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ABSTRACT

In standard Reinforcement Learning (RL) settings, the interaction between the
agent and the environment is typically modeled as a Markov Decision Process
(MDP), which assumes that the agent observes the system state instantaneously,
selects an action without delay, and executes it immediately. In real-world dy-
namic environments, such as cyber-physical systems, this assumption often breaks
down due to delays in the interaction between the agent and the system. These
delays can vary stochastically over time and are typically unobservable when de-
ciding on an action. Existing methods deal with this uncertainty conservatively
by assuming a known fixed upper bound on the delay, even if the delay is often
much lower. In this work, we introduce the interaction layer, a general framework
that enables agents to adaptively handle unobservable and time-varying delays.
Specifically, the agent generates a matrix of possible future actions, anticipating
a horizon of potential delays, to handle both unpredictable delays and lost action
packets sent over networks. Building on this framework, we develop a model-
based algorithm, Actor-Critic with Delay Adaptation (ACDA), which dynamically
adjusts to delay patterns. Our method significantly outperforms state-of-the-art
approaches across a wide range of locomotion benchmark environments.

1 INTRODUCTION

State-of-the-art reinforcement learning (RL) algorithms, such as Proximal Policy Optimization
(PPO) (Schulman et al., 2017) and Soft Actor-Critic (SAC) (Haarnoja et al., 2018), are typically
built on the assumption that the environment can be modeled as a Markov Decision Process (MDP).
This framework implicitly assumes that the agent observes the current state instantaneously, selects
an action without delay, and executes it immediately.

This assumption often breaks down in real-world systems due to interaction delays that arise from
various sources: the time taken to collect and transmit observations, the computation time needed
for the agent to select an action, and the transmission and actuation delay when executing that action
in the environment (as illustrated in Figure 1). Delays pose no issue if the state of the environment
is not evolving between its observation and the execution of the selected action. But in continuously
evolving systems–such as robots operating in the physical world–the environment’s state may have
changed by the time the action is executed (Brooks & Leondes, 1972). Delays have been recognized
as a key concern when applying RL to cyber-physical systems (Tan et al., 2018). Outside the scope
of RL, delays have also been studied in classic control (Ray, 1988; Luck & Ray, 1990).

These interaction delays can be implicitly modeled by altering the transition dynamics of the MDP
to form a partially observable Markov decision process (POMDP), in which the agent only receives
outdated sensor observations. While this approach is practical and straightforward, it limits the
agent’s access to information about the environment’s evolution during the delay period.

Another common approach to handling delays in RL is to enforce that actions are executed after a
fixed delay (Katsikopoulos & Engelbrecht, 2003; Walsh et al., 2008). This is typically implemented
by introducing an action buffer between the agent and the environment, ensuring that all actions are
executed after a predefined delay. However, this method requires prior knowledge of the maximum
possible delay and enforces that all actions incur this worst-case delay—even when most interactions
in practice experience minimal or no delay. The advantage of this fixed-delay approach is that
it provides the agent with perfect information about when its actions will take effect, simplifying
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Figure 1: Illustration of a setup affected by interaction delays. Any delay between the embedded
system and the excited system is considered negligible or otherwise accounted for (see Appendix
F.1 for a detailed discussion). The factors contributing to interaction delay are τobserve (τo), τcompute
(τc), and τapply (τa). See Section 3.1 for more details about these factors.

decision-making. However, it is overly conservative and fails to adapt and account for variability in
delay. Note that state-of-the-art algorithms for delayed MDPs, such as BPQL (Kim et al., 2023) and
VDPO (Wu et al., 2024), rely on this fixed-delay paradigm.

Moving beyond this fixed-delay framework is challenging, especially because in real-world systems,
delays are often unobservable. The agent does not know, at decision time, how long it will take for
an action to be executed. One existing approach that attempts to address varying delays is DCAC
(Bouteiller et al., 2021), but it does not offer any guarantees for when a generated action will be
applied to the environment.

In this paper, we make the following contributions:

(i) We introduce a novel framework, the interaction layer, which allows agents to adapt to randomly
varying delays—even when these delays are unobservable. In this setup, the agent generates a matrix
of candidate actions ahead of time, each row in the matrix intended for a possible future arrival time
(without knowing for certain which row will be selected). Specifically, the design handles both (a)
that the future actions can have varying delays, and (b) that action packets sent over a network can
be lost or arrive in incorrect order. The actual action is selected at the interaction layer once the
delay is revealed. Similar to DCAC, we also report back the revealed delays in hindsight. This
approach enables informed decision-making under uncertainty and robust behavior in the presence
of stochastic, unobservable delays (Section 3).

(ii) We develop a new model-based reinforcement learning algorithm, Actor-Critic with Delay Adap-
tation (ACDA), which leverages the interaction layer to adapt dynamically to varying delays. The
algorithm provides two key concepts: (a) instead of using states as input to the policy, it uses a distri-
bution of states as an embedding that enables the generation of more accurate time series of actions,
and (b) an efficient heuristic to determine which of the previously generated actions are executed.
These actions are needed to compute the state distributions. The approach is particularly efficient
when delays are temporally correlated, something often seen in scenarios when communicating over
transmission channels (Section 4).

(iii) We evaluate ACDA on a suite of MuJoCo locomotion tasks from the Gymnasium library (Tow-
ers et al., 2024), using randomly sampled delay processes designed to mimic real-world latency
sources. Our results show that ACDA, equipped with the interaction layer, consistently outperforms
state-of-the-art algorithms designed for fixed delays and for unobservable random delays. It achieves
higher average returns across all benchmarks except one, where its performance remains within the
standard deviation of the best constant-delay method (Section 5).

2 RELATED WORK

To our knowledge, there is no previous work that allows agents to make informed and controlled
decisions under random unobservable delays in RL. Much of the existing work on how to handle
delays in RL acts as if delays are constant equal to h, in which case, the problem can be modeled
as an MDP with augmented state (st, at, at+1, . . . , at+h−1) consisting of the last observed state and
memorized actions to be applied in the future Katsikopoulos & Engelbrecht (2003). Even if the
true delay is not constant, a construction used in previous work is to enforce constant interaction
delay through action buffering, under the assumption that the maximum delay does not exceed h
time-steps.
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Through action buffering and state augmentation, one may, in principle, use existing RL techniques
to deal with constant delays. However, it is hard to directly learn policies on augmented states in
practice, which has prompted the development of algorithms that exploit the delayed dynamics. The
real-time actor-critic by Ramstedt & Pal (2019) optimizes for a constant delay of one time step.
Belief projection-based Q-learning (BPQL) by Kim et al. (2023) explicitly uses the delayed dynam-
ics under constant delay to simplify the critic learning. BPQL achieves good performance during
evaluation over longer delays, despite a simple structure of the learned functions. Our algorithm in
Section 4.3 uses the same critic simplification, but applied to the randomly delayed setting.

Another approach explored for constant-delay RL is to have a delayed agent trying to imitate an
undelayed expert, used in algorithms such as DIDA (Liotet et al., 2022) and VDPO (Wu et al.,
2024). These assume access to the undelayed MDP, which in the real world can be applied in sim-
to-real scenarios, but not when training directly on the real physical system.

DCAC by Bouteiller et al. (2021) is a framework that allows agents to make decisions under unob-
servable delays, but without any control over when an action is going to be applied to the environ-
ment. Like our approach, delays are available in hindsight, which DCAC uses for future decision
making and value accreditation. Other approaches for random delays typically assume observability
(Valensi et al., 2024; Wu et al., 2025), which is not applicable in our problem setting.

Model-based approaches have also been explored for delayed RL, as a way to plan into future hori-
zons (Chen et al., 2021) or to estimate future states as policy inputs (Walsh et al., 2008; Firoiu et al.,
2018). A commonly used dynamics model architecture is the recurrent state space model (RSSM)
(Hafner et al., 2019) that combines a recurrent latent state with stochastically sampled states to tran-
sition in latent space. RSSM was designed for planning algorithms, but can also be used for state
prediction. The model used by Firoiu et al. (2018) is similar to RSSM, but uses deterministic output
of states from the latent representation. Another approach using RSSM is Dreamer (Hafner et al.,
2020) that learns a latent state representation for the agent to make decisions in, originally in an un-
delayed setting but extended to the delayed setting by Karamzade et al. (2024). Wang et al. (2024)
have explored further variations in model structures that can be used for delayed RL.

Our approach also learns a model to make decisions in latent space, but does not follow the RSSM
structure. Instead, our model (introduced in Section 4.2) follows a simpler structure that learns a
latent representation describing actual state distributions rather than uncertainty about an assumed
existing true state. By the definitions of Moerland et al. (2023), our model is classified as a multi-step
prediction model with state abstraction, even though we are only estimating distributions.

3 THE INTERACTION LAYER

In this section, we explain how random and unpredictable delays may affect the interaction between
the agent and the system. To handle these delays, we introduce a new framework, called the in-
teraction layer (Section 3.2), and model the way the agent and the system interact by a Partially
Observable MDP (Section 3.3). The notation used for the interaction layer is explained as it appears
in the text. See Appendix C for a more compact, formal description of the interaction layer.

3.1 DELAYED MARKOV DECISION PROCESSES

We consider a controlled dynamical system modeled as an MDPM = (S,A, p, r, µ), where S and
A are the state and action spaces, respectively, where p(s′|s, a)(s′,s,a)∈S×S×A represents the system
dynamics in the absence of delays, r is the reward function, and µ is the distribution of the initial
state.

As in usual MDPs, we assume that at the beginning of each step t, the state of the system is sampled,
but this information does not reach the agent immediately, but after an observation delay, τo. After
the agent receives the information, an additional computational delay, τc, occurs due to processing
the information and deciding on an appropriate action. The action created by the agent is then
communicated to the system, with an additional final delay τa before this action can be applied to
the system. The delays1 (τo, τc, τa) are random variables that may differ across steps and can be

1We assume that The total delay τo + τc + τa is measured in number of steps. In Appendix G.1, we present
a similar model where delays can take any real positive value.
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correlated. While it is possible to consider frameworks where τo and τc are observable, the action
delay τa is inherently unobservable, as this delay may be caused by events taking place after the
action has been generated. Therefore, to simplify the problem in our framework, we consider the
sum of these three delays as a single delay, which is unobservable. This is further explained in
Section 3.3.

3.2 HANDLING DELAYS VIA THE INTERACTION LAYER

The unpredictable delays pose significant challenges from the agent’s perspective. First, the agent
cannot respond immediately to the newly observed system state at each step. Second, the agent
cannot determine when the selected action will be applied to the system. To address these issues,
we introduce the interaction layer, consisting of an observer and an action buffer, as illustrated in
Figure 2. The interaction layer is a direct part of the system that performs sensing and actuation,
whereas the agent can be far away, communicating over a network. Within the interaction layer,
the observer is responsible for sampling the system’s state and sending relevant information to the
agent. The agent generates a matrix of possible actions. These are sent back to the interaction layer
and stored in the action buffer. Depending on when the actions arrive in the action buffer, it selects
a row of actions, which are then executed in the following steps if no further decision is received.
The rest of this section gives technical details of the interaction layer, whereas Section 4 details the
policy for generating actions at the agent.

Interaction Layer

System

Action

Buffer
Observer

Agent

st, rt at

Action buffer contents

(and metadata)

ot

ot−1

ot−2
at−3

at−4

at−3 ∼ π(·|ot−3,at−4, ot−4, . . . )

Information in transit
to the agent. Contains
observation, reward,
and contents of the
action buffer at that
time.

Horizon of future
actions in transit to
the interaction layer.

Figure 2: Illustration of the interaction layer and how the agent interacts with it from a global per-
spective. As the observation is received from the dynamical system, the next action is immediately
applied from the action buffer. Packets in transit with random delay imply partial observability.

Action packet. After that, the agent receives an observation packet ot (generated at step t by the
interaction layer, described further below), the agent generates and sends an action packet at. The
packet includes a time stamp t, and a matrix of actions, as follows:

at =

t,



at+1
1 at+1

2 at+1
3 . . . at+1

h

at+2
1 at+2

2 at+2
3 . . . at+2

h

...
...

...
. . .

...

at+L
1 at+L

2 at+L
3 . . . at+L

h



 . (1)

The i-th row of the matrix of the action packet corresponds to the sequence of actions that would
constitute the action buffer if the packet reaches the interaction layer at time t + i. The reason for
using a matrix instead of a vector is that subsequent columns specify which actions to take if a new
action packet does not arrive at the interaction layer at a specific time step. For instance, if an action
packet arrives at time t + 2, then the interaction layer uses the first action in the buffer (at+2

1 in
this case). That is, the first column is always used when a new packet arrives at each time step. If
no packet arrives for a specific time step, the other columns are used instead (as explained more
below in the description of the action buffer). This approach enables adaptivity for the agent: it can
generate actions for specific delays without knowing what the delay is going to be ahead of time.
Figure 3 illustrates when an action packet arrives at the interaction layer and a row is inserted into
the action buffer (3rd row in this case because the packet arrived with a delay of 3).

While this may appear as if action delays are observable, the action packet only allows us to specify
what should happen if it arrives with a certain delay. If the action delay truly was observable, we
could use information about delays for previous action packets to get perfect information about
which actions will be applied to the underlying state prior to this action packet arriving.
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Interaction Layer

(t = 20)

Action

Buffer

au =




u,




au+1
1 au+1

2 . . . au+1
h

au+2
1 au+2

2 . . . au+2
h

au+3
1 au+3

2 . . . au+3
h

...
...

. . .
...

au+L
1 au+L

2 . . . au+L
h







(u = 17)

Delay δ = t− u = 3
(insert 3rd row from matrix)

bt = [au+3
1 , au+3

2 , . . . , au+3
h ]

Figure 3: Example: Suppose an action packet timestamped by the agent with time u = 17, au,
arrives at the action layer at time 20. Then, at time t = 20, δ20 = 3, and c20 = 0. Now, suppose
that 2 time units elapse without any new action packet arriving. Then, at time t = 22, δ22 = 3 and
counter c22 = 2. Hence, equation t = u+ δ22 + c22 = 17 + 3 + 2 = 22 holds.

Action buffer. The action buffer is responsible for executing an action each time step. If no new
action arrives at a time step, the next item in the buffer is used. At the beginning of step t, the action
buffer contains the following information: bt, a sequence of h actions to be executed next, and δt,
the delay of the action packet from which the actions bt were taken. For instance, if an action packet
au arrives at the action buffer at time t, then δt = t − u, where u is the time stamp of the action
packet au that the agent created. If instead no new action packet arrived at time t, then δt = δt−1.
To enable the use of an appropriate action even if no new packet arrives at a specific time step, the
content of the buffer is shifted one step forward, as shown in Figure 4. Finally, the action buffer
includes a counter ct that records how many steps have passed since the action buffer was updated.
The following invariant always holds: t = u + δt + ct. For a concrete example, see the caption of
Figure 3.

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8

at at+1 at+2 at+3 at+4 at+5 at+6 at+7

To Environment

Figure 4: Action buffer shifting actions. Final slot is repeated. (Example: horizon h = 8)
Observation packet. The observer builds an observation packet ot at the beginning of step t. To
this aim, it samples the system state st, collects information bt, δt, ct about the action buffer, forms
the observation packet ot = (t, st, bt, δt, ct), and sends it to the agent.

Enhancing the information contained in the observation and action packets (compared to the unde-
layed MDP scenario) allows the agent to make more informed decisions and ensures the system does
not run out of actions when action packets experience delays. However, this is insufficient to model
our delayed system as an MDP. This is because the agent does not have the knowledge of all the
observation and action packets currently in transit. Therefore, we use the formalism of a POMDP to
accurately describe the system dynamics.

3.3 THE POMDP MODEL

Next, we complete the description of our delayed MDP and model it as a POMDP. To this aim,
we remark that the system essentially behaves as if in each step t, the agent immediately observes
ot and selects an action packet at that arrives at the interaction layer dt steps after the observation
ot was made, where dt > 02. We assume that dt is generated according to some distribution D3.
Furthermore, we assume that observation packets ot arrive in order at the agent. In this framework—
where the agent selects an action packet at as soon as the observation ot is generated—the single
delay dt replaces the three delays (τo, τc, τa) as dt = τo + τc + τa.

The time step t is a local time tag from the perspective of the interaction layer. Our POMDP formu-
lation does not assume a synchronized clock between the agent and the interaction layer. The agent
acts asynchronously and generates an action packet upon receiving an observation packet.

2dt corresponds to the value δu if the action packet reaches the interaction layer at time u: δt+dt = dt
3For simplicity, we assume that the delay process is markovian and independent of the contents of the

action packets and the state of the interaction layer. However, our POMDP formalism can be extended to delay
distributions that depend on the previous state, which is more general and realistic.
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We define It as the set of action packets in transit at the beginning of step t, along with the times
at which these packets will arrive at the interaction layer (It is a set containing items on the form
(u + du,au)). In reality, delays are observed only when action packets reach the interaction layer,
and the agent does not necessarily know whether the action packets already generated have reached
the interaction layer. Hence, we must assume that It is not observable by the agent. The framework
we just described corresponds to a POMDP, which we formalize in Appendix C in detail.

4 ACTOR-CRITIC WITH DELAY ADAPTATION

This section introduces actor-critic with delay adaptation (ACDA), a model-based RL algorithm
using the interaction layer to adapt on-the-fly to varying unobservable delays, contrasting with state-
of-the-art methods that enforce a fixed worst-case delay. A challenge with varying unobservable
delays is that the agent lacks perfect information about the actions to be applied in the future. ACDA
solves this with a heuristic (Section 4.1) that is effective when delays are temporally correlated.

The actions selected by ACDA will vary in length depending on the delay we are generating actions
for. This lends itself poorly to commonly used policy function approximators in deep RL, such
as multi-layer perceptrons (MLPs), that assume a fixed size of input. ACDA solves this with a
model-based distribution agent (Section 4.2) that embeds the variable-length input into fixed-size
embeddings of future state distributions, to which the generated action will be applied. The fixed-
size embeddings are fed as input to an MLP to generate actions. ACDA learns a model of the
environment dynamics online to compute these embeddings. Section 4.3 shows how we train ACDA.

4.1 HEURISTIC FOR ASSUMED PREVIOUS ACTIONS

A problem with unobservable delays is that we do not know when our previously sent action packets
will arrive at the interaction layer. This means that we do not know which actions are going to
be applied to the underlying system between generating the action packet and it arriving at the
interaction layer. A naive assumption would be to assume the action buffer contents reported by the
observation packet to be the actions that are going to be applied to the underlying system. However,
this is unlikely to be true because the action buffer is going to be preempted by action packets already
in transit.

ACDA employs a heuristic for estimating these previous actions to be applied to the system between
ot being generated and at arriving at the interaction layer. The heuristic assumes that, if at arrives
at time t+ k (it having delay k), then previous action packets will also have delay k. Such that at−1

will arrive at time t+ k − 1, at−2 at t+ k − 2, etc.

Algorithm 1 Memorized Action Selection
Input k ∈ Z+ (Delay assumption)

at−1,at−2, . . . ,at−k (Memorized Packets)
1: for i← 1 to k do
2: (t− i,M t−i) = at−i

3: ▷ Unpacking action matrix M from packets
4: return (ât+k

1 , . . . , ât+k
k ) = (M t−k

k,1 , . . . ,M t−1
k,1 )

Under this assumption, a new action
packet will preempt the action buffer at ev-
ery single time step. This means that, if we
assume a delay of k, the action applied to
the underlying system will be the action in
the first column of the k-th row in the ac-
tion packet last received by the interaction
layer. By memorizing the action packets
previously sent, we can under this assump-
tion select the actions that are going to be applied to the system as shown in Algorithm 1. When
generating at+k

1 , the first action on the k-th row in the action packet at, we use Algorithm 1 to
determine the actions (ât+k

1 , . . . , ât+k
k ) that will be applied to the observed state st before at+k

1 is
executed. For the action at+k

2 , we know that this is only going to be executed if no new action packet
arrived at t+k+1. We therefore extend the previous assumption and say that (ât+k

1 , . . . , ât+k
k , at+k

1 )

are the actions applied to st before at+k
2 is executed.

The main idea here is that the heuristic guesses the applied actions if the delay does not evolve too
much over time. If the delay truly was constant, then all guesses would be accurate and ACDA would
transform the POMDP problem to a constant-delay MDP. The heuristic’s accuracy is compromised
during sudden changes in delay, such as network delay spikes. However, as we will see in the
evaluation, occasional violations will not significantly impact overall performance.
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4.2 MODEL-BASED DISTRIBUTION AGENT

The memorized actions used by ACDA are variable in length and therefore cannot be directly used
as input to MLPs, which are often used in constant-delay approaches. Instead, ACDA constructs
an embedding zt+k

1 of the distribution p(st+k|st, ât+k
1 , . . . , ât+k

k ), where ât+k
1 , . . . , ât+k

k are the
memorized actions. We then provide zt+k

1 as input to an MLP to generate at+k
1 . This allows the

policy to reason about the possible states in which the generated action will be executed. Note that
we are only concerned with the distribution itself and never explicitly sample from it. To compute
these embeddings, we learn a model of the system dynamics using three components: EMBEDω ,
STEPω , and EMITω , where ω represents learnable parameters.

• ẑ0 = EMBEDω(st) embeds a state st into a distribution embedding ẑ0.

• ẑi+1 = STEPω(ẑi, at+i) updates the embedded distribution to consider what happens after
also applying the action at+i. Such that if ẑi is an embedding of p(st+i|st, at, . . . , at+i),
then ẑi+1 is an embedding of p(st+i+1|st, at, . . . , at+i, at+i+1).

• The final component EMITω(st+i|ẑi) allows for a state to be sampled from the embedded
distribution. This component is not used when generating actions, and is instead only used
during training to ensure that ẑi is a good embedding of p(st+i|st, at, . . . , at+i).

ẑ0 ẑ1 ẑ2 ... ẑk−1 zt+k
1

Stepω Stepω Stepω

Embedω

st ât+k
1 ât+k

2 ât+k
k

Figure 5: Illustration of the multi-step distribu-
tion model embedding p(st+k|st, ât+k

1 , . . . , ât+k
k )

as STEPkω(EMBEDω(st), â
t+k
1 , . . . , ât+k

k ).

The way these components are used to pro-
duce the embedding zt+k

1 is illustrated in Fig-
ure 5. We use the notation zt+k

1 = ẑk
given that we are embedding the selected ac-
tions (ât+k

1 , . . . , ât+k
k ). We use the nota-

tion STEPkω(EMBEDω(st), â
t+k
1 , . . . , ât+k

k ) to
describe this multi-step embedding process.
This notation is formalized in Appendix D.

The EMBEDω and EMITω components are implemented as MLPs, while STEPω is implemented as
a gated recurrent unit (GRU). We provide detailed descriptions of these components in Appendix
D. We learn these components online by collecting information from trajectories about observed
states st and st+n and their interleaved actions at, at+1, . . . , at+n−1 in a replay buffer R. The
following loss function L(ω) is used to minimize the KL-divergence between the model and the un-
derlying system dynamics: L(ω) = E(st,at,at+1,...,at+n−1,st+n)∼R [− log EMITω(st+n|zn)] where
zn = STEPnω(EMBEDω(st), at, at+1, . . . , at+n−1).
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Figure 6: Generating the action packet from the
embeddings. Each row in the figure corresponds
to a row in the matrix of the action packet at.

Given the embedding zt+k
1 , we produce at+k

1
in the action packet at using a policy
πθ(a

t+k
1 |zt+k

1 ), i.e., generating actions given
the (embedded) distribution over the state that
the action will be applied to. This policy struc-
ture allows the agent to reason about uncertain-
ties in future states when generating actions.

By extending the assumptions as shown in Sec-
tion 4.1, we can also produce the embeddings
zt+k
2 , zt+k

3 , etc., as illustrated in Figure 6. The
complete process of constructing the action packet is formalized in Appendix D. We also discuss the
effect that this has on the computational delay in Appendix F.2, why it is not a problem in our case,
and how to handle it if it should become a problem.

This model-based policy can also be applied in the constant-delay setting to achieve decent perfor-
mance. We evaluate how this compares against a direct MLP function approximator in Appendix
E.2, where the model-based policy is implemented in the BPQL algorithm.
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4.3 TRAINING ALGORITHM

This section describes the training procedure in Algorithm 2, used to optimize the parameters of the
networks. It follows an actor-critic setup based on SAC. The training procedure of the critic Qϕ is
similar to BPQL, where Qϕ(s, a) evaluates the value of actions a on undelayed system states s.

Algorithm 2 is split into three parts: trajectory sampling (L3-L12), transition reconstruction (L13),
and training (L14-L15). We do this split to reduce the impact that the training procedure can have
on the computational delay τc of the system. From the trajectory sampling, we collect POMDP
transition information (ot,at, rt,ot+1) where Γt is used to discern if st is in a terminal state.

Algorithm 2 Actor-Critic with Delay Adaptation
1: Init. policy πθ, critic Qϕ, model ω, and replayR
2: for each epoch do
3: Reset interaction layer state: s0 ∼ µ, t = 0
4: Collected trajectory: T = ∅
5: Observe o0

6: while terminal state not reached do
7: for k ← 1 to L do
8: Select ât+k

1 , . . . , ât+k
k by Alg. 1

9: Create the k-th row of at

10: Send at, observe rt,ot+1,Γt+1

11: Add (ot,at, rt,ot+1,Γt+1) to T
12: t← t+ 1
13: Reconstruct transition info from T , add toR
14: for |T | sampled batches fromR do
15: Update πθ, Qϕ and ω (by L(ω))

An important aspect of Algorithm 2 is how
trajectory information is reconstructed for
training. Specifically, we reconstruct the
trajectory (s0, a0, r0, s1, a1, . . . ) from the
perspective of the undelayed MDP, along
with the policy input used to generate each
action at. The policy input can be ret-
rospectively recovered by examining the
current buffer action delay (δt) and the
number of times the buffer has shifted (ct).
This trajectory reconstruction is necessary
since we follow the BPQL algorithm’s
actor-critic setup. The critic Qϕ(st, at) es-
timates values in the undelayed MDP, and
we need to be able to regenerate actions at
using the model-based policy to compute
the TD-error. Further details are provided
in Appendix D.

5 EVALUATION AND RESULTS

To assess the benefits of the interaction layer in a delayed setting, we simulate the POMDP described
in Section 3.3, wrapping existing environments from the Gymnasium library (Towers et al., 2024) as
the underlying system. Specifically, we aim to answer the question of whether our ACDA algorithm,
which uses information from the interaction layer, can outperform state-of-the-art algorithms under
random delay processes.

We evaluate on the three delay processes shown in Figure 7. The first two delay processes GE1,23 and
GE4,32 follow Gilbert-Elliot models (Gilbert, 1960; Elliott, 1963) where the delay alternates between
good and bad states (e.g. a network or computational node being overloaded or having packets
dropped). The third delay process MM1 is modeled after an M/M/1 queue (Kleinrock, 1975), where
the sampled delay is the time spent in the queue by a network packet. The full definition of these
delay processes is located in Appendix B.3. We expect that ACDA performs well under the Gilbert-
Elliot processes that match the temporal assumptions of ACDA, whereas we expect ACDA not to
perform as well with the M/M/1 queue delays that fluctuate more.
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Figure 7: Evaluated delay processes, as a distribution histogram (above) and as a time series sampled
delay (below) for each delay process. See Appendix B.3 for their definitions.
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The state-of-the-art algorithms we compare against are DCAC (Bouteiller et al., 2021), BPQL (Kim
et al., 2023), and VDPO (Wu et al., 2024). As BPQL and VDPO are designed to operate under con-
stant delay, we apply a constant-delay augmentation (CDA) to allow them to operate with constant
delay in random delay processes. CDA converts the interaction layer POMDP into a constant-delay
MDP by making agents act under the worst-case delay of a delay process.4 This augmentation pro-
cess is described in Appendix A. In addition to the state-of-the-art algorithms, we also evaluate the
performance of SAC, both with CDA and when it acts directly on the state from the observation
packet (implicitly modeling delays). In Appendix E.3, we evaluate when CDA uses an incorrect
worst-case delay that holds most of the time, but is occasionally violated. We also evaluate the
performance of Dreamer when implicitly modeling delays (Karamzade et al., 2024). Further details
regarding the evaluation are presented in Appendix B.5.

We evaluate average return over a training period of 1 million steps on MuJoCo environments in
Gymnasium, following the procedure from related work in delayed RL. However, an issue with the
MuJoCo environments is that they have deterministic transition dynamics, rendering them theoreti-
cally unaffected by delay. To better evaluate the effect of delay, we make the transitions stochastic
by imposing a 5% noise on the actions. We motivate and specify this in Appendix B.1.

The average return is computed every 10000 steps by freezing the training weights and sampling 10
trajectories under the current policy. We report the best achieved average return—where the return
is the sum of rewards over a trajectory—for each algorithm, environment, and delay process in Table
1. All achieved average returns are also presented in Appendix E.1 as time series plots together with
tables showing the standard deviation.

Table 1: Best evaluated average return for each algorithm.
Gymnasium env. Ant-v4 Humanoid-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4

Delay process GE1,23 GE4,32 MM1 GE1,23 GE4,32 MM1 GE1,23 GE4,32 MM1 GE1,23 GE4,32 MM1 GE1,23 GE4,32 MM1

SAC 14.22 −5.72 −0.58 862.18 494.43 921.04 2064.18 −158.78 20.69 306.91 279.74 333.06 708.33 60.86 604.80

SAC w/ CDA 69.28 18.93 102.00 414.05 230.45 613.03 128.47 591.32 550.84 426.92 315.47 627.59 428.44 257.18 2005.76

Dreamer 1111.73 1147.56 1121.11 1463.07 1091.48 981.38 1796.07 2493.19 584.40 334.30 515.36 975.72 1081.12 1233.79 1801.81

BPQL 2691.88 2509.52 3074.17 585.19 276.63 5435.29 4320.20 2136.36 4660.93 1328.71 433.29 3035.66 1215.91 875.09 3547.73

VDPO 2163.00 2266.99 2528.67 417.25 280.72 720.73 3144.23 3664.30 3831.96 709.20 330.44 1459.88 846.88 344.73 2144.25

DCAC 949.97 953.14 959.23 128.47 167.97 525.85 920.09 1123.47 35.60 16.99 57.98 1026.45 106.70 9.23 24.48

ACDA 4112.78 2866.93 2898.46 4608.76 3725.59 5805.60 5984.25 4231.15 5898.36 2094.65 1727.79 3122.53 3863.59 1840.58 4562.33
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Figure 8: M/M/1 Queue results (all results in Appendix E.1.3). Shaded regions showing std. dev.

As shown in Table 1, ACDA outperforms state-of-the-art in all benchmarks except one, with a sig-
nificant margin in most cases. The improvement is less substantial in Ant-v4, where performance
often overlaps, as indicated by the standard deviation (Figure 8).

6 CONCLUSION

We introduced the interaction layer, a real-world viable POMDP framework for RL with random
unobservable delays. Using the interaction layer, we described and implemented ACDA, a model-
based algorithm that significantly outperforms state-of-the-art in delayed RL under random delay
processes. Directions of future work include algorithms that can operate on wider areas of delay
correlation and on alterations to the interaction layer to handle more complex interaction behavior.

4The MM1 delay process does not have a maximum delay. We use a reasonable worst-case of 16 steps.
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ICLR STATEMENT ON LLM USAGE

This paper has made use of Large Language Models (LLMs) to polish writing. More specifically, to
check for grammatical errors and for phrasing suggestions.

OUTLINE OF THE APPENDICES

Appendix A presents how we implement constant-delay augmentation (CDA) in our framework.
This allows agents to act with constant delay using the interaction layer, even if the underlying delay
process is stochastic. We primarily use this to provide a fair comparison against related work.

Appendix B presents the evaluation details. In Appendix B.1, we demonstrate that stochastic transi-
tions are necessary to see the effects of delay, both theoretically and with an evaluated example. We
also show in Appendix B.1 how we use action noise to convert deterministic transitions into stochas-
tic ones. Further evaluation of the effect that stochasticity has on the best-performing algorithms is
presented in Appendix B.2. Appendix B.3 describes the delay distributions used in the benchmarks.
Lastly, in Appendix B.4, we present the hyperparameters used, and in Appendix B.5 we present the
software and hardware used for running the benchmarks.

Appendix C formalizes the interaction layer as a POMDP. This POMDP is used to simulate the
interaction layer in the benchmarks.

Appendix D formalizes the model and its objective, as well as providing an expanded version of the
algorithm presented in Section 4.3.

Appendix E contains additional results. Appendix E.1 contains all results presented in the conclu-
sion, with time series plots and standard deviation. In Appendix E.2, we evaluate the model-based
distribution agent under CDA, showing that it is the adaptiveness that leads to gains in performance
rather than the policy itself. In Appendix E.3, we evaluate the effect of using a lower bound for
CDA that holds most of the time, but is occasionally violated. The latter two Appendices E.2 and
E.3 show that the adaptiveness of the interaction layer offers gains and stability in performance that
cannot be obtained by operating in a constant-delay manner.

Appendix F discusses practical considerations when deploying the interaction layer to real-world
environments.

Appendix G shows an alternative, more realistic definition of delayed MDPs, which uses real-valued
delays rather than discrete.
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A CONSTANT-DELAY AUGMENTATION

To be able to evaluate and compare fairly with state-of-the-art algorithms, we make it possible to
have constant delay augmentation within our framework. Specifically, to allow algorithms such
as BPQL and VDPO that expect a constant delay when the underlying delay process is stochastic,
we apply a constant-delay augmentation (CDA) on top of the interaction layer. CDA converts the
interaction layer POMDP into a constant-delay MDP, under the assumption that the maximum delay
does not exceed h steps. This augmentation ensures that we evaluate state-of-the-art as intended
when comparing their performance against ACDA.

CDA is implemented on top of the interaction layer by simply arranging the contents of the action
packet matrix such that, no matter when action packet at arrives (between t + 1 and t + h), each
action will be executed h steps after it was generated. We illustrate this procedure of constructing
the action packet in Algorithm 3.

Algorithm 3 Constant-Delay Augmentation using the Interaction Layer
Input ot = (t, st, bt, δt, ct) (Observation packet)

π (Constant-delay policy operating on the horizon h)
1: at, . . . , at+h−1 = bt
2: at+h ∼ π(·|st, at, . . . , at+h−1)

3: at =




t,




at+1 at+2 at+3 · · · at+h−2 at+h−1 at+h

at+2 at+3 at+4 · · · at+h−1 at+h at+h

at+3 at+4 at+5 · · · at+h at+h at+h

...
...

...
. . .

...
...

...

at+h−1 at+h at+h · · · at+h at+h at+h

at+h at+h at+h · · · at+h at+h at+h







4: return at

This states that if at arrives at t + i, then the actions to be applied are
at+i, at+min(h,i+1), at+min(h,i+2), . . . , at+min(h,i+(h−3)), at+min(h,i+(h−2)), at+h, which en-
sures that bt always is a correct guess of the actions to be applied next. For i > 1, we pad with at+h

to the right on each row to represent the shifting behavior. Forming the action packets in this way
ensures that at+h always gets executed at time t+ h, given that the delay does not exceed h.

The policy π can be any constant-delay augmented policy. We can also apply the model-based distri-
bution policy from the ACDA algorithm to the CDA setting, by letting π(at+h|st, at, . . . , at+h−1) =

πθ(at+h|zh), where zh = STEPhω(EMBEDω(st), at, . . . , at+h−1). We present the results of this pol-
icy in Appendix E.2.

This assumes the horizon h is a valid upper bound of the delay. We can still perform the augmenta-
tion if h is less than the upper bound, but then we are no longer guaranteed the MDP properties of
constant delay. We present the results of this in Appendix E.3.
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B EVALUATION DETAILS

This section provides a more complete overview of the evaluation and the results. We provide
justification for choosing the 5% noise on environments (Appendix B.1), the delay processes used
(Appendix B.3), the hyperparameters used and neural network architectures used (Appendix B.4),
as well as the software and hardware used during evaluation (Appendix B.5). The complete results
for all benchmarks are presented separately in Appendix E.

B.1 ACTION NOISE AND ITS EFFECT ON PERFORMANCE

The benchmark environments used, as defined in Gymnasium, have fully deterministic transitions.
As a result, they are theoretically unaffected by delay: the optimal value achievable in the delayed
MDP is identical to that of the undelayed MDP. This follows trivially from the fact that, with a
perfect deterministic model of the MDP dynamics, the agent can precisely predict the future state in
which its action will be applied. Consequently, the agent can plan as if there were no delay at all.

The same is not true for MDPs with stochastic transition dynamics. To show this, consider the MDP
with S = {H,T}, A = {H,T}, r(H,H) = 1, r(T, T ) = 1, r(H,T ) = 0, r(T,H) = 0, where
∀s′, s, a p(s′|s, a) = 0.5. This MDP models flipping a fair coin, where the agent is given a reward
of 1 if it can correctly identify the face of the current coin. Consider this MDP with a constant delay
of 1 time step. Now, the agent instead has to guess the face of the next coin, on which it can do no
better than a 50/50 guess. Therefore, in this example, the value of an optimal agent in the delayed
MDP is half of the value of an optimal agent in the undelayed MDP.

To better highlight the practical issues with delay, we add uncertainty to transitions in the Gymna-
sium environments by adding noise to the actions prior to being applied to the environment. Let β
be the noise factor indicating how much noise we add relative to the span of values that the action
can take. Then we add noise to the actions a as follows:

Assume a = [a(1), a(2), . . . , a(n)] (2)
a(i)max = maximum value for a(i) (3)
a(i)min = minimum value for a(i) (4)

ν(i) = β · (a(i)max − a(i)min) · ξ
∣∣∣∣
ξ∼N (0,1)

(5)

ã(i) = clip (a(i) + ν(i), a(i)min, a(i)max) (6)
ã = [ã(1), ã(2), . . . , ã(n)] (7)

Here, we assume that the actions are continuous, which works since all environments in our evalua-
tion are of this nature. Then the transitions become p(s′|s, ã), with the noisy action applied instead
of the original one. We use the noise factor β = 0.05 in all our noisy environments evaluated here.

To see the effect that this noise has on delayed RL in practice, we evaluate the performance of BPQL
when trained over different constant delays, with and without noise. The results are plotted in Figure
9. The evaluation is done by training a BPQL policy on a specific constant delay and action noise,
evaluating the policy’s average return every 10000 steps, and reporting the best achieved average
return as the performance. This evaluation procedure, which is used by all evaluations in the paper,
is further described in Appendix B.5.

The results without noise for constant delays of 3, 6, and 9, shown in Table 2, are representative
of those reported by Kim et al. (2023) (8100 ± 543.4, 6334.6 ± 245.3, and 5887.5 ± 270.5 for
constant delays of 3, 6, and 9 respectively). This suggests that our implementation is faithful to their
approach. Notably, we observe that in the deterministic setting, the impact of delay, while causing
a significant initial drop in performance, does not lead to significant degradation over longer time
horizons. This behavior contrasts with the noisy environments, where the performance declines
more noticeably as the delay increases.
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Figure 9: Best evaluated performance of BPQL after training over 106 timesteps when different
noise is applied to the HalfCheetah-v4 and Humanoid-v4 environments. Each line represents
when a specific action noise is induced on that environment, indicated by the % in the legend (e.g.
2.5% means β = 0.025). Each plotted point represents the best evaluated average return when
BPQL is trained on that noisy environment with that constant delay. The shaded regions represent
the standard deviation.

Table 2: The noise evaluation measurements shown in Figure 9.
HalfCheetah-v4

Delay 3 Delay 6 Delay 9 Delay 12 Delay 15 Delay 18 Delay 21 Delay 24

0% noise 8159.28 ± 50.12 6027.13 ± 50.79 5778.11 ± 43.85 5961.74 ± 34.98 5862.30 ± 55.13 5730.15 ± 101.62 5773.66 ± 106.13 3902.62 ± 822.27

2.5% noise 8281.45 ± 143.90 5981.20 ± 137.60 5244.27 ± 43.00 5325.65 ± 62.94 5544.09 ± 78.04 5284.89 ± 103.65 3740.87 ± 127.23 4158.25 ± 382.17

5% noise 7121.49 ± 58.07 5399.96 ± 122.38 5010.51 ± 211.44 5201.90 ± 197.06 4992.80 ± 110.72 4988.70 ± 179.34 4778.82 ± 419.50 4516.67 ± 222.24

7.5% noise 7839.51 ± 169.20 4883.81 ± 138.27 4665.25 ± 159.32 3069.77 ± 828.40 3893.18 ± 914.63 2575.36 ± 627.12 4128.39 ± 580.59 3071.16 ± 104.56

10% noise 6459.33 ± 158.08 4376.52 ± 114.97 3543.70 ± 257.16 3996.73 ± 153.34 3721.40 ± 873.19 2610.57 ± 777.65 2517.84 ± 875.47 3641.14 ± 851.81

15% noise 5500.11 ± 125.74 3841.51 ± 100.05 2946.32 ± 409.99 2805.37 ± 491.86 3483.07 ± 91.09 2122.89 ± 842.33 2363.06 ± 544.60 1830.24 ± 517.49

20% noise 4929.20 ± 90.98 3192.02 ± 142.30 2903.07 ± 192.16 1881.11 ± 149.04 1907.26 ± 716.61 2042.48 ± 91.94 1776.34 ± 528.88 1300.96 ± 298.35

Humanoid-v4
Delay 3 Delay 6 Delay 9 Delay 12 Delay 15 Delay 18 Delay 21 Delay 24

0.0% noise 5265.75 ± 16.10 5416.97 ± 4.56 5483.19 ± 11.20 5283.45 ± 34.02 5383.76 ± 49.09 5207.48 ± 704.16 4836.92 ± 1019.75 3639.32 ± 1295.49

2.5% noise 5292.31 ± 96.10 5462.32 ± 19.79 5385.21 ± 12.65 5392.97 ± 38.69 5456.68 ± 18.84 1692.16 ± 660.11 2199.76 ± 866.64 739.62 ± 198.24

5.0% noise 5194.99 ± 8.40 5545.78 ± 46.43 5435.19 ± 40.38 5543.46 ± 19.15 5448.85 ± 77.24 3873.11 ± 2007.65 1038.41 ± 466.64 431.75 ± 154.26

7.5% noise 5362.93 ± 10.58 5625.55 ± 30.05 5271.80 ± 24.04 5430.81 ± 33.14 1364.47 ± 391.72 1110.10 ± 1023.93 863.93 ± 490.55 346.29 ± 109.18

10.0% noise 5386.11 ± 18.15 5403.12 ± 8.27 5322.27 ± 45.70 4167.17 ± 1831.92 1235.33 ± 563.62 1039.16 ± 747.36 545.63 ± 162.01 258.85 ± 116.50

15.0% noise 5194.31 ± 44.01 5299.12 ± 29.14 5516.88 ± 42.33 1955.98 ± 1041.45 1001.01 ± 383.28 526.00 ± 235.22 378.92 ± 243.38 247.76 ± 135.52

20.0% noise 5317.08 ± 29.38 5323.95 ± 58.41 4566.51 ± 1432.43 1561.88 ± 916.61 525.42 ± 236.13 490.00 ± 237.10 239.58 ± 214.93 297.82 ± 199.20

We therefore conclude that a fair evaluation of delayed RL should be done in environments with
stochastic dynamics. Further practical evaluation of the effect that noise has on performance across
different training algorithms is shown in Appendix B.2.

B.2 FURTHER EVALUATION OF NOISE EFFECTS

To see how noise affects the best performing delay-aware algorithms, BPQL, VDPO, and ACDA,
we evaluate their performance as the noise varies from 0% to 25% on the same set of chosen en-
vironments across the three delay processes. As explained in Appendix B.5, each measurement
represents the best average return for a policy trained on the combination of environment, action
noise, and delay process. The results for delay processes GE1,23, GE4,32, and MM1 are shown in
Tables 3, 4, and 5, respectively.

Note that VDPO uses a fixed seed when resetting an environment. Therefore, VDPO has a standard
deviation of 0 when evaluating without action noise, as all sampled trajectories are deterministic.
This is due to us using the original VDPO implementation with as few modifications as possible, as
further explained in Appendix B.5.
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The results show a trend that ACDA performs even better as the noise increases. As ACDA adapts
to the sampled delays, this performance increase is expected because noisy environments can still
perform well for lower delays, as shown in Figure 9.

There are some outliers in the results, where the performance is slightly better for a higher action
noise. We believe that these are due to randomness and that they would not be present if we sampled
more trajectories during evaluation and averaged across multiple trained policies.

Table 3: Best returns from the GE1,23 delay process over different noise.
Ant-v4

0% noise 5% noise 10% noise 15% noise 20% noise 25% noise

BPQL 3736.70 ± 108.62 2691.88 ± 129.84 1421.78 ± 297.93 640.97 ± 316.38 69.69 ± 75.58 1.31 ± 18.92

VDPO 3492.27 ± 0.00 2163.00 ± 53.04 1162.88 ± 603.92 644.82 ± 373.70 296.89 ± 131.34 34.66 ± 39.05

ACDA 4719.08 ± 658.29 4112.78 ± 818.44 2780.25 ± 761.75 1209.94 ± 832.61 536.10 ± 400.29 192.79 ± 105.91

Humanoid-v4
0% noise 5% noise 10% noise 15% noise 20% noise 25% noise

BPQL 2462.64 ± 1341.26 585.19 ± 163.49 261.12 ± 125.97 365.19 ± 172.41 298.31 ± 200.46 237.62 ± 161.17

VDPO 464.39 ± 0.00 417.25 ± 210.09 312.26 ± 145.72 285.21 ± 186.51 276.49 ± 174.40 325.55 ± 130.45

ACDA 4842.13 ± 861.55 4608.76 ± 1084.52 3751.03 ± 1552.10 3638.29 ± 1849.70 3852.50 ± 1237.91 1597.85 ± 1143.37

HalfCheetah-v4
0% noise 5% noise 10% noise 15% noise 20% noise 25% noise

BPQL 4176.16 ± 897.01 4320.20 ± 1028.52 3908.33 ± 77.24 1810.59 ± 635.08 1899.01 ± 89.66 1206.78 ± 154.01

VDPO 4976.10 ± 0.00 3144.23 ± 1156.52 2240.86 ± 591.26 1664.11 ± 144.79 1049.28 ± 167.12 799.84 ± 212.99

ACDA 6087.67 ± 1142.66 5984.25 ± 1885.78 5838.64 ± 724.34 4656.72 ± 693.20 4446.73 ± 627.70 2783.35 ± 194.57

Hopper-v4
0% noise 5% noise 10% noise 15% noise 20% noise 25% noise

BPQL 3176.22 ± 48.33 1328.71 ± 937.67 549.60 ± 541.58 232.25 ± 176.51 135.24 ± 100.37 111.19 ± 92.11

VDPO 3477.61 ± 0.00 709.20 ± 522.01 181.60 ± 60.08 150.74 ± 94.33 96.75 ± 54.71 77.14 ± 73.00

ACDA 2381.98 ± 1226.41 2094.65 ± 944.20 2344.23 ± 1167.03 1330.55 ± 895.65 1636.10 ± 1134.22 1057.21 ± 949.42

Walker2d-v4
0% noise 5% noise 10% noise 15% noise 20% noise 25% noise

BPQL 1287.71 ± 754.84 1215.91 ± 776.93 652.90 ± 501.11 316.01 ± 216.53 595.48 ± 668.53 314.27 ± 417.49

VDPO 2005.31 ± 0.00 846.88 ± 808.67 810.89 ± 1173.36 283.58 ± 334.85 186.02 ± 307.16 199.08 ± 375.33

ACDA 4030.01 ± 82.46 3863.59 ± 232.52 4295.73 ± 128.36 4045.24 ± 51.37 3199.49 ± 231.87 3234.59 ± 623.28

Table 4: Best returns from the GE4,32 delay process over different noise.
Ant-v4

0% noise 5% noise 10% noise 15% noise 20% noise 25% noise

BPQL 3523.32 ± 146.78 2509.52 ± 117.37 1456.09 ± 299.72 547.34 ± 237.21 67.78 ± 122.29 0.28 ± 8.70

VDPO 3574.87 ± 0.00 2266.99 ± 90.89 1167.24 ± 473.41 647.07 ± 346.39 244.78 ± 127.86 26.36 ± 40.46

ACDA 2658.50 ± 285.82 2866.93 ± 1172.46 1406.31 ± 712.09 547.27 ± 329.31 138.69 ± 94.21 29.26 ± 32.36

Humanoid-v4
0% noise 5% noise 10% noise 15% noise 20% noise 25% noise

BPQL 876.89 ± 69.04 276.63 ± 131.70 301.68 ± 134.63 254.22 ± 131.77 201.02 ± 109.72 195.88 ± 123.20

VDPO 442.03 ± 0.00 280.72 ± 169.85 262.74 ± 131.86 233.62 ± 145.57 206.56 ± 159.37 194.34 ± 113.40

ACDA 3877.77 ± 1776.04 3725.59 ± 1513.38 3454.60 ± 1567.23 3092.70 ± 1752.58 1043.06 ± 339.16 649.32 ± 270.74

HalfCheetah-v4
0% noise 5% noise 10% noise 15% noise 20% noise 25% noise

BPQL 4894.08 ± 99.20 2136.36 ± 547.04 2019.46 ± 758.99 1785.40 ± 655.73 1920.19 ± 126.28 1286.61 ± 141.72

VDPO 5059.93 ± 0.00 3664.30 ± 929.25 1923.50 ± 379.20 1510.93 ± 435.71 1177.83 ± 283.21 790.87 ± 174.17

ACDA 4203.13 ± 279.18 4231.15 ± 333.69 3239.61 ± 199.78 3149.08 ± 367.98 3218.57 ± 154.02 1826.06 ± 214.04

Hopper-v4
0% noise 5% noise 10% noise 15% noise 20% noise 25% noise

BPQL 2668.14 ± 711.84 433.29 ± 381.79 190.79 ± 135.89 120.03 ± 137.44 76.54 ± 66.87 77.79 ± 72.13

VDPO 3403.46 ± 0.00 330.44 ± 263.74 138.13 ± 128.53 86.52 ± 81.11 77.02 ± 68.06 59.12 ± 60.31

ACDA 2947.10 ± 929.71 1727.79 ± 959.50 1434.94 ± 805.19 1814.74 ± 1187.29 1128.22 ± 1015.20 532.97 ± 630.97

Walker2d-v4
0% noise 5% noise 10% noise 15% noise 20% noise 25% noise

BPQL 1352.44 ± 328.51 875.09 ± 747.72 343.62 ± 314.86 275.07 ± 207.17 191.56 ± 383.58 134.20 ± 125.93

VDPO 1779.39 ± 0.00 344.73 ± 316.82 123.18 ± 160.70 147.64 ± 258.22 73.78 ± 142.23 56.70 ± 148.33

ACDA 3945.33 ± 148.28 1840.58 ± 386.78 1409.42 ± 281.81 1322.32 ± 305.35 1149.82 ± 345.44 850.48 ± 172.82
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Table 5: Best returns from the MM1 delay process over different noise.
Ant-v4

0% noise 5% noise 10% noise 15% noise 20% noise 25% noise

BPQL 3717.34 ± 125.79 3074.17 ± 106.78 1680.23 ± 307.70 764.00 ± 295.30 123.27 ± 122.10 4.06 ± 13.70

VDPO 3638.48 ± 9.30 2528.67 ± 144.63 1319.55 ± 537.44 709.82 ± 254.73 334.61 ± 133.75 32.48 ± 27.59

ACDA 2593.23 ± 88.19 2898.46 ± 838.07 1941.68 ± 567.39 724.43 ± 487.25 306.75 ± 319.66 76.13 ± 110.11

Humanoid-v4
0% noise 5% noise 10% noise 15% noise 20% noise 25% noise

BPQL 2926.45 ± 1042.65 5435.29 ± 68.34 733.25 ± 410.45 554.66 ± 205.97 423.77 ± 227.06 406.50 ± 195.39

VDPO 762.75 ± 0.00 720.73 ± 634.35 544.09 ± 424.14 423.67 ± 252.84 526.95 ± 394.22 354.99 ± 129.91

ACDA 5238.97 ± 332.60 5805.60 ± 23.04 5548.29 ± 39.58 5343.60 ± 227.82 1752.02 ± 616.85 1585.00 ± 538.02

HalfCheetah-v4
0% noise 5% noise 10% noise 15% noise 20% noise 25% noise

BPQL 5627.41 ± 64.54 4660.93 ± 448.10 2291.63 ± 857.39 2171.03 ± 626.53 2026.23 ± 523.82 1574.84 ± 167.54

VDPO 4684.17 ± 0.00 3831.96 ± 960.07 2454.03 ± 415.56 1896.91 ± 419.64 1277.00 ± 244.75 939.40 ± 251.26

ACDA 6309.62 ± 356.30 5898.36 ± 409.10 4998.40 ± 414.15 4173.81 ± 96.85 2547.28 ± 106.75 2243.67 ± 122.99

Hopper-v4
0% noise 5% noise 10% noise 15% noise 20% noise 25% noise

BPQL 3130.47 ± 29.44 3035.66 ± 103.80 1106.35 ± 490.33 397.27 ± 249.50 319.40 ± 198.93 196.96 ± 105.23

VDPO 3797.33 ± 0.00 1459.88 ± 933.11 389.41 ± 247.52 201.10 ± 121.99 156.50 ± 87.59 152.03 ± 96.74

ACDA 3029.85 ± 565.47 3122.53 ± 417.37 2245.07 ± 1166.01 2250.64 ± 901.67 1079.67 ± 690.26 1189.84 ± 677.60

Walker2d-v4
0% noise 5% noise 10% noise 15% noise 20% noise 25% noise

BPQL 3815.63 ± 39.18 3547.73 ± 133.51 2182.64 ± 763.72 883.42 ± 187.43 691.82 ± 431.84 758.42 ± 558.27

VDPO 5202.62 ± 0.00 2144.25 ± 1650.85 1416.45 ± 1845.96 1538.01 ± 1867.52 1227.54 ± 1220.62 637.52 ± 1228.54

ACDA 4485.74 ± 55.72 4562.33 ± 87.98 3653.42 ± 35.72 3892.52 ± 52.42 3036.04 ± 631.82 1608.60 ± 877.13

B.3 EVALUATED DELAY DISTRIBUTIONS

As mentioned in Section 5, we evaluate on delay processes following the Gilbert-Elliot and M/M/1
models. We formally define these processes in this section, as well as their conservative and op-
timistic worst-case delay assumptions (high and low CDA). Appendix E.2 and E.3 evaluate the
performance under high and low CDA, respectively.

We consider GE1,23 and GE4,32, two Gilbert-Elliot models. These are Markovian processes alter-
nating between two states, a good state sgood and a bad state sbad, as illustrated in Figure 10. We
describe the models in Table 6 as a two-state Markov process, where they initially start in the good
state. The notation D(d|s) is used to describe the probability of sampling the delay d in the Gilbert-
Elliot state s. We set the opportunistic low CDA to be the maximum delay that can be sampled in
the sgood state.

sgood sbad

p(sbad|sgood)

p(sgood|sbad)

1− p(sgood|sbad)1− p(sbad|sgood)

Figure 10: Illustration of transitions in a Gilbert-Elliot model.

We plot the distribution histogram and time series over 1000 samples of the Gilbert-Elliot processes
in Figure 11.

The M/M/1 queue process is described by simulating an M/M/1 queue according to the pseudocode
in Algorithm 4. We set the arrival rate λarrive = 0.33 and the service rate λservice = 0.75. The
arrivals and departures are dictated by independent Poisson processes parametrized by these values
(e.g., the time between two arrivals is a r.v. with an exponential distribution of mean λarrive). Note
that there is no upper bound on this delay process, and it is therefore impossible to convert this to
a constant-delay MDP through Constant Delay Augmentation (CDA). We can still apply the CDA
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Table 6: Description of the Gilbert-Elliot delay processes used during evaluation.

Property GE1,23 GE4,32

p(sbad|sgood)
1

125

1

250

p(sgood|sbad)
1

20

1

32

D(d|sgood)
Pr[d = 1] = 15

16

Pr[d = 2] = 1
16

Pr[d = 4] = 1

D(d|sbad)

Pr[d = 22] = 3
11

Pr[d = 23] = 5
11

Pr[d = 24] = 3
11

Pr[d = 32] = 1

Low CDA 2 4

High CDA 24 32
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(a) GE1,23 distribution histogram

0 200 400 600 800 1000
Time Step

0

3

6

9

12

15

18

21

24

Sa
m

pl
ed

 D
el

ay

(b) GE1,23 distribution time series
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(c) GE4,32 distribution histogram
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(d) GE4,32 distribution time series

Figure 11: The Gilbert-Elliot delay processes.

conversion from Appendix A to apply constant-delay methodologies on this delay process, though
they are no longer operating on an MDP, as the true delay may exceed the assumed upper bound.
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Algorithm 4 M/M/1 Queue Delay Generator
Initial State: tarrival ∼ Exp(·|λarrive) (Time of arrival of the first packet)

tservice ← ∅ (Cannot serve anything yet)
Q← FIFOqueue() (Empty queue initially)

1: procedure SAMPLEDELAY
2: if tservice = ∅ then
3: t← tarrival
4: Q.insert(t)
5: tarrival ∼ Exp(·|λarrive) + t
6: tservice ∼ Exp(·|λservice) + t

7: while tarrival < tservice do
8: t← tarrival
9: Q.insert(t)

10: tarrival ∼ Exp(·|λarrive) + t

11: t← tservice
12: tinserted ← Q.pop()
13: d← ⌈t− tinserted⌉
14: if Q.isempty() then
15: tservice ← ∅
16: else
17: tservice ∼ Exp(·|λservice) + t

18: return d

We plot delays of the M/M/1 queue in Figure 12. We set the conservative delay (high CDA) to be
16, and the opportunistic delay (low CDA) to be 4 for the M/M/1 queue.
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(a) MM1 distribution histogram over 5000 samples
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(b) MM1 distribution time series

Figure 12: Delays from an M/M/1 queue when λarrive = 0.33 and λservice = 0.75.

B.4 HYPERPARAMETERS AND NEURAL NETWORK STRUCTURE

Hyperparameters used for training the policy πθ and the critic Qϕ in ACDA follow the common
learning rates used for SAC, and are therefore shared between SAC, BPQL, and ACDA. We show
these together with the model hyperparameters used for ACDA in Tables 3(a) and 3(b). The hyper-
parameters for the model share the same replay size and batch size. We use slightly different pa-
rameters for the model when learning the dynamics on the 2D environments (HalfCheetah-v4,
Hopper-v4, and Walker2d-v4) and the 3D environments (Ant-v4 and Humanoid-v4).

The πθ, Qϕ, and EMBEDω networks are all implemented as MLPs with 2 hidden layers of dimension
256 each. The policy outputs the mean and standard deviation of a Gaussian distribution, which is
put through tanh and scaled to exactly cover the action space. The EMITω network consists of 2
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Table 7(a): SAC Hyperparameters Table 7(b): Model Hyperparameters

Parameter Value Parameter Value (2D) Value (3D)
Policy (θ) learning rate 3 · 10−4 Model (ω) learning rate 10−4 5 · 10−5

Critic (ϕ) Learning rate 3 · 10−4 Model training window n 16 16

Temperature (α) learning rate 3 · 10−4 Latent GRU dimensionality 384 512

Starting temperature (α) 0.2 Angle clamping Yes No

Temperature thresholdH −dim(A) Optimizer Adam Adam

Target smoothing coefficient 0.005 Activation ClipSiLU ClipSiLU

Replay buffer size 106

Discount γ 0.99

Minibatch size 256

Optimizer (policy, critic, temp.) Adam

Activation (policy, critic) ReLU

common layers of dimension 256 each, with additional ”head” layers of dimension 256 each for
outputting the mean and standard deviation of a Gaussian distribution.

Both MLPs (EMBEDω and EMITω) in the model make use of a clipped version of SiLU (Hendrycks
& Gimpel, 2023) as their activation function, where ClipSiLU(x) = SiLU(max(−20, x)). We
found that the use of ClipSiLU significantly improved the model performance. Earlier experiments
with models using ReLU activation did not manage to achieve good performance when used with
ACDA.

The angle clamping mentioned in Table 3(b) constrains all components of the state space that repre-
sent an angle to reside in the range [−π, π). We only apply this to 2D environments.

The model is trained using sub-trajectories Tn = (st, at, st+1, at+1, . . . , st+n−1, at+n−1, st+n),
where n is the model training window in Table 3(b). We optimize the model parameters ω with
sub-trajectories using the following equation

∇ωETn∼R

[
1

n+ 1

n∑

k=0

− log EMITω

(
st+k|STEPkω(EMBEDω(st), at, . . . , at+k−1)

)]
(8)

where for k = 0, we just evaluate the embedder as EMITω(st|EMBEDω(st)).

B.5 PRACTICAL EVALUATION DETAILS

The evaluation methodology used for all performance measurements is that of the maximum aver-
age return for a trained policy. A policy is trained on a total of 106 steps from the environment.
Every 10000 training steps, all network weights are frozen, and the policy is evaluated by sam-
pling 10 trajectories from the environment. These trajectories are discarded after evaluation and
not used for training. Each policy is evaluated on the same underlying environment, delay process,
and noise process as it was trained on. The average return (unweighted average sum of rewards
1
10

∑10
i=1

∑
(st,at,rt)∈τi

rt) is reported as the performance of the policy. For time series plots with
an x-axis Steps and a y-axis Return, we refer to the average return evaluated after that number of
training steps. The maximum average return, as shown in the tables, is the maximum evaluated
average return achieved at any point during the training process.

The training algorithms for SAC, SAC /w CDA, BPQL, and ACDA are implemented in our own
framework. Dreamer, DCAC, and VDPO are evaluated using the authors’ own implementations 567,

5https://github.com/danijar/dreamerv3
6https://github.com/rmst/rlrd
7https://github.com/QingyuanWuNothing/VDPO
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with small modifications to accommodate our delay processes, noise processes, and the interaction
layer.

In our framework, we use PyTorch for deep learning functionality and Gymnasium for RL func-
tionality. The interaction layer is implemented as a Gymnasium environment wrapper, based on the
formalism described in Appendix C, that extends the Gymnasium API to support action and observa-
tion packets. The constant-delay augmentation (CDA) in Appendix A is implemented as a wrapper
on top of the interaction layer wrapper, reducing the API back to the original Gymnasium API. We
implement ACDA to explicitly make use of the extended interaction layer definitions, whereas we
implement BPQL and SAC w/ CDA to operate directly on the regular Gymnasium API using the
CDA wrapper. A pass-through wrapper for the interaction layer is used for evaluating SAC (without
CDA), where the action packet is filled with the provided action.

All dependencies for our framework are provided as conda YAML files.

For VDPO we reuse the code artifact from their original article. Modifications to their implementa-
tion include the addition of action noise, our interaction layer wrapper (with CDA), and additional
statistical reporting. These modifications are documented in the artifact. The reason for adding our
own interaction layer wrapper to VDPO is to capture effects from the M/M/1 delay process when
the maximum delay assumption is violated.

The Dreamer baseline uses the Dreamer v3 implementation. We add the action noise and the in-
teraction layer wrappers on top of the environment, with the pass-through wrapper used to allow it
to operate using the regular Gymnasium API. This follows a similar procedure used by Karamzade
et al. (2024).

As DCAC already has a framework for random delays, we do not add our interaction layer wrapper
to their implementation. Instead, we only add the action noise and the delay processes. To adapt our
single delay to their split observation and action delay, we set the observation delay to 0 and set the
sampled delay as the action delay. This matches the formalism in the interaction layer framework,
as we only consider the full round-trip delay.

Each benchmark, meaning a single algorithm training on a single environment with a single delay
process, is run using a single Nvidia A40 GPU and 16 CPU cores. ACDA and VDPO benchmarks
take around 18-24 hours each to complete. BPQL and SAC benchmarks take around 6 hours each
to complete. Each Dreamer and DCAC benchmark takes roughly 3-5 days to complete.
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C FORMAL DESCRIPTION OF THE INTERACTION LAYER POMDP

This section describes the POMDP of the interaction layer introduced in Section 3.3. The POMDP
formalizes the interaction between the agent and the interaction layer that wraps the underlying
system. We assume that the underlying system can be described by an MDPM = (S,A, r, p, µ)
where S is the state space, A the action space, r(s, a) the reward function, p(s′|s, a) the transition
distribution, and µ(s) the initial state distribution.

The interaction layer wraps the MDP M, where the interaction delay is described by the delay
process D. Samples d ∼ D(·) are not necessarily independent. To fully define the POMDP of
the interaction layer, we also need the action buffer horizon h as well as the default action ainit.
Given this information, the POMDP is described as the tuple P = (S,A,p, r,µ,Ω, O). We use the
notation s ∈ S, a ∈ A, and o ∈ Ω to denote members of these sets. We also refer to items a ∈ A
as action packets and items o ∈ Ω as observation packets.

An observation is described as the tuple o = (t, s, b, δ, c). This describes the state at the interaction
layer at time t, where

• t is the time at the interaction layer when the observation was generated,
• s the underlying system state observed at the same time step,
• b = (b1, b2, . . . , bh) are action buffer contents at time t (b1 is immediately applied to s),
• δ is the delay of the action packet used to update the action buffer b, and
• c is the number of time steps without a new action packet replacing the action buffer con-

tents.

When referring to the state of the action buffer at different time steps, e.g., bt and bt+1, we use the
notation bt,i and bt+1,i to refer to the i-th action in bt and bt+1, respectively.

Delays are referred to using different notations, dt or δt, depending on the context:

• dt is the unobserved delay sampled at time t. This is the delay of the action packet at.
• δt is the delay recovered in hindsight. See description of the observation packet above for

more information. This hindsight delay is related to dt by the equation δt = dt−(δt+ct).

The individual components of P are defined in Equations 9-18:

Action space A = N×
∞⋃

k=1

Ak×h (9)

Observation space Ω = N× S ×Ah × Z+ × N (10)

State space S = Ω× 2(Z
+×A) (11)

Initial state distribution µ(s) =

{
µ(s) if s = ((0, s, (ainit, . . . ), 1, 0), ∅)
0 otherwise

(12)

Observation distribution O(o|s) =
{
1 if s = (o, I)
0 otherwise

(13)

Reward function r(st,at) = r(st, b1) (14)
where st = ((t, st, (b1, b2, . . . , bh), δt, ct), It)

Equation 11 defines states as tuples st = (ot, It), where ot is the state of the interaction layer
(observable) and It is the set of action packets in transit (not observable). The transit set It ∈
2(Z

+×A) contains tuples of action packets and their arrival time.

Note that, by the definition of µ in Equation 12, we can always check if the action buffer contains
the initial actions by t− (δt + ct) < 0. This holds until the first action packet is received.

The transition dynamics p(st+1|st,at) are described in Equation 18 below. While this is simple
to describe in text and with examples, it becomes complicated to define formally. We first define a
couple of auxiliary functions below to help define the transition dynamics. We define the function
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TRANSMIT(It,at, d) that adds the action at with delay d to the transit set, together with the min I
and mint I operations to get the action packet with the nearest arrival:

TRANSMIT(It,at, d) = {(t+ d,at)} ∪ {(t′,a′) ∈ It : t′ < t+ d} (15)

min
t
I =min{t′ : (t′,a′) ∈ I} (16)

min I =

{
∅ if I = ∅
(t′,a′) ∈ I if t′ = mint I

(17)

One aspect of the behavior of the interaction layer, modeled by the TRANSMIT(It,at, d) function
in Equation 15, is that outdated action packets arriving at the interaction layer will be discarded. For
example, if at has delay dt = 4, and at+1 has delay dt+1 = 2, then at+1 will arrive at time t + 3,
whereas at will arrive after at time t + 4. When at arrives, the interaction layer will see that the
contents of the action buffer are based on information from ot+1, whereas the action packet at is
based on information from ot. Therefore, at is considered outdated and will be discarded. Also
note that a consequence of this is that dt will never be observed, not even in hindsight.

Using these functions, we define the transition probabilities below in Equation 18. The probabilities
themselves are simple to describe as p(st+1|st, b1) × D(d); the complexity arises from checking
that the new POMDP state is compatible with the possible sampled delays. The first case covers
when no new action packet arrives at the interaction layer at time t+ 1, the second case is when the
received action packet at has too few rows in the matrix to update the action buffer for the sampled
delay d, and the third case is when a received action packet is used to update the action buffer.

p(st+1|st,at) =





p(st+1|st, b1) ·D(d) if It+1 = TRANSMIT(It,at, d) ∧mint It+1 > t+ 1 ∧
ct+1 = ct + 1 ∧ δt+1 = δt ∧
bt+1 = (b2, b3, . . . , bh−1, bh, bh)

p(st+1|st, b1) ·D(d) if It+1 = Icand \ {min Icand} ∧mint Icand = t+ 1 ∧
(t+ 1− u) > L ∧ ct+1 = ct + 1 ∧ δt+1 = δt ∧
bt+1 = (b2, b3, . . . , bh−1, bh, bh)

where Icand = TRANSMIT(It,at, d)

(t+ 1,au) = min Icand

(u,Mu) = au

Mu ∈ AL×h

p(st+1|st, b1) ·D(d) if It+1 = Icand \ {min Icand} ∧mint Icand = t+ 1 ∧
(t+ 1− u) ≤ L ∧ ct+1 = 0 ∧ δt+1 = (t+ 1− u) ∧
bt+1 = Mu

(t+1−u)

where Icand = TRANSMIT(It,at, d)

(t+ 1,au) = min Icand

(u,Mu) = au

Mu ∈ AL×h

0 otherwise
(18)

where st = (ot, It)
st+1 = (ot+1, It+1)

ot = (t, st, bt, δt, ct)

ot+1 = (t+ 1, st+1, bt+1, δt+1, ct+1)

bt = (b1, b2, . . . , bh−2, bh−1, bh)
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D DETAILED MODEL DESCRIPTION

This section provides formal definitions of the model introduced in Section 4.2, as well as a detailed
definition of the training algorithm presented in Section 4.3. Appendix D.1 presents the formal
model definition. Appendix D.2 presents the full training algorithm.

We use the variables θ, ϕ, and ω to denote the parameters of the policy, critic, and model, respec-
tively. In practice, these are large vectors of real numbers where different parts of the vector contain
the parameters for components in a deep neural network.

D.1 MODEL COMPONENTS AND OBJECTIVE

The primary purpose of the model is to overcome the limitation on fixed-size inputs of MLPs. The
idea is that, instead of generating actions directly with the augmented state input:

at+k ∼ πθ(·|st, at, at+1, . . . , at+k−1), (19)

we generate actions using the distribution over the state that the action will be applied to as policy
input:

at+k ∼ πθ(·|p(·|st, at, at+1, . . . , at+k−1)), (20)
where p(·|st, at, at+1, . . . , at+k−1) represents the distribution over states after applying the action
sequence at, at+1, . . . , at+k−1, in order, to the state st. We represent p(·|st, at, at+1, . . . , at+k−1)
as a fixed-size latent representation, and thanks to this representation, we can generate actions with
MLPs for variable-size inputs. The purpose of the model is to create these embeddings (defining the
mapping between p(·|st, at, at+1, . . . , at+k−1) and the corresponding latent representation). Since
this kind of policy makes decisions using a distribution over the state, and that the distribution is
embedded as a latent representation using a model, we refer to agents using this kind of policy as
model-based distribution agents (MDA).

The model consists of three components: EMBEDω(st), STEPω(zi, at+i), and EMITω(ŝt+i|zt+i).

EMBEDω(st) embeds the state st into a latent representation z0. In a perfect model, z0 would be an
embedding of the Dirac delta distribution δ(x− st).

STEPω(zi, at+i) updates the latent representation zi to include information about what happens if
the action at+i is also applied. Such that, if zi is a latent representation of p(·|st, at, . . . , at+i−1),
then zi+1 = STEPω(zi, at+i) is a latent representation of p(·|st, at, . . . , at+i−1, at+i).

EMITω(ŝt+i|zt+i) converts the latent representation zt+i back to a regular parameterized distribu-
tion. We use a normal distribution in our model, where EMITω outputs the mean and standard
deviation for each component of the MDP state. We never sample from this distribution. This
component is only used to ensure that we have a good latent representation.

To make the notation more compact, we use the multi-step notation STEPkω where

STEP0ω(z) = z (21)

STEPkω(z, a0, a1, . . . , ak−1) = STEPk−1
ω (STEPω(z, a0), a1, . . . , ak−1) (22)

With this notation, we say that STEPkω(EMBEDω(st), at, at+1, . . . , at+k−1) embeds the distribution
p(·|st, at, at+1, . . . , at+k−1). We optimize the model to minimize the KL-divergence between the
embedded distribution and the true distribution. That is

min
ω

DKL
(
p(·|st, at, . . . , at+n−1)

∣∣∣∣ EMITω(·|STEPnω(EMBEDω(st), at, . . . , at+n−1))
)

(23)

for all possible states st and sequences of actions at, . . . , at+n−1. The loss function L(ω) from
Section 4.2 is a Monte Carlo estimate of this objective:

L(ω) = E(st,at,at+1,...,at+n−1,st+n)∼R [− log EMITω(st+n|zn)] (24)

where zn = STEPnω(EMBEDω(st), at, at+1, . . . , at+n−1)

andR is a replay buffer with experiences collected online.
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D.2 TRAINING ALGORITHM

This section presents the full version of the training algorithm from Section 4.3. As with SAC,
we assume that πθ is represented as a reparameterizable policy that is a deterministic function with
independent noise input.

Algorithm 5 Actor-Critic with Delay Adaptation
1: Initialize policy πθ, critics Qϕ1

, Qϕ2
, model ω, temperature α, target networks ϕ′

1, ϕ
′
2, and

replayR
2: for each epoch do
3: // Stage 1: Sample trajectory
4: Collected trajectory: T = ∅
5: t← 0
6: Reset interaction layer state: s0 ∼ µ, Observe o0

7: while terminal state not reached do
8: (t, st, bt, δt, ct) = ot

9: for k ← 1 to L do
10: Select ât+k

1 , . . . , ât+k
k by Algorithm 1

11: y0 ← (ât+k
1 , . . . , ât+k

k )
12: for i← 1 to h do
13: at+k

i ∼ πθ(·|STEPk+i−1
ω (EMBEDω(st), yi−1))

14: yi ← (yi−1, a
t+k
i )

15: at ←


t,




at+1
1 at+1

2 at+1
3 . . . at+1

h

at+2
1 at+2

2 at+2
3 . . . at+2

h

...
...

...
. . .

...

at+L
1 at+L

2 at+L
3 . . . at+L

h







16: Send at to interaction layer, observe rt,ot+1,Γt+1

17: Add (ot,at, rt,ot+1,Γt+1) to T
18: t← t+ 1
19: // Stage 2: Reconstruct transition info
20: for (oi,ai, ri,oi+1,Γi+1) ∈ T do
21: (i, si, bi, δi, ci) = oi, (i+ 1, si+1, bi+1, δi+1, ci+1) = oi+1

22: ai = bi,1
23: if i− (δi + ci) ≥ 0 then
24: // (Recover the input used by πθ and STEPkω to generate bi,1 and bi+1,1)
25: j ← i− (δi + ci), j′ ← (i+ 1)− (δi+1 + ci+1)

26: Reconstruct âj+δi
1 , . . . , âj+δi

δi
, choose aj+δi

1 , . . . , aj+δi
ci from aj

27: Reconstruct âj
′+δi+1

1 , . . . , â
j′+δi+1

δi+1
, choose a

j′+δi+1

1 , . . . , a
j′+δi+1
ci+1 from aj′

28: yi ← (âj+δi
1 , . . . , âj+δi

δi
,j+δi
1 , . . . , aj+δi

ci )

29: yi+1 ← (â
j′+δi+1

1 , . . . , â
j′+δi+1

δi+1
, a

j′+δi+1

1 , . . . , a
j′+δi+1
ci+1 )

30: // We denote their lengths as |yi| = δi + ci
31: Add (si, ai, ri, si+1,Γi+1, yi, yi+1) toR
32: // Stage 3: Update network weights
33: for |T | sampled batches of (s, a, r, s′,Γ, y, y′) fromR do
34: // These are computed in expectation of samples fromR
35: â′ ∼ πθ(·|STEP|y

′|
ω (EMBEDω(s

′), y′))
36: x = r + γ(1− Γ)(min(Qϕ′

1
(s′, â′), Qϕ′

2
(s′, â′)− α log πθ(â

′| . . . ))
37: Do gradient descent step on∇ϕ1

(Qϕ1
(s, a)− x)2 and ∇ϕ2

(Qϕ2
(s, a)− x)2

38: â ∼ πθ(·|STEP|y|ω (EMBEDω(s), y))
39: Do gradient ascent step on∇θ(min(Qϕ1(s, â), Qϕ2(s, â))− α log πθ(â| . . . ))
40: Update α according to SAC
41: Compute∇ω by Equation 8 and do gradient descent step
42: Update target networks ϕ′

1, ϕ
′
2
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E ADDITIONAL RESULTS

This section presents additional results to complement those presented in Section 5. Appendix E.1
presents the results from Table 1 as time series plots, showing how the mean and standard deviation
of the evaluated return change over the training process.

Appendix E.2 and E.3 answer two questions that are not part of the evaluation in Section 5. The
questions that these appendices answer are:

• Appendix E.2 answers the question whether the gain in performance is due to the model-
based policy introduced in Section 4.2 or due to the adaptiveness of ACDA. We evaluate
this by modifying the BPQL algorithm such that it uses the MDA policy instead of a direct
MLP policy, and compare how that performs against ACDA. The results clearly show that
it is the adaptiveness of the interaction layer that is the reason for the strong performance
of ACDA.

• Appendix E.3 answers the question whether acting with CDA under a different horizon h
than the worst-case delay is better than trying to adapt to varying delays. We set up this
demonstration by applying CDA with a horizon h that is greater than or equal to the sam-
pled delay most of the time, but occasionally a sampled delay exceeds this horizon. This
kind of CDA does not result in a constant-delay MDP that BPQL and VDPO expect, hence
we did not include this in the main evaluation. The results in Appendix E.3 show that while
VDPO and BPQL occasionally gain performance in this setting, ACDA is still the best
performing algorithm in most cases. ACDA is always close to the highest performing algo-
rithm in the few cases where ACDA does not achieve the best mean return. These results
show that the adaptiveness of the interaction layer provides an increase in performance that
cannot be achieved through constant-delay approaches.

E.1 TIME SERIES RESULTS

This section presents the results from the evaluation in Section 5 as time series plots, including
standard deviation bands. Unless otherwise specified, the evaluation methodology follows that de-
scribed in Section 5. To reduce noise and highlight trends, each time series is smoothed using a
running average over five evaluation points.

The results in this appendix are split into the delay processes used. Appendix E.1.1 presents results
for the GE1,23 delay process, Appendix E.1.2 for the GE4,32 delay process, and Appendix E.1.3 for
the M/M/1 queue delay process.
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E.1.1 PERFORMANCE EVALUATION UNDER THE GE1,23 DELAY PROCESS
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(a) GE1,23 delay process as time series samples.
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(c) Humanoid-v4 (with 5% noise)
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(e) Hopper-v4 (with 5% noise)
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(f) Walker2d-v4 (with 5% noise)
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Figure 13: Time series evaluation during training on the GE1,23 delay process. All environments
have added 5% noise to the actions.

Table 8: Best returns from the GE1,23 delay process.
Ant-v4 Humanoid-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4

SAC 14.22 ± 14.89 862.18 ± 266.21 2064.18 ± 223.48 306.91 ± 51.26 708.33 ± 221.53

SAC w/ CDA 69.28 ± 114.47 414.05 ± 204.20 128.47 ± 9.55 426.92 ± 27.93 428.44 ± 509.44

Dreamer 1111.73 ± 412.35 1463.07 ± 649.56 1796.07 ± 381.47 334.30 ± 245.42 1081.12 ± 905.94

BPQL 2691.88 ± 129.84 585.19 ± 163.49 4320.20 ± 1028.52 1328.71 ± 937.67 1215.91 ± 776.93

VDPO 2163.00 ± 53.04 417.25 ± 210.09 3144.23 ± 1156.52 709.20 ± 522.01 846.88 ± 808.67

DCAC 949.97 ± 11.87 128.47 ± 36.09 920.09 ± 33.05 16.99 ± 15.94 106.70 ± 53.84

ACDA 4112.78 ± 818.44 4608.76 ± 1084.52 5984.25 ± 1885.78 2094.65 ± 944.20 3863.59 ± 232.52
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E.1.2 PERFORMANCE EVALUATION UNDER THE GE4,32 DELAY PROCESS
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(a) GE4,32 delay process as time series samples.
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(b) Ant-v4 (with 5% noise)
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(c) Humanoid-v4 (with 5% noise)
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(d) HalfCheetah-v4 (with 5% noise)
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(e) Hopper-v4 (with 5% noise)
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(f) Walker2d-v4 (with 5% noise)
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Figure 14: Time series evaluation during training on the GE4,32 delay process. All environments
have added 5% noise to the actions.

Table 9: Best returns from the GE4,32 delay process.
Ant-v4 Humanoid-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4

SAC −5.72 ± 19.62 494.43 ± 156.01 −158.78 ± 65.86 279.74 ± 109.83 60.86 ± 75.59

SAC w/ CDA 18.93 ± 23.64 230.45 ± 99.22 591.32 ± 36.39 315.47 ± 51.49 257.18 ± 73.42

Dreamer 1147.56 ± 371.15 1091.48 ± 577.52 2493.19 ± 231.22 515.36 ± 430.72 1233.79 ± 802.47

BPQL 2509.52 ± 117.37 276.63 ± 131.70 2136.36 ± 547.04 433.29 ± 381.79 875.09 ± 747.72

VDPO 2266.99 ± 90.89 280.72 ± 169.85 3664.30 ± 929.25 330.44 ± 263.74 344.73 ± 316.82

DCAC 953.14 ± 12.06 167.97 ± 82.14 1123.47 ± 100.34 57.98 ± 28.04 9.23 ± 20.35

ACDA 2866.93 ± 1172.46 3725.59 ± 1513.38 4231.15 ± 333.69 1727.79 ± 959.50 1840.58 ± 386.78

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

E.1.3 PERFORMANCE EVALUATION UNDER THE M/M/1 QUEUE DELAY PROCESS
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(a) MM1 delay process as time series samples.
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(b) Ant-v4 (with 5% noise)
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(c) Humanoid-v4 (with 5% noise)
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(d) HalfCheetah-v4 (with 5% noise)
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(e) Hopper-v4 (with 5% noise)
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(f) Walker2d-v4 (with 5% noise)
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Figure 15: Time series evaluation during training on the MM1 delay process. All environments have
added 5% noise to the actions.

Table 10: Best returns from the MM1 delay process.
Ant-v4 Humanoid-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4

SAC −0.58 ± 8.66 921.04 ± 299.47 20.69 ± 94.91 333.06 ± 96.04 604.80 ± 212.37

SAC w/ CDA 102.00 ± 33.77 613.03 ± 157.68 550.84 ± 16.28 627.59 ± 24.62 2005.76 ± 341.30

Dreamer 1121.11 ± 58.69 981.38 ± 597.01 584.40 ± 72.26 975.72 ± 650.05 1801.81 ± 1158.73

BPQL 3074.17 ± 106.78 5435.29 ± 68.34 4660.93 ± 448.10 3035.66 ± 103.80 3547.73 ± 133.51

VDPO 2528.67 ± 144.63 720.73 ± 634.35 3831.96 ± 960.07 1459.88 ± 933.11 2144.25 ± 1650.85

DCAC 959.23 ± 13.54 525.85 ± 135.36 35.60 ± 21.42 1026.45 ± 2.96 24.48 ± 45.46

ACDA 2898.46 ± 838.07 5805.60 ± 23.04 5898.36 ± 409.10 3122.53 ± 417.37 4562.33 ± 87.98
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E.2 MODEL-BASED DISTRIBUTION AGENT VS. ADAPTIVENESS

The purpose of this Appendix is to answer the question of whether it is the model-based distribution
agent (MDA) or the adaptivity of ACDA that leads to its high performance. To answer this, we
modify the BPQL algorithm to use the MDA policy instead of the direct MLP policy that they used
in their original paper.

It is necessary to modify the BPQL algorithm itself since the optimization of the MDA policy is
split into two steps, with different kinds of samples from the replay buffer. If the delay truly was
constant, then BPQL with MDA would be the same as the performance of ACDA, due to the perfect
conditions for the memorized action selection. However, it is necessary to split these into two
algorithms since this cannot capture the M/M/1 queue delay process, which cannot be represented
as a true constant-delay MDP.

Like Appendix E.1, results are split based on the delay process used. Appendix E.2.1 presents results
for the GE1,23 delay process, Appendix E.2.2 for the GE4,32 delay process, and Appendix E.2.3 for
the M/M/1 queue delay process.

These results show that, while BPQL sometimes performs better using the MDA policy, ACDA,
with its adaptivity, is still the best-performing algorithm.
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E.2.1 PERFORMANCE OF MDA UNDER THE GE1,23 DELAY PROCESS
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(a) GE1,23 delay process as time series samples.
The red line indicates assumed upper bound for
CDA.
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(b) Ant-v4 (with 5% noise)
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(c) Humanoid-v4 (with 5% noise)
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(d) HalfCheetah-v4 (with 5% noise)
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(e) Hopper-v4 (with 5% noise)
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(f) Walker2d-v4 (with 5% noise)
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Figure 16: Time series evaluation during training on the GE1,23 delay process. All environments
have added 5% noise to the actions.

Table 11: Best returns from the GE1,23 delay process.
Ant-v4 Humanoid-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4

BPQL 2691.88 ± 129.84 585.19 ± 163.49 4320.20 ± 1028.52 1328.71 ± 937.67 1215.91 ± 776.93

VDPO 2163.00 ± 53.04 417.25 ± 210.09 3144.23 ± 1156.52 709.20 ± 522.01 846.88 ± 808.67

ACDA 4112.78 ± 818.44 4608.76 ± 1084.52 5984.25 ± 1885.78 2094.65 ± 944.20 3863.59 ± 232.52

BPQL w/ MDA 1795.29 ± 23.78 563.36 ± 96.11 4926.36 ± 60.08 465.14 ± 138.86 3681.39 ± 126.41
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E.2.2 PERFORMANCE OF MDA UNDER THE GE4,32 DELAY PROCESS
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(a) GE4,32 delay process as time series samples.
The red line indicates assumed upper bound for
CDA.
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(b) Ant-v4 (with 5% noise)
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(c) Humanoid-v4 (with 5% noise)
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(d) HalfCheetah-v4 (with 5% noise)
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(e) Hopper-v4 (with 5% noise)
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(f) Walker2d-v4 (with 5% noise)
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Figure 17: Time series evaluation during training on the GE4,32 delay process. All environments
have added 5% noise to the actions.

Table 12: Best returns from the GE4,32 delay process.
Ant-v4 Humanoid-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4

BPQL 2509.52 ± 117.37 276.63 ± 131.70 2136.36 ± 547.04 433.29 ± 381.79 875.09 ± 747.72

VDPO 2266.99 ± 90.89 280.72 ± 169.85 3664.30 ± 929.25 330.44 ± 263.74 344.73 ± 316.82

ACDA 2866.93 ± 1172.46 3725.59 ± 1513.38 4231.15 ± 333.69 1727.79 ± 959.50 1840.58 ± 386.78

BPQL w/ MDA 1661.41 ± 43.42 359.46 ± 156.86 3609.45 ± 328.37 224.34 ± 90.12 3015.45 ± 1428.05
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E.2.3 PERFORMANCE OF MDA UNDER THE M/M/1 QUEUE DELAY PROCESS
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(a) M/M/1 Queue delay process as time series
samples. The red line indicates assumed worst-
case delay for CDA.
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(b) Ant-v4 (with 5% noise)
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(c) Humanoid-v4 (with 5% noise)
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(d) HalfCheetah-v4 (with 5% noise)
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(e) Hopper-v4 (with 5% noise)
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(f) Walker2d-v4 (with 5% noise)
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Figure 18: Time series evaluation during training on the MM1 delay process. All environments have
added 5% noise to the actions.

Table 13: Best returns from the MM1 delay process.
Ant-v4 Humanoid-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4

BPQL 3074.17 ± 106.78 5435.29 ± 68.34 4660.93 ± 448.10 3035.66 ± 103.80 3547.73 ± 133.51

VDPO 2528.67 ± 144.63 720.73 ± 634.35 3831.96 ± 960.07 1459.88 ± 933.11 2144.25 ± 1650.85

ACDA 2898.46 ± 838.07 5805.60 ± 23.04 5898.36 ± 409.10 3122.53 ± 417.37 4562.33 ± 87.98

BPQL w/ MDA 2308.18 ± 75.13 944.56 ± 92.79 3953.69 ± 351.34 512.43 ± 346.18 3667.61 ± 142.48
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E.3 RESULTS WHEN VIOLATING THE UPPER BOUND ASSUMPTIONS

The GE1,23 and GE4,32 delay processes occasionally have a very high delay, but most of the time,
the delays of these are very low. To convert these to a constant-delay MDP, we need to assume the
worst-case possible delay of the process. We do this using the CDA method described in Appendix
A. CDA can be applied regardless of whether the constant h that we wish to act under is a worst-case
delay or not. Though CDA only guarantees the MDP property if h is a true upper bound of the delay
process.

A natural question is how state-of-the-art approaches perform if we apply CDA to a more favorable
constant h, which holds most of the time and is much lower than the worst-case delay. We answer
this by evaluating BPQL and VDPO under more opportunistic constants h. These are compared
against the performance of ACDA, which can still adapt to much larger delays. We also include
an evaluation of BPQL with the MDA policy, as in Appendix E.2, but now when that acts under
the opportunistic constant h instead. We present the results of this evaluation in Appendices E.3.1,
E.3.2, and E.3.3, which are split based on the delay process used. The opportunistic constant h used
is highlighted as a red line in a time series samples plot for each delay process.

The results show that ACDA still outperforms state-of-the-art in most benchmarks. While BPQL
and VDPO can achieve better performance in some cases, ACDA is still performing close to the
best algorithm. Also, operating under these opportunistic constants can have significant negative
consequences. This is best highlighted by the results in Figure 19(d), where VDPO experiences a
collapse in performance under the HalfCheetah-v4 environment using the GE1,23 delay process.

Based on these results, we conclude that the adaptiveness provided by the interaction layer is a
necessity to be able to achieve high performance under random unobservable delays. While it is
possible to sacrifice the MDP property to gain performance in the constant-delay setting, state-of-
the-art still does not outperform the adaptive ACDA algorithm.
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E.3.1 GE1,23 DELAY PROCESS WITH LOW CDA
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(a) GE1,23 delay process as time series samples.
The red line indicates assumed upper bound for
CDA.
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(b) Ant-v4 (with 5% noise)
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(c) Humanoid-v4 (with 5% noise)
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(d) HalfCheetah-v4 (with 5% noise)
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(e) Hopper-v4 (with 5% noise)
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(f) Walker2d-v4 (with 5% noise)
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Figure 19: Time series evaluation during training on the GE1,23 delay process for opportunistic delay
assumptions of h = 2 (except for ACDA). All environments have added 5% noise to the actions.

Table 14: Best returns from the GE1,23 delay process.
Ant-v4 Humanoid-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4

BPQL 3359.65 ± 288.24 2469.96 ± 1375.23 5944.67 ± 395.56 642.54 ± 420.04 2043.32 ± 923.00

VDPO 3103.10 ± 252.19 2658.48 ± 2044.40 5625.06 ± 524.23 1113.51 ± 836.72 2756.73 ± 1693.64

ACDA 4112.78 ± 818.44 4608.76 ± 1084.52 5984.25 ± 1885.78 2094.65 ± 944.20 3863.59 ± 232.52

BPQL w/ MDA 423.46 ± 73.63 1543.10 ± 536.14 5710.20 ± 566.48 545.01 ± 116.07 1923.28 ± 838.62
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E.3.2 GE4,32 DELAY PROCESS WITH LOW CDA
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(a) GE4,32 delay process as time series samples.
The red line indicates assumed upper bound for
CDA.
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(b) Ant-v4 (with 5% noise)
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(c) Humanoid-v4 (with 5% noise)
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(d) HalfCheetah-v4 (with 5% noise)
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(e) Hopper-v4 (with 5% noise)
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(f) Walker2d-v4 (with 5% noise)
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Figure 20: Time series evaluation during training on the GE4,32 delay process for opportunistic delay
assumptions of h = 4 (except for ACDA). All environments have added 5% noise to the actions.

Table 15: Best returns from the GE4,32 delay process.
Ant-v4 Humanoid-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4

BPQL 3000.00 ± 754.09 2949.17 ± 1933.62 5315.27 ± 559.25 1243.58 ± 704.53 2107.39 ± 1219.55

VDPO 3979.56 ± 331.76 2956.52 ± 2322.74 5424.96 ± 306.06 1360.87 ± 627.11 2234.83 ± 1776.21

ACDA 2866.93 ± 1172.46 3725.59 ± 1513.38 4231.15 ± 333.69 1727.79 ± 959.50 1840.58 ± 386.78

BPQL w/ MDA 2155.47 ± 84.22 465.58 ± 82.59 4082.54 ± 411.47 1312.37 ± 868.12 2355.23 ± 1145.73
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E.3.3 M/M/1 QUEUE DELAY PROCESS WITH LOW CDA
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(a) M/M/1 Queue delay process as time series
samples. The red line indicates assumed upper
bound for CDA.
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(b) Ant-v4 (with 5% noise)
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(c) Humanoid-v4 (with 5% noise)
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(d) HalfCheetah-v4 (with 5% noise)
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(e) Hopper-v4 (with 5% noise)
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(f) Walker2d-v4 (with 5% noise)
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Figure 21: Time series evaluation during training on the MM1 delay process for opportunistic delay
assumptions of h = 4 (except for ACDA). All environments have added 5% noise to the actions.

Table 16: Best returns from the MM1 delay process.
Ant-v4 Humanoid-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4

BPQL 2577.34 ± 1217.11 4158.16 ± 981.22 4478.64 ± 193.82 407.91 ± 179.00 3475.80 ± 586.89

VDPO 2278.08 ± 726.85 3349.31 ± 1668.64 4857.65 ± 335.88 1628.83 ± 880.65 3554.77 ± 1278.22

ACDA 2898.46 ± 838.07 5805.60 ± 23.04 5898.36 ± 409.10 3122.53 ± 417.37 4562.33 ± 87.98

BPQL w/ MDA 1541.32 ± 16.71 1030.55 ± 185.86 4502.92 ± 214.25 1665.66 ± 1210.69 4825.75 ± 126.28
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F PRACTICAL CONSIDERATIONS OF THE INTERACTION LAYER

This section discusses practical considerations when deploying ACDA and the interaction layer to
real-world environments. Specifically, we discuss the delays not handled by the interaction layer in
Appendix F.1, as well as the effect that ACDA has on computational delays in Appendix F.2.

F.1 CONSIDERATIONS FOR NON-INTERACTION DELAYS

As illustrated in Figure 1 in the introduction, there are additional delays not handled by the interac-
tion layer. Namely, the delays between the interaction layer and the system itself. In this paper, we
presume that these delays are negligible or otherwise accounted for. If these delays are not negli-
gible and must be accounted for, then this can most likely be handled by prematurely sensing and
actuating the system. As the interaction layer by design is located close to the excited system, any
delays between them will likely take place over controlled channels (such as USB or SPI), meaning
that any delay over these channels is stable.

F.2 EFFECT OF ACTION PACKET ON COMPUTATIONAL DELAY

Although ACDA handles interaction delays, the computation of the action packet matrix itself does
add computational delay, compared to constant-delay approaches that only compute a single action.
This could cause concern for real-world applications if this additional delay is too significant. If
the computational delay is longer than the excitation period of the environment, the policy cannot
generate actions fast enough, and the interaction will stall. In this section, we discuss the effect that
the computation of the action packet can have on the delay, present measurements of computational
delay, and put that into the context of the evaluated environments.

There are a few remarks about the action packet itself:

• In ACDA, the computation of the rows is done in parallel. The effective computational time
is linear instead of quadratic. More specifically, the number of sequential computations is
proportional to the sum of the horizon and the prediction length, h+ L.

• The action packet contains horizons of actions, allowing for gaps in the interaction. For
a practical scenario, in the event of not having enough time to compute subsequent action
packets, it is possible to only generate action packets based on the latest observation packet
that has reached the agent.

With this in mind, we measure the average computational time of action packets for the network
structure used when evaluating the Ant-v4 environment under the MM1 delay process. We mea-
sure the time taken in the training loop to generate a single action packet, as well as the execution
time of the individual network components. All measurements are done in our framework imple-
mented in PyTorch, collected on the same system used to run the benchmarks.

Table 17: Execution time measurements.
Aspect Measured Time
Generating a random action packet 24 ms

Generating an action packet using the MDA 68 ms

Randomly filling an action packet matrix 39 µs

Single GRU forward pass 164 µs

Single policy forward pass 61 µs

A notable aspect of the measurements in Table 17 is the difference in generating a random action
packet in the training loop, compared to directly filling an action packet matrix in PyTorch (24 ms vs
61 µs). This hints at that our current implementation is not optimized, that there are further gains to
be made, and that 68 ms is not a representative time for generating an action packet in an optimized
implementation.
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The worst-case computation for a row in the action packet under the MM1 delay process is for
the 16th row (delay 16). This consists of first embedding the observed state, then embedding the
16 guessed preceding actions into a distribution, and then sequentially generating 16 actions and
embedding the next distribution, excluding the distribution after the final action, as that is not needed.
The effective computation time for the action packet is then as shown in Equation 25:

taction packet = tembed + 16 · tGRU + 15 · (tpolicy + tGRU) + tpolicy (25)

As the embedding network is comparable in size to the policy network, we use the time for the policy
as a proxy for the state embedding. Inserting the measurements from Table 17 into the formula from
Equation 25, we get an estimated average execution time of 6.1 ms for an action packet. In the
context of the Ant-v4, environment which uses a 50 ms actuation period, the computational delay
is less than the time for a single step in the environment. The computational delay is also lower than
the smallest actuation period for any environment used in the evaluation, the smallest period being
8 ms for the Walker2d-v4 environment.
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G INTERACTION-DELAYED REINFORCEMENT LEARNING WITH
REAL-VALUED DELAY

In Section 3.1, we introduced the delayed MDP using discrete delays measured in steps within the
MDP. For real systems described by an MDP, each step corresponds to some amount of real-valued
time, possibly controlled by a clock. Any interaction delay with the real system will also correspond
to some amount of real-valued time that does not necessarily align with the time taken for a step in
the MDP. Therefore, it makes sense to talk about delay directly as real-valued time when considering
interaction delays for systems in the real world.

In Appendix G.1, we describe the effect that delays have when they are described as real-valued
delays. We describe in Appendix G.2 how to implement the interaction layer to handle these real-
valued delays.

G.1 ORIGIN AND EFFECT OF DELAY AS CONTINUOUS TIME

MDPs usually assign a time t to states, actions, and rewards. This time t ∈ N is merely a discrete
ordering of events. We model the origin of delays in the real world as elapsed wall clock time in the
domain of R+. We use the following notation to distinguish between them:

t ∈ N (Order of events in MDP.) (26)

τ ∈ R+ (Wall clock time elapsed in the real world.) (27)

In the real world, there is an interaction delay in that it takes some time τobserve ∈ R+ to observe a
state, some time τdecide ∈ R+ to generate the action, and some time τapply ∈ R+ to apply the action
to the environment. In this time, the state s may evolve independently of an action being applied to
the environment. Let this evolution process ∆ be defined as

∆ : S × R+ × S → R (28)

such that s̃ ∼ ∆(·|s, τ) (29)

subject to ∀s, s̃, τ1, τ2 : ∆(s̃|s̃i, τ2)
∣∣
s̃i∼∆(·|s,τ1) = ∆(s̃|s, τ1 + τ2) (30)

where s ∈ S is the state and τ, τ1, τ2 ∈ R+ are real wall-clock times in which the state has had time
to evolve. The evolved state is unknown to the agent and is thus referred to as s̃ ∈ S. The criterion
in Equation 30 formally states that it should make no difference whether a state evolved for a single
time period or if it is split into 2 time periods.

Environment

Agent

reward
next state

action

τobserve

τcompute

τapply

(a) Effects contributing to delay.

Standard (Assumed) RL Interaction:
a ∼ π(·|s)
s′ ∼ p(·|s, a)

With Interaction Delay:
a ∼ π(·|s)
s̃3 ∼ ∆(·|s, τobserve + τdecide + τapply)

s′ ∼ p(·|s̃3, a)

(b) Violation of RL interaction assumption.

Figure 22: How delays violate the assumption used by state-of-the-art RL algorithms.

If the environment is sufficiently static, like a chess board, then this poses no issue because that
∆(·|s, τ) will always evolve to the same state. If the environment is more dynamic, such as balancing
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s
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s̃1 ∼ ∆(·|s, τobserve) s̃2 ∼ ∆(·|s̃1, τcompute) s̃3 ∼ ∆(·|s̃2, τapply)

a ∼ π(·|s)

Figure 23: State evolution over the interaction process.

an inverted pendulum, then the interaction delay can result in the state we apply an action to has
changed from the state that it was generated from. We illustrate the factors contributing to the
interaction delay in Figure 22(a) and how they affect the evolving state in Figure 23. The violation
of the equations is shown in Figure 22(b).

While there likely is some time passing within the environment in the real world (as illustrated by
τenvironment in Figure 23), we consider that time τenvironment as part of the environment dynamics and
not of the interaction delay.

These times may also be stochastic and unknown to the agent before generating the action. While
they can be assumed identically and independently distributed (iid), effects such as clogging (over
network or computation bandwidth) mean that a long delay is more likely to follow another long
delay, resulting in a dependence in distributions. Delays can also be affected by how an agent
interacts with the environment, for example, by controlling a system such that it moves to another
access point on the network.

G.2 INTERACTION LAYER TO ENFORCE DISCRETE DELAY

If we assume that the environment will be excited every τenvironment seconds, then we can express the
delay as a discrete number of steps, rounded up to the nearest multiple of τenvironment.

Interaction Layer
(Syncronous Environment)

Agent
(Asyncronous)

Clock

System

Action

Buffer

Step Count: t

Observer IL Sampler

ExciterSampler
(Fetch action)

atot, rt

Figure 24: Illustration of the components that make up the interaction layer. A clock is used to
ensure that the system is excited and sampled every τenvironment.

Delay being expressed in real time makes it inconvenient to reason about with respect to the MDP
describing the environment interaction. To resolve this, we introduce an interaction layer that sits
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between the agent and the system we want to control. The primary role of the interaction layer is
to discretize time and ensure that τenvironment is constant. It operates under the assumptions that the
interaction layer can

1. observe the system at any time (read sensors),
2. excite the system at any time (apply actions), and
3. observe and excite with negligible real-world delay (assumed τ = 0).

Under these assumptions, the role of the interaction layer is primarily to

1. maintain an action buffer of upcoming actions to apply to the system,
2. accept incoming actions from an agent and insert them into the action buffer,
3. ensure that interaction with the system occurs periodically on a fixed interval, and
4. transmit state information back to the agent.

The construction of an interaction layer is realistic for many real-world systems. Using the scenario
illustrated in Figure 1 as an example, the interaction layer could be implemented as a microcontroller
located on the vehicle itself. We illustrate the interaction layer in Figure 24.

From this perspective, the agent acts reactively. The interaction layer manages the interaction with
the environment, and the agent generates new actions for the action buffer when triggered by emis-
sions from the interaction layer. We denote emitted data from the interaction layer as an observation
packet ot, and the data sent to the interaction layer as an action packet at.
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