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ABSTRACT

Deep neural networks generally have highly non-convex structures, resulting in
multiple local optima of network weights. The non-convex network is likely to
fail, i.e., being trapped in bad local optima with large errors, especially when the
task involves convexity (e.g., linearly separable classification). While convexity is
essential in training neural networks, designing a convex network structure with-
out strong assumptions (e.g., linearity) of activation or loss function is challeng-
ing. To extract and utilize convexity, this paper presents the QuasiConvex shallow
Neural Network (QCNN) architecture with mild assumptions. We first decom-
pose the network into building blocks where quasiconvexity is thoroughly studied.
Then, we design additional layers to preserve quasiconvexity where such building
blocks are integrated into general networks. The proposed QCNN, interpreted as
a quasiconvex optimization problem, allows for efficient training with theoretical
guarantees. Specifically, we construct equivalent convex feasibility problems to
solve the quasiconvex optimization problem. Our theoretical results are verified
via extensive experiments on common machine learning tasks. The quasiconvex
structure in QCNN demonstrates even better learning ability than non-convex deep
networks in some tasks.

1 INTRODUCTION

Neural networks have been at the heart of machine learning algorithms, covering a variety of ap-
plications. In neural networks, the optimal network weights are generally found by minimizing a
supervised loss function using some form of stochastic gradient descent (SGD) (Saad (1998)), in
which the gradient is evaluated using the backpropagation procedure (LeCun et al. (1998)). How-
ever, the loss function is generally highly non-convex, especially in deep neural networks, since the
multiplication of weights between hidden layers and non-linear activation functions tend to break
the convexity of the loss function. Therefore, there are many local optima solutions of network
weights (Choromanska et al. (2015)). While some experiments show that certain local optima are
equivalent and yield similar learning performance, the network is likely to be trapped in bad local
optima with a large loss.

Issue 1: Is non-convex deep neural networks always better?

Deep neural networks have shown success in many machine learning applications, such as im-
age classification, speech recognition, and natural language processing (Hinton & Salakhutdinov
(2006); Ciregan et al. (2012), Hinton et al. (2012), and Kingma et al. (2014)). Many people believe
that the multiple layers in deep neural networks allow models to learn more complex features and
perform more intensive computational tasks. However, deep neural networks are generally highly
non-convex in the loss function, which makes the training burdensome. Since the loss function has
many critical points, which include spurious local optima and saddle points (Choromanska et al.
(2015)), it hinders the network from finding the global optima and makes the training sensitive to
the initial guess. In fact, (Sun et al. (2016)) pointed out that increasing depth in neural networks is
not always good since there is a trade-off between non-convex structure and representation power.
In some engineering tasks requiring additional physical modeling, simply applying deep neural net-
works is likely to fail. Even worse, we usually don’t know how to improve the deep neural networks
during a failure since it is a black box procedure without many theoretical guarantees.

1



Under review as a conference paper at ICLR 2023

Problem: Extract/Utilize convexity in general 
neural networks

Challenge: Multiplication of weights and non-
linear activations

Data:

Motivation

Quasiconvexity

Loss Function in Parameter Space

Nonconvexity

QCNN

Minpool to preserve quasiconcavity

1 Quasiconcavity in product of ReLU

2

3 Solve quasiconvex as convex problem

min

vector input scalar label

Figure 1: Proposed Method. (Left) The motivation and challenge of this study. (Middle) We
design a quasiconvex neural network structure to efficiently train for optimal network weights in a
quasiconvex optimization problem. The quasiconvexity is studied and preserved via special pooling
layers. (Right) Unlike non-convex loss function, the quasiconvex loss function of our design allows
for finding the global optima.

Issue 2: Solution to non-convexity is not practical.

To overcome non-convexity in neural networks, new designs of network structure were proposed.
The first line of research focused on specific activation functions (e.g., linear or quadratic) and
specific target functions (e.g., polynomials) (Andoni et al. (2014)) where the network structure can
be convexity. However, such methods were limited in practical applications (Janzamin et al. (2015)).
Another line of research aimed at deriving the dual problem of the optimization problem formulated
by neural network training. Unlike the non-convex neural network, its dual problem is usually
convex. Then, conditions ensuring strong duality (zero duality gap and dual problem solvable) were
discussed to find the optimal solution to the neural network. For example, Ergen & Pilanci (2020)
derived the dual problem for neural networks with ReLU activation, and Wang et al. (2021) showed
that parallel deep neural networks have zero duality gap. However, the derivation of strong duality
in the literature requires the planted model assumption, which is impractical in many real-world
datasets. Aside from studying the convexity in network weights, some work explored the convexity
in data input and label. For instance, an input convex structure with given weights Amos et al. (2017)
altered the neural network output to be a convex function of (some of) the inputs. Nevertheless, such
a function is only an inference procedure with given network weights.

In this work, we introduce QCNN, the first QuasiConvex shallow Neural Network structure that
learns the optimal weights in a quasiconvex optimization problem. We first decompose a general
neural network (shown in the middle of Figure 1) into building blocks (denoted by distinct colors).
In each building block, the multiplication of two weights, as well as the non-linear activation func-
tion in the forward propagation, makes the building block non-convex. Nevertheless, inspired by
Boyd et al. (2004), we notice that the multiplication itself is quasiconcave if the activation function
is ReLU. The quasiconvexity (quasiconcavity) is a generalization of convexity (concavity), which
shares similar properties, and hence, is a desired property in the neural network. To preserve quasi-
concavity in the network structure when each building block is integrated, we design special layers
(e.g., minimization pooling layer), as shown in the middle of Figure 1. In doing so, we arrive at
a quasiconvex optimization problem of training the network, which can be equivalently solved by
tackling convex feasibility problems. Unlike non-convex deep neural networks, the quasi-convexity
in QCNN enables us to learn the optimal network weights efficiently with guaranteed performance.

2 RELATED WORK

Failure of training non-convex neural networks. In training a non-convex neural network, the
commonly used method, such as gradient descent in the backpropagation procedure, can get stuck
in bad local optima and experience arbitrarily slow convergence (Janzamin et al. (2015)). Explicit
examples of the failure of network training and the presence of bad local optima have been discussed
in (Brady et al. (1989); Frasconi et al. (1993)). For instance, Brady et al. (1989) constructed simple
cases of linearly separable classes that backpropagation fails. Under non-linear separability setting,
Gori & Tesi (1992) also showed failure of backpropagation. These studies indicate that deep neural
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networks are not suitable for all tasks. Therefore, it motivates us to think: can simple networks with
convex structure beat deep networks with non-convex structure in some tasks?

Convexity in neural network. The lack of convexity has been seen as one of the major issues
of deep neural networks (Bengio et al. (2005)), drawing much research in the machine learning
community. Many people studied convex structures and convex problems in neural networks. For
instance, (Bengio et al. (2005); Andoni et al. (2014); Choromanska et al. (2015); Milne (2019);
Rister & Rubin (2017)) showed that training a neural network under some strong conditions can be
viewed as a convex optimization problem. (Farnia & Tse (2018); Ergen & Pilanci (2020); Wang et al.
(2021); Pilanci & Ergen (2020)) studied convex dual problems of the neural network optimization
and derived strong duality under specific assumptions.

Aside from directly studying convexity in neural networks, people also discussed conditions where
the local optima become global. For example, Haeffele & Vidal (2015) presented that if the network
is over-parameterized (i.e., has sufficient neurons) such that there exist local optima where some of
the neurons have zero contribution, then such local optima is global optima (Janzamin et al. (2015)).
Similarly, Haeffele & Vidal (2017) also showed that all critical points are either global minimizers
or saddle points if the network size is large enough. However, such studies only provide theoretical
possibilities while efficient algorithms to solve (infinitely) large networks are missing. Based on
the existing literature, we restrict our research to finding a simple but practical neural network with
some convexity to provide performance guarantees.

Quasiconvex optimization problem. The study of quasiconvex functions, as well as quasicon-
vex optimization problems, started from (Fenchel & Blackett (1953); Luenberger (1968)) and has
become popular nowadays since the real-world function is not always convex. For instance, quasi-
convex functions have been of particular interest in economics (Agrawal & Boyd (2020)), modeling
the utility functions in an equilibrium study (Arrow & Debreu (1954); Guerraggio & Molho (2004)).
The quasiconvex optimization has been applied to many applications recently, including engineering
(Bullo & Liberzon (2006)), model order reduction (Sou), computer vision (Ke & Kanade (2007))
and machine learning (Hazan et al. (2015)). Among many solutions to quasiconvex optimization
problems, a simple algorithm is bisection (Boyd et al. (2004)), which solves equivalent convex fea-
sibility problems iteratively until converging.

3 PRELIMINARY

To model for the general case, we consider a L-layer network with layer weights Wl ∈ Rml−1×ml ,
∀l ∈ [L], where m0 = d and mL = 1 are the input and output dimensions, respectively. As the
dimensions suggest, the input data is a vector, and the output is a scalar. Given a labeled dataset
D = {(xi, yi)}ni=1 with n samples, we consider a neural network with the following architecture.

fθ(X) = hL, hl = g(hl−1Wl), ∀l ∈ [L] (1)
where hl denotes the layer activation and h0 = X ∈ Rn×d is the data matrix. Here, θ = {Wl}Ll=1
are the network weights which need to be optimized via training, and g(·) is the non-linear activation
function. The network is trained with L2 loss as follows:

θ̂ = argmin
θ

1

2
∥fθ(X)− y∥22, (2)

where y ∈ Rn is the data label vector. The loss function in Equation 2 is generally non-convex
because of the multiplication of weights as well as non-linear activation functions. As discussed
previously, non-convexity will likely cause the network to be trapped in a bad local optima with
large errors. Therefore, we still want to extract some convexity in this loss function to help with the
training process. In this paper, we will show that quasiconvexity and quasiconcavity are hidden in
the network. These properties can be utilized to construct a convex optimization problem to train the
optimal network weights. Here, we introduce the definition of quasiconvexity and quasiconcavity.
Definition 1. A function f : Rd → R is quasiconvex if its domain and all its sublevel sets {x ∈
dom f |f(x) ≤ α},∀α are convex. Similarly, a function is quasiconcave if −f is quasiconvex, i.e.,
every superlevel set {x|f(x) ≥ α} is convex.

We also note, since convex functions always have convex sublevel sets, they are naturally quasicon-
vex, while the converse is not true. Therefore, the quasiconvexity can be regarded as a generalization
of convexity, which is exactly what we seek in the non-convex deep neural networks.
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4 QUASI-CONCAVE STRUCTURE

For designing a quasiconvex structure of neural networks, we start by considering the simplest and
most representative building block in a network and analyze its characteristics. Specifically, we
consider the network

f(w1; w2) = g(g(x⊤w1)w2), (3)

where x ∈ Rd is the input data, w1 ∈ Rd and w2 ∈ R are the weights for two hidden layers.
We analyze such a two-layer structure because it is the simplest case in neural networks yet can be
generalized to deep neural networks. In Equation 3, the network is not convex in weights (w1; w2)
because (1) the network function contains the multiplication of the weights and (2) the activation
function g(·) is usually non-linear.

Nevertheless, we still want to explore the potential possibilities of the network becoming convex or
being related to convex. Inspired by Boyd et al. (2004), we notice that although the multiplication of
two weights in the forward propagation makes the network non-convex, the multiplication itself is
quasiconcave in specific circumstances. For example, the product of two variables forms the shape
of a saddle, which is not convex in those variables. However, if we restrict these two variables to be
positive, the saddle shape will reduce to a quasiconcave surface, as shown in Figure 2.

Lemma 1. The function f(w1,w2) = w1w2 with dom f = R2
+ is quasiconcave.

Saddle Shape Quasiconcavity Convex superleveset

constrained

Figure 2: (Left) The function f(w1,w2) = w1w2 has a saddle shape. (Middle) Constrained on
positive domain, i.e., dom f = R2

+, the function becomes quasiconcave. (Right) The quasiconcave
function always has convex superlevel sets.

Motivated by Lemma 1 and Figure 2, to preserve the property of quasiconcavity of the network
in Equation 3, a straightforward approach is to assume the network weights (w1; w2) to be non-
negative, like in (Amos et al. (2017)). However, this assumption will significantly reduce the neural
network’s representation power. In fact, suppose there are m weights, constraining all the weights
to be non-negative will result in only 1/2m representation power. To bypass this impractical as-
sumption, we notice that some activation functions naturally restrict the output to be non-negative.
For example, the ReLU activation function g(x) = max{0,x} forces the negative input to be zero.
Therefore, we can demonstrate that the network in Equation 3 with ReLU activation function is
quasiconcave in the network weights, as shown in Theorem 1.

Theorem 1. The neural network in Equation 3 with ReLU activation function g(·) is quasiconcave
in the network weights (w1; w2).

Proof. To prove quasiconcavity, we need to show that all superlevel sets

Sα = {(w1; w2)|f(w1; w2) ≥ α}, ∀α ∈ R

are convex sets. When α ≤ 0, the superlevel set is the complete set, i.e., Sα = dom f due to the
ReLU activation function. Hence, Sα is evidently convex. When α > 0, the superlevel set is neither
the empty set nor the complete set. For any two elements (ŵ1; ŵ2), (w̃1; w̃2) ∈ Sα, we aim to show
that (λŵ1 + (1 − λ)w̃1;λŵ2 + (1 − λ)w̃2) ∈ Sα for λ ∈ (0, 1). From the condition α > 0, we
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know that x⊤ŵ1 > 0 and ŵ2 > 0, as well as x⊤w̃1 > 0 and w̃2 > 0. Therefore, we would have

f(λŵ1 + (1− λ)w̃1;λŵ2 + (1− λ)w̃2) =
[
λx⊤ŵ1 + (1− λ)x⊤w̃1

]
[λŵ2 + (1− λ)w̃2]

= λ2x⊤ŵ1ŵ2 + (1− λ)2x⊤w̃1w̃2 + λ(1− λ)
[
x⊤ŵ1w̃2 + x⊤w̃1ŵ2

]
≥ λ2α+ (1− λ)2α+ λ(1− λ)

[
x⊤ŵ1w̃2 + x⊤w̃1ŵ2

]
≥ λ2α+ (1− λ)2α+ λ(1− λ)

[
α

ŵ2
w̃2 +

α

w̃2
ŵ2

]
≥ λ2α+ (1− λ)2α+ λ(1− λ)× 2α = α[λ2 + (1− λ)2 + 2λ(1− λ)] = α.

In Theorem 1, we show that the simple two-layer network in Equation 3 is quasiconcave in network
weights, given that the activation function is ReLU. Then, a natural question arises: does this prop-
erty of quasiconcavity remain in deeper networks? Unfortunately, the quasiconcavity does not hold
in more complex neural networks due to one fact: the summation of quasiconvex (quasiconcave)
functions is not necessarily quasiconvex (quasiconcave). The deeper networks can be regarded as
weighted summations of many networks in Equation 3, hence, not quasiconcave anymore. There-
fore, we aim to design new network structures to preserve the property of quasiconcavity to more
general neural networks.

To achieve this goal, we focus on the operations that preserve quasiconcavity, including (1) the com-
position of a non-decreasing convex function, (2) the non-negative weighted minimization, and (3)
the supremum over some variables. Among these operations, we choose the minimization proce-
dure because it is easy to apply and has a simple gradient. Specifically, we can apply a minimization
pooling layer to integrate the simple networks in Equation 3, as shown in Figure 3. In doing so,
we manage to extend the network in the simplest building block to more general structures, where
quasiconcavity is ensured by Lemma 2 and visually explained in Figure 4. Meanwhile, we note that
the proposed network is still a shallow network. Although infinitely stacking layers with appropri-
ate minimization pooling layers can also keep the entire network convex, too many minimization
pooling layers will damage the representation power of the neural network.

data output
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Figure 3: The structure of quasiconvex shallow neural network (QCNN).

Lemma 2. Provided that f1, · · · , fn are quasiconcave functions defined on the same domain, the
non-negative weighted minimum

f := min{a1f1, a2f2, · · · , anfn}
is quasiconcave given a1, · · · , an ∈ R+.

Proof. The superlevel set Sα = {x ∈ dom f |f(x) ≥ α} of f can be regarded as:

Sα = {x ∈ dom f |min{a1f1(x), a2f2(x), · · · , anfn(x)} ≥ α} = ∩n
i=1{x ∈ dom f |fi ≥

α

ai
},

which is the intersection of (convex) superlevel sets of fi(i = 1, · · · , n).
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f(w1, w2) = w1w2 f(w1, w2) = w1 f(w1, w2) = w2 f(w1, w2) = w1 + w2

minimization

Figure 4: The minimization of quasiconcave functions on the same domain is still quasiconcave.

5 QUASICONVEX OPTIMIZATION OF NEURAL NETWORK

In Section 4, we design a neural network structure where output f(θ) is a quasiconcave function
over the network weights θ. To further utilize the property of quasiconcavity, in this section, we
propose to train the neural network as a quasiconvex optimization problem. Even though function
f(θ) is quasiconcave, the optimization problem in Equation 2 is not quasiconvex, since the L2 loss
is not monotonic. However, if we restrict the network output to be smaller than the network labels,
i.e., f(θ) ≤ y, the L2 loss is non-increasing in this range. Therefore, the resulting loss function in
Equation 2, as a composition of a convex non-increasing function over a quasiconcave function, is
quasiconvex. That is, the training of QCNN is an unconstrained quasiconvex optimization problem

P ∗ = min
θ

l(θ) = min
θ

1

2
∥f(θ)− y∥22. (4)

To solve the quasiconvex optimization problem in Equation 4, we can transform it into an equivalent
convex feasibility problem. Let φt(θ) := y − t − f(θ), t ∈ R be a family of convex functions
satisfying l(θ) ≤ t ⇐⇒ φt(θ) ≤ 0. Then, the quasiconvex optimization problem in Equation 4 can
be equivalently considered as

min
θ

l(θ) ⇐⇒ min
θ,t

t =⇒ find θ (5)

s.t. l(θ) ≤ t s.t. φt(θ) ≤ 0.

The problem in Equation 5 is a convex feasibility problem since the inequality constraint function
is convex. For every given value t, we can solve the convex feasibility problem. If the convex
feasibility problem is feasible, i.e., ∃θ, φt(θ) ≤ 0, this point θ is also feasible for the quasiconvex
problem by satisfying l(θ) ≤ t. It indicates that the optimal value P ∗ is smaller than t, i.e., P ∗ ≤ t.
In this circumstance, we can reduce the value t and conduct the above procedure again to approach
the optimal value P ∗. On the other hand, if the convex feasibility problem is infeasible, we know
that P ∗ ≥ t. In this case, we should increase the value of t. Through this procedure, the quasiconvex
optimization problem in Equation 4 can be solved using bisection, i.e., solving a convex feasibility
problem at each step (Boyd et al. (2004)). The procedure is summarized as Algorithm 1.

Algorithm 1 QCNN Training Process

1: given l ≤ P ∗, u ≥ P ∗, tolerance ϵ > 0 ▷ lower/upper bounds of optimal value
2: while u− l > ϵ do ▷ convergence criterion
3: t := (l + u)/2
4: Solve the convex feasibility problem in Equation 5
5: if problem Equation 5 is feasible then
6: u := t ▷ record the feasible point θ
7: else
8: l := t
9: end if

10: end while ▷ return the current feasible point θ

Remark 1. The quasiconvex optimization problem in Equation 4 has zero duality gap. The proof
can be derived by verifying that our unconstrained quasiconvex optimization problem in Equation 4
satisfies the condition in Fang et al. (2014). Therefore, the quasiconvex optimization problem could
also be solved via exploring its dual problem.
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6 EXPERIMENTS

We use the proposed framework in Section 5 to conduct several machine learning tasks, comparing
QCNN to deep neural networks. Our experiments aim to validate the core benefits of QCNN: (1) the
convexity, even in shallow networks, makes learning more accurate than non-convex deep networks
in some tasks, and (2) the convexity enables the network to be more robust and converge faster.

6.1 FUNCTION APPROXIMATION

Since the purpose of neural networks can be generally seen as learning a mapping from input x to
label y, in this section, we evaluate the performance of using QCNN to approximate some function.

Synthetic dataset. For synthetic scenario, the dataset is generated by randomly sampling x from a
uniform distribution Unif(−1, 1) and calculating the corresponding label y = f(x) given function
f . We generate 1,000 samples for training and 200 samples for testing, where the mean square error
(MSE) of the testing set is used to evaluate the model performance.

The results of approximating various functions are summarized in Figure 5. As we see, the perfor-
mance of deep neural networks depends on the choice of initial guess of network weights. In the
first two experiments (first two rows in Figure 5), the deep network seems to be trapped in a bad
local optima, which corresponds to a relatively large MSE. In the third experiment, the deep network
arrives at a good local optima. However, it still exhibits certain flaws at the non-differentiable points
(turning points) in the function f . It matches the finding of Brady et al. (1989) where deep neural net-
works fail in simple cases of linearly separable classifying tasks. On the contrary, although QCNN
uses a shallow structure, its quasiconvexity nature enables it to learn piecewise linear functions to
approximate function f . In many replications of experiments, we find that learning procedure of
QCNN is more robust to initial guess of network weights since it is quasiconvex. Moreover, QCNN
demonstrates a quicker convergence when learning the function f .

MSE: 0.00

Converge:
1.9s

MSE: 0.001

Converge:
2.2s

MSE: 0.005

Converge:
2.3s

Function.     f

Piecewise-linear 

Piecewise-linear+nonlinear 

Piecewise-nonlinear

Deep neural network.     QCNN

MSE: 0.03

Converge:
3.4s

MSE: 0.04

Converge:
3.8s

MSE: 0.007

Converge:
4.1s

Figure 5: The performance of approximating functions using deep neural networks and QCNN:
QCNN tends to behave better because the quasiconvex structure enables it to learn piecewise linear
mappings more efficiently.

Contour detection dataset. For the real-world application of function approximation, we consider
the task of detecting the contour of an object, which is usually the first step for many applications
in computer vision, such as image-foreground extraction (Banerjee et al. (2016)), simple-image
segmentation (Saini & Arora (2014)), detection, and recognition (Kulkarni et al. (2013)). The ex-
periment is conducted on the Berkeley Segmentation Dataset (Arbeláez et al. (2013)) composed of
200 training, 200 testing, and 100 validation images. Each image has between five and six manually
annotated labels representing the ground truth (Yang et al. (2019)). These labels are also used to
calculate two metrics: optimal dataset scale (ODS) and optimal image scale (OIS) to evaluate the
model performance. The comparison was performed against DeepNet (Kivinen et al. (2014)).
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In the experiment, we find that the performance of QCNN and DeepNet depend on the objects in
the image. For some objects with clear and angular contours, e.g., a phone in Figure 6 (a), detecting
such a contour can be seen as learning a closed polygon with piecewise linear functions defining
its edges. For such a class of images, the ODS of QCNN achieves 0.824 compared to 0.784 of
DeepNet, while the OIS of QCNN achieves 0.831 compared to 0.798 of DeepNet. On the contrary,
DeepNet has better accuracy in recognizing complex (e.g., highly non-linear) contours. In this class
of images, the ODS of QCNN is 0.717 compared to 0.743 of DeepNet, while and the OIS of QCNN
is 0.729 compared to 0.760 of DeepNet. To conclude, QCNN with the quasiconvex structure still
outperforms the deep networks when the task involves some characteristics related to convexity.

Mass-damper system dataset. Aside from synthetic functions and irregular functions, we also
learn functions that have physical meanings. Specifically, we consider the mass-damper system,
which can be depicted as: q̇ = −DRD⊤M−1q. In the system, q̇ is a vector of momenta, D is the
incidence matrix of the system, R is the diagonal matrix of the damping coefficients for each line of
the system, and M is the diagonal matrix of each node mass of the system. Thus, we can set y = q̇
and x = q with the goal to learn the parameter matrix −DRD⊤M−1. We simulate the dataset for
a 10-node system and obtain 6,000 samples for 1-min simulations with a step size to be 0.01s (Li
et al. (2022)). Figure 6 (b) shows the prediction error (MSE) during training epochs, where QCNN
converges faster to a smaller error, compared to deep neural networks. This is perhaps because that
the target parameter matrix in the system constructs a linear bridge between input x and label y.

(a) contour detection

objects with 
angular contours

objects with 
complex contours

Deep neural network.     QCNN

(b) training of mass-damper system

Epoch

MSE
QCNN conveyers 
faster

1

2

QCNN has smaller error

Figure 6: (a) QCNN works better in detecting angular contours while deep networks are better for
detecting complex contours. (b) MSE against training epochs in learning the mass-damper function.

6.2 CLASSIFICATION TASK

The experiments in Section 6.1 represent the regression tasks. In this section, we further consider
the classification task, covering two major categories of machine learning applications.

Change point detection of distributions. Finding the transition of the underlying distribution of
a sequence has various applications in engineering fields, such as video surveillance (Sultani et al.
(2018)), sensor networks Xie & Siegmund (2013) and infrastructure health monitoring Liao et al.
(2019). Aside from engineering tasks, it is also important in many machine learning tasks, including
speech recognition Chowdhury et al. (2012), sequence classification Ahad & Davenport (2020), and
dataset shift diagnosis Lu et al. (2016). To simulate a sequence of measurements, we randomly
generate the pre-change sequence from normal distribution N (0, 0.2) and generate the post-change
sequence from N (1, 0.1) where the change time is λ = 50. The time-series sequence is shown in
the left part of Figure 7.

Using the neural network to detect the change point λ can be seen as classifying pre-change data
and post-change data using five samples in a shifted window. The classifying threshold is chosen
as α, i.e., the maximum false alarm rate (Liao et al. (2016)). The results are shown in Figure 7
using 1,000 Monte Carlo experiments. As we see, QCNN shows a smaller average detection delay
than deep neural networks. Meanwhile, it seems that QCNN is less likely to falsely report a fake
change, since the empirical false alarm rate of QCNN is below that of deep networks, and is mostly
below the theoretical upper bound α (especially when α → 0). QCNN outperforms the deep neural
network in this task because the transition of the distribution is abrupt, as shown in Figure 7 (Left).
The abrupt change results in a non-differentiable/non-smooth point in the mapping to be learned,
which is more efficiently represented by QCNN via piecewise linear functions.
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pre-change

time

x[N ]

N

Sequence

post-change

N (0, 0.2)

N (1, 0.1)

Average detection delay.     False alarm rate

1 QCNN has smaller delay 2 QCNN has smaller false rate

Figure 7: (Left) The change of underlying distribution of the sequence. (Middle) The average
detection delay of detecting the distribution change using QCNN and deep neural networks. (Right)
The false alarm rate of detecting the distribution change using QCNN and deep neural networks.

Solar meters classification. The UMass Smart dataset (Laboratory for Advanced System Software
(Accessed Sep. 2022.)) contains approximately 600,000 meters from a U.S. city with a one-hour
interval between each meter reading (Cook et al. (2021)). Among these meters, around 1,973 have
installed solar panels, and are labeled as solar in the classification task. The remainder of the meters
are labeled as non-solar. The average smart meter readings, including the household electricity
consumption and the PV generation, as well as the household’s address, are considered as input data
to classify whether a meter has solar panels. We randomly select 20,000 samples from this dataset to
train and select 1,000 samples to test the performance. Figure 8 shows the location of all the meters
and solar meters. As we see, the meters that have solar installed are concentrated in a roughly convex
area instead of being spread over in the entire area. Therefore, learning the classifier for solar meters
using the feature of address is equivalent to learning a convex domain. It could explain that the
classification accuracy of QCNN (94.2%) outperforms that of deep networks (92.7%).

Locations of all the meters

Locations of solar net meters

Solar meters locate together in a convex area

zoom in

Classification accuracy

QCNN (94.2%)  > Deep NN (92.7%)

Figure 8: The locations of (solar) meters and the classification accuracy of using QCNN and deep
neural network to classify the solar meters.

7 CONCLUSION

In this work, we analyze the problem of convex neural networks. First, we observe that deep neu-
ral networks are not suitable for all tasks since the network is highly non-convex. The non-convex
network could fail, i.e., being trapped in bad local optima with large errors, especially when the
task involves convexity (e.g., linearly separable classification). Therefore, it motivates us to design a
convex structure of neural networks to ensure efficient training with performance guarantees. While
convexity is damaged due to the multiplication of weights as well as non-linear activation functions,
we manage to decompose the neural network into building blocks, where the quasiconvexity is thor-
oughly studied. In the building block, we find that the multiplication of ReLU output is quasiconcave
over network weights. To preserve the property of quasiconcavity when such building blocks are
integrated into a general network, we design minimization pooling layers. The proposed Quasi-
Convex shallow Neural Network (QCNN), can be equivalently trained via solving convex feasibility
problems iteratively. With the quasiconvex structure, QCNN allows for efficient training with the-
oretical guarantees. We verify the proposed QCNN using several common machine learning tasks.
The quasiconvex structure in QCNN demonstrates even better learning ability than non-convex deep
networks in some tasks.
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