in orientation and number changes than in size
and color changes which are processed more quickly by humans, at an earlier age (Slater et al., 1990;
Wang & Goldman, 2016), and in a more primary region of the visual cortex (Zeki et al., 1991; Zeng
et al., 2020).

Finally, we include two more challenging versions of the benchmark. We present KiVA-adults (dataset
and results described in Appendix E), which includes 2,900 transformations and requires deeper
generalization from training examples. These transformations are solvable by adults but not by
children under seven years old, providing the next benchmark for models to surpass after KiVA. We
also release in our project page code for KiVA-compositionality, which combines multiple objects
and transformations together to probe even more complex compositional reasoning. Taken together,
KiVA not only mirrors the natural progression of human cognitive development, but also provides a
more structured and comprehensive framework for evaluating the capabilities and growth of LMMs.

2 RELATED WORK

Evaluating human visual analogical reasoning. There is a variety of tasks designed in Devel-
opmental Psychology to examine human visual analogical reasoning early on in life. Children are
asked to compare simple object and relational matches (Christie & Gentner, 2010; Goddu et al.,
2020; Kuwabara & Smith, 2012) along dimensions such as color (Milewski & Siqueland, 1975;
Ross-sheehy et al., 2003), number (Cherian et al., 2023; Levine et al., 1992), size (Day & McKenzie,
1981; Slater et al., 1990) and spatial orientation (Frick et al., 2013; Quaiser-Pohl, 2003). Older
children and adults are evaluated on Raven’s Progressive Matrices (RPMs) (Carpenter et al., 1990;
Lovett & Forbus, 2017; Raven & Court, 1938) and Bongard Problems (Bongard, 1970; Weitnauer
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et al., 2023). Even though they tend to be the most representative and largest testbeds for testing
advanced visual analogical reasoning, RPMs and Bongard problems use abstract geometric shapes
and test recognition of arbitrary patterns that (1) cannot be solved by children before the age of 6
and (2) are not critical to everyday visual processing. KiVA is the first visual analogical reasoning
benchmark that includes common real-world objects and more natural visual cognition skills such
as counting and spatial transformations — tasks that even a three-year-old child can handle (Goddu
et al., 2020). We also examine where people and models fail with more fine-grained evaluation.

Evaluating visuo-linguistic reasoning in AI models. Several proposals for evaluating modern AI
systems’ visuo-linguistic reasoning capabilities followed the recent successes of large multimodal
models. Many concentrate on a narrow, isolated set of tasks for detecting object properties like
size estimation (Chen et al., 2024; Liu et al., 2022), color perception (Abdou et al., 2021; Samin
et al., 2024), counting objects (Liang et al., 2023; Paiss et al., 2023), object viewpoint/pose and
chirality (Kapelyukh et al., 2023; Lin et al., 2020; Chen et al., 2024) and visuo-linguistic composi-
tionality (Thrush et al., 2022; Kamath et al., 2023; Liu et al., 2023). Typically, the objective of these
tasks is to evaluate models’ ability to report a correct property about objects in an image. They lack
the depth to probe pattern abstraction and generalization involved in visual analogical reasoning.

Broader benchmarks, such as visual question answering setups (Antol et al., 2015; Goyal et al.,
2017), attempt to investigate the models’ understanding of various visual concepts. One approach
taken by (Bubeck et al., 2023; Yang et al., 2023) was to try and push the envelope on various tasks
to capture anecdotal and qualitative observations regarding the performance of GPT-4. Perception
Test (Pătrăucean et al., 2023) proposed a second approach: a visual video-based benchmark including
developmentally-inspired tasks such as object permanence, object tracking, spatial relations, etc.
Recently, the BLINK benchmark was introduced to show that core visual perception tasks, easily
solvable by humans "within a blink," remain challenging for large multimodal models due to their
resistance to language-based mediation (Fu et al., 2024). However, all these benchmarks fall short in
evaluating the deeper, more complex aspects of visual analogical reasoning and generalization.

Another specific class of benchmarks tests generalization and reasoning within abstract puzzle grids.
These include Abstraction and Reasoning Corpus (ARC) (Chollet, 2019; Moskvichev et al., 2023;
Mitchell et al., 2023); a direct translation of RPMs-based human evaluation has previously been
applied to models by (Ahrabian et al., 2024) and (Huang et al., 2024) (also see prior benchmarks
(b) and (c) in Figure 2). However, the stimuli are simple, monotonic shapes like squares and circles,
lacking real-world complexity and variability. Moreover, they primarily focus on convoluted pattern
recognition and logical sequencing without incorporating real-world contexts, thereby neglecting
more fundamental visual cognition domains that even human children are capable of.

3 THE KIVA BENCHMARK FOR VISUAL ANALOGICAL REASONING

We introduce KiVA, a Kid-inspired Visual Analogies benchmark, wherein real-world objects undergo
common transformations necessary for everyday visual cognition. We focus on isolating and testing
basic visual transformations that even a three-year-old child understands Goddu et al. (2020). As
we show in Figure 1, we examine noticing color changes Ross-sheehy et al. (2003); Milewski &
Siqueland (1975), size changes Day & McKenzie (1981); Slater et al. (1990), rotation, reflec-
tion Quaiser-Pohl (2003); Frick et al. (2013), and number changes such as addition and subtraction
of a small number of objects Cherian et al. (2023); Levine et al. (1992).

3.1 A THREE-STAGE EXPERIMENTAL PARADIGM

We use our proposed dataset to benchmark computational models’ and human subjects’ visual
analogical reasoning capabilities. We utilize the same testing procedure (Figure 3) for both kinds
of subjects. In each trial, we start by presenting a given transformation of an object that changes by
a specific rule, following the experimental paradigm of other analogical reasoning benchmarks for
humans and computational models (Moskvichev et al., 2023; Bongard, 1970; Goddu et al., 2020).
Inspired by the component processes model of analogical reasoning (Sternberg, 1977), we evaluate
the subject’s ability to determine what changed (Verbal Classification) how it changed (Verbal
Specification), and apply the the same transformation rule to predict the outcome of a new object—
i.e., a Visual Extrapolation. We break the question down into these three steps to test the different
cognitive processes involved in analogical reasoning. The first two assess the necessary prerequisites
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1. Verbal Classification: 
  what changed

2. Verbal Specification: 
  how it changed 

3. Visual Extrapolation: 
applying the same change to a new object

Which one of the following rules {(1) 
change in orientation of objects (where 
things face), (2) change in number of 
objects, (3) change in size of objects, (4) 
no change, (5) doesn’t apply} best 
describes the left-to-right transformation 
on top of the puzzle where the picture on 
the left transforms to the picture on the 
right? Answer with the correct rule 
number surrounded by parentheses, 
then provide a "step-by-step" reasoning 
for your choice.

Which one of the following rules {(1) 
objects become smaller, (2) objects 
become bigger, (3) no change, (4) doesn’t 
apply} best describes the left-to-right 
transformation in the top of the puzzle 
where the picture on the left transforms 
to the picture on the right?. Answer with 
the correct rule number surrounded by 
parentheses. Then provide a "step-by-
step" reasoning for your choice.

Which one of three left-to-right object 
transformations (marked by either (A), (B) or (C)) on 
the bottom of the puzzle is the same as the left-to-
right transformation on the top of the puzzle? 
Answer with the correct letter surrounded by 
parentheses (or (D) if none of the options apply), 
then provide a "step-by-step" reasoning for your 
choice.

correct

incorrect

Figure 3: An example of a trial in KiVA. Models and humans are first asked to classify a given
transformation (left). If the classification is correct (green arrow), humans and models are further
evaluated on their verbal specification of the transformation (middle) and then on visual extrapolation
(right). Otherwise, humans and models skip to make a visual extrapolation (yellow arrow).

for accurate analogical reasoning, while the last step represents the core visual analogy task. Critically,
KiVA retains the core nonverbal extrapolation task (last step) from previous benchmarks and the
verbal questions do not replace the core nonverbal tasks. Even without correct verbal responses,
humans and models can still tackle the independently-assessed visual extrapolation tasks. Thus,
KiVA doesn’t require specific language skills but provides a window into the analogical reasoning
process of humans and models in reaching their final solutions. The first two verbal questions were
further paraphrased by developmental psychologists so that it is comprehensible to a three-year-old
child (Appendix A.3); models and adults did not benefit from the child-appropriate prompting so
the original prompt in Figure 3 was preserved. We pose all questions in a multiple-choice format
for human children, adults and models, which enables automatic scoring. Option labels for correct
responses were randomized such that LMMs’ option label bias does not correlate with task accuracy.
Furthermore, we provided the opportunity to select “Doesn’t apply” to accommodate responses that
the provided choices may not cover. Excluding the “Doesn’t apply” option, chance level is 25% for
Verbal Classification (4 possible choices were provided) and 33% for Verbal Specification and Visual
Extrapolation (3 possible choices were provided). Please refer to Figure 3 for the three-stage query
pipeline and Appendix A.2 for more details of the specific prompts.

Verbal classification of transformation (“what”). We first evaluate if the model or human can
detect what changed in a given transformation and classify it in the correct visual domain, such as
size or number (see Figure 3). We randomly sample incorrect multiple-choice options from other
possible transformation domains. “No change” and “Doesn’t apply” are always included as options
to accommodate for alternative forms ofreasoning that are not covered by the choices. Suppose the
model fails to identify basic changes, such as distinguishing a numerical change from a color change.
It will be unable to predict how new objects change based on the given transformations. This is an
inadequacy of existing visual analogical reasoning benchmarks (Moskvichev et al., 2023; Mitchell
et al., 2023; Ahrabian et al., 2024; Huang et al., 2024), which focus solely on advanced predictions
without ensuring fundamental change detection capabilities.

Verbal specification of transformation (“how”). If a subject correctly classifies the transformation,
we ask them to further specify also in the form of multiple-choice the transformation (see green arrow
in 3). This step is crucial because it ensures the subject can accurately specify the rule governing the
transformation before extrapolating it to a new object. If they fail to identify the specific change, any
attempt at extrapolation would more likely be incorrect (see Table 4 in Appendix B.3 for evidence
in models). By pinpointing where reasoning fails, we can better understand models’ and humans’
limitations and improve their analogical reasoning capabilities.

Visual Extrapolation of transformation. Finally, we proceed to the step captured by other bench-
marks: presenting a new image and asking the model to extrapolate how it will change based on the
previously identified transformation (see Figure 3 and other extrapolation examples of other visual
domains in Appendix A.1). We ask models to visually extrapolate independent of their performance in
verbal change identification to account for the possibility that models may engage in visual analogical
reasoning separately from verbal reasoning and can, therefore, perform well in visual tasks even

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

if they struggle with the prior verbal descriptions. This approach helps us determine if a model’s
visual reasoning can function independently of its verbal reasoning skills. It provides a more nuanced
evaluation of its cognitive capabilities and identifies specific areas for improvement.

3.2 A DATASET OF VISUAL ANALOGIES

We create a dataset of stimuli using everyday objects that better represent real-world visual data
and better match the training data of computer vision models (and humans). We take 3D models
of household objects from Downs et al. (2022) and objects commonly encountered by infants and
children from Stojanov et al. (2021). Each object in the dataset is handpicked by developmental
psychology experts to ensure that they are child-friendly. To set up the dataset, we perform five
basic visual transformation domains: changing the size, color, and number of objects, rotating and
reflecting the objects along different axes (see Figure 1 for the transformation domains examined).
Our benchmark includes code allowing users to perform these transformations on any object image,
enabling infinite expansion of the benchmark. We select these five types of object transformations
because they are crucial for object and scene recognition, (e.g., Diwadkar & McNamara (1997);
Gevers & Smeulders (1999)), scene segmentation (e.g., Chattopadhyay et al. (2017)), and detecting
significant changes in the environment (Hatfield & Allred, 2012; Duh & Wang, 2014). Other visual
properties, such as depth (Chen et al., 2016), spatial compositionality (Jiang et al., 2022; Thrush et al.,
2022), and physical affordances (Jiang et al., 2023; Sawatzky et al., 2019) are also crucial for such
purposes; however, we prioritized these five transformations for our benchmark in particular because
young children can solve these visual analogies, as already shown in developmental psychology
literature (Goddu et al., 2020; Harris et al., 2013). Below, we outline the five visual transformation
domains, each consisting of subdomains that specify an object transformation. There are 100 object
transformations for each subdomain of transformation, totaling 1,400 object transformations.

Color changes. Noticing color changes can signal alterations in an object’s state or presence, which
is essential for tasks like identifying ripe fruit or detecting hazards (Maule et al., 2023). In KiVA, the
general transformation rule for color is that input objects change to a single color as in (Goddu et al.,
2020). The subdomains of color examined are red, green, and blue.

Size changes. Size perception allows individuals to understand and interact with their environment
accurately, guiding tasks like identifying objects, planning actions, navigating spaces, and avoiding
obstacles (Giudice, 2018). In KiVA, objects undergo transformations in two subdomains: they turn
bigger or smaller (in both height and width) as in (Goddu et al., 2020) by a factor of 2.

Rotation. Mental rotation is the ability to recognize and map different views of the same object
(Shepard & Metzler, 1971). This is essential for identifying objects despite changes in perspective,
which is vital for navigation, object manipulation, and spatial orientation (Pinto et al., 2008). KiVA
takes inspiration from psychometric studies probing mental rotation in humans (e.g., (Bodner &
Guay, 1997; Quaiser-Pohl, 2003)), featuring object rotation in 2D space by the subdomains of 90
degrees (clockwise or counterclockwise) or 180 degrees.

Reflection. Reflection aids in understanding object symmetry and chirality, essential for distinguish-
ing left and right shoes or gloves, for example (Holmes et al., 2018). Chiral objects cannot be rotated
and translated into alignment with their reflection, so there is a visual difference between the object
and its reflection (Lin et al., 2020). We reflect chiral objects in two subdomains: along the x-axis or
the y-axis as in (Goddu et al., 2020).

Number changes. Accurately monitoring and comparing quantities is essential in various fields
like economics and science; it is also important in daily life activities like shopping, cooking, and
managing resources effectively, as in caching and rationing (Chattopadhyay et al., 2017; Cohen, 2005).
Transformations in this domain reflect basic mathematical operations over the number of objects in an
image. Subdomains of number transformations include addition (+1,+2) and subtraction (−1,−2).
We restrict the number of objects in an input or output image to under 8.

4 COMPARING ANALOGICAL REASONING IN LMMS AND HUMANS

Evaluating Large Multimodal Models. We test several LMMs: 1) GPT4-V (OpenAI API model:
gpt-4-vision-preview) (OpenAI, 2023b): an extension of the language-only GPT-4 (OpenAI, 2023a)
incorporating computer vision capabilities, 2) LLaVA-1.5 (Liu et al., 2024): an open-source model
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that integrates a vision encoder with a language model, specifically designed to enhance general-
purpose visual and language understanding, 3) MANTIS (Jiang et al., 2024a) which builds on
modified architectures from notable models like LLaVA to support interleaved multi-image input. We
combine the given transformation with the choices of new object transformations at the extrapolation
step into a single composite input image for LLaVA-1.5, which is limited to processing a single image,
but present these as separate images to MANTIS, which is fine-tuned to manage interleaved multi-
image conversations. We evaluate GPT-4V under both multi-image and single-image presentations.
For all models, the temperature is set to 1 and the maximum token size is set to 300. We randomize
each experiment over three seeds and run each trial (Figure 3) on a model three times. We score
correct choices as 1 and incorrect choices as 0. We calculate the mean score across its three seeds.
Subsequently, to evaluate the performance for each transformation domain, we calculate the overall
mean and standard error for the average scores of all averaged trials within each domain. GPT-
4V, LLaVA-1.5, and MANTIS complete the entire benchmark, featuring 1,400 transformations.
Open-source models ran on an A6000 48 GB single GPU for under 12 hours.

Evaluating Humans. A corresponding visual analogies task, developed using JsPsych (De Leeuw,
2015), was administered to two groups of human participants. All methods were approved by IRB
(protocol 2020-10-13755) prior to testing both child and adult participants. We recruited 250 adults (21
to 40 years old) on Prolific (Prolific) to complete 14 trials randomly sampled from the benchmark such
that every trial was annotated by 3-13 adults. We recruited 50 children (aged 3 to 7 years, mean = 4.43
years, se = 0.16 years) from local early childhood centers and ChildrenHelpingScience (Science) to
complete a random subset of 10 trials (we randomly sampled 2 trials for each of the 5 transformation
domains), leading to a total of 400 responses. Participants completed a practice trial with an
"unrelated" transformation (adding a dot to geometric shapes) and received feedback to ensure
understanding. Participants who failed within three attempts were excluded. Those who succeeded
proceeded to test trials without feedback, and were told that rewards depended on their performance.
Adults were paid at least $12/hour with a bonus of $0.01 per correct response, while children received
stickers based on their performance. For every object set that was randomly sampled and tested in
children, children scored at least an average of 60.5% at visual extrapolation; for every object set
in the full benchmark, at least 2 out of 3 adults selected the correct response at visual extrapolation,
confirming that the benchmark is fully solvable by humans.

Mirroring model evaluation, we calculate average scores and standard errors across trials per domain.
The standard error reflects the variation in performance across trials completed by all participants.

5 RESULTS

Models get worse with increasing reasoning complexity, unlike humans. Overall, LMMs can
detect transformations and identify the general visual domain of the transformations (e.g., color vs.
size), as indicated by the blue bars labeled “Verbal Classification” in Figure 4 and Figure 5, with
GPT-4V and MANTIS generally outperforming LLaVA-1.5. GPT-4V and MANTIS outperform
human children in recognizing when an object changes color or spatial orientation (rotation and
reflection). That said, all models, unlike humans, hallucinate transformations in trials that actually
involve no change (Appendix B.2). Furthermore, performance generally declines when the models
are asked to further specify the transformation within the correctly identified visual domain (e.g.,
becoming bigger or smaller if size is the correctly identified domain), as reflected by the orange
bars labeled “Verbal Specification”. Performance for visual extrapolation declines even more, as

Figure 4: Human and model performance in the benchmark samples annotated by children,
sorted by Transformation and Question Type. Error bars represent standard errors of performance
across object variations within the same transformation. Chance level is 25% for Verbal Classification
(blue) and 33% for Verbal Specification (orange) and Visual Extrapolation (green).
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Figure 5: Human adult and model performance on the full benchmark. A similar pattern is
observed in human adult and model performance as in Figure 4.

illustrated by the green bars labeled “Visual Extrapolation”. In other words, models’ success in
verbally describing transformations does not guarantee their success in extrapolation. We may
attribute part of the models’ failure in analogical reasoning to an inability to correctly recognize the
given transformation. However, another part of the model’s failure lies in extrapolating the correctly
identified transformation to a novel object and predicting the corresponding outcome. Even when
given the correct verbal specification of the transformation, models still fail to solve extrapolation in
different visual domains (Appendix B.4). By contrast, children and adults show robust performance
from verbal classification to verbal specification to visual extrapolation, as shown in Figure 4. Even
young children can verbally describe the transformations as reflected by their significantly-above-
chance performance in verbal classification and verbal specification, and can then use their selected
verbal descriptions to extrapolate the visual transformations to new objects. Specific numerical results
can be found in Appendix B.1, with similar pattern of results for KiVA-adults (Appendix E.2).

Model performance depends on the visual domain and correlates with human response times.
Overall, models are better at detecting and describing color and size transformations than transfor-
mations in other domains. GPT-4V performs better at detecting and extrapolating color and size
transformations, which involve more discrete and local processing than the other domains (Zeki et al.,
1991; Zeng et al., 2020). However, LLaVA-1.5 and MANTIS do not perform well on generalizing size
transformations relative to other types of transformations, even when all the possible relative sizes of
objects are presented to LLaVA in a single image. Overall, all three models are less able to tell what
changed within the visual domains of rotation, reflection, and number, as demonstrated by the orange
bars labeled “Verbal Specification” in Figure 4 and Figure 5, and consequently also did not perform
well in extrapolations for those domains. In contrast, children and adults generally perform well
across all visual domains in Figure 4, with children performing slightly worse on rotation, suggesting
greater difficulty in appreciation of spatial orientation compared to other domains. While human
adults perform about equally well in all visual domains, their response times correlate with GPT-4V’s
error scores (1-Accuracy) across the domains, as demonstrated in Figure 6. What is cognitively
demanding to humans is perhaps also more computationally challenging for GPT-4V.

Models are inconsistent in their responses within trials and across reasoning steps. We measured
model response consistency (1) within repeated trials (Figure 7) and (2) from verbal classification
to visual extrapolation (Figure 8). Models demonstrate strongest response consistency in Verbal
Classification and least consistent responses in Visual Extrapolation. Only GPT-4 (multiple images)

Verbal Specification Visual Extrapolation

Bigger
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Green
Red

Blue
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+1

-2

-1

+90°
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180°

X

Y
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180°
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Figure 6: Mean error scores of GPT-4V (single image and multiple images) positively correlate
with mean response times of adults in verbal specification (left) and visual extrapolation (right).
Each dot is labeled by the specific transformation). In both specification and extrapolation, the longer
adults took to respond correctly, the more errors GPT-4V made, r = .78, p = .0011.
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Figure 7: Proportion of model consistent responses within repeated trials. Each model was
queried three times on the same trial and was scored as consistent if it selected the same choice across
the repeated trials and inconsistent otherwise. The heat map shows the proportion of consistent trials
(out of total number of trials), broken down by model, transformation domain, and question type.

Figure 8: Proportion of Aligned Model Responses from Verbal Specification to Visual Extrapo-
lation. A trial was scored as aligned if the chosen visual extrapolation matched the chosen verbal
specification and unaligned otherwise. The barplot shows the proportion of aligned trials (out of the
total number of trials), broken down by model and transformation domain.

in the color domain shows strong consistency throughout the three-step query. Furthermore, models
exhibit a disconnect between their verbally specifying a transformation rule and visually extrapolating
to a new object. While GPT-4V shows the strongest alignment between verbal and visual reasoning
for color transformations, LLaVA-1.5 and MANTIS perform best with size transformations, aligning
only half the time. This underscores a key limitation in the visual analogical reasoning of LMMs: the
ability to articulate a rule does not reliably translate to applying that rule in a new visual context.

Verbal questions facilitate visual extrapolation in humans and GPT-4V. We tested another 200
adults, 20 children and the best-performing model, GPT-4V (single image and multiple images), on a
visual-extrapolation-only task, removing the verbal questions to replicate previous visual analogy
benchmarks. Without verbal questions, adults demonstrated similar accuracy but significantly slower
response times, children performed significantly worse in extrapolation within all domains but
rotation, while GPT-4V performed worse in extrapolating color and resize transformations — its
strongest domains in the original setup—without the verbal questions (it was at chance level for the
rest of the domains) (Figure 15 in Appendix C). This indicates that our three-step query pipeline with
verbal questions facilitates humans and models to subsequently perform visual extrapolations.

In-context learning and prompt engineering did not improve model performance. We explore
whether model performance improves through careful prompt engineering (Appendix A), which has
shown promising results on various tasks (Wei et al., 2022; Qin & Eisner, 2021). We consider four
different prompt engineering methods: 1) Reasoning through code (Sharma et al., 2024): We first
prompt the model to generate code snippets describing each transformation in the task, then rephrase
the task question to incorporate the generated code. 2) Reasoning after Reflection (Valmeekam
et al., 2023): We ask the model to reflect on its answers two times for each question in the task. 3)
Reasoning through instruction: inspired by Wei et al. (2022), which shows that chain-of-thought
reasoning is more effective on several benchmarks, we prompt the model to generate step-by-step
instructions on how to answer each question, then use the instructions to generate an answer. 4)
In-Context Learning (Dong et al., 2022): We give the model two randomly sampled examples with
solutions for each concept before displaying the task. Apart from text prompt engineering, we
experiment with different visual prompting for LLaVA-1.5. Recent works (Bai et al., 2023; Bar et al.,
2022; Wang et al., 2023) show that visual model performance is sensitive to the alterations in color
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and size of the visual input. We apply two visual prompting approaches: 1) Color: we alter the image
background color (initially transparent) into black and white (Bai et al., 2023). 2) Size: we apply
a center crop to the images, varying the image size between 0.9 and 1. None of these approaches
improve performance, which points to the challenging nature of our benchmark.

6 DISCUSSION

Despite the scale of image and text data used to train GPT-4V, LLaVA-1.5, and MANTIS, these
models fail to reason about visual analogies like young children can. GPT-4V outperforms the other
models but still does not approach child performance in rotation, reflection and number. It performs
better in transformations related to color and size than those related to number and spatial orientation,
but like other models its performance substantial declines with verbal specification leading up to
visual extrapolation, whereas humans do not show much decline from generalizing changes to making
extrapolations about new objects. Even when models successfully infer (Appendix B.3) or are given
(Appendix B.4) the correct verbal specification, they can still fail visual extrapolation. This highlights
a deeper issue with visual analogical reasoning that goes beyond recognizing what transformation
it is, but more about specifically mapping the transformation from the source object to the visual
features of the target object while preserving the relational structure (Gentner, 1983).

Unlike simply observing discrete feature-level changes such as color or size, appreciating reflection,
rotation, and numerical changes tend to occur when actively engaging with the environment: de-
termining number changes involves sequentially keeping track of numbers, whereas reflection and
rotation necessitate visualizing and mentally manipulating objects in space. Our domain-dependent
findings also align with prior research showing that large multimodal models (LMMs) often strug-
gle with spatial reasoning (e.g., poor performance in rotation and reflection tasks) (Wang et al.,
2024; Rahmanzadehgervi et al., 2024) and counting (consistent with our results in number change
tasks) (Jiang et al., 2024b; Rahmanzadehgervi et al., 2024)]. These tasks are not only more cognitively
complex but are also not solvable merely through 2D image-text correlations, which are often used in
training LMMs. Furthermore, compared to spatial and numerical transformations, changes in size
and color tend to be processed much earlier in the visual pathway of the brain (Zeki et al., 1991;
Zeng et al., 2020) and in human development (Day & McKenzie, 1981; Milewski & Siqueland, 1975;
Ross-sheehy et al., 2003; Slater et al., 1990). Adults take longer to process visual analogies related to
changes in number and orientation, suggesting that it may be more cognitively challenging.

Overall, KiVA is designed to assess basic visual change detection and analogical reasoning capabilities
commonly studied in children by psychologists (Goddu et al., 2020). It aligns with the documented
capabilities of young children, as evidenced by the successful completion of our task by individuals
as young as three years old. We observe that LMMs perform worse than human participants without
marked improvement through in-context learning and visual or textual prompting techniques. Further
research should explore practical strategies for improving model performance, potentially through
symbolic visual vocabulary and Bayesian inference (Depeweg et al., 2024). As models develop and
improve in performance, we provide KiVA-adults and KiVA-compositionality beyond KiVA to set
up a curriculum for probing more sophisticated analogical reasoning capabilities. Our benchmark
does not capture the full spectrum of visual cognition, but it represents a foundational effort to
systematically evaluate visual analogical reasoning fundamentally and grounded using everyday
real-world objects and established principles from developmental and cognitive psychology.

7 CONCLUSION

Our findings suggest that large pretrained multimodal models are still less capable than humans in
visual analogical reasoning. While these models can classify changes in images, their performance
diminishes when tasked with specifying changes and further declines when extrapolating these
identified changes to a new, unseen object. Among the three models evaluated, GPT-4V performs the
best, particularly in tasks involving changes in color and size - surface-level features that do not alter
the object’s properties when viewed from different angles and spatial configurations. However, it
struggles with more challenging analogies of spatial and quantitative properties that perhaps require a
greater understanding of the 3D physical world. These rely less on simple image-text correlations.
In contrast, humans, including young children, can recognize and interpret a wide range of object
relations and transformations, as noted in existing studies (Goddu et al., 2020; Mitchell et al., 2023).
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A VISUAL ANALOGICAL REASONING PROMPTS

A.1 STITCHED VISUAL EXTRAPOLATION EXAMPLES FOR EACH DOMAIN

Visual Extrapolation. As the final step of the querying process, we presented an image of a new
object and ask the model to predict what the object will look like if it goes through the same change
as the given transformation.
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Figure 9: Example of a visual extrapolation trial involving a reflection.

Figure 10: Example of a visual extrapolation trial involving an angular rotation.

Figure 11: Example of a visual extrapolation trial involving a size change.

Figure 12: Example of a visual extrapolation trial involving a number change.

Figure 13: Example of a visual extrapolation trial involving a color change.

A.2 PROMPTING OF MODELS AND HUMAN ADULTS

We first include a system prompt to orient the models for visual analogical reasoning. You are an
excellent visual puzzle solver! You will be given a visual puzzle that requires using visual analogical
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reasoning. For models, we include a chain-of-thought prompt. You will think "step-by-step" and
carefully examine the visual evidence before providing an answer. For human adults, we additionally
include the following prompt to motivate their participation. At the end of the experiment, you will
see the total number of correct answers you provided. Each correct answer will convert to $0.01
additional compensation for your study participation. Then we provide an initial instruction prompt:
You are given a visual puzzle. The puzzle features a left-to-right transformation of an object on top
and three left-to-right transformations of a different object on the bottom marked by (A) or (B) or (C).
The transformations involve a change of either the size, orientation, number, or color of an object.

1. Verbal Classification (“what”).
“Which one of the following rules best describes the left-to-right transformation on top of the
puzzle where the picture on the left transforms to the picture on the right? Answer with the
correct rule number. Surrounded by parentheses, then provide a "step-by-step" reasoning
for your choice."

2. Verbal Specification (“how”).
“Which one of the following rules best describes the left-to-right transformation in the top
of the puzzle where the picture on the left transforms to the picture on the right?. Answer
with the correct rule number surrounded by parentheses. Then provide a "step-by-step"
reasoning for your choice."

3. Visual Extrapolation.
“Which one of the three left-to-right object transformations (marked by either (A), (B) or (C))
on the bottom of the puzzle is the same as the left-to-right transformation on the top of the
puzzle? Answer with the correct letter surrounded by parentheses (or (D) if none of the
options apply), then provide a a "step-by-step" reasoning for your choice."

A.3 PROMPTING HUMAN CHILDREN

All verbal instructions are read out loud to children by a human experimenter. We first provide a
context to motivate children’s participation in the experiment. You are on a mission as a picture
detective. You will see how different pictures change. Your job as a picture detective is to figure out
how the pictures change, and to guess how a new picture would change based on that. These pictures
can change in size, where they face, number, or color. Every time you answer correctly, you will get a
coin. You won’t find out how many coins you get until the end of the game. At the end of the game,
you will see the total number of coins you win. The more coins you get, the more stickers you win.

1. Verbal Classification (“what”).
“Here are two pictures separated by a black line in the middle. The picture on the left turns
into the picture on the right. Do you think there is a change? What do you think the change
is?"

2. Verbal Specification (“how”).
“Can you say more about the change from the left to the right?"

3. Visual Extrapolation.
“Here is another picture that goes through the same change from the left to right. Can you
find the box that shows the same change?"

Note that the prompt used for children did not improve model or human adult performance.

A.4 PROMPTING MODELS THROUGH REFLECTION AND SELF-CRITIQUE

1. Verbal Classification (“what”).
“Which one of the following rules best describes the left-to-right transformation on top of the
puzzle where the picture on the left transforms to the picture on the right? Answer with the
correct rule number surrounded by parentheses, then provide a "step-by-step" reasoning for
your choice. Please reflect on your answer and provide a revised response if necessary."
(repeat three times following model output) Start your response with your updated answer.
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2. Verbal Specification (“how”).
“Which one of the following rules best describes the left-to-right transformation in the top of
the puzzle where the picture on the left transforms to the picture on the right?. Answer with
the correct rule number surrounded by parentheses, then provide a "step-by-step" reasoning
for your choice. Please reflect on your answer and provide a revised response if necessary."
(repeat three times following model output) Start your response with your updated answer.

3. Visual Extrapolation.
“Which one of three left-to-right object transformations (marked by either (A), (B) or (C))
on the bottom of the puzzle is the same as the left-to-right transformation on the top of the
puzzle? Answer with the correct letter surrounded by parentheses (or (D) if none of the
options apply), then provide a "step-by-step" reasoning for your choice. Please reflect on
your answer and provide a revised response if necessary."
(repeat three times following model output) Start your response with your updated answer.

A.5 PROMPTING MODELS THROUGH INSTRUCTIONS

1. Verbal Classification (“what”).
“Which one of the following rules best describes the left-to-right transformation on top of the
puzzle where the picture on the left transforms to the picture on the right? Answer with the
correct rule number surrounded by parentheses, then provide a “step-by-step” reasoning
for your choice."

2. Verbal Specification (“how”).
“Provide brief instructions on how to establish if a transformation involves an object rotates
90 degrees or 180 degrees. Use the instructions form before to answer the following question:
Which one of the following rules best describes the transformation in the top of the puzzle
where the picture on the left transforms to the picture on the right?. Answer with the correct
rule number surrounded by parentheses, then provide a “step-by-step” reasoning for your
choice."

3. Visual Extrapolation.
“Provide brief instructions on how to determine which one of three left-to-right object trans-
formations (marked by either (A), (B) or (C) ) on the bottom of the puzzle is the same as
the left-to-right transformation on the top of the puzzle? Use the instructions from before to
determine which one of three left-to-right object transformations (marked by either (A), (B)
or (C) ) on the bottom of the puzzle is the same as the left-to-right transformation on the top
of the puzzle? Answer with the correct letter surrounded by parentheses (or (D) if none of
the options apply), then provide a step-by-step reasoning for your choice."

A.6 PROMPTING MODELS THROUGH CODE

1. Verbal Classification (“what”).
“Which one of the following rules best describes the left-to-right transformation on top of the
puzzle where the picture on the left transforms to the picture on the right? Answer with the
correct rule number surrounded by parentheses, then provide a "step-by-step" reasoning for
your choice."

2. Verbal Specification (“how”).
“Generate python code using the package pillow that takes in the left image in the left-to-right
transformation on top and outputs the right image. Denote this snippet as training snippet
using the insights from the training code snippet, which one of the following rules best
describes the left-to-right transformation in the top of the puzzle where the picture on the
left transforms to the picture on the right?. Answer with the correct rule number surrounded
by parentheses, then provide a "step-by-step" reasoning for your choice."

3. Visual Extrapolation.
“Generate a brief code snippet using python and the pillow package for each left-to-right
transformation in the bottom. Each snippet takes in the left picture of the transformation
and outputs the right one. Now Which one of three code snippets is the same as the training
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code snippet you have produced before. Answer with the correct snippet letter ((A) or (B)
or (C)) surrounded by parentheses (or (D) if none of the options apply), then provide a
"step-by-step" reasoning for your choice."

B ADDITIONAL COMPARATIVE STATISTICS

B.1 BREAKDOWN OF PERFORMANCE ON KIVA

We present a breakdown of performance organized by transformation visual domain, question type,
and model or human: Table 1 includes comparisons on a sample of KiVA completed by children,
whereas Table 2 presents adult and model performance on the full KiVA benchmark.

Rotation Reflection Number Color Size
Verbal 

Classification

Verbal 

Specification

Visual 

Extrapolation

Verbal 

Classification

Verbal 

Specification

Visual 

Extrapolation

Verbal 

Classification

Verbal 

Specification

Visual 

Extrapolation

Verbal 

Classification

Verbal 

Specification

Visual 

Extrapolation

Verbal 

Classification

Verbal 

Specification

Visual 

Extrapolation

Human 

adults

97.7% 

(1.48%)

95.4%

(3.00%)

94.3%

(3.44%)

97.8%

(1.84%)

96.5%

(2.06%)

97.2%

(2.05%)

99.4%

(0.41%)

97.07%

(1.44%)

97.2%

(2.12%)

97.0% 

(1.73%)

100%

(0%)

100%

(0%)

100%

(0%)

97.4%

(1.53%)

98.8%

(1.25%)

Human 

children

83.0%

(9.21%)

73.5% 

(14.56%)

67.4%

(13.34%)

74.9%

(10.16%)

89.3%

(5.69%)

80.2%

(9.46%)

90.1%

(9.90%)

78.2%

(14.79%)

77.1%

(12.4%)

93.1% 

(5.77%)

95.5%

(4.55%)

93.9%

(4.07%)

95.0%

(5.00%)

79.4%

(10.36%)

88.3%

(7.01%)

GPT-4V 

(single 

image)

98.6%

(1.39%)

50.2%

(10.78%)

39.9%

(8.05%)

96.2%

(3.23%)

56.8%

(10.29%)

38.6%

(6.49%)

93.4%

(5.21%)

64.4%

(8.57%)

40.6%

(7.63%)

100%

(0%)

96.2%

(2.46%)

75.4%

(8.11%)

88.9%

(4.68%)

97.1%

(2.86%)

50.0%

(8.79%)

GPT-4V 

(multiple 

images)

97.2%

(2.78%)

64.2%

(12.2%)

31.2%

(7.49%)

64.8%

(5.93%)

47.7%

(14.15%)

44.3%

(7.39%)

79.9%

(11.30%)

57.8%

(11.95%)

26.4%

(8.63%)

100%

(0%)

98.1%

(1.94%)

98.0%

(1.36%)

96.7%

(2.41%)

100%

(0%)

84.4%

(5.85%)

LLaVA-1.5

(single 

image)

65.3%

(1.01%)

51.4%

(11.0%)

33.7%

(7.57%)

69.6%

(6.24%)

41.2%

(5.93%)

30.2%

(7.57%)

49.3%

(10.57%)

53.2%

(12.03%)

30.6%

(9.32%)

69.7%

(8.06%)

71.8%

(10.71%)

32.4%

(8.26%)

35.6%

(8.72%)

76.7%

(9.33%)

40.0%

(6.43%)

MANTIS

(multiple 

images)

92.7%

(4.27%)

52.5%

(12.4%)

37.8%

(8.28%)

82.2%

(6.56%)

57.4%

(9.21%)

33.2%

(7.00%)

90.3%

(7.14%)

44.3%

(9.87%)

35.1%

(8.83%)

99.1%

(0.93%)

45.9%

(10.70%)

37.2%

(8.21%)

45.6%

(10.5%)

47.6%

(7.16%)

26.7%

(6.56%)

Table 1: Mean performance of humans and models on the child sample of KiVA benchmark,
sorted by question type and transformation domain. Standard errors are in parentheses.
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Classification
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Visual 

Extrapolation

Verbal 

Classification

Verbal 

Specification

Visual 

Extrapolation

Verbal 

Classification

Verbal 

Specification

Visual 

Extrapolation

Verbal 

Classification

Verbal 

Specification

Visual 

Extrapolation

Verbal 

Classification

Verbal 

Specification

Visual 

Extrapolation

Human 

adults

97.5% 

(1.43%)

95.0%

(2.00%)

92.4%

(2.43%)

98.8%

(1.25%)

98.7%

(1.27%)

98.7%

(1.27%)

95.6%

(1.62%)

94.4%

(1.83%)

97.5%

(1.25%)

99.2% 

(0.83%)

95.8%

(1.83%)

99.2%

(0.84%)

98.8%

(1.25%)

100%

(0%)

97.5%

(0.18%)

GPT-4V 

(single 

image)

99.3%

(0.53%)

59.7%

(5.00%)

39.3%

(4.03%)

96.3%

(1.76%)

61.3%

(5.29%)

37.3%

(3.58%)

89.2%

(2.70%)

58.2%

(4.14%)

35.8%

(3.58%)

99.8%

(0.22%)

96.7%

(1.52%)

78.0%

(3.52%)

86.7%

(3.13%)

98.1%

(1.17%)

52.0%

(4.11%)

GPT-4V 

(multiple 

images)

98.4%

(1.21%)

62.7%

(5.37%)

35.1%

(4.43%)

71.0%

(4.12%)

31.6%

(6.54%)

37.7%

(4.36%)

78.5%

(4.71%)

58.7%

(5.95%)

29.2%

(4.03%)

100%

(0%)

97.3%

(1.20%)

96.0%

(1.51%)

97.0%

(1.45%)

100%

(0%)

81.7%

(3.11%)

LLaVA-1.5

(single 

image)

66.7%

(4.42%)

48.4%

(5.25%)

33.3%

(3.78%)

64.3%

(4.48%)

42.1%

(3.77%)

28.3%

(3.92%)

50.7%

(4.16%)

44.4%

(6.08%)

28.3%

(3.93%)

73.3%

(3.69%)

68.6%

(5.53%)

29.8%

(4.04%)

40.3%

(4.49%)

66.2%

(6.98%)

31.3%

(3.54%)

MANTIS

(multiple 

images)

92.2%

(3.08%)

51.4%

(5.47%)

37.1%

(3.99%)

83.7%

(3.99%)

61.7%

(4.78%)

32.0%

(4.14%)

86.7%

(3.90%)

48.7%

(4.61%)

32.8%

(3.81%)

99.3%

(0.53%)

52.9%

(4.91%)

36.4%

(3.89%)

39.7%

(5.46%)

48.8%

(5.57%)

34.3%

(3.83%)

Table 2: Mean performance of humans and models on the full KiVA benchmark, sorted by
question type and transformation domain. Standard errors are included in parentheses.

B.2 MODELS’ PERFORMANCE ON TRIALS INVOLVING NO CHANGE

For each type of transformation, 10% of the positive transformation trials were randomly sampled
and reassigned with training and test transformations that involved no change. In these cases, the
original correct and incorrect transformation options were treated as distractor options, while the
transformation involving “no change” was designated as the correct answer. Among the models,
only GPT-4V (multiple images) performed significantly above chance when correctly identifying
"no change" in the verbal classification stage, and this was limited to the size domain. In contrast,
GPT-4V (single images), LLaVA-1.5, and MANTIS consistently "hallucinated" a change in 100% of
the no-change trials during verbal classification. GPT-4V (single images) often inferred changes in
orientation or size, while LLaVA-1.5 and MANTIS made errors equally across unrelated domains.
None of the models showed significantly-above-chance visual extrapolation accuracy (i.e., identifying
a new object that also underwent no change) above chance level across all domains.
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Figure 14: Model performance on no-change trials. Note that Verbal Specification is skipped if
Verbal Classification is incorrect (as described in Figure 3).

B.3 MODELS’ EXTRAPOLATION PERFORMANCE CONDITIONAL ON PREVIOUS VERBAL
REASONING STEPS

Furthermore, we report models’ extrapolation performance conditional on succeeding (Table 3) or
failing (Table 4) at the previous steps of verbal reasoning. Only GPT-4V (multiple images and single
images) demonstrated extrapolation accuracy that is significantly above chance in the color and size
domains. Focusing on the GPT-4V model and these domains, we found that extrapolation accuracy
is significantly higher when correct verbal classification and / or specification is correct (note that
verbal specification is only asked if verbal classification is correct), suggesting that the likelihood of
successful extrapolation is contingent on solving verbal classification or specification correctly.

Rotation Reflection Number Color Size

Correct Verbal 

Classification

Correct Verbal 

Specification

Correct Verbal 

Classification

Correct Verbal 

Specification

Correct Verbal 

Classification

Correct Verbal 

Specification

Correct Verbal 

Classification

Correct Verbal 

Specification

Correct Verbal 

Classification

Correct Verbal 

Specification

GPT-4V 

(single image)

36.0%

(2.35%)

39.6%

(3.34%)

33.8%

(3.00%)

40.0%

(4.15%)

34.6%

(2.21%)

40.4%

(2.97%)

73.5%

(2.67%)

80.2%

(2.04%)

58.2%

(3.41%)

52.7%

(3.24%)

GPT-4V 

(multiple 

images)

29.3%

(2.27%)

38.0%

(3.46%)

28.7%

(3.21%)

67.6%

(6.71%)

30.0%

(2.38%)

35.0%

(3.56%)

94.5%

(1.18%)

97.4%

(0.76%)

77.4%

(3.14%)

84.2%

(2.72%)

LLaVA-1.5

(single image)

34.5%

(2.17%)

30.6%

(2.87%)

30.0%

(2.59%)

29.9%

(3.71%)

30.2%

(2.05%)

23.8%

(2.79%)

29.1%

(2.04%)

27.5%

(2.38%)

36.3%

(2.25%)

30.7%

(4.91%)

MANTIS

(multiple 

images)

37.6%

(2.44%)

44.1%

(3.79%)

31.9%

(3.32%)

24.3%

(3.35%)

32.5%

(2.17%)

37.4%

(3.35%)

36.3%

(2.25%)

36.4%

(3.32%)

36.3%

(4.60%)

45.3%

(7.00%)

Table 3: Mean extrapolation performance of models following Correct verbal classification /
specification, sorted by transformation domain. Standard errors are in parentheses.
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Incorrect Verbal 

Classification

Incorrect Verbal 
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Incorrect Verbal 

Classification

Incorrect Verbal 

Specification

Incorrect Verbal 

Classification

Incorrect Verbal 

Specification

GPT-4V 

(single image)

31.5%

(6.86%)

36.3%

(3.91%)

26.5%

(7.80%)

31.5%

(4.32%)

19.5%

(4.28%)

26.3%

(2.79%)

24.4%

(6.88%)

32.1%

(1.24%)

27.9%

(6.44%)

43.3%

(8.00%)

GPT-4V 

(multiple 

images)

33.3%

(9.80%)

28.0%

(4.06%)

33.8%

(6.39%)

30.4%

(3.62%)

13.9%

(2.85%)

24.9%

(2.81%)

50.0%

(1.21%)

43.3%

(15.8%)

20.8%

(11.45%)

16.7%

(1.05%)

LLaVA-1.5

(single image)

29.0%

(2.77%)

35.5%

(2.13%)

22.8%

(3.18%)

27.0%

(2.45%)

28.8%

(2.07%)

28.4%

(1.65%)

36.0%

(3.31%)

33.6%

(2.47%)

27.8%

(2.63%)

28.5%

(2.02%)

MANTIS

(multiple 

images)

18.3%

(6.83%)

33.9%

(3.43%)

30.9%

(7.16%)

38.5%

(4.50%)

30.0%

(5.57%)

31.0%

(2.74%)

66.7%

(33.3%)

37.4%

(3.74%)

30.5%

(3.79%)

30.6%

(3.21%)

Table 4: Mean extrapolation performance of models following Incorrect verbal classification /
specification, sorted by transformation domain. Standard errors are in parentheses.
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B.4 MODELS’ SUBSEQUENT PERFORMANCE WHEN GIVEN CORRECT PREVIOUS VERBAL
REASONING STEP

10% of existing transformation trials were randomly sampled(evenly distributed across the five
visual domains) to evaluate if model performance would improve when given the correct answer
to the previous reasoning step. In one experiment, we provided the correct verbal classification
answer and evaluated the models’ verbal specification. In another experiment, we provided the
correct verbal specification answer and evaluated the models’ visual extrapolation. The data are
outlined in Table 5. Overall, having the ground truth for the preceding verbal reasoning step did
not guarantee success in the subsequent verbal specification or visual extrapolation tasks, with
performance varying by model and domain. For example, the verbal specification performance of
LLaVA-1.5 and MANTIS improved when given the correct verbal classification in the color domain,
while the visual extrapolation performance of GPT-4V (multiple images) improved when given
the correct verbal specification in the rotation and reflection domains. However, other models and
domains did not show noticeable improvement when provided with the ground truth of the previous
step.

Rotation Reflection Number Color Size

Verbal 

Specification 

Given Correct 

Classification

Visual 

Extrapolation 

Given Correct 

Specification

Verbal 

Specification 

Given Correct 

Classification

Visual 

Extrapolation 

Given Correct 

Specification

Verbal 

Specification 

Given Correct 

Classification

Visual 

Extrapolation 

Given Correct 

Specification

Verbal 

Specification 

Given Correct 

Classification

Visual 

Extrapolation 

Given Correct 

Specification

Verbal 

Specification 

Given Correct 

Classification

Visual 

Extrapolation 

Given Correct 

Specification

GPT-4V 

(single image)

44.4%

(8.40%)

33.3%

(7.97%)

63.7%

(8.53%)

33.3%

(6.40%)

51.7%

(7.04%)

40.0%

(7.09%)

97.8%

(2.22%)

73.3%

(8.10%)

73.3%

(10.89%)

56.7%

(8.68%)

GPT-4V 

(multiple 

images)

62.2%

(10.72%)

48.9%

(7.18%)

43.3%

(14.10%)

66.7%

(12.17%)

38.3%

(9.45%)

38.3%

(6.52%)

97.8%

(2.22%)

93.3%

(4.82%)

93.3%

(4.44%)

83.3%

(11.39%)

LLaVA-1.5

(single image)

53.3%

(10.18%)

37.8%

(7.18%)

50.0%

(16.67%)

43.3%

(8.68%)

46.7%

(5.62%)

25.0%

(6.79%)

86.7%

(5.44%)

31.1%

(6.06%)

60.0%

(9.69%)

23.3%

(7.11%)

MANTIS

(multiple 

images)

55.6%

(9.58%)

37.8%

(5.51%)

50.0%

(16.67%)

36.7%

(11.6%)

28.3%

(7.36%)

31.7%

(7.44%)

91.1%

(6.88%)

33.3%

(7.97%)

53.3%

(8.89%)

26.7%

(8.31%)

Table 5: Mean subsequent performance of models when given Correct verbal classification or
Correct verbal specification, sorted by transformation domain. Standard errors are in parentheses.

C EVALUATING HUMANS AND GPT-4V ONLY ON THE VISUAL
EXTRAPOLATION OF KIVA

We presented 20 children, 200 adults, and GPT-4V (single and multiple images) with only the visual
extrapolation task, removing the verbal questions and replicating previous visual analogy benchmarks.
Without verbal reasoning, adults demonstrated similar accuracy but significantly slower response
times (t > 3, p < .01 for all domains), children performed significantly worse in reflection, number,
color and size domains (t > 2.5, p < .05), while GPT-4V (single and multiple images) performed
worse (p < .01) in abstracting color and resize transformations — its strongest domains in the original
setup—without the verbal questions (it was at chance level for the rest of the domains) (Figure 15).
This indicates that the prior verbal reasoning steps enable humans and models to subsequently perform
visual extrapolations. Without the full three-step query, humans and models would perform worse.

D DIVERGENCE BETWEEN HUMAN ADULTS’ AND MODELS’ VISUAL
EXTRAPOLATION PERFORMANCE ON KIVA

We conducted a KL divergence analysis comparing the distribution of human adult choices to model
choices across the multiple-choice options in visual extrapolation, the core of any visual analogy task.
First, we found that divergences primarily stemmed from adults consistently selecting the correct
option while models chose incorrect ones. Notably, there were no trials in which both models and
adults scored 0%. Figure 16 illustrates the domains and models with the greatest divergence from
adults in extrapolation choices, with GPT-4V (multiple images) aligning most closely with adults
in the color domain. Second, we observed that the greatest divergences occurred in trials or object
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Figure 15: Adults’ Mean Response Times, Children’s and GPT-4V’s Mean Accuracy in Extrap-
olation with and without the three-step query.

Figure 16: Heatmap of Mean KL Divergence Between Human Adults and Models.

sets where models only chose incorrect options (scored 0%) and adults only chose correct options
(scored 100%). Crucially, there were no trials where this pattern was reversed. Depending on the
transformation type and the model, 0% to 50% of trials showed models scoring 0% while adults
scored 100%. Across the entire benchmark, there were only two trials where all models scored 0%
but adults scored 100%. Both of these trials involved reflection along the Y-axis and are shown in
Figure 17.

(a) Trial 18 of Reflection along the y-axis, anno-
tated correctly by 8/8 human adults.

(b) Trial 30 of Reflection along the y-axis, anno-
tated correctly by 6/6 human adults.

Figure 17: The two trials in KiVa wherein models scored 0% but human adults scored 100%.
The marigold in (b) features a subtle reflection that is noticeable in the stem and petal orientation.
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E KIVA-ADULTS

E.1 KIVA-ADULTS COMPARED TO KIVA

Given Transformation KiVA Extrapolation KiVA-adults Extrapolation

Color

Size

Rotation

Reflection

Number

Table 6: Examples of transformation input values tested on KiVA vs. KiVA-adults. Unlike KiVA,
KiVA-adults’ extrapolation input values are different from the given transformation input values.

KiVA preserves the input and output values between the given transformation and test transformation
for extrapolation. As shown in Table 6, only the object undergoing transformation varies between
training (left column) and test (middle column). For example, in a numerical transformation, if
the given transformation involves turning three bowls into two bowls, test asks for the result of
transforming three apples (answer: two apples). KiVA-adults, on the other hand, changes the input
value at test (right column). For instance, if the given transformation shows three bowls converting
into two bowls again, the test asks for the transformation of four apples (answer: three apples). This
requires not only generalizing a transformation across different objects but also abstracting a function
to generalize over different input values.

KiVA KiVA-adults

Color Red, Green, Blue Red, Green, Blue, Yellow, Grey
Size 1/2× and 2× height & width 1/2× and 2× height & width, or separately
Rotation ±90◦, 180◦ ±45◦, ±90◦, ±135◦, 180◦
Reflection reflect along the x or y axes reflect along x or y axes, or both axes together
Number +1,+2,−1,−2 +1,+2,−1,−2,×2,×3,÷2,÷3

Table 7: More visual subdomains are involved in KiVA-adults compared to KiVA. Color:
KiVA-adults includes two more colors transformations (yellow, grey), non-uniform scaling of size
(independently halving or doubling either width or height), two additional angular values (±45◦ and
±135◦), rotating objects along both axes, as well as division and multiplication of objects by 2 or 3.

Furthermore, KiVA-adults includes more transformation subdomains than the original task. The
subdomains in KiVA are more distinguishable from each other (see Table 7 for the subdomains
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Rotation Reflection Number Color Size
Verbal 

Classification

Verbal 

Specification

Visual 

Extrapolation

Verbal 

Classification

Verbal 

Specification

Visual 

Extrapolation

Verbal 

Classification

Verbal 

Specification

Visual 

Extrapolation

Verbal 

Classification

Verbal 

Specification

Visual 

Extrapolation

Verbal 

Classification

Verbal 

Specification

Visual 

Extrapolation

Human 

adults

100% 

(0%)

85.1%

(2.82%)

88.8%

(2.49%)

99.2%

(0.83%)

94.2%

(2.43%)

84.2%

(3.35%)

98.8%

(0.88%)

93.7%

(1.94%)

97.5%

(1.24%)

100% 

(0%)

98.0%

(0.98%)

98.0%

(0.99%)

98.3%

(1.16%)

95.8%

(1.85%)

98.3%

(1.16%)

GPT-4V 

(single 

image)

96.4%

(0.55%)

47.2%

(1.43%)

37.6%

(1.18%)

93.8%

(1.35%)

48.2%

(2.87%)

37.1%

(2.24%)

90.9%

(0.68%)

62.6%

(1.36%)

35.5%

(0.98%)

99.5%

(0.27%)

95.4%

(0.91%)

73.1%

(1.70%)

70.4%

(1.33%)

81.7%

(1.30%)

49.2%

(1.35%)

GPT-4V 

(multiple 

images)

97.2%

(0.78%)

42.9%

(2.06%)

30.0%

(1.51%)

79.8%

(2.85%)

27.2%

(2.92%)

32.9%

(2.27%)

82.0%

(1.26%)

54.4%

(1.65%)

26.7%

(1.03%)

99.7%

(0.27%)

94.4%

(1.19%)

92.7%

(1.19%)

75.8%

(1.69%)

70.9%

(2.01%)

53.7%

(1.86%)

LLaVA-1.5

(single 

image)

68.7%

(1.20%)

30.6%

(1.34%)

33.9%

(1.13%)

65.9%

(1.89%)

55.3%

(2.55%)

31.5%

(1.82%)

50.9%

(1.03%)

35.1%

(1.16%)

28.7%

(0.93%)

75.0%

(1.23%)

56.6%

(1.73%)

31.2%

(1.18%)

24.2%

(1.21%)

35.7%

(1.69%)

31.7%

(1.10%)

MANTIS

(multiple 

images)

93.6%

(1.02%)

49.5%

(2.27%)

40.0%

(1.53%)

86.6%

(2.18%)

51.0%

(2.72%)

33.3%

(2.27%)

86.5%

(1.41%)

39.4%

(1.67%)

33.2%

(1.38%)

95.6%

(1.04%)

54.8%

(2.51%)

34.4%

(1.71%)

38.3%

(1.99%)

48.1%

(2.18%)

33.1%

(1.55%)

Table 8: Mean performance of humans and models on the KiVA-adults benchmark, sorted by
question type and transformation domain. Standard errors are in parentheses.

evaluated in the two tasks respectively). In KiVA-adults, we also have to add additional constraints in
the sampling for the transformation domain involving number changes to avoid ambiguity between
multiplication and addition (both involving an increase in number), or between subtraction and
division (both involving a decrease in number).

We run GPT-4V, LLaVA-1.5 and MANTIS on KiVA-adults which consists of 2,900 transformations.
We also test 10 children and 40 adults (of the same age ranges as those recruited for KiVA) on
KiVA-adults. Each adult completes 19 trials that are randomly sampled from the 29 subdomains,
totaling 760 responses. Each child is assigned to complete 10 randomly sampled trials, but none of
them succeed on completing them with passing accuracy.

E.2 MODELS’ AND HUMAN ADULTS’ PERFORMANCE ON KIVA-ADULTS

Figure 18: Performance of Human Adults, GPT-4V, LLaVA-1.5 and MANTIS on KiVA-adults.
Performance is organized by question type and transformation domain. Error bars represent standard
errors of performance across object variations within the same transformation domain.
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