
SymRTLO: Enhancing RTL Code Optimization with
LLMs and Neuron-Inspired Symbolic Reasoning

Yiting Wang1,∗ Wanghao Ye1,∗ Ping Guo2,∗ Yexiao He1,∗ Ziyao Wang1

Bowei Tian1 Shwai He1 Guoheng Sun1 Zheyu Shen1 Sihan Chen3

Ankur Srivastava1 Qingfu Zhang2 Gang Qu1 Ang Li1,†
1University of Maryland 2City University of Hong Kong 3University of Southern California

{ywang144, wy891, yexiaohe, angliece}@umd.edu
pingguo5-c@my.cityu.edu.hk

Abstract

Optimizing Register Transfer Level (RTL) code is crucial for improving the effi-
ciency and performance of digital circuits in the early stages of synthesis. Man-
ual rewriting, guided by synthesis feedback, can yield high-quality results but
is time-consuming and error-prone. Most existing compiler-based approaches
have difficulty handling complex design constraints. Large Language Model
(LLM)-based methods have emerged as a promising alternative to address these
challenges. However, LLM-based approaches often face difficulties in ensuring
alignment between the generated code and the provided prompts. This paper
introduces SymRTLO, a neuron-symbolic framework that integrates LLMs with
symbolic reasoning for the efficient and effective optimization of RTL code. Our
method incorporates a retrieval-augmented system of optimization rules and Ab-
stract Syntax Tree (AST)-based templates, enabling LLM-based rewriting that
maintains syntactic correctness while minimizing undesired circuit behaviors. A
symbolic module is proposed for analyzing and optimizing finite state machine
(FSM) logic, allowing fine-grained state merging and partial specification handling
beyond the scope of pattern-based compilers. Furthermore, an efficient verifica-
tion pipeline, combining formal equivalence checks with test-driven validation,
further reduces the complexity of verification. Experiments on the RTL-Rewriter
benchmark with Synopsys Design Compiler and Yosys show that SymRTLO im-
proves power, performance, and area (PPA) by up to 43.9%, 62.5%, and 51.1%,
respectively, compared to the state-of-the-art methods. Our code is available at
https://github.com/NellyW8/SymRTLO

1 Introduction

Register Transfer Level (RTL) optimization is a cornerstone of modern circuit design flows, serving
as the foundation for achieving optimal Power, Performance, and Area (PPA). As the earliest phase in
the hardware design lifecycle, RTL development provides engineers with the most significant degree
of flexibility to explore design patterns, make architectural trade-offs, and influence the overall design
quality [8]. Engineers use hardware description languages (HDLs) like Verilog to describe circuit
functionality. At this stage, decisions made have far-reaching implications, as the quality of the RTL
implementation directly impacts subsequent stages, including synthesis, placement, and routing [41].
A well-optimized RTL not only ensures better design outcomes but also prevents suboptimal designs
from propagating through the flow, leading to significant inefficiencies and costly iterations [13, 50].

*Equal contribution
†Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/NellyW8/SymRTLO

Despite its importance, RTL optimization remains a challenging and labor-intensive task. Engineers
must iteratively refine their designs through multiple rounds of synthesis and layout feedback to
ensure functionality and meet stringent PPA targets. This process becomes increasingly cumbersome
as design complexity grows, with synthesis times scaling disproportionately, often taking hours or
even days for a single iteration [13]. Consequently, designers frequently face numerous synthesis
cycles to evaluate trade-offs and reach acceptable results. While modern electronic design automation
(EDA) tools provide compiler-based methods to aid optimization, these approaches are inherently
limited [47]. They rely heavily on predefined heuristics, making them ill-suited for adapting to
unconventional design patterns, complex constraints, or dynamic optimization scenarios. As a result,
the RTL optimization process demands significant expertise and effort.

Recent advances in artificial intelligence, particularly the advent of large language models (LLMs),
have introduced a new paradigm for automating and optimizing RTL code [23, 25, 5, 1, 37, 15,
47, 14, 43, 42, 16, 26]. Leveraging the powerful generative capabilities of LLMs, researchers have
demonstrated their potential to rewrite and optimize Verilog code automatically [47]. However,
existing LLM-based approaches face critical challenges that limit their effectiveness. First, these
models often fail to align their generated outputs with specified optimization objectives. The inherent
limitations in logical reasoning within LLMs can lead to deviations from intended transformations,
resulting in suboptimal or incorrect outputs. Second, despite their potential for automating code
generation, current methods still heavily rely on traditional synthesis feedback loops for optimization.
This reliance results in the inefficiencies of the synthesis process, failing to address the core issue of
long design cycles.

Our Proposed Framework. To address the critical challenges in RTL optimization, we introduce
SymRTLO, the first neuron-symbolic system that seamlessly integrates LLMs with symbolic reason-
ing to optimize RTL code. SymRTLO significantly reduces the reliance on repeated synthesis tool
invocations and enhances the alignment of LLM-generated results with intended optimization rules.

Designing such a system introduces significant challenges, which we address through the integration
of carefully designed modules. The first challenge lies in the generalization of optimization rules.
Traditionally, optimization patterns are scattered across code samples, books, and informal notes,
making it difficult for compiler-based methods to formalize or apply them effectively. SymRTLO
tackles this by employing an LLM-based rule extraction system, combined with a retrieval-augmented
generation (RAG) mechanism and a search engine. This ensures that optimization rules are not only
generalized but also efficiently retrievable from a robust library built from diverse sources.

Another critical challenge is the alignment of LLM-generated RTL code with the intended transfor-
mations, as LLMs often struggle to produce outputs that strictly adhere to the specified optimization
objective, leading to unreliable and unexplainable results. To ensure alignment, SymRTLO employs
Abstract Syntax Tree (AST)-based templates, which guide the LLM to generate code that satisfies
syntactic and semantic correctness. For complex control flows or edge cases that exceed the capabili-
ties of AST templates, the framework utilizes a symbolic generation module, designed to handle such
scenarios dynamically while maintaining optimization quality.

In addition to alignment, conflicts often arise when different design patterns are required to meet
distinct PPA goals. To address this, SymRTLO introduces a goal-oriented approach, where each
optimization rule is explicitly tied to its intended objective. This enables selective application based
on user-defined optimization goals, efficiently balancing these conflicts to deliver optimized designs
without disproportionately compromising PPA metrics.

Verification in traditional RTL workflows demands significant manual effort for test case development.
To address this, SymRTLO integrates an automated test case generator, streamlining verification while
ensuring functional correctness.

Our key contributions are summarized as follows:

• LLM Symbolic Optimization: SymRTLO, the first framework to combine LLM-based
rewriting with symbolic reasoning for RTL optimization.

• Data Path and Control Path Optimization: SymRTLO addresses critical challenges in
both traditional EDA compilers and purely LLM-based approaches, particularly by aligning
generated code with FSM and data path algorithms, balancing conflicting optimization rules,
and improving explainability.

2

• PPA Improvements: SymRTLO demonstrates its efficacy on industrial-scale and benchmark
circuits, surpassing manual coding, classical compiler flows (e.g., Synopsys DC Com-
piler), and state-of-the-art LLM-based methods, achieving up to 43.9%, 62.5%, and 51.1%
improvements in power, delay, and area.

2 Background and Motivation
LLMs have emerged as powerful tools for RTL design automation, with various approaches being
developed since 2023. As summarized in Table 1, these approaches fall into three primary categories:
RTL code generation [23, 25, 5, 1], debugging [37, 15], and optimization [47]. This growing body of
research demonstrates the significant potential of LLMs to improve the efficiency and effectiveness
of EDA workflows. However, RTL code optimization has always been a significant challenge in RTL
design, even for human experts, as it has the greatest impact on the performance of downstream tasks.

Challenges in RTL Code Optimization with LLMs. Aligning generated code with intended opti-
mization goals is a major challenge in LLM-based RTL optimization. Due to inherent randomness,
LLMs often produce incomplete, incorrect, or suboptimal results. For example, RTLRewriter [47]
employs retrieval-augmented prompts and iterative synthesis-feedback loops to enhance functional
correctness but still struggles with fundamental misalignment between generated code and opti-
mization objectives. Additionally, the need for multiple synthesis rounds significantly increases
optimization time as design complexity increases, limiting the scalability of current LLM-based
methods for large industrial-scale designs.

Table 1: Comparative analysis of LLM-based methods
for RTL design. ✔ indicates the presence of the feature,
✘ indicates absence of the feature, and – indicates non-
applicable.

Category Method Verification Rule Output Conflict
Capability -Based Alignment Resolution

Generation

ChipNeMo [23] ✘ ✘ ✘ –
VeriGen [36] ✘ ✘ ✘ –
VerilogEval [24] ✘ ✘ ✘ –
RTLCoder [25] ✘ ✘ ✘ –
ChipChat [1] ✘ ✘ ✘ –
ChipGPT [5] ✘ ✘ ✘ ✘

Debug RTLFixer [37] ✔ ✔ ✘ ✘
LLM4SecHW [15] ✘ ✘ ✘ ✘

Optimization RTLRewriter [47] ✔ ✔ ✘ ✘
SymRTLO (Ours) ✔ ✔ ✔ ✔

Current Approaches: Underutilization
of Knowledge and Manual Verification.
Traditional RTL design optimization relies
on established patterns such as subexpres-
sion elimination [31, 9], dead code elim-
ination [20, 17], strength reduction [10],
algebraic simplification [3, 4], Mux reduc-
tion [6, 44], and memory sharing [21, 27].
While these techniques are effective, these
optimizations typically operate at the gate-
level netlist, making the relationship be-
tween optimized output and original RTL
code less transparent. Additionally, opti-
mization patterns from design manuals and
codebases remain underutilized due to the
lack of a centralized repository, forcing en-
gineers to rely on their expertise rather than
automated tools. Furthermore, verification
requires the creation of test benches and test cases manually, making the RTL design flow both
time-consuming and error-prone.

Optimization Conflicts and Limited Compiler Capabilities. Existing compiler-based methods face
additional challenges, particularly in managing optimization goal conflicts and handling complex
patterns. For instance, optimizing for one metric, such as delay, often conflicts with another, such
as power consumption. Striking the right balance between these competing objectives is crucial,
especially as trade-offs between power and delay directly impact overall system performance. As
shown in Table 2, each optimization method has its own specific goal, which often clashes with others.
Compiler-based methods also lack the flexibility to adapt to such conflicts, limiting their effectiveness
in optimizing designs with diverse and competing constraints.

Table 2: Conflicts Between Design Goals & Op-
timization Patterns.
Design Pattern Goal Conflict Goal Conflict Design Pattern
Pipelining Low Timing Low Area Resource Sharing
Clock Gating Low Power Low Timing Retiming

Table 3: Performance Comparison Across Dif-
ferent Approaches.

Approach # States Time (ns) Power (mW) Area (µm2)
Baseline 11 0.041 2.250 833.000
GPT-O1 10 0.041 2.280 993.480
Optimized 4 0.025 1.170 403.920

Advancing LLM-based RTL Optimization with Neuron-Symbolic Integration. Recent research
has shown a growing trend toward combining symbolic reasoning with LLM [46, 40, 7, 12, 11, 39],

3

IF: LLM
recommends
Control Flow
Optimization

Data Flow Optimization

Books

Code

Manual

Input
Goal

Input
Code LLM

Dispatcher

Search
Engine

Rules
extraction

AST Templates
Description

Rule descriptions

Optimization
Library

Template Writing
Instructions

Rule Search
Results

AST Optimization
Template Module

Equivalence
Check

AST-based
Optimized

Code

IF: not functional equivalent

LLM Code
Optimizer

Optimized
Code

Equivalence
Check

IF: not functional equivalent

Final Output Code

1
2

3

6

4RAG System

IF: not functional equivalent

Symbolic
Representation

Symbolic
Script

Equivalence
Check

5

7 8 109

11Final Optimization Module

Optimized
Symbolic
Results

Control Flow Optimization

Figure 1: SymRTLO Architecture.

bringing new inspirations for more efficient and reliable LLM-based RTL code optimization with
better prompt-code alignment. These integrated approaches have seen broad application across
various fields, from automated theorem proof and knowledge representation to robotics and medical
diagnostics, demonstrating how the combination of pattern recognition and generative capabilities of
LLM with the interpretability and logical rigor of symbolic systems can significantly improve the
alignment between LLM output and the given prompt.

Motivation Experiments. To highlight the limitations of current LLM-based RTL optimization, we
conduct an experiment using state-of-the-art commercial LLM, GPT-O1, to optimize an 11-state FSM
design. The goal was to minimize and merge unnecessary states to enhance PPA metrics. GPT-O1
receives a detailed state reduction algorithm to guide the optimization process. We compare its results
with an optimized design that directly applied the state reduction algorithm. As shown in Table 3,
GPT-O1 struggles to align its outputs with the algorithm, resulting in an under-optimized FSM with
little state reduction and degradation in PPA. Although GPT-O1 achieves some state reduction, it
fails to consider switching activity minimization and efficient state encoding, resulting in poor code
choices that increase Hamming distances between frequently transitioning states and generate more
complex combinational logic [49]. In contrast, algorithm-driven optimization achieves significantly
better results, highlighting current LLM limitations in complex RTL optimization tasks.

3 Methodology
SymRTLO takes a Verilog RTL module as input and optimizes it for specific design goals, such as
low power, high performance, or reduced area. As illustrated in Figure 1, the workflow begins by
entering the RTL code and the user-specified optimization goal (1) into the LLM Dispatcher (2).
This dispatcher analyzes the input circuit and determines the appropriate optimization path: either
proceeding solely with Data Flow Optimization (§3.2) or incorporating Control Flow Optimization
(§3.3) as well, depending on the characteristics of the design. For Data Flow Optimization, a search
engine with a retrieval-augmented module extracts optimization rules and constructs AST-based
templates. For Control Flow Optimization, an LLM-driven symbolic system generator performs
FSM-specific transformations. Finally, the Final Optimization Module (§3.4) integrates both paths
and incorporates a verification system to ensure the functional correctness of the optimized design.
3.1 LLM Dispatcher

The LLM Dispatcher (2) receives the input RTL code and the specified optimization goal (e.g.,
low power) (1) before any optimization begins. It first summarizes the code and generates potential
optimization suggestions. These suggestions are then passed to the Retrieval-Augmented Generation
(RAG) system to identify the relevant optimization rules. Additionally, the Dispatcher evaluates the
presence of a Finite State Machine (FSM) in the original code to determine whether control flow
optimization is necessary.

3.2 Data Flow Optimization

Data Flow represents the process by which information is propagated, processed, and optimized
within an RTL design. Effective data flow optimizations improve system efficiency by simplifying
computations, reducing redundancy, and enhancing PPA metrics. Common techniques include sub-

4

expression elimination, constant folding, and resource sharing. The proposed Data Flow Optimization
Module addresses three key challenges: (1) generalizing diverse optimization patterns into accurate,
reusable rules; (2) aligning LLM-generated optimizations with functional and logical requirements;
and (3) resolving conflicts between optimization goals inherent in distinct design patterns.

Optimization Rule Search Engine Optimization knowledge is often scattered across books,
lecture notes, codebases, and design manuals, with no generalized repository to serve as a unified
knowledge base. Furthermore, optimization patterns frequently conflict due to divergent goals,
for example, power reduction versus performance improvement. To tackle these challenges, we
developed a retrieval-augmented generation (RAG) system equipped with an optimization goal-based
rule extraction module.

Optimization Library. The RAG system aggregates raw RTL optimization data from sources such
as lecture notes, manuals, and example designs [38, 35, 32, 30] into a comprehensive knowledge base
(3). LLMs then summarize and structure these data into an optimization library (4). Each rule is
abstracted to include its description, applicable optimization goals (e.g., area, power, or timing), and
its category (e.g., data flow, FSM, MUX, memory, or clock gating). A similarity engine identifies
overlaps with existing entries, prompting merges or exclusive labels to ensure the scalability of the
rule library. To align optimization goals with generated outputs, the rules specify detailed instructions
for constructing AST templates, enabling precise application of optimization patterns. Rules with
clearly defined requirements include template-writing guidelines, while more abstract rules are stored
as descriptive text and used directly as optimization prompts. See Appendix C for an example RAG.

Enforcing Rule Alignment and Resolving Conflicts To improve the structure and alignment of
optimization rules, the LLM Dispatcher (1) provides both a summary of the input RTL code and
suggestions for potential optimizations. These inputs are passed to the search engine along with
user-specified optimization goals, performing a similarity search to identify the most relevant rules
from the RAG system.

Given the potential for conflicts between optimization goals, it is critical to prevent the inclusion of
conflicting rules while ensuring no critical optimizations are overlooked. To achieve this balance,
we employ the elbow method to analyze the similarity scores between the query and the candidate
rules. This approach identifies a natural cutoff point where adding more rules no longer yields
significant benefits. Let the similarity scores between the query and candidate rules be ordered as:
s1 ≥ s2 ≥ · · · ≥ sM , where si denotes the similarity score for i-th rule, ordered from highest to
lowest, and M is the total number of candidates.

The optimal cutoff index i∗ is determined by maximizing the difference between consecutive similarity
scores: i∗ = argmax

1≤i<M
, (si − si+1).

Rules with similarity scores above the threshold τelbow are selected for application. The similarity
between the query embedding (equery) and the rule embedding (erule) is computed as shown below:

sim(equery, erule) =
equery · erule

|equery||erule|
≥ τelbow. (1)

This method ensures that only the most relevant rules are selected, striking an optimal balance
between comprehensiveness and precision. The output of the search engine contains two components:
rules with detailed template-writing instructions (7) and abstract rules described only by their
optimization properties (6).

AST Template Building To ensure that LLM-generated RTL code aligns with functional and
logical optimization goals, we enforce rules using AST-based symbolic systems, which have been
proven to be effective in hardware debugging [37]. Compared to LLM-generated symbolic systems,
AST-based templates offer several advantages: (1) parsing Verilog into an AST ensures accurate and
structured design representations; (2) limiting each template to a single optimization goal maintains
conciseness, facilitating correct generation and application by LLMs; and (3) the modular approach
allows selection of templates to balance conflicting optimization patterns, enhancing flexibility.

For rules that include template-writing instructions, we prompt the LLM to generate an AST-based
template that serves as a general optimization framework (8). Let A denote the set of all AST

5

nodes in the Verilog design, and let the matching condition: Φ : A → {true, false}, determine
whether a node qualifies for optimization. The process begins by identifying the Target Node
Type, such as Always, Instance, Assign or Module Instantiation. For each node of the
specified type, we apply Φ to decide whether it requires rewriting. Once the target nodes are
identified, the Transformation Rule is applied as follows: τ : { a ∈ A | Φ(a) = true} −→ A,
where τ replaces the matched node with an optimized AST subtree (e.g., merging nested if-else
statements, folding constants, or simplifying expressions; code example see Appendix B). To ensure
functional correctness, the transformed design undergoes an equivalence check using LLM-generated
testbenches. If the template passes verification, it is stored in the RAG system as reusable content.

RTL
Design

Pyverilog
AST Construction

A[0:7]

AND

B[0:7]

NOT

MUXSHR

C1[0]

O[0:7]

…
Y[0:7]

C2[0]

Subexpression removal

Templates

Critical Path reduction

Dead code elimination…LLM Template
selection

Selected Reconstruct AST based
Optimized code

RAG system

Feedback loop: Re-select on failed symbolic case

Figure 2: SymRTLO AST template optimization
workflow.

As shown in Figure 2, the RTL design is initially
interpreted as an AST representation. The RAG
system provides the LLM with multiple template
options. Due to the varying optimization goals
and scenarios, the system avoids relying on a
fixed sequence of templates. Instead, the LLM
determines which templates to apply and in what
order, tailoring the optimization process to the
design’s specific requirements. To further pre-
vent conflicts between templates or failures in
the symbolic system, we introduce a feedback
loop. This loop allows the LLM to re-select
templates and adjust its strategy based on prior
failures, ensuring robustness and adaptability.

3.3 Control Flow Optimization

Control Flow, unlike Data Flow’s focus on how information is processed and propagated, defines the
execution paths and sequencing of operations in RTL designs through finite-state machines (FSMs)
that capture states, transitions, and outputs. These FSMs are tightly coupled with design constraints
(i.e., partial specifications, clock gating, and reset logic), making generic symbolic systems fragile or
incomplete. Addressing these challenges requires deeper semantic analysis beyond simple pattern
matching or generic AST templates. To enhance alignment between optimized code and the FSM
minimization algorithm, we propose a Control Flow Optimization module utilizing an LLM-based
symbolic system. An FSM can be formally represented as: M = (Q,Σ, δ, q0, F), where Q is the
finite set of states, Σ is the input alphabet, δ : Q× Σ → Q is the transition function, q0 ∈ Q is the
initial state, and F ⊆ Q is the set of accepting states.

For a partially specified FSM Mp, the transition function is extended to handle non-deterministic
transitions: δp : Q× Σ → 2Q, where 2Q represents the power set of Q.

Classical minimization algorithms (e.g., Hopcroft’s [18] or Moore’s [28]) are effective for completely
specified FSMs but are limited by real-world complexities. Practical RTL designs often integrate
control logic with data path constraints, and undefined states and transitions make FSM minimization
an NP-complete problem with a general complexity of O(2|Q|). A single pre-built AST script cannot
efficiently handle all such incomplete specifications. Let ϕ : Q ×D → B represent the data path
constraints, where D is the data path state space and B is the boolean domain. Pure FSM-focused
AST-based optimization scripts can overlook these data path side effects, failing to capture deeper
control semantics.

RTL
Design

21 3

5 64

[2]

[4] [6]

a

b

a,b

LLM
Transform

LLM
Symbolic
System

Transformed Symbolic
Representation

[1,3,5]

Optimized Symbolic
Representation

a
a

a

a a,b

bb

b

b b
b

a

a

b
a

Figure 3: SymRTLO FSM optimization workflow.

Inspired by [19], we propose leveraging LLMs
to transform each circuit into a symbolic repre-
sentation focused solely on FSM components,
i.e., isolating states, transitions, and relevant out-
puts, as illustrated in Figure 3. Instead of re-
lying on a one-size-fits-all script, we prompt
the LLM to dynamically generate a special-
ized minimization script tailored to the spe-
cific FSM structure and constraints. We show
an example workflow in Appendix A.

6

3.4 Verification and Final Optimization
To address the challenges of manual verification and unreliable automated methods, we introduce an
automated verification module that integrates functionality testing and formal equivalence checking.
After AST-based optimization and the LLM-assisted symbolic system generate initial results, the
LLM combines extracted rules, template-optimized code, and symbolic outputs to produce the final
optimized RTL design (11). Verification is essential to ensure correctness, as LLM-generated
rewrites may introduce unintended behavioral deviations. We employ a two-step verification pipeline:
(1) the LLM generates test benches to validate basic functional correctness, acting as a rapid filter to
reject invalid rewrites early; and (2) for designs that pass initial tests, we perform formal equivalence
checking to formally confirm functional equivalence to the original design. For combinational
logic and straightforward synchronous sequential circuits, we apply standard Boolean Satisfiability
Problem (SAT)-based equivalence checking. While more complex designs like asynchronous resets,
CDC paths, or retimed logic, we employ advanced sequential equivalence checking with robust state
matching and transformation-tolerant verification techniques.

4 Experiments
4.1 Experimental Setup
Baseline We compare SymRTLO with several state-of-the-art LLM and open source RTL optimiza-
tion frameworks. The LLM baselines include GPT-O1, GPT-4o, GPT-4 [29], GPT-3.5[48], and
GPT-4o-mini. Additionally, we include two specialized open-source LLM-based tools: Verigen
[36] and RTL-Coder-Deepseek [25]. For a comprehensive evaluation, we analyze SymRTLO perfor-
mance using circuits from the RTLRewriter Benchmark. Although the RTLRewriter environment
is reproducible using Yosys [45] for wires and cells analysis, the exact test case they use is not
provided. Moreover, comparing PPA results is even more challenging due to its reliance on Yosys +
ABC [2]with unknown libraries. To demonstrate SymRTLO’s capabilities, we subject it to a broader
evaluation scope, selecting examples that are diverse in size and functionality, while including cases
reported in RTLRewriter’s benchmark for direct comparison.

Implementations The SymRTLO framework takes GPT-4o as its primary LLM for optimization
strategy selection, symbolic system generation, and iterative HDL synthesis, leveraging its robust
inference, low inference cost, and coding capabilities. While the framework is model-agnostic by
design, alternatives like GPT-3.5 and GPT-O1 were excluded after preliminary tests showed poor
results—GPT-3.5 lacked sufficient coding capability, and GPT-O1 incurred high latency and API
costs, reducing overall efficiency. Pyverilog [34] is used for AST extraction and code reconstruction.

To efficiently retrieve relevant transformation templates and knowledge, we integrate OpenAI’s text
embedding-3-small, which excels in embedding-based retrieval tasks. For hardware compilation and
validation, we use a combination of open-source and commercial tools. Yosys measures wires and
cells, while Synopsys DC Compiler 2019 [33], paired with the Synopsys Standard Cell (SSC) library,
performs PPA analysis. GPT-4o generates test benches for functional coverage. Yosys + ABC serves
as the logical equivalence checker, while Synopsys Formality for sequential equivalence checking.
For a fair comparison with standard compiler workflows, we apply typical Synopsys DC Compiler
optimizations, using medium mapping effort and incremental mapping to reflect common practices.

Evaluation Metrics First, to evaluate generation quality and functional correctness, we use the
pass@k metric commonly employed in code generation tasks. This metric captures the probability

that at least one valid solution exists within the top k generations: pass@k = 1
N

∑N
i=0(1−

Ck
ni−ci

Ck
ni

),
where N is the number of problems, ni and ci represent the total and correct samples for the i-th
problem, respectively. Second, to test the performance of the synthesis results, we use the best results
of the 10 valid generations of each model and our method. This sampling maintains token budget
fairness, as SymRTLO with GPT-4o averages 7,728 tokens across all circuits, while the base GPT-4o
model uses approximately 775 tokens per generation—a 10× difference.

For smaller benchmarks, we evaluate optimization results using Wires and Cells metrics, which reflect
low-level physical characteristics of circuits. These metrics provide granular insights into routing
complexity (wires) and logical component count (cells), offering a precise evaluation for isolated
modules or blocks. For larger designs, we focus on PPA metrics to capture high-level efficiency and
real-world applicability. These metrics offer a holistic view of resource usage and performance for
complex designs, where low-level metrics like Wires and Cells become impractical.

7

Table 5: Comparison of Wire and Cell Counts. Yellow highlighting denotes state-of-the-art results.
GeoMean is the geometric mean of the resource usage (wires or cells). Ratios are calculated by
dividing the GeoMean by the baseline’s resource usage. †: Reported Results from [47].

Benchmark Yosys GPT-4-Turbo GPT-4o GPT-3.5-Turbo GPT-4o-mini RTLCoder-DS RTLrewriter SymRTLO
Wires Cells Wires Cells Wires Cells Wires Cells Wires Cells Wires Cells Wires Cells Wires Cells

adder_subexpression 8 3 7 3 7 3 7 3 7 3 8 3 7 3 7 3
adder_architecture 86 56 30 40 30 40 96 63 86 56 86 56 - - 14 16
multiplier_subexpr 26 71 18 15 259 255 26 71 26 71 26 71 - - 18 15
constant_folding_raw 12 6 10 5 10 5 10 5 10 5 12 6 - - 8 5
subexpression_elim 17 12 19 12 19 12 19 12 17 10 17 12 - - 14 8
alu_subexpression 30 24 30 24 28 22 30 24 27 22 30 24 21 18 21 18
adder_resource 13 3 6 3 9 4 6 3 7 3 13 3 - - 6 3
multiplier_bitwidth 9 3 8 3 8 3 9 3 9 3 9 3 8 3 8 3
multiplier_architect 4 2 14 36 4 2 16 20 18 36 4 2 - - 4 2
adder_bit_width 4 1 3 1 3 1 3 1 3 1 4 1 3 1 3 1
loop_tiling_raw 5 16 4 16 4 16 4 16 484 496 5 16 - - 3 16
GeoMean 15.49 8.96 13.45 9.81 16.35 9.97 16.40 11.49 16.31 11.49 15.49 8.96 - - 9.75 5.95
Ratio 1.00 1.00 0.87 1.10 1.06 1.11 1.06 1.28 1.11 1.31 1.15 0.91 0.69†1 0.77†1 0.63 0.67

Table 6: FSM Designs PPA Comparison. Yellow highlights indicate state-of-the-art results. A ⇓
marks improvement, while a ⇑ denotes a decline compare with the original design. Two compari-
son scenarios are shown: without compiler optimization (upper improvement) and with compiler
optimization (lower improvement). A - indicates that no code is available for analysis.

Model/Method example1_state example2_state example3_state example4_state example5_state
Power
(mW)

Time
(ns)

Area
(µm2)

Power
(mW)

Time
(ns)

Area
(µm2)

Power
(mW)

Time
(ns)

Area
(µm2)

Power
(mW)

Time
(ns)

Area
(µm2)

Power
(mW)

Time
(ns)

Area
(µm2)

Original 0.042 1.21 833.0 0.056 2.25 549.4 0.052 1.35 589.6 0.055 2.18 597.1 0.055 2.18 597.1
GPT-3.5 0.043 1.27 870.6 0.056 2.25 549.4 0.052 1.35 589.6 0.059 2.17 972.3 0.055 2.18 597.1
GPT4o-mini 0.055 1.08 1021.1 0.062 2.23 579.2 0.063 1.08 714.9 0.055 2.18 597.1 0.053 2.18 634.7
GPT-4-Turbo 0.053 2.97 993.5 0.067 2.28 737.6 0.065 1.22 810.3 0.055 2.18 273.5 0.029 2.25 366.8
GPT-4o 0.053 2.97 1002.5 0.056 2.25 549.4 0.052 1.35 589.6 0.055 2.18 273.5 0.055 2.18 597.1
GPT-O1 0.044 1.17 910.7 0.056 2.25 549.4 0.052 1.35 589.6 0.055 2.18 597.1 0.055 2.18 597.1
RTLCoder-DS 0.042 1.21 833.0 0.056 2.25 549.4 0.052 1.35 589.6 0.055 2.18 597.1 0.063 2.34 649.78
RTLrewriter 0.025 3.23 424.0 - - - 0.041 1.36 549.4 - - - - - -
SymRTLO 0.029 1.21 403.9 0.024 1.17 271.0 0.023 1.15 268.5 0.024 2.17 273.5 0.026 2.18 270.9
Improvement(%) ⇓30.95 0.00 ⇓51.51 ⇓57.14 ⇓48.00 ⇓50.67 ⇓55.77 ⇓14.81 ⇓54.46 ⇓56.36 ⇓0.46 ⇓54.1952 ⇓52.73 0.00 ⇓54.63

Original + Compiler Opt. 0.041 2.85 564.51 0.035 2.24 316.11 0.038 1.23 358.77 0.044 2.19 451.59 0.045 2.19 451.59
SymRTLO + Compiler Opt. 0.021 2.64 240.85 0.018 0.6 175.61 0.018 2.42 180.63 0.020 2.17 185.65 0.019 2.27 188.169
Improvement(%) ⇓48.78 ⇓7.37 ⇓57.33 ⇓48.57 ⇓73.21 ⇓44.45 ⇓52.63 ⇑96.74 ⇓49.65 ⇓54.55 ⇓0.91 ⇓58.89 ⇓57.78 ⇑3.65 ⇓58.33

4.2 Functional Correctness Analysis
Table 4: Pass Rate Results.

Method Pass@1 Pass@5 Pass@10

Ours 97.5 100.0 100.0
GPT-4o 45.9 60.0 72.7
GPT-4-Turbo 42.9 62.7 81.8
GPT-4o-mini 2.5 10.9 12.7
GPT-3.5-Turbo 28.6 42.7 54.5
RTL-Coder DeepSeek 8.8 18.2 27.3
Verigen-2B 0.0 0.0 0.0
Verigen-16B 0.0 0.0 0.0

To demonstrate that our method reduces synthesis
time and improves functional correctness, Table 4
presents the evaluation results. SymRTLO achieves
near-perfect first-attempt pass rates, ensuring valid,
optimized RTL code with maintained functional
equivalence. This significantly outperforms state-
of-the-art language models, particularly given the
complexity of RTL optimization tasks and the neces-
sity of maintaining functional equivalence. SymRTLO
reduces synthesis iterations, minimizing redundant computations throughout the optimization process.
4.3 Circuit Optimization Performance

2.5 3.0 3.5
Time (ns)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Po
w

er
 (

m
W

)

Power vs Time

5000 6000
Area (m²)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Po
w

er
 (

m
W

)

Power vs Area

2.5 3.0 3.5
Time (ns)

4500

4750

5000

5250

5500

5750

6000

6250

Ar
ea

 (
m

²)

Area vs Time

Original
SymRTLO

GPT-4-Turbo
GPT-4o

RTLCoder
GPT-4o-mini

GPT-3.5-Turbo

Figure 4: The PPA overall improvement of benchmark cases.

To demonstrate SymRTLO’s effective-
ness in resolving cross-rule conflicts
and achieving optimization objectives,
we conduct an experiment presented
in Figure 4. Given the limited bench-
marks available for LLM-driven RTL
design, we analyze our framework on
RTLRewriter’s benchmark, which pri-
marily emphasizes area optimization,
leaving minimal room for improve-
ments in power and delay. To align
with this limitation, we put area opti-

8

Table 7: Algorithm Optimizations PPA Comparison. Yellow highlights indicate state-of-the-art
results. A ⇓ marks improvement, while a ⇑ denotes a decline compare with the original design.
Two comparison scenarios are shown: without compiler optimization (upper improvement) and with
compiler optimization (lower improvement).

Model/Method sppm_redundancy subexpression_elim adder_architecture vending fft
Power

(mW)

Time

(ns)

Area

(µm2)

Power

(mW)

Time

(ns)

Area

(µm2)

Power

(mW)

Time

(ns)

Area

(µm2)

Power

(mW)

Time

(ns)

Area

(µm2)

Power

(mW)

Time

(ns)

Area

(µm2)

Original 2.86 7.41 40102.6 5.27 11.09 10989.1 0.418 2.78 1023.5 7.61 227.86 176982.98 58.23 8.26 2255264.75

GPT-3.5-Turbo 2.86 7.41 40102.6 5.27 11.09 10989.1 0.418 2.78 1023.5 7.61 227.86 176982.98 58.23 8.26 2255264.75

GPT4o-mini 2.86 7.41 40102.6 5.27 11.09 10989.1 0.418 2.78 1023.5 7.61 227.86 176982.98 58.23 8.26 2255264.75

GPT-4-Turbo 2.86 7.41 40102.6 3.93 11.09 7783.03 0.392 2.74 1023.5 7.50 227.86 176982.98 58.23 8.26 2255264.75

GPT-4o 2.86 7.41 40102.6 5.27 11.09 8984.61 0.392 2.74 1023.5 7.61 227.86 176982.98 58.23 8.26 2255264.75

GPT-O1 1.87 7.41 29919.8 4.63 11.09 8957.23 0.418 2.78 1023.52 7.61 227.86 176982.98 58.23 8.26 2255264.75

RTLCoder-DS 2.86 7.41 40102.6 5.27 11.09 10989.1 0.418 2.78 1023.5 7.61 227.86 176982.98 58.23 8.26 2255264.75

SymRTLO 1.77 7.29 29606.18 3.02 2.87 7358.8 0.328 1.97 762.6 6.97 227.86 164831.1 31.71 8.09 1726125.71

Improvement(%) ⇓38.46 ⇓1.62 ⇓26.17 ⇓42.68 ⇓74.12 ⇓33.04 ⇓21.53 ⇓29.14 ⇓25.49 ⇓8.41 ⇓0 ⇓6.87 ⇓45.54 ⇓2.06 ⇓23.46

Original + Compiler Opt. 1.46 7.95 22908.69 4.61 11.78 9484.15 0.17 2.29 541.92 11.46 7.90 240079.29 51.12 7.90 1857805.49

SymRTLO + Compiler Opt. 1.46 7.95 22908.69 3.53 11.78 6791.88 0.17 2.48 531.88 8.175 7.90 151593.86 26.32 8.98 1471378.46

Improvement(%) 0 0 0 ⇓23.4 0 ⇓28.39 0 ⇑8.30 ⇓1.86 ⇓28.66 0 ⇓36.86 ⇓48.51 ⇑13.67 ⇓20.8

mization as our primary goal. Despite these constraints, SymRTLO achieves substantial improvements,
averaging 40.96% in power, 17.02% in delay, and 38.05% in area, while maintaining a balanced
optimization across all three metrics, highlighting its versatility and robustness.

We present a comprehensive analysis of SymRTLO capabilities using 11 short-benchmark examples
from RTLRewriter focusing on Wires and Cells optimization, along with 10 complex FSM and
algorithm examples from both short and long benchmarks. This representative selection demonstrates
SymRTLO’s scalability and effectiveness across diverse functional domains but also aligns with circuits
reported in RTLRewriter’s paper, enabling direct comparison with state-of-the-art results.

Smaller benchmarks requiring only 1-2 optimization patterns provide ideal test cases for LLM output
alignment. Table 5 shows that SymRTLO consistently outperforms baseline implementations across
various test cases. With wire and cell ratios of 0.63 and 0.67 respectively, it surpasses the state-of-the-
art values of 0.69 and 0.77. While models like GPT-4 excel in certain cases, they lack consistency
across diverse optimization tasks.

In FSM PPA experiments, SymRTLO significantly outperforms existing approaches, particularly in
relation to RTLRewriter, the state-of-the-art solution, achieving an improvement of up to 50.59%,
12.65%, 53.09% in power, time, and area, respectively. As shown in Table 6, it effectively aligns the
FSM state reduction algorithm with optimized code, minimizing all FSM states and achieving the
best overall PPA results. This demonstrates that the LLM-generated symbolic system is both stable
and aligned with intended optimization goals.

To evaluate the effectiveness of generalized rules and AST templates in balancing conflicting rules,
we conduct algorithm case PPA experiments involving complex Data Path and Control Path scenarios.
As shown in Table 7, SymRTLO applies AST templates, optimized rules, and minimized FSM states,
achieving 30.34%, 21.37%, and 20.01% improvements in PPA over GPT-4o, our base model, on
average. Note that RTLRewriter’s results are unavailable for comparison for these cases.

We test SymRTLO with Synopsys DC optimization workflows with medium mapping effort, incre-
mental mapping for both FSM and Algorithm cases, as shown in Table 6 and Table 7, demonstrating
further balanced optimization alongside compiler optimization processes, achieving overall improve-
ments of 36.2% in power and 35.66% in area, with only an 8.3% increase in time as a trade-off. Even
under more stringent compiler optimization settings of flattened mode with high mapping effort,
SymRTLO still delivers overall improvements of 27.7% in area, 35.8% in power, and 0.5% in delay.

4.4 Ablation Studies

To assess the effectiveness of individual components in SymRTLO, we conduct ablation
studies by systematically removing one component at a time from the complete SymRTLO
framework. In the first setting, disabling the AST-based template generation (“Remove
Template-Based Opt”) forced the model to rely solely on abstract rule descriptions with-
out structural guidance. In the second, removing the FSM symbolic optimization mod-
ule (“Remove Symbolic Reasoning”) limited the framework to dataflow-only optimization.

9

Power Timing Area

PP
A

Im
pr

ov
em

en
t

20%

8% 5%

37%

2%

34%31%

1%

32%

41%

17%

38%

1% 1% 0%

Remove Template-Based Opt
Remove Symbolic Reasoning

Remove Goal-Based Search

SymRTLO
GPT-4o

Figure 5: Ablation study showing average PPA improve-
ments when individual SymRTLO components are removed.
Each bar represents the framework’s performance with one
component disabled, demonstrating the necessity of all three
components for optimal results.

In the third, turning off the goal-based
rule filtering (“Remove Goal-Based
Search”) allowed all retrieved rules
to be applied regardless of potential
conflicts. For each configuration, we
measured average PPA improvements
across all benchmarks relative to the
original designs. Figure 5 summarizes
these results, showing that all three
components contribute significantly to
SymRTLO’s overall performance. Re-
moving any one of them results in
substantial losses in optimization ef-
fectiveness, further emphasizing the
necessity of their integration. By con-
trast, GPT-4o alone achieves minimal improvements, underscoring the advantages of SymRTLO’s
tailored framework.

5 Discussion

It is important to clarify that SymRTLO operates as a pre-synthesis optimizer that complements rather
than replaces traditional synthesis tools. RTL logic synthesis (e.g., Synopsys Design Compiler) takes
RTL hardware descriptions and converts them to optimized gate-level netlists through optimizations
including Boolean logic simplification, constant propagation, technology mapping, gate sizing, and
retiming. While synthesis tools can perform local optimizations and limited resource sharing, they
generally preserve the fundamental RTL architecture and control flow structure—operating within
the constraints of the original RTL specification.

In contrast, SymRTLO performs source-level code optimization that modifies the RTL before syn-
thesis, enabling algorithmic transformations, architectural restructuring, dataflow modifications,
FSM redesign, and pipeline adjustments that fundamentally alter the hardware implementation. By
optimizing at the RTL source level, SymRTLO can explore a broader design space and make architec-
tural decisions that are beyond the scope of gate-level synthesis tools, typically yielding larger PPA
improvements than synthesis optimizations alone.

6 Limitations

While SymRTLO demonstrates significant improvements in RTL optimization, the framework’s perfor-
mance is fundamentally dependent on the underlying capabilities of the base LLM, which may limit
its effectiveness on novel or highly specialized circuit patterns not well-represented in its training data.
The optimization rule library, though comprehensive, requires ongoing maintenance and expansion
to keep pace with evolving hardware design practices and emerging optimization techniques. Since
final PPA evaluation relies on synthesis tools like Synopsys DC Compiler and Yosys, results may
vary across different tool versions or technology libraries. Additionally, while the symbolic reasoning
module effectively handles FSM optimization, the approach may face scalability challenges when
applied to extremely large state machines or circuits with highly complex control flows that exceed
current computational bounds for formal analysis.

7 Conclusion

We present SymRTLO, a neuron-symbolic framework that integrates LLM-based code rewriting and
symbolic reasoning to optimize both data flow and control flow in RTL designs. SymRTLO general-
izes optimization rules, aligns generated code with intended transformations, resolves conflicting
optimization goals, and ensures reliable automated verification. By combining retrieval-augmented
guidance with symbolic systems, SymRTLO automates complex structural rewrites while maintaining
functional correctness. Extensive evaluations on industrial-scale designs demonstrate significant PPA
gains over state-of-the-art solutions.

10

References

[1] Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce. Chip-chat: Challenges
and opportunities in conversational hardware design. In 5th ACM/IEEE Workshop on Machine
Learning for CAD, MLCAD. IEEE, 2023.

[2] R. Brayton and A. Mishchenko. ABC: An academic industrial-strength verification tool. In
Computer Aided Verification: 22nd International Conference, CAV 2010, Edinburgh, UK, July
15–19, 2010. Proceedings 22, pages 24–40. Springer, 2010.

[3] Bruno Buchberger and Rüdiger Loos. Algebraic simplification. In Computer algebra: symbolic
and algebraic computation, pages 11–43. Springer, 1982.

[4] Jacques Carette. Understanding expression simplification. In Proceedings of the 2004 interna-
tional symposium on Symbolic and algebraic computation, pages 72–79, 2004.

[5] Kaiyan Chang, Ying Wang, Haimeng Ren, Mengdi Wang, Shengwen Liang, Yinhe Han, Huawei
Li, and Xiaowei Li. Chipgpt: How far are we from natural language hardware design. CoRR,
abs/2305.14019, 2023.

[6] Deming Chen and Jason Cong. Register binding and port assignment for multiplexer opti-
mization. In Proceedings of the 2004 Asia and South Pacific Design Automation Conference,
ASP-DAC ’04, page 68–73. IEEE Press, 2004.

[7] Sihan Chen, Zhuangzhuang Qian, Wingchun Siu, Xingcan Hu, Jiaqi Li, Shawn Li, Yuehan Qin,
Tiankai Yang, Zhuo Xiao, Wanghao Ye, Yichi Zhang, Yushun Dong, and Yue Zhao. Pyod 2:
A python library for outlier detection with llm-powered model selection. arXiv, 2412.12154,
December 2024.

[8] Pong P Chu. RTL hardware design using VHDL: coding for efficiency, portability, and scalabil-
ity. John Wiley & Sons, 2006.

[9] John Cocke. Global common subexpression elimination. In Proceedings of a symposium on
Compiler Optimization, pages 20–24. ACM, 1970.

[10] Keith D Cooper, L Taylor Simpson, and Christopher A Vick. Operator strength reduction. ACM
Transactions on Programming Languages and Systems (TOPLAS), 23(5):603–625, 2001.

[11] Revathy Venkataramanan Deepa Tilwani and Amit P. Sheth. Neurosymbolic ai approach to
attribution in large language models. arXiv, 2410.03726, September 2024. Paper under review.

[12] Stefano Teso Diego Calanzone and Antonio Vergari. Logically consistent language models via
neuro-symbolic integration. arXiv, 2409.13724, September 2024.

[13] Wenji Fang, Yao Lu, Shang Liu, Qijun Zhang, Ceyu Xu, Lisa Wu Wills, Hongce Zhang, and
Zhiyao Xie. Masterrtl: A pre-synthesis ppa estimation framework for any rtl design. In 2023
IEEE/ACM International Conference on Computer Aided Design (ICCAD), pages 1–9, 2023.

[14] Weimin Fu, Yiting Wang, Zelin Lu, Xiaolong Guo, and Gang Qu. Hada: Leveraging multi-
source data to train large language models for hardware security assertion generation. In 2025
ACM/IEEE 7th Symposium on Machine Learning for CAD (MLCAD), pages 1–7, 2025.

[15] Weimin Fu, Kaichen Yang, Raj Gautam Dutta, Xiaolong Guo, and Gang Qu. Llm4sechw:
Leveraging domain-specific large language model for hardware debugging. In 2023 Asian
Hardware Oriented Security and Trust Symposium (AsianHOST), pages 1–6, 2023.

[16] Ping Guo, Yiting Wang, Wanghao Ye, Yexiao He, Ziyao Wang, Xiaopeng Dai, Ang Li, and
Qingfu Zhang. Evoverilog: Large langugage model assisted evolution of verilog code, 2025.

[17] Rajiv Gupta, DA Benson, and Jesse Zhixi Fang. Path profile guided partial dead code elimination
using predication. In Proceedings 1997 International Conference on Parallel Architectures and
Compilation Techniques, pages 102–113. IEEE, 1997.

11

[18] John E Hopcroft and Jeffrey D Ullman. Formal languages and their relation to automata.
Addison-Wesley Longman Publishing Co., Inc., 1969.

[19] Yi Hu, Haotong Yang, Zhouchen Lin, and Muhan Zhang. Code prompting: a neural symbolic
method for complex reasoning in large language models, 2023.

[20] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Partial dead code elimination. ACM Sigplan
Notices, 29(6):147–158, 1994.

[21] Charles Eric LaForest and J. Gregory Steffan. Efficient multi-ported memories for fpgas. In
Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA ’10), pages 41–50, Monterey, CA, USA, 2010. ACM.

[22] P. Langley. Crafting papers on machine learning. In Pat Langley, editor, Proceedings of the
17th International Conference on Machine Learning (ICML 2000), pages 1207–1216, Stanford,
CA, 2000. Morgan Kaufmann.

[23] Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng, Nathaniel Ross Pinckney,
Rongjian Liang, Jonah Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu,
Bonita Bhaskaran, Bryan Catanzaro, Arjun Chaudhuri, Sharon Clay, Bill Dally, Laura Dang,
Parikshit Deshpande, Siddhanth Dhodhi, Sameer Halepete, Eric Hill, Jiashang Hu, Sumit Jain,
Brucek Khailany, Kishor Kunal, Xiaowei Li, Hao Liu, Stuart F. Oberman, Sujeet Omar, Sreedhar
Pratty, Jonathan Raiman, Ambar Sarkar, Zhengjiang Shao, Hanfei Sun, Pratik P. Suthar, Varun
Tej, Kaizhe Xu, and Haoxing Ren. Chipnemo: Domain-adapted llms for chip design. CoRR,
abs/2311.00176, 2023.

[24] Mingjie Liu, Nathaniel Ross Pinckney, Brucek Khailany, and Haoxing Ren. Invited paper:
Verilogeval: Evaluating large language models for verilog code generation. In IEEE/ACM
International Conference on Computer Aided Design, ICCAD. IEEE, 2023.

[25] Shang Liu, Wenji Fang, Yao Lu, Jing Wang, Qijun Zhang, Hongce Zhang, and Zhiyao Xie.
Rtlcoder: Fully open-source and efficient llm-assisted rtl code generation technique. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024.

[26] Yiyi Lu, Hoi Ian Au, Junyao Zhang, Jingyu Pan, Yiting Wang, Ang Li, Jianyi Zhang, and Yiran
Chen. Autoeda: Enabling eda flow automation through microservice-based llm agents, 2025.

[27] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yanqiang Liu, Abel Mulugeta
Eneyew, Zhengwei Qi, and Baris Kasikci. A hypervisor for shared-memory fpga platforms.
In Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 827–844, 2020.

[28] Edward F Moore et al. Gedanken-experiments on sequential machines. Automata studies,
34:129–153, 1956.

[29] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, , and many others. Gpt-4 technical
report. arXiv, 2303.08774, March 2023.

[30] Samir Palnitkar. Verilog HDL: a guide to digital design and synthesis, volume 1. Prentice Hall
Professional, 2003.

[31] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and Daniela Duracková. A new algorithm
for elimination of common subexpressions. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 18:58 – 68, 02 1999.

[32] Jim Schultz. Optimizing the rtl design flow with real-time ppa analysis. Synopsys Silicon to
Systems Blog, N/A, March 2023. Blog Post. URL: https://www.synopsys.com/blogs/silicon-to-
systems/optimizing-rtl-design-flow-real-time-ppa-analysis/ (Accessed January 26, 2025).

[33] Synopsys. Dc ultra for synthesis and test. https://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test/dc-ultra.html.

[34] Shinya Takamaeda-Yamazaki. Pyverilog: A python-based hardware design processing toolkit
for verilog hdl. In Applied Reconfigurable Computing, volume 9040 of Lecture Notes in
Computer Science, pages 451–460. Springer International Publishing, Apr 2015.

12

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html

[35] Vaibbhav Taraate. Digital logic design using verilog. Springer, 2022.

[36] Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt,
Ramesh Karri, and Siddharth Garg. Verigen: A large language model for verilog code generation.
ACM Trans. Design Autom. Electr. Syst., 2024.

[37] Yunda Tsai, Mingjie Liu, and Haoxing Ren. Rtlfixer: Automatically fixing RTL syntax
errors with large language model. In Proceedings of the 61st ACM/IEEE Design Automation
Conference, DAC. ACM, 2024.

[38] Frank Vahid. Digital design with rtl design, vhdl, and verilog (2nd edition). John Wiley & Sons
Inc, 2, January 2010. ISBN-13: 978-0470531082, 575 pages.

[39] Zishen Wan, Che-Kai Liu, Hanchen Yang, Ritik Raj, Chaojian Li, Haoran You, Yonggan Fu,
Cheng Wan, Sixu Li, Youbin Kim, Ananda Samajdar, Yingyan Celine Lin, Mohamed Ibrahim,
Jan M. Rabaey, Tushar Krishna, and Arijit Raychowdhury. Cross-layer design for neuro-
symbolic ai: From workload characterization to hardware acceleration. arXiv, 2409.13153,
September 2024. Available at https://arxiv.org/abs/2409.13153.

[40] Zishen Wan, Che-Kai Liu, Hanchen Yang, Ritik Raj, Chaojian Li, Haoran You, Yonggan Fu,
Cheng Wan, Sixu Li, Youbin Kim, Ananda Samajdar, Yingyan Celine Lin, Mohamed Ibrahim,
Jan M. Rabaey, Tushar Krishna, and Arijit Raychowdhury. Towards efficient neuro-symbolic ai:
From workload characterization to hardware architecture. arXiv, 2409.13153, September 2024.
Published in IEEE Transactions on Circuits and Systems for Artificial Intelligence (TCASAI),
2024.

[41] Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting Tim Cheng. Electronic design automa-
tion: synthesis, verification, and test. Morgan Kaufmann, 2009.

[42] Yiting Wang, Guoheng Sun, Wanghao Ye, Gang Qu, and Ang Li. Verireason: Reinforcement
learning with testbench feedback for reasoning-enhanced verilog generation, 2025.

[43] Yiting Wang, Wanghao Ye, Yexiao He, Yiran Chen, Gang Qu, and Ang Li. Mcp4eda: Llm-
powered model context protocol rtl-to-gdsii automation with backend aware synthesis optimiza-
tion, 2025.

[44] Zicheng Wang, Hailong You, Jie Wang, Meihua Liu, Yu Su, and Yong Zhang. Optimization
of multiplexer combination in rtl logic synthesis. In Proceedings of the 2023 International
Symposium of Electronics Design Automation (ISEDA), page N/A. IEEE, May 2023.

[45] Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog synthesis suite. In
Proceedings of the Forum on Specification and Design Languages (FDL), 2013. Yosys is
the first open-source Verilog synthesis suite supporting a wide range of synthesizable Verilog
features.

[46] Sen Yang, Xin Li, Leyang Cui, Lidong Bing, and Wai Lam. Neuro-symbolic integration brings
causal and reliable reasoning proofs. arXiv, 2311.09802, November 2023. Code available at
this URL.

[47] Xufeng Yao, Yiwen Wang, Xing Li, Yingzhao Lian, Chen Ran, Lei Chen, Mingxuan Yuan,
Hong Xu, and Bei Yu. Rtlrewriter: Methodologies for large models aided rtl code optimization,
09 2024.

[48] Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou,
Chao Gong, Yang Shen, Jie Zhou, Siming Chen, Tao Gui, Qi Zhang, and Xuanjing Huang. A
comprehensive capability analysis of gpt-3 and gpt-3.5 series models, 2023.

[49] Lin Yuan, Gang Qu, Tiziano Villa, and Alberto Sangiovanni-Vincentelli. Fsm re-engineering
and its application in low power state encoding. In Proceedings of the 2005 Asia and South
Pacific Design Automation Conference, ASP-DAC ’05, page 254–259, New York, NY, USA,
2005. Association for Computing Machinery.

[50] Haifeng Zhou, Zhenghui Lin, and Wei Cao. Research on vhdl rtl synthesis system. In
Proceedings First IEEE International Workshop on Electronic Design, Test and Applications
’2002, pages 99–103, 2002.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly define the scope. Our contributions are
listed in the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss in conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [NA]

Justification: Our paper does not contain formal mathematical proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have detailed explanation of datasets, models, and hyperparameters for
reproducing results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We did upload code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have clear details in the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The results include statistical calculations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have the details in paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is about using LLM for hardware design.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper uses open-sourced datasets and models without such assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

19

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper is about LLM. We carefully described the role of LLM in the
process.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A FSM Symbolic System
The following section demonstrates an example FSM in verilog. First the verilog is transformed to
Symbolic Representation, then the Symbolic system applied minimization algorithm to optimize the
FSM.

1module example(
2 input wire clk,
3 input wire reset,
4 input wire [1:0] input_signal,
5 output reg output_signal);
6 parameter S0 = 3'b000,S1 = 3'b001,S2 = 3'b010,S3 = 3'b011,S4 = 3'b100,S5 =

3'b101;↪→
7 reg [2:0] current_state, next_state;
8 always @(current_state) begin
9 output_signal = 0;

10 case (current_state)
11 S0: output_signal = 1;
12 S2: output_signal = 1;
13 S4: output_signal = 1;
14 default: output_signal = 0;
15 endcase
16 end
17 always @(posedge clk or posedge reset) begin
18 if (reset) begin
19 current_state <= S0; // Reset to state S0
20 end else begin
21 current_state <= next_state;
22 end
23 end
24 always @(*) begin
25 next_state = current_state;
26 case (current_state)
27 S0: case (input_signal)
28 2'b00: next_state = S0;
29 2'b01: next_state = S1;
30 2'b10: next_state = S2;
31 2'b11: next_state = S3;
32 endcase
33 S1: case (input_signal)
34 2'b00: next_state = S0;
35 2'b01: next_state = S3;
36 2'b11: next_state = S5;
37 endcase
38 S2: case (input_signal)
39 2'b00: next_state = S1;
40 2'b01: next_state = S3;
41 2'b10: next_state = S2;
42 2'b11: next_state = S4;
43 endcase
44 S3: case (input_signal)
45 2'b00: next_state = S1;
46 2'b01: next_state = S0;
47 2'b10: next_state = S4;
48 2'b11: next_state = S5;
49 endcase
50 S4: case (input_signal)
51 2'b00: next_state = S0;
52 2'b01: next_state = S1;
53 2'b10: next_state = S2;
54 2'b11: next_state = S5;
55 endcase
56 S5: case (input_signal)
57 2'b00: next_state = S1;
58 2'b01: next_state = S4;
59 2'b10: next_state = S0;
60 endcase
61 endcase
62 end
63endmodule

Listing 1: Example Test Case: example1_state.

21

1'states': ['S0', 'S1', 'S2', 'S3', 'S4', 'S5'],
2'transitions': {
3 'S0': {
4 'input_signal=00': {'next_state': 'S0'},
5 'input_signal=01': {'next_state': 'S1'},
6 'input_signal=10': {'next_state': 'S2'},
7 'input_signal=11': {'next_state': 'S3'}
8 },
9 'S1': {

10 'input_signal=00': {'next_state': 'S0'},
11 'input_signal=01': {'next_state': 'S3'},
12 'input_signal=11': {'next_state': 'S5'}
13 },
14 'S2': {
15 'input_signal=00': {'next_state': 'S1'},
16 'input_signal=01': {'next_state': 'S3'},
17 'input_signal=10': {'next_state': 'S2'},
18 'input_signal=11': {'next_state': 'S4'}
19 },
20 'S3': {
21 'input_signal=00': {'next_state': 'S1'},
22 'input_signal=01': {'next_state': 'S0'},
23 'input_signal=10': {'next_state': 'S4'},
24 'input_signal=11': {'next_state': 'S5'}
25 },
26 'S4': {
27 'input_signal=00': {'next_state': 'S0'},
28 'input_signal=01': {'next_state': 'S1'},
29 'input_signal=10': {'next_state': 'S2'},
30 'input_signal=11': {'next_state': 'S5'}
31 },
32 'S5': {
33 'input_signal=00': {'next_state': 'S1'},
34 'input_signal=01': {'next_state': 'S4'},
35 'input_signal=10': {'next_state': 'S0'}
36 }
37},
38'outputs': {'S0': {'output_signal': 1},
39 'S1': {'output_signal': 0},
40 'S2': {'output_signal': 1},
41 'S3': {'output_signal': 0},
42 'S4': {'output_signal': 1},
43 'S5': {'output_signal': 0} }

Listing 2: LLM-generated symbolic representation for example1_state.

1State: S2, Output: 1
2 input_signal=00 -> S1
3 input_signal=01 -> S3_S5
4 input_signal=10 -> S2
5 input_signal=11 -> S0_S4
6State: S0_S4, Output: 1
7 input_signal=00 -> S0_S4
8 input_signal=01 -> S1
9 input_signal=10 -> S2

10 input_signal=11 -> S3_S5
11State: S1, Output: 0
12 input_signal=00 -> S0_S4
13 input_signal=01 -> S3_S5
14 input_signal=10 -> S1
15 input_signal=11 -> S3_S5
16State: S3_S5, Output: 0
17 input_signal=00 -> S1
18 input_signal=01 -> S0_S4
19 input_signal=10 -> S0_S4
20 input_signal=11 -> S3_S5

Listing 3: Reduced states of example1_state.

22

B AST Template

The following section demonstrate how applying AST templates transforms the code and apply
optimization patterns.

1module example_raw
2#(parameter BW = 8)
3(
4 input [BW-1:0] a,
5 input [BW-1:0] b,
6 input [BW-1:0] c,
7 input [BW-1:0] d,
8 output [BW-1:0] s1
9);

10 assign s2 = a * b;
11 assign s3 = a % b +d;
12 assign s4 = c + d + b * a;
13 assign s5 = a - b;
14 assign s6 = (b + 1) * a + d + c -b;
15 assign s1 = a + 23;
16endmodule

Listing 4: Example Test Case: dead_code_elimination.

1module example_raw #
2(parameter BW = 8)
3(
4 input [BW-1:0] a,
5 input [BW-1:0] b,
6 input [BW-1:0] c,
7 input [BW-1:0] d,
8 output [BW-1:0] s1
9);

10 assign s1 = a + 23;
11endmodule
12

Listing 5: Example Test Case: dead_code_elimination after applying the Dead Code Elimination
AST template.

1module example_raw
2#(parameter BW = 8)
3(
4 input [BW-1:0] a,
5 input [BW-1:0] b,
6 input [BW-1:0] c,
7 input [BW-1:0] d,
8 output [BW-1:0] s1,
9 output [BW-1:0] s2,

10 output [BW-1:0] s3,
11 output [BW-1:0] s4,
12 output [BW-1:0] s5,
13 output [BW-1:0] s6
14);
15 assign s1 = a + b;
16 assign s2 = a * b;
17 assign s3 = a \% b +d;
18 assign s4 = c + d + b * a;
19 assign s5 = a - b;
20 assign s6 = (b + 1) * a + d + c -b;
21endmodule

Listing 6: Example Test Case: subexpression_elimination.

23

1module example
2#(parameter BW = 8)
3(input [BW-1:0] a,
4 input [BW-1:0] b,
5 input [BW-1:0] c,
6 input [BW-1:0] d,
7 output [BW-1:0] s1,
8 output [BW-1:0] s2,
9 output [BW-1:0] s3,

10 output [BW-1:0] s4,
11 output [BW-1:0] s5,
12 output [BW-1:0] s6
13);
14 assign s1 = a + b;
15 assign s2 = a * b;
16 assign s3 = a \% b + d;
17 assign s4 = c + d + s2;
18 assign s5 = a - b;
19 assign s6 = s4 + s5;
20endmodule

Listing 7: Example Test Case: subexpression_elimination after applying the Common
Sub-Expressions Elimination template. The Common Sub-Expressions are reused in the states after it.

1module example_raw
2#(parameter BW = 8)
3(
4 input [BW-1:0] a,
5 input [BW-1:0] b,
6 output [BW-1:0] s1,
7 output [BW-1:0] s2
8);
9 wire [BW-1:0] t1, t2;

10 assign s1 = a + b;
11 assign t1 = s1 + 0;
12 assign t2 = s1 * 1;
13 assign s2 = t1 + t2;
14endmodule
15

Listing 8: Example Test Case: algebraic_simplification.

1
2module example_raw #
3(
4 parameter BW = 8
5)
6(
7 input [BW-1:0] a,
8 input [BW-1:0] b,
9 output [BW-1:0] s1,

10 output [BW-1:0] s2
11);
12
13 assign s1 = a + b;
14 assign s2 = s1 + s1;
15
16endmodule

Listing 9: Example Test Case: algebraic_simplification after applying the Temporary Variable
Elimination, Dead Code Elimination, then Expression Simplification templates.

24

C RAG Example

Sample Retrieval Augmented Optimization Rule

"name": "IntermediateVariableExtraction",
"pattern": "Detect conditional assignments to a register based on a control signal",
"rewrite": "Extract common sub-expressions into intermediate variables to reduce redundant
logic",
"category": "combinational/dataflow",
"objective_improvement": "area",
"template_guidance": "To implement this rule in a Python template subclassing BaseTemplate,
use pyverilog AST manipulation to identify conditional assignments (vast.IfStatement) and
extract the common sub-expressions into separate assignments. Look for vast.Identifier nodes
that are assigned conditionally and create new vast.Assign nodes for the intermediate variables.
Ensure that the new assignments are placed before the conditional logic to maintain correct data
flow",
"function_name": "IntermediateVariableExtractionTemplate"

Figure 6: Sample Retrieval Augmented Optimization Rule 1: Intermediate Variable Extraction.

Sample Retrieval Augmented Optimization Rule

"name": "HierarchicalExpressionTreeRestructuring",
"pattern": "Detect flat conditional assignments with redundant arithmetic operations across
different control paths",
"rewrite": "Transform into hierarchical tree structure with intermediate wire assignments for
resource sharing",
"category": "combinational/dataflow",
"objective_improvement": "area, delay",
"template_guidance": "Parse conditional assignments, extract common subexpressions (e.g.,
‘y0_real * y0_real + y0_imag * y0_imag‘), create intermediate wires, and build balanced adder
trees. Replace flat expressions with hierarchical structure",
"function_name": "HierarchicalTreeRestructuringTemplate"

Figure 7: Sample Retrieval Augmented Optimization Rule 2: Hierarchical Expression Tree Restruc-
turing.

Sample Retrieval Augmented Optimization Rule

"name": "AlgorithmicLoopToPipelineTransformation",
"pattern": "Detect sequential loops with independent operations where each iteration processes
different data elements without dependencies",
"rewrite": "Transform sequential loops into pipelined architectures with staged data flow and
parallel processing units",
"category": "control/dataflow",
"objective_improvement": "delay, power",
"template_guidance": "Identify loops like ‘for(i=0; i<N; i++) output[i] = func(input[i])‘ with
no loop-carried dependencies. Convert to pipeline stages where each stage processes one
element: create N pipeline registers, instantiate processing units between stages, add valid/ready
handshaking. Replace loop with continuous data flow through pipeline stages",
"function_name": "LoopToPipelineTemplate"

Figure 8: Sample Retrieval Augmented Optimization Rule 3: Algorithmic Loop-to-Pipeline Transfor-
mation.

25

Sample Retrieval Augmented Optimization Rule

"name": "Zero Multiplication Elimination",
"pattern": "Detect multiplication by zero in expressions (e.g., , 0 * c)",
"rewrite": "Eliminate multiplication by zero, replacing the entire expression with zero",
"category": "combinational/dataflow",
"objective_improvement": "area",
"template_guidance": "Identify vast.Times nodes with a zero operand. Replace the node with
a vast.IntConst node representing zero.",
"function_name": "ZeroMultiplicationTemplate"

Figure 9: Sample Retrieval Augmented Optimization Rule 4: Zero Multiplication Rule.

Hardware Optimization Rule

"name": "ReplaceRippleCarryWithCarryLookahead",
"pattern": "Detects a ripple carry adder implementation using a series of full adders connected
in sequence",
"rewrite": "Transforms the ripple carry adder into a carry lookahead adder by using partial full
adders and generating carry bits in parallel",
"category": "combinational/dataflow",
"objective_improvement": "area, delay",
"template_guidance": null,
"function_name": null

Figure 10: Sample Retrieval Augmented Optimization Rule 5: Replace Ripple Carry with Carry
Lookahead, no template guidance is needed since it is an abstract rule.

Sample Retrieval Augmented Optimization Rule

"name": "AlgorithmAwareBitwidthOptimization",
"pattern": "Identify oversized register widths in arithmetic pipelines with scaling factors",
"rewrite": "Reduce bit-widths based on mathematical analysis of scaling requirements while
preserving precision",
"category": "datapath/precision",
"objective_improvement": "area, power",
"template_guidance": "Analyze scaling factors in arithmetic operations, calculate minimum
required bit-widths based on dynamic range analysis, modify register declarations and shift
operations. Example: reduce 40-bit to 28-bit when 13-bit scaling is excessive. Use pyverilog to
identify Width nodes and replace with optimized bit-width declarations",
"function_name": "BitwidthOptimizationTemplate"

Figure 11: Sample Retrieval Augmented Optimization Rule 6: Algorithm-Aware Bit-width Optimiza-
tion.

26

	Introduction
	Background and Motivation
	Methodology
	LLM Dispatcher
	Data Flow Optimization
	Control Flow Optimization
	Verification and Final Optimization

	Experiments
	Experimental Setup
	Functional Correctness Analysis
	Circuit Optimization Performance
	Ablation Studies

	Discussion
	Limitations
	Conclusion
	FSM Symbolic System
	AST Template
	RAG Example

