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Abstract

This paper studies two fundamental problems in regularized Graphon Mean-Field
Games (GMFGs). First, we establish the existence of a Nash Equilibrium (NE)
of any λ-regularized GMFG (for λ ≥ 0). This result relies on weaker conditions
than those in previous works for analyzing both unregularized GMFGs (λ = 0)
and λ-regularized MFGs, which are special cases of GMFGs. Second, we pro-
pose provably efficient algorithms to learn the NE in weakly monotone GMFGs,
motivated by Lasry and Lions [2007]. Previous literature either only analyzed
continuous-time algorithms or required extra conditions to analyze discrete-time
algorithms. In contrast, we design a discrete-time algorithm and derive its conver-
gence rate solely under weakly monotone conditions. Furthermore, we develop and
analyze the action-value function estimation procedure during the online learning
process, which is absent from algorithms for monotone GMFGs. This serves as a
sub-module in our optimization algorithm. The efficiency of the designed algorithm
is corroborated by empirical evaluations.

1 Introduction

In Multi-Agent Reinforcement Learning (MARL), the sizes of state and action spaces grow expo-
nentially in the number of agents, which is known as the “curse of many agents” [Sonu et al., 2017,
Wang et al., 2020] and restrict its applicability to large-scale scenarios. The Mean-Field Game (MFG)
has thus been proposed to mitigate this problem by exploiting the homogeneity assumption [Huang
et al., 2006, Lasry and Lions, 2007], and it has achieved tremendous successes in many real-world
applications [Cousin et al., 2011, Achdou et al., 2020]. However, the homogeneity assumption is an
impediment when modeling scenarios in which the agents are heterogeneous. GMFGs, as extensions
of MFGs, have thus been proposed to model the behaviors of heterogeneous agents and ameliorate
the “curse of many agents” at the same time [Parise and Ozdaglar, 2019, Carmona et al., 2022].

Despite the empirical successes of the Graphon Mean-Field Game (GMFG) [Aurell et al., 2022a], its
theoretical understanding is lacking. First, sufficient conditions for Nash Equilibrium (NE) existence
in regularized GMFG have not been established. Most works only address the existence of the
NE in unregularized GMFGs. However, regularization is employed in practical implementations
for improved exploration and robustness [Geist et al., 2019]. Moreover, previous works prove
the existence of NE in regularized MFGs, a special case of GMFGs, only under the contraction
condition, which is overly restrictive for real-world applications. Second, the analysis of discrete-
time algorithms for monotone GMFGs is lacking. Most existing works design provably efficient
discrete-time algorithms only under contraction conditions, as shown in Table 1. Complementarily,
previous works on monotone GMFGs either only derive the convergence rate for continuous-time
algorithms, which ignores the discretization error, or require extra conditions, (e.g., potential games)
to analyze discrete-time algorithms.
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Table 1: Comparison of GMFGs and MFGs learning algorithms

Condition No population
manipulation

Online
playing Heterogeneity Discrete-time

algorithm
Convergence

rate

Anahtarci et al. [2022] Contraction No No No Yes Yes
Xie et al. [2021a] Contraction No Yes No Yes Yes

Zaman et al. [2022] Contraction No Yes No Yes Yes
Yardim et al. [2022] Contraction Yes Yes No Yes Yes
Perrin et al. [2020] Monotone No No No No Yes

Geist et al. [2021] Potential
&Monotone No No No Yes Yes

Perolat et al. [2021] Monotone Yes Yes Yes No No
Fabian et al. [2022] Monotone Yes Yes Yes No No

Our work Monotone Yes Yes Yes Yes Yes

In this paper, we first consider GMFGs in full generality, i.e., without any contraction or monotone
conditions. The goal is to establish the existence of NE in the regularized GMFG in this general
setting. Then we focus on monotone GMFGs motivated by Lasry and Lions [2007]. We aim to learn
the unique NE from the online interactions of all agents with and without the action-value function
oracle. When the oracle is absent, the action-value functions should be estimated from the data of
sampled agents generated in the online game.

In the analysis, we have to overcome difficulties that arise from both the existence of the NE problem
and the learning of the NE. First, the proof of the existence of NE in regularized GMFG involves
establishing some topological spaces and operators related to NE on which fixed point theorems
are applicable. However, the direct construction of the space and the operators for GMFGs with
uncountably infinite agents is challenging. Second, the design and analysis of the discrete-time NE
learning algorithm require subtle exploitation of the monotone condition. Unlike continuous-time
algorithms with infinitesimal step sizes, the design of appropriate step sizes is additionally required for
the discrete-time algorithm to guarantee that iterates evolve appropriately. This guarantee originates
from the delicate utilization of the monotone condition in the optimization procedures.

To address the difficulty of the existence problem, we construct a regularized MFG from the reg-
ularized GMFG and show that the NE of the constructed game can be converted into the NE of
the original game, thus mitigating the difficulty of having an uncountable number of agents. To
handle the difficulty in the NE learning problem, we design the Monotone GMFG Policy Mirror
Descent (MonoGMFG-PMD) algorithm, which iteratively implements policy mirror descent for each
player. We show that this procedure results in a decrease of the KL divergence between the iterate
and the NE, and this decrease is related to the gap appearing in the weakly monotone condition.
When the action-value function oracle is absent, we also design and analyze action-value functions
estimation algorithms to serve as a submodule of the optimization procedures.

Main Contributions: We first establish the existence of the NE in the λ-regularized GMFG with
λ ≥ 0 assuming Lipschitzness of graphons and continuity of transition kernels and reward functions.
Our result relaxes the assumption of the Lipschitzness of transition kernels and rewards required
in previous works on unregularized GMFGs and the contraction condition in the literature on
regularized MFG [Cui and Koeppl, 2021a]. Then we design and analyze the MonoGMFG-PMD
algorithm. Using an action-value function oracle, the convergence rate for MonoGMFG-PMD is
proved to be Õ(T−1/2) after T iterations. Without the oracle, the convergence rate includes an
additional Õ(K−1/2 +N−1) term that arises from sampling N agents and collecting data from K
episodes, reflecting the generalization error and the approximation error of the estimation algorithm.
As shown in Table 1 , our algorithm can be implemented from the online interaction of agents and
does not require the distribution flow manipulation. Detailed explanations of the properties stated in
the columns of Table 1 are provided in Appendix A. Our result for MonoGMFG-PMD provides the
first convergence rate for discrete-time algorithms in monotone GMFGs.

2 Related Works

MFGs were proposed by Huang et al. [2006] and Lasry and Lions [2007] to model the interactions
among a set of homogeneous agents. In recent years, learning the NE of the MFGs formulated by
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discrete-time Markov Decision Process (MDP)s has attracted a lot of interest. There is a large body
of works that design and analyze algorithms for the MFGs under contraction conditions [Anahtarci
et al., 2019, 2022, Cui and Koeppl, 2021a, Xie et al., 2021a, Zaman et al., 2022, Yardim et al., 2022].
Typically, these works design reinforcement learning algorithms to approximate the contraction
operators in MFGs, and the NE is learned by iteratively applying this operator. In contrast, another
line of works focuses on the MFGs under monotone conditions. Motivated by Lasry and Lions
[2007], the transition kernels in these works are independent of the mean fields. Perrin et al. [2020]
proposed and analyzed the continuous-time fictitious play algorithm, which dynamically weighs the
past mean fields and the best response policies to derive new mean fields and policies. With the
additional potential assumption, Geist et al. [2021] derived the convergence rate for the discrete-time
fictitious play algorithm. Perolat et al. [2021] then proposed the continuous-time policy mirror descent
algorithm but only proved the asymptotic convergence, i.e., the consistency. In summary, there is
no convergence rate result for any discrete-time algorithm for MFGs under the monotone condition.
In addition, the relationship between the contraction conditions and the monotone conditions is not
clear from existing works, but they complement each other.

To capture the potential heterogeneity among agents, GMFGs have been proposed by Parise and
Ozdaglar [2019] in static settings as an extension of MFGs. The heterogeneous interactions among
agents are represented by graphons. Aurell et al. [2022b], Caines and Huang [2019] then extended
the GMFGs to the continuous-time setting, where the existence and the uniqueness of NE were
established. Vasal et al. [2020] formulated discrete-time GMFGs and provided way to compute
the NE with master equations. With the precise underlying graphons values, Cui and Koeppl
[2021b] proposed algorithms to learn the NE of GMFGs with the contraction condition by modifying
MFGs learning algorithms. Fabian et al. [2022] considered the monotone GMFG and proposed the
continuous-time policy mirror descent algorithm to learn the NE. However, only consistency was
provided in the latter two works.

Notation Let [N ] := {1, · · · , N}. Given a measurable space (Ω,F), we denote the collection of
all the measures and the probability measures on (Ω,F) as M(Ω) and ∆(Ω), respectively. For a
metric space (X , ∥ · ∥), we use C(X ) and Cb(X ) to denote the set of all continuous functions and
the set of all bounded continuous functions on X , respectively. For a measurable space (X ,F) and
two distributions P,Q ∈ ∆(X ), the total variation distance between them is defined as TV(P,Q) :=
supA∈F |P (A)−Q(A)|. A sequence of measures {µn} on X is said to converge weakly to a measure
µ if

∫
X g(x)µn(dx) →

∫
X g(x)µ(dx) for all g ∈ Cb(X ).

3 Preliminaries

3.1 Graphon Mean-Field Games

We consider a GMFG that is defined through a tuple (I,S,A, H, P, r,W, µ1). The horizon (or
length) of the game is denoted as H . In GMFG, we have infinite players, each corresponding to
a point α ∈ I = [0, 1]. The state and action space of them are the same, denoted as S ⊆ Rds

and A ⊆ Rda respectively. The interaction among players is captured by graphons. Graphons are
symmetric functions that map [0, 1]2 to [0, 1]. Symmetry here refers to that W (α, β) = W (β, α) for
all α, β ∈ [0, 1]. We denote the set of graphons as W = {W : [0, 1]2 → [0, 1] |W is symmetric.}.
The set of graphons of the game is W = {Wh}Hh=1 with Wh ∈ W . The state transition and reward
of each player are influenced by the collective behavior of all the other players through an aggregate
z ∈ M(S). At time h ∈ [H], we denote the state distribution of player β ∈ I as µβ

h ∈ ∆(S). The
aggregate for player α ∈ I with the underlying graphon Wh ∈ W is then defined as

zαh =

∫ 1

0

Wh(α, β)µ
β
h dβ. (1)

The transition kernels P = {Ph}Hh=1 of the game are functions Ph : S × A ×M(S) → S for all
h ∈ [H]. At time h, if player α takes action aαh ∈ A at state sαh ∈ S , her state will transition according
to sαh+1 ∼ Ph(· | sαh , aαh , zαh ). The reward functions are denoted as rh : S ×A×M(S) → [0, 1] for
all h ∈ [H]. We note that the players in GMFG are heterogeneous. This means that different players
will, in general, receive different aggregates from other players. The distribution µ1 ∈ ∆(S) is the
initial state distribution for all the players. A policy for an player α is πα = {πα

h}Hh=1 ∈ ΠH , where
πα
h : S → ∆(A) takes action based only on the current state, and Π is the set of all these policies.
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A policy for all the players πI ∈ Π̃ = ΠH×I is the collection of the policies of each player, i.e,
πI = {πα}α∈I . In the following, we denote the state distributions of all the players at time h and
the state distributions of all the players at any time (distribution flow) respectively as µI

h = {µα
h}α∈I

and µI = {µI
h}Hh=1 ∈ ∆̃ = ∆(S)H×I . Eqn. (1) shows that the aggregate zαh is a function of µI

h and
Wh, so to make this dependence explicit, we also write it as zαh (µ

I
h,Wh).

We consider the entropy-regularized GMFG. It has been shown that the regularization results in
policy gradient algorithms converging faster [Shani et al., 2020, Cen et al., 2022]. In this game, the
rewards of each player are the sum of the original rewards and the negative entropy of the policy
multiplied by a constant. In a λ-regularized GMFG (λ ≥ 0), the value function and the action-value
function of player α with policy πα on the MDP induced by the distribution flow µI are defined as

V λ,α
h (s, πα, µI) = Eπα

[ H∑
t=h

rt
(
sαt , a

α
t , z

α
t (µ

I
t ,Wt)

)
− λ log πα

t (a
α
t | sαt )

∣∣∣∣ sαh = s

]
, (2)

Qλ,α
h (s, a, πα, µI) = rh

(
s, a, zαh (µ

I
h,Wh)

)
+ Eπα[

V λ,α
h+1(s

α
h+1, π

α, µI) | sαh = s, aαh = a
]

(3)

for all h ∈ [H], where the expectation Eπα

is taken with respect to the stochastic process induced by
implementing policy πα on the MDP induced by µI . The cumulative reward function of player α is
defined as Jλ,α(πα, µI) = Eµ1

[V λ,α
1 (s, πα, µI)]. Then the notion of an NE is defined as follows.

Definition 1. An NE of the λ-regularized GMFG is a pair (π∗,I , µ∗,I) ∈ Π̃ × ∆̃ that satisfies:
(i) (player rationality) Jλ,α(π∗,α, µ∗,I) = maxπ̃α∈ΠH Jλ,α(π̃α, µ∗,I) for all α ∈ I up to a zero-
measure set on I with respect to the Lebesgue measure. (ii) (Distribution consistency) The distribution
flow µ∗,I is equal to the distribution flow induced by implementing the policy π∗,I .

Similar to the NE for the finite-player games, the NE of the λ-regularized GMFG requires that the
policy of each player is optimal. However, in GMFGs, the optimality is with respect to µ∗,I .

3.2 Mean-Field Games

As an important subclass of GMFG, MFG corresponds to the GMFG with constant graphons, i.e,
W (α, β) = p for all α, β ∈ I. MFGs involve infinite homogeneous players. All the players employ
the same policy and thus share the same distribution flow. The aggregate in Eqn. 1 degenerates to
zαh =

∫ 1

0
p · µβ

hdβ = p · µh for all α ∈ I. Here µh is the state distribution of a representative player.
Thus, an MFG is denoted by a tuple (S̄, Ā, H̄, P̄ , r̄, µ1). The state space, the action space, and the
horizon are respectively denoted as S̄, Ā, and H̄ . Here, the transition kernels P̄ = {P̄h}Hh=1 are
functions P̄h : S × A × ∆(S) → S, and reward functions r̄h : S × A × ∆(S) → [0, 1] for all
h ∈ [H]. In the MFG, all the players adopt the same policy π = {πh}Hh=1 where πh ∈ Π. The value
function and the action-value function in the λ-regularized MFG with the underlying distribution
flow µ = {µh}Hh=1 ∈ ∆(S)H can be similarly defined as Eqn. (2) and (3) respectively as follows

V̄ λ
h (s, π, µ) = Eπ

[ H∑
t=h

r̄t(st, at, µt)− λ log πt(at | st)
∣∣∣∣ sh = s

]
,

Q̄λ
h(s, a, π, µ) = r̄h(s, a, µh) + Eπ

[
V̄ λ
h+1(sh+1, π, µ) | sh = s, ah = a

]
for all h ∈ [H]. The cumulative reward is J̄λ(π, µ) = Eµ1

[V̄ λ
1 (s, π, µ)]. The notion of NE can be

similarly derived as follows.
Definition 2. An NE of the λ-regularized MFG is a pair (π∗, µ∗) ∈ ΠH × ∆(S)H that satisfies:
(i) (player rationality) Jλ(π∗, µ∗) = maxπ̃∈ΠH Jλ(π̃, µ∗). (ii) (Distribution consistency) The
distribution flow µ∗ is equal to the distribution flow induced by the policy π∗.

Remark 1. Compared with Definition 1, the definition of NE in MFG only involves the policy and
the distribution flow of a single representative player, since the agents are homogeneous in MFGs.

4 Existence of the NEs in Regularized GMFGs and MFGs

We now state some assumptions to demonstrate the existence of a NE for λ-regularized GMFGs.
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Assumption 1. The state space S is compact, and the action space A is finite.

This assumption imposes rather mild constraints on S and A. In real-world applications, the states
are usually physical quantities and thus reside in a compact set. For the action space, many deep
reinforcement learning algorithms discretize the potential continuous action sets into finite sets [Lowe
et al., 2017, Mordatch and Abbeel, 2018].

Assumption 2. The graphons Wh for h ∈ [H] are continuous functions.

The stronger version of this assumption (Lipschitz continuity) is widely adopted in GMFG works [Cui
and Koeppl, 2021b, Fabian et al., 2022]. It helps us to build the continuity of the transition kernels
and rewards with respect to players.

Assumption 3. For all h ∈ [H], the reward function rh(s, a, z) is continuous on S × A×M(S),
that is if (sn, an, zn) → (s, a, z) as n → ∞, then rh(sn, an, zn) → rh(s, a, z). The transition
kernel Ph(· | s, a, z) is weakly continuous in S × A ×M(S), that is if (sn, an, zn) → (s, a, z) as
n → ∞, Ph(· | sn, an, zn) → Ph(· | s, a, z) weakly.

This assumption states the continuity of the models, i.e., the transition kernels and the rewards, as
functions of the state, action, and aggregate. We note that the Lipschitz continuity assumption of the
model in the previous works implies that our assumption is satisfied [Cui and Koeppl, 2021b, Fabian
et al., 2022]. Next, we state the existence result of regularized GMFG.

Theorem 1. Under Assumptions 1, 2 and 3, for all λ ≥ 0, the λ-regularized GMFG
(I,S,A, H, P, r,W, µ1) admits an NE (πI , µI) ∈ Π̃× ∆̃.

This theorem strengthens previous existence results in Cui and Koeppl [2021b] and Fabian et al.
[2022] in two aspects. First, our assumptions are weaker. These two existing works require a finite
state space and the Lipschitz continuity of the models. In contrast, we only need a compact state space
and the model continuity. Second, their results only hold for the unregularized case (λ = 0), whereas
ours holds for any λ ≥ 0. In the proof of Theorem 1, we construct a MFG from the given GMFG and
show that an NE of the constructed MFG can be converted to an NE of the GMFG. Then we prove
the existence of NE in the constructed regularized MFG. Our existence result for the regularized
MFG is also a significant addition to the MFG literature.

Remark 2. Although we show that an NE of the constructed MFG can be converted to an NE of
GMFG, this proof does not imply that GMFG forms a subclass of or is equivalent to MFG. This is
because we have only demonstrated the relationship between the NEs of these two games, but the
exact realizations of the GMFG and the conceptually constructed MFG may differ. It means that the
sample paths of these two games may not be the same, which include the realizations of the states,
actions, and rewards of all the players.

We next state the assumption needed for the MFG.

Assumption 4. The MFG (S̄, Ā, H̄, P̄ , r̄, µ1) satisfies that: (i) The state space S̄ is compact, and
the action space Ā is finite. (ii) The reward functions r̄h(s, a, µ) for h ∈ [H] are continuous
on S × A × ∆(S). The transition kernels are weakly continuous on S × A × ∆(S); that is if
(sn, an, µn) → (s, a, µ) as n → ∞, P̄h(· | sn, an, µn) → P̄h(· | s, a, µ) weakly.

Then the existence of the NE is stated as follows.

Theorem 2. Under Assumption 4, the λ-regularzied MFG (S̄, Ā, H̄, P̄ , r̄, µ1) admits an NE (π, µ) ∈
ΠH ×∆(S)H for any λ ≥ 0.

Our result in Theorem 2 imposes weaker conditions than previous works [Cui and Koeppl, 2021a,
Anahtarci et al., 2022] to guarantee the existence of an NE. These existing works prove the existence
of NE by assuming a contractive property and the finiteness of the state space. They also require a
strong Lispchitz assumption [Anahtarci et al., 2022], where the Lipschitz constants of the models
should be small enough. In contrast, we only require the continuity assumption in Theorem 2. This
is due to our analysis of the operator for the regularized MFG and the use of Kakutani fixed point
theorem Guide [2006].
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5 Learning NE of Monotone GMFGs

In this section, we focus on GMFGs with transition kernels that are independent of the aggregate z,
i.e., Ph : S × A → S for h ∈ [H]. This model is motivated by the seminal work Lasry and Lions
[2007], where the state evolution in continuous-time MFG is characterized by the Fokker–Plank
equation. However, the form of the Fokker–Plank equation results in the state transition of each
player being independent of other players. This model is also widely accepted in the discrete-time
GMFG and MFG literature [Fabian et al., 2022, Perrin et al., 2020, Perolat et al., 2021].

5.1 Monotone GMFG

We first generalize the notion of monotonicity from multi-population MFGs in Perolat et al. [2021] to
GMFGs.
Definition 3 (Weakly Monotone Condition). A GMFG is said to be weakly monotone if for any
ρI , ρ̃I ∈ ∆(S ×A)I and their marginalizations on the states µI , µ̃I ∈ ∆(S)I , we have∫

I

∑
a∈A

∫
S

(
ρα(s, a)− ρ̃α(s, a)

)(
rh
(
s, a, zαh (µ

I ,Wh)
)
− rh

(
s, a, zαh (µ̃

I ,Wh)
))

dsdα ≤ 0

for all h ∈ [H], where Wh is the underlying graphon. It is strictly weakly monotone if the inequality
is strict when ρI ̸= ρ̃I .

In two MDPs induced by the distribution flows µI of πI and µ̃I of π̃I , the weakly monotone
condition states that we can achieve higher rewards at stage h ∈ [H] by swapping the policies. This
condition has two important implications. The first is the uniqueness of the NE.
Proposition 1. Under Assumptions 1, 2, and 3, a strictly weakly monotone λ-regularized GMFG has
a unique NE for any λ ≥ 0 up to a zero-measure set on I with respect to the Lebesgue measure.

In the following, we denote this unique NE as (π∗,I , µ∗,I), and we aim to learn this NE. The second
implication concerns the relationship between the cumulative rewards of two policies.
Proposition 2. If a λ-regularized GMFG satisfies the weakly monotone condition, then for any two
policies πI , π̃I ∈ Π̃ and their induced distribution flows µI , µ̃I ∈ ∆̃, we have∫ 1

0

Jλ,α(πα, µI) + Jλ,α(π̃α, µ̃I)− Jλ,α(π̃α, µI)− Jλ,α(πα, µ̃I) dα ≤ 0

If the λ-regularized GMFG satisfies the strictly weakly monotone condition, then the inequality is
strict when πI ̸= π̃I .

Proposition 2 shows that if we have two policies, we can improve the cumulative rewards on the MDP
induced by these policies by swapping the policies. This implies an important property of the NE
(π∗,I , µ∗,I). Since π∗,I is optimal on the MDP induced by µ∗,I , we have

∫ 1

0
Jλ,α(π∗,α, µ∗,I) dα ≥∫ 1

0
Jλ,α(πα, µ∗,I) dα for any πI ∈ Π̃. Then Proposition 2 shows that

∫ 1

0
Jλ,α(π∗,α, µI) dα ≥∫ 1

0
Jλ,α(πα, µI) dα for any policy πI and the distribution flow µI it induces. This means that the

NE policy gains cumulative rewards not less than any policy πI on the MDP induced by πI . This
motivates the design of our NE learning algorithm.

5.2 Policy Mirror Descent Algorithm for Monotone GMFG

In this section, we introduce the algorithm to learn the NE, which is called MonoGMFG-PMD and
whose pseudo-code is outlined in Algorithm 1. It consists of three main steps. The first step estimates
the action-value function (Line 3). We need to evaluate the action-value function of a policy on the
MDP induced by itself. This estimate can be obtained for each player independently by playing the
πI
t several times. We assume access to a sub-module for this and quantify the estimation error in

our analysis. The second step is the policy mirror descent (Line 4). Given ληt < 1, This step can be
equivalently formulated as

π̂α
t+1,h(· | s) = argmax

p∈∆(A)

ηt
1− ληt

[〈
Q̂λ,α

h (s, ·, πα
t , µ

I
t ), p

〉
− λR(p)

]
−Dkl

(
p∥πα

t,h(· | s)
)

∀ s ∈ S,
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Algorithm 1 MonoGMFG-PMD
Procedure:

1: Initialize πα
1,h(· | s) = Unif(A) for all s ∈ S,h ∈ [H] and α ∈ I.

2: for t = 1, 2, · · · , T do
3: Compute the action-value function Q̂λ,α

h (s, a, πα
t , µ

I
t ) for all α ∈ I and h ∈ [H], where µI

t is
the distribution flow induced by πI

t .
4: π̂α

t+1,h(· | s) ∝
(
πα
t,h(· | s)

)1−ληt
exp

(
ηtQ̂

λ,α
h (s, a, πα

t , µ
I
t )
)

for all α ∈ I and h ∈ [H]

5: πα
t+1,h(· | s) = (1− βt)π̂

α
t+1,h(· | s) + βtUnif(A)

6: end for
7: Output π̄I = Unif

(
πI
[1:T ]

)

where R(p) = ⟨p, log p⟩ is the negative entropy function. This step aims to improve the performance
of the policy πI

t on its own induced MDP. Intuitively, since the policy π∗,I in NE performs better
than πI

t on the MDP induced by µI
t as shown in Section 5.1, the improved policy πI

t+1 should be
closer to π∗,I than πI

t . The third step mixes the current policy with the uniform policy (Line 5) to
encourage exploration.

MonoGMFG-PMD is different from previous NE learning algorithms for monotone GMFG in Perolat
et al. [2021], Fabian et al. [2022] in three different ways. First, MonoGMFG-PMD is designed to
learn the NE of the λ-regularized GMFG with λ > 0, whereas other algorithms learn the NE of
the unregularized GMFGs. As a result, our policy improvement (Line 4) discounts the previous
policy as (πα

t,h)
1−ληt , but other algorithms retain πα

t,h. Second, our algorithm is discrete-time and
thus amenable for practical implementation. However, other provably efficient algorithms evolve in
continuous time. Finally, MonoGMFG-PMD encourages exploration in Line 5, which is important
for the theoretical analysis. Such a step is missing in other algorithms.

5.3 Theoretical Analysis for MonoGMFG-PMD with Estimation Oracle

This section provides theoretical analysis for the MonoGMFG-PMD algorithm given an action-value
function oracle in Line 3, i.e., Q̂λ,α

h = Qλ,α
h . We denote the unique NE of the λ-regularized GMFG

as (π∗,I , µ∗,I). For any policy πI , we measure the distance to the policy π∗,I of NE using

D(πI) =

∫ 1

0

H∑
h=1

Eµ∗,α
h

[
Dkl

(
π∗,α
h (· | sαh)∥πα

h (· | sαh)
)]

dα.

This metric measures the weighted KL divergence between policy πI and the NE policy, and the
weights are the NE distribution flow µ∗,I .

Theorem 3. Assume that the GMFG is strictly weakly monotone and we have an action-value
function oracle. Let ηt = η = O(T−1/2) and βt = β = O(T−1) in MonoGMFG-PMD. For any
λ > 0 we have

D

(
1

T

T∑
t=1

πI
t

)
= O

(
λ log2 T

T 1/2

)
.

Theorem 3 provides the first convergence rate result for a discrete-time algorithm on strictly weakly
monotone GMFGs under mild assumptions. In contrast, Perolat et al. [2021], Fabian et al. [2022] only
consider the continuous-time policy mirror descent, which is difficult for the practical implementation,
and only provide the asymptotic consistency results. Geist et al. [2021] derive exploitability results
for a fictitious play algorithm but require the potential structure and the Lipschitzness of the reward
function. Our proof for Theorem 3 mainly exploits properties of NE discussed in Section 5.1.
Concretely, we use the fact that the policy mirror descent procedure reduces the distance between
the policy iterate and the NE as D(πI

t+1)−D(πI
t ) ≈

∫ 1

0
Jλ,α(πα

t , µ
I
t )− Jλ,α(π∗,α, µI

t ) dα. Thus,
the policy iterate becomes closer to the NE. However, the discretization error and the exploration
influence (Line 5) also appear, requiring additional care to show that D(πI

t ), in general, decreases.
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Algorithm 2 Estimation of Action-value Function
Procedure:

1: Sample N players {i/N}Ni=1 ⊆ [0, 1].
2: The ith player implements πb,i

t for i ∈ [N ], and the other players implement πI
t .

3: Collect data {(siτ,h, aiτ,h, riτ,h)}
N,K,H
i,τ,h=1 of sampled players from K independent episodes.

4: Initialize V̂ λ,i
H+1(s, a) = 0 for all s ∈ S, a ∈ A and i ∈ [N ].

5: for time h = H, · · · , 1 do
6: for Player i = 1, · · · , N (in parallel) do
7: Q̂λ,i

h = argminf∈Fh

∑K
τ=1

(
f(siτ,h, a

i
τ,h)− riτ,h − V̂ λ,i

h+1(s
i
τ,h+1)

)2
.

8: V̂ λ,i
h (s) = ⟨Q̂λ,i

h (s, ·), πi/N
t,h (·, s)⟩ − λR

(
π
i/N
t,h (·, s)

)
.

9: end for
10: end for
11: Output {Q̂λ,i

h }N,H
i,h=1.

5.4 Theoretical Analysis for MonoGMFG-PMD with General Function Classes

In this section, we remove the requirement that one is given oracle access to an action-value function
and we estimate it in Line 3 of MonoGMFG-PMD using general function classes. We consider the
action-value function class F = F1 × · · · × FH , where Fh ⊆ {f : S × A → [0, (H − h+ 1)(1 +
λ log |A|)]} is the class of action-value functions at time h ∈ [H]. Then we estimate the action-value
functions using Algorithm 2.

This algorithm mainly involves two steps. The first is involves data collection (Line 3). Here we
assign policies to players and collect data from their interactions. We let the sampled N players
implement behavior policies {πb,i

t }Ni=1, which can be different from {πi/N
t }Ni=1. This will not change

the aggregate zαh (µ
I
h,Wh) for any α ∈ I, since only a zero-measure set of players change their

policies. The second is the action-value function estimation (Lines 7 and 8). The action-value
function is selected based on the previous value function, and the value function is updated from the
derived estimate. This can be implemented in parallel for all players. We highlight that the estimation
analysis cannot leverage results from general non-parametric regression [Wainwright, 2019], since
the response variable V̂ λ,i

h+1 is not independent of siτ,h+1 in our setting.

Assumption 5 (Realizability). For any policy πI ∈ Π̃ and the induced distribution flow µI ∈ ∆̃, we
have Qλ,α

h (·, ·, πα, µI) ∈ Fh for h ∈ [H].

This assumption ensures that we can find the nominal action-value function in the function class.
For a policy π ∈ ΠH and a function f : S × A → R, we define the operator (T π

h f)(s, a) =
Es′∼Ph(·|s,a)[⟨f(s′, ·), πh+1(·|s′)⟩ − λR(πh+1(·|s′))]. For a policy πI and the induced distribution
flow µI , we have Qλ,α

h (s, a, πα, µI) = rh(s, a, z
α
h ) + (T πα

h Qλ,α
h+1)(s, a).

Assumption 6 (Completeness). For any policy πI ∈ Π̃ and the induced distribution flow µI ∈ ∆̃,
we have that for all f ∈ Fh+1, rh(·, ·, zαh (µI

h,Wh)) + (T πα

h f) ∈ Fh for all α ∈ I, h ∈ [H − 1].

This completeness assumption ensures that the estimates from F also satisfy the relationship between
nominal action-value functions through T πα

h . These realizability and completeness assumptions are
widely adopted in the off-policy evaluation and offline reinforcement learning literature [Uehara et al.,
2022, Xie et al., 2021b].
Assumption 7. The reward functions {rh}Hh=1 are Lipschitz in z, i.e., |rh(s, a, z)− rh(s, a, z

′)| ≤
Lr∥z − z′∥1 for all s ∈ S, a ∈ A, h ∈ [H]. The graphons Wh for h ∈ [H] are Lipschitz continuous
functions, i.e., there exists a constant L = LW > 0 (depending only on W = {Wh}Hh=1) such that
|Wh(α, β)−Wh(α

′, β′)| ≤ LW (|α− α′|+ |β − β′|) for all α, α′, β, β′ ∈ [0, 1], and h ∈ [H].

The Lipschitzness assumption is common in the GMFG works [Parise and Ozdaglar, 2019, Carmona
et al., 2022, Cui and Koeppl, 2021b]. It helps us to approximate the action-value function of a player
by that of sampled players. We denote the state distributions of player i induced by policy πb,i

t as
µb,i
t . Then we require the behavior policies {πb,i

t }Ni=1 to satisfy the following requirements.
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(a) Beach Bar problem with SBM graphons (b) Beach Bar problem with exp-graphons.
Figure 1: Simulation results for Beach Bar problem with SBM and exp-graphons.

Assumption 8. For any t ∈ [T ], the behavior policies explore sufficiently. More precisely, for any
policy π ∈ ΠH and induced distributions µ ∈ ∆(S)H , we have sups∈S,a∈A πh(a | s)/πb,i

t,h(a | s) ≤
C1 and sups∈S dµh(s)/dµ

b,i
t,h(s) ≤ C2 for h ∈ [H] and i ∈ [N ] where C1, C2 > 0 are constants.

This assumption guarantees that the behavior policies explore the actions that may be adopted by
πI
t and π∗,I . Such an assumption is widely adopted in offline reinforcement learning and off-policy

evaluation works [Uehara et al., 2022, Xie et al., 2021b].
Theorem 4. Assume that the GMFG is weakly monotone and that Assumptions 5, 6, 7, and 8 hold.
Let ηt = η = O(T−1/2) and βt = β = O(T−1) in Algorithm 1 (MonoGMFG-PMD). Then with
probability at least 1− δ, Algorithms 1 and 2 yield

D

(
1

T

T∑
t=1

πI
t

)
= O

(
λ log2 T√

T
+ C1C2

H3/2B2
H

λ
√
K

log
TNH · N∞(5BH/K,F[H])

δ
+

H log T

N

)
,

where BH = H(1 + λ log |A|), and N∞(5BH/K,F[H]) = maxh∈[H] N∞(5BH/K,Fh) is the
ℓ∞-covering number of the function class.
The error in Theorem 4 consists of both the optimization and estimation errors. The optimization
error corresponds to the first term, which also appears in Theorem 3. The estimation error consists
of the generalization error and the approximation error, in the second and third terms respectively.
When the function class F is finite, this term scales as O(K−1/2), which originates from the fact that
we estimate the action-value function from the empirical error instead of its population counterpart.
The approximation error scales as O(N−1). This term originates from the fact that the action-value
function of player α is approximated by that of the sampled player near α. To learn a policy that is
at most ε > 0 far from the NE, we can set T = Õ(ε−2), K = Õ(ε−2), and N = Õ(ε−1), which in
total results in TK = Õ(ε−4) episodes of online plays.

6 Experiments
In this section, we conduct experiments to corroborate our theoretical findings. We run different
algorithms on the Beach Bar problem Perrin et al. [2020], Fabian et al. [2022]. The underlying
graphons are set to Stochastic Block Model (SBM) and exp-graphons. The details of experiments are
deferred to Appendix B. Since the NEs of the games are not available, we adopt the exploitability to
measure the proximity between a policy and the NE. For a policy πI and its induced distribution
flow µI , the exploitability for the λ-regularized GMFG is defined as

Exploit(πI) =

∫ 1

0

max
π̃∈ΠH

Jλ,α(π̃, µI)− Jλ,α(πα, µI)dα.

First, the experimental results demonstrate the necessity of modelling the heterogeneity of agents.
Figure 1 demonstrates the performance degradation of approximating GMFG by MFG. Here we let
the agents play in the GMFG with constant graphons Wh(α, β) = p for p ∈ {0, 0.5, 1}. The agents
have oracle access to the action-value function. We observe that this approximation results in gross
errors for learning the NEs of GMFGs with non-constant graphons.

Second, the experiments show that the algorithms designed for unregularized GMFG cannot learn the
NE of regularized GMFG. We implement the discrete-time version of the algorithm in Fabian et al.
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[2022]; results marked “Unreg PMD” show that the exploitability first decreases and then increases.
In line with the discussion in Section 5.2, this originates from keeping too much gradient knowledge
in previous iterates πI

t . The gradient of the policy is largely correct in the several initial iterations, but
a large amount of past knowledge results in it deviating in later iterations, since the past knowledge
accumulates. In contrast, our algorithm discounts the past knowledge as (πI

t )
1−ληt .

Finally, the results indicate the influence of action-value function estimation. In the experiments,
we run our algorithm when N = 5,K = 300, N = 10,K = 100, and N = 10,K = 300. Figure 1
shows that the algorithm with N = 10,K = 300 can achieve a smaller error than the algorithms both
with N = 10,K = 100 and N = 5,K = 300. This is in agreement with Theorem 4.

7 Conclusion

In this paper, we focused on two fundamental problems of λ-regularized GMFG. Firstly, we
established the existence of NE. This result greatly weakened the conditions in the previous works.
Secondly, the provably efficient NE learning algorithms were proposed and analyzed in the weakly
monotone GMFG motivated by Lasry and Lions [2007]. The convergence rate of MonoGMFG-PMD
features the first performance guarantee of discrete-time algorithm without extra conditions in
monotone GMFGs. We leave the lower bound of this problem to the future works.
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