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ABSTRACT

We introduce MediX-R1, an open-ended reinforcement learning (RL) framework
for medical multimodal large language models (MLLMs) that enables clinically
grounded, free-form answers beyond multiple-choice formats. MediX-R1 fine-
tunes a baseline vision–language backbone with Group Relative Policy Optimiza-
tion (GRPO) and a composite reward tailored for medical reasoning: an LLM-
based accuracy reward that judges semantic correctness with a strict YES/NO de-
cision, a medical embedding–based semantic reward to capture paraphrases and
terminology variants, and lightweight format and modality rewards that enforce
interpretable reasoning and modality recognition. This multi-signal design pro-
vides stable, informative feedback for open-ended outputs where traditional veri-
fiable or MCQ-only rewards fall short. To measure progress, we propose a unified
evaluation framework for both text-only and image+text tasks that uses an LLM-
as-judge in place of brittle string-overlap metrics, capturing semantic correctness,
reasoning, and contextual alignment. Despite using only ∼ 50K instruction exam-
ples, MediX-R1 achieves excellent results across standard medical LLM and VLM
benchmarks, outperforming strong open-source baselines and delivering particu-
larly large gains on open-ended clinical tasks (e.g., radiology summarization and
report generation). Our results demonstrate that open-ended RL with comprehen-
sive reward signals and LLM-based evaluation is a practical path toward reliable
medical reasoning in multimodal models. Our trained models, curated datasets
and source code will be publicly released.

1 INTRODUCTION

Large medical language and vision–language models are increasingly deployed for clinical question
answering, triage support, report drafting, and education (Chen et al., 2024a; Sellergren et al., 2025;
Pieri et al., 2024). Many of these tasks are inherently open-ended: clinicians expect concise but
free-form answers that can flexibly incorporate context, uncertainty, and multimodal evidence. How-
ever, most training and evaluation pipelines remain tailored to Multiple Choice Questions (MCQ)
or string-matching regimes, which (i) under-reward valid clinical paraphrases, (ii) fail to measure
reasoning quality or modality recognition, and (iii) do not provide reliable signals for reinforcement
learning (RL) in open-ended settings. As a result, models trained only with supervised objectives
or MCQ-style rewards often struggle to produce faithful, interpretable, and robust clinical responses
across diverse modalities.

RL has improved reasoning in domains with verifiable rewards (e.g., math and code) as shown by
DeepSeek models (Shao et al., 2024; Guo et al., 2025), but medical tasks rarely admit executable
checks. Binary exact match is too brittle for clinical phrasing; BLEU/ROUGE can mis-score se-
mantically correct answers; and free-form VLM outputs complicate visual inference. Moreover,
using a single reward signal can induce instability or reward hacking, especially when the signal is
noisy (LLM-as-judge) or overly permissive (embedding similarity). Hence, it is desirable to have
a principled approach for training medical MLLMs with open-ended RL that integrates semantic
correctness with structural and modality constraints, while remaining data- and compute-efficient.

We present MediX-R1, an open-ended medical RL framework that fine-tunes a baseline multimodal
backbone with Group Relative Policy Optimization (GRPO) (Shao et al., 2024) using a composite
reward tailored for clinical reasoning. Our design combines: (1) an LLM-based accuracy reward that
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Model Diverse Medical Single-Stage Interpretable Open-Ended Annotation-Free Composite
Modalities RL Reasoning Responses Reasoning RL Reward

MedVLM-R1 ✗ ✓ ✓ ✗ ✓ ✗
BiMediX2 ✓ ✗ ✗ ✓ ✗ ✗
HuatuoGPT-V ✓ ✗ ✗ ✓ ✗ ✗
MedGemma ✓ ✗ ✓ ✓ ✗ ✗

MediX-R1 ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Model capability comparison. MediX-R1 integrates diverse modalities, interpretable
reasoning, and composite RL rewards, enabling practical clinical use.

enforces a strict YES/NO decision on semantic correctness, (2) a medical embedding–based seman-
tic reward that captures paraphrases and terminology variants, (3) a lightweight format reward that
elicits interpretable reasoning traces, and (4) a modality recognition reward that discourages cross-
modality hallucinations by requiring explicit modality tags. This multi-signal objective stabilizes
optimization and supplies informative feedback where traditional verifiable or MCQ-only rewards
fall short, enabling single-stage, open-ended RL directly on clinical tasks.

Table 1 contrasts MediX-R1 with strong open models across key clinical capabilities. First, on
Diverse Medical Modalities, MediX-R1 supports diverse medical modalities including X-Ray, CT,
MRI, Microscopy/Histopathology, Ultrasound, Fluoroscopy, Endoscopy, Angiography, Mammogra-
phy, Clinical Photography, SPECT (Single Photon Emission Computed Tomography), OCT (Optical
Coherence Tomography), and Fundus imaging, whereas MedVLM-R1 (Pan et al., 2025) is limited
to radiology images. Models like MedGemma (Sellergren et al., 2025), HuatuoGPT-Vision (Chen
et al., 2024b), and BiMediX2 (Mullappilly et al., 2024) provide coverage on clinical modalities but
they require extensive multi-stage training. On Single-Stage RL, most baselines rely on multi-stage
pipelines (pretraining → SFT → RL), whereas MediX-R1 is trained end-to-end with a single GRPO
stage (Sec. 1) using our composite reward (Sec. 2.3). This simplifies training and, importantly, en-
ables open-ended RL directly (unlike MedVLM-R1), because the LLM-as-judge accuracy signal
and medical embeddings provide reliable feedback beyond MCQ exact match. The composite de-
sign (format + LLM judge + embeddings + modality recognition) stabilizes optimization and reduces
reward hacking (Fig. 3), translating into the best average performance in Table 2. For Interpretable
Reasoning, MediX-R1 emits explicit reasoning traces enclosed in <think>...</think>, enforced
by a format reward, making the decision path auditable. Several baselines do not reliably produce
structured clinical rationales. While multiple models support Open-Ended Responses, MediX-R1 is
explicitly optimized for free-form clinical answering with modality recognition, which curbs cross-
modality hallucinations and improves VLM robustness. Finally, MediX-R1 achieves Annotation-
Free Reasoning: it does not require human-curated rationales or verified chain-of-thought. The
GRPO rewards operate on the final answer only (via LLM judge and embeddings), significantly
lowering data curation cost while still encouraging faithful, interpretable reasoning. Together, these
properties explain the consistent gains across both text-only and image+text benchmarks and the
practical advantages of MediX-R1 for clinical use.

To measure progress, we introduce a unified, three-stage LLM-as-judge evaluation framework that
supports both text-only and image+text tasks under a common protocol. By replacing brittle string-
overlap metrics with instruction-tuned judges served via vLLM (Kwon et al., 2023), our evaluation
captures semantic correctness, reasoning adequacy, and contextual alignment, and scales from short-
form QA to long-form report generation. This reduces evaluation–clinical utility mismatch. Despite
using only ∼50K instruction examples, MediX-R1 achieves strong results across diverse medical
LLM and VLM benchmarks. We find that composite rewards not only improve accuracy but also
mitigate reward hacking and reduce volatility, yielding stable training and interpretable outputs.
Compared to open-source medical models (e.g., BiMediX2, MedGemma, HuatuoGPT-V, MedVLM-
R1), MediX-R1 combines broad modality coverage with single-stage RL and structured reasoning,
offering a practical path toward reliable clinical answering at test time.

Contributions (i) We introduce open-ended medical reinforcement learning by extending GRPO
with tailored rewards for clinical reasoning. (ii) We design a composite reward with LLM-based
accuracy and medical semantic signals that for the first time enables open-ended responses with
GRPO in the medical domain and stabilizes training. (iii) We propose a three-stage LLM-as-judge
evaluation framework that unifies benchmarking for both LLM (text-only) and VLM (image+text)
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think

Does the patient have brain tumor?

The image appears to be a T2-weighted MRI scan of the brain. 
The presence of a mass with a well-defined margin, along with 
surrounding edema, could suggest the presence of a brain 
tumor. However, further imaging with contrast and a detailed 
clinical history would be necessary for a definitive diagnosis.

GRPO
Reinforcement Learning

modality

answer

<MRI_SCAN>

Yes, the patient may have a brain tumor.

Embedding
Reward

LLM
Reward

Modality 
Reward

Format 
Reward

think

answer

MRI

XRAY

CT

Figure 1: MediX-R1: Overall Architecture The Medix-R1 reinforcement learning framework for
open-ended medical reasoning. An input of a medical image and a natural language question is
processed by the Qwen2.5-VL (7B) model. The model’s policy is trained using Group Relative Pol-
icy Optimization (GRPO), which leverages a multi-faceted reward signal. This reward is composed
of: a) an LLM-based reward for evaluating the overall quality and correctness of the output; b) an
embedding-based reward to ensure semantic alignment; c) a format reward to enforce the desired
output structure (e.g., < think > and < answer > blocks); and d) a modality reward to ensure the
response is grounded in the specified imaging modality. This reward-guided approach encourages
the model to generate accurate and interpretable reasoning paths.

tasks in the medical setting. (iv) MediX-R1 achieves excellent LLM and VLM results with a single-
stage RL recipe using ∼50K instructions, validated through both LLM-as-judge and human expert
evaluations. (v) Finally, we demonstrate the effectiveness of the proposed composite reward on RL
algorithms beyond GRPO, achieving consistent performance gains with DAPO (Yu et al., 2025)
and GSPO (Zheng et al., 2025a). Moreover, we have conducted experiments on different baseline
VLMs, including Qwen2.5-VL, Qwen3-VL (Team, 2025), and SmolVLM2 (Marafioti et al., 2025),
and achieved consistent performance gains across all these backbones.

2 OPEN ENDED MEDICAL REINFORCEMENT LEARNING

2.1 OVERALL ARCHITECTURE

MediX-R1 fine-tunes a baseline multimodal backbone (Qwen2.5-VL) for open-ended medical rea-
soning using RL. Given an image I and question q, the vision encoder produces visual tokens that
are fused with text tokens and fed to the LLM policy πθ. The model generates structured outputs of
the form:

[modality tag]︸ ︷︷ ︸
optional

⟨think⟩free-form clinical reasoning⟨/think⟩ ⟨answer⟩final concise answer⟨/answer⟩.

We train πθ with Group Relative Policy Optimization (GRPO), using a composite reward that
evaluates correctness, semantic agreement, formatting, and modality recognition.

2.2 GRPO WITH MULTI-SIGNAL REWARDS

Group Relative Policy Optimization (GRPO): To encourage robust, interpretable responses, we
employ GRPO (Shao et al., 2024), an RL algorithm that extends PPO by focusing on a group-relative
advantage instead of a learned value function. Concretely, at each training step:

1. We sample G candidate outputs {oi}Gi=1 from πθold given input v (image–text prompt)
drawn from P (V).

2. We compute a reward ri for each output using our reward function (Sec. 2.3). Based on ri
we calculate a group-relative, standardized advantage

Ai =
ri −mean({rj}Gj=1)

std({rj}Gj=1)
.

A reward above the group average is advantaged and further incentivizes the model.

3
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3. The policy πθ is updated by maximizing JGRPO, which applies PPO-style clipping on the
relative likelihood ratio and a KL penalty to a fixed reference policy for stability:

JGRPO(θ) = Ev∼P (V)E{oi}G
i=1∼πθold

(·|v)

1

G

G∑
i=1

[
min

(
rratio
i Ai, clip

(
rratio
i , 1± ϵ

)
Ai

)
−βDKL (πθ||πref )

] (1)

with rratio
i = πθ(oi|v)

πθold (oi|v)
. The KL term regularizes deviations from a reference model πref

(the initial checkpoint). Hyperparameters ϵ, β ≥ 0 control clipping and regularization
strengths.

Notation and variables: Let v denote the joint input (image I and text q) for one prompt, and let
P (V) be the data distribution over such inputs. For each v we sample a group of G candidate com-
pletions {oi}Gi=1. The current policy is πθ with parameters θ, while πθold is a frozen snapshot used
to compute likelihood ratios, and πref is a fixed reference policy (e.g., the initial checkpoint) used
for KL regularization. Each completion oi receives a scalar reward ri ∈ [0, 1] from Sec. 2.3. The
group statistics mean({rj}Gj=1) and std({rj}Gj=1) define the standardized group-relative advantage

Ai =
ri−mean({rj})

std({rj}) , where higher-than-average rewards yield positive Ai. The likelihood ratio is

rratio
i = πθ(oi|v)

πθold (oi|v)
and is stabilized by clip(x, 1 ± ϵ), which clamps x to [1 − ϵ, 1 + ϵ] for ϵ > 0.

The regularizer DKL(πθ ∥πref) is the forward KL divergence computed token-wise over outputs and
averaged, scaled by β ≥ 0. Expectations E[·] are taken over inputs v and sampled groups {oi} and
are implemented as minibatch averages in practice.

2.3 REWARD DESIGN

We define a composite reward

r = wfmt Rformat + wllm Rllm + wemb Rembed + wmod Rmodality,

with default weights chosen to emphasize correctness while preserving structure: wfmt=0.10,
wllm=0.5175, wemb=0.3375, wmod=0.045 (from an equivalent formulation with a format weight
and normalized non-format weights; see implementation). Each component is bounded in [0, 1].

Why this enables open-ended medical RL. Unlike prior RL setups that are limited to verifiable sig-
nals or MCQ-style accuracy (e.g., exact match, executable or rule-based graders), our LLM-based
accuracy reward Rllm and embedding-based semantic reward Rembed provide reliable feedback for
free-form, clinically grounded answers. The LLM-as-judge converts semantic correctness into a
robust YES/NO decision under paraphrase and clinical phrasing, while medical-domain embed-
dings supply a complementary content-alignment signal. This dual signal makes GRPO viable for
open-ended medical reasoning; the format (Rformat) and modality (Rmodality) rewards act as structural
regularizers, but Rllm and Rembed are the primary drivers of open-ended RL in MediX-R1.

2.3.1 LLM-BASED ACCURACY REWARD (RLLM)

We parse the model output’s final answer between ⟨answer⟩ · · · ⟨/answer⟩ and compare it to the
reference answer using a compact LLM-as-judge prompt that forces a strict YES/NO decision. Con-
cretely, a local vLLM endpoint (e.g., Qwen3-4B-Instruct) returns YES if the candidate semantically
answers the reference, and NO otherwise; we map YES7→ 1, NO 7→ 0. This captures correctness
and robustness to paraphrasing while keeping the signal discrete and stable.

2.3.2 EMBEDDING-BASED SEMANTIC REWARD (REMBED)

To further encourage semantic alignment, we compute cosine similarity between the predicted an-
swer and the reference using a medical embedding model (MedEmbed-large (Balachandran, 2024)).
We convert it to a binary reward via a threshold (default 0.8): Rembed=⊮[cos(epred, eref) ≥ τ ]. This
complements the LLM judge and helps capture terminological variants.
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Evaluation Framework
Three-stage pipeline for assessing medical AI model performance

Stage 1: Generation

Batched inference via vLLM

• Model under test processes input

• Generates structured responses

• Persists full output per sample

EXAMPLE INPUT:

"What does the dark blue color on the
laser speckle contrast analysis perfusion
image represent?"

MODEL OUTPUT:

<MICROSCOPY>
<think>...reasoning...</think>
<answer>
Low blood flow or less perfusion
</answer>

Stage 2: Evaluation

LLM-as-judge (Qwen3-14B)

• BASE template for QA/MCQ

• MIMIC template for reports

• Binary decisions & rubric scores

GROUND TRUTH:

"Low perfusion"

EXTRACTED ANSWER:

"Low blood flow or less perfusion"

JUDGE COMPARISON:

✓ Semantically equivalent
✓ Clinically appropriate

Stage 3: Scoring

Aggregate to dataset metrics

• Mean accuracy for binary eval

• Average rubric scores

• Macro averages across benchmarks

BINARY DECISION:

✓

CORRECT

FINAL SCORE:

1.0

Figure 2: Evaluation Framework. Our three-stage evaluation pipeline: (1) Generation via vLLM
inference on the model under test, (2) Evaluation using LLM-as-judge (Qwen3-14B) with BASE
and MIMIC templates, and (3) Scoring through aggregation of judgment outputs. The framework
supports both binary decisions for QA/MCQ tasks and rubric-based scoring for long-form reports,
ensuring robust evaluation across diverse medical benchmarks.

2.3.3 FORMAT REWARD (RFORMAT)

We enforce structured outputs by matching the regex for the exact pattern
⟨think⟩ · · · ⟨/think⟩ ⟨answer⟩ · · · ⟨/answer⟩, after normalizing stray whitespace around
angle brackets. Outputs that match receive 1, else 0. This stabilizes training and improves
interpretability of the reasoning path.

2.3.4 MODALITY RECOGNITION REWARD (RMODALITY)

We encourage explicit grounding to the imaging modality by requiring the model to emit the pre-
dicted modality tag before the ⟨think⟩ block (case-insensitive). We compare it to the reference
modality tag and assign 1 on match, 0 otherwise. This reduces cross-modality hallucinations (e.g.,
describing CT findings on an X-ray).

3 EVALUATION FRAMEWORK

Our evaluation pipeline has three stages: Generation, Evaluation, and Scoring. We evaluate across
both text-only (LLM) and image+text (VLM) tasks covering QA, MCQ, and long-form report tasks.

Generation. We run batched inference via vLLM on the model under test and persist the full
response per sample. For models that emit structured reasoning, we retain the entire output but,
for scoring, discard internal chains-of-thought by stripping content up to and including the closing
</think>tag, evaluating only the final answer block.

Evaluation: We employ a separate LLM-as-judge, Qwen3-14B (Team, 2025), served with vLLM
for throughput and stability on modest GPUs. Two prompt families are used: a BASE template
(§A.2) for open-ended, one-word, and MCQ-style questions that yields a binary decision, and a
MIMIC template (§A.3) for long-form report generation that scores along clinical criteria. For
example, on a visual question answering item asking “What does the dark blue color on the laser
speckle contrast analysis perfusion image represent?” with ground truth “Low perfusion,” a model
response that includes hidden reasoning and the final answer “Low blood flow or less perfusion” is
judged correct and assigned a score of 1. The judge compares predicted answers against references,
accounting for paraphrase and clinically equivalent phrasing.

Scoring: We aggregate judgment outputs to dataset-level metrics. For binary evaluations, we report
mean accuracy over samples. For long-form, we average the scalar rubric scores across samples,
optionally normalizing for comparability. We also compute macro averages across benchmarks.
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Benchmarks MedVLM-R1 BiMediX2 HuatuoGPT-V MedGemma MediX-R1
MMLU-Clinical 0.540 0.732 0.721 0.708 0.796
MMLU-Bio 0.549 0.792 0.708 0.706 0.826
MMLU-Med 0.451 0.694 0.653 0.605 0.723
MMLU-Genetics 0.560 0.790 0.710 0.820 0.830
MMLU-ProfMed 0.500 0.695 0.625 0.713 0.768
MMLU-Anat 0.519 0.659 0.600 0.556 0.674
MedMCQA 0.408 0.572 0.511 0.570 0.553
MedQA 0.400 0.583 0.534 0.621 0.575
USMLE-SA 0.378 0.591 0.538 0.639 0.617
PubMedQA 0.520 0.520 0.542 0.470 0.534
MIMIC-CXR-Sum 0.704 0.672 0.707 0.692 0.808
SLAKE-VQA 0.434 0.468 0.545 0.678 0.617
RadVQA 0.404 0.530 0.614 0.659 0.581
PathVQA 0.239 0.323 0.374 0.317 0.423
PMC-VQA 0.398 0.482 0.532 0.444 0.511
PMC-VQA-Hard 0.020 0.229 0.261 0.214 0.280
MIMIC-CXR-Gen 0.240 0.124 0.316 0.205 0.254

AVG 0.427 0.556 0.558 0.566 0.610

Table 2: Evaluation Benchmark. The top section lists LLM (text-only) tasks and the bottomlists
VLM (image+text) tasks. Our three-stage evaluation setting evaluates both tasks in a unified frame-
work. MediX-R1 achieves the highest average score across this diverse suite, demonstrating state-
of-the-art performance among open models. Best and second best results are bold and underlined

Why LLM-as-judge (via vLLM): Traditional string-overlap metrics (BLEU, ROUGE, F1) often
under-reward correct, clinically appropriate paraphrases and cannot assess justification quality or
contextual alignment. An LLM judge captures semantic correctness, clinical reasoning, and ad-
herence to task-specific criteria through carefully designed prompts, while vLLM serving ensures
consistent, fast, and reproducible evaluations.

4 EXPERIMENTS AND RESULTS

We evaluate MediX-R1 on a comprehensive suite of medical language and vision-language bench-
marks, covering both text-only (LLM) and image+text (VLM) tasks. The evaluation includes stan-
dard medical QA, multiple-choice, and open-ended report generation, as well as visual question
answering and clinical image interpretation. The datasets used for evaluation are as follows:

LLM (text-only) benchmarks: MMLU-Clinical, MMLU-Bio, MMLU-Med, MMLU-Genetics,
MMLU-ProfMed, MMLU-Anat (Hendrycks et al., 2020), MedMCQA (Pal et al., 2022), MedQA
(Jin et al., 2021), USMLE-SA (Han et al., 2023), PubMedQA (Jin et al., 2019), MIMIC-CXR-
Summarization (Johnson et al., 2016).

VLM (image+text) benchmarks: SLAKE-VQA (Liu et al., 2021), RadVQA (Lau et al., 2018),
PathVQA (He et al., 2020), PMC-VQA (Zhang et al., 2024), PMC-VQA-Hard, MIMIC-CXR-
Report Generation (Johnson et al., 2019).

For each dataset, we follow the evaluation protocol described in the previous section, using LLM-
as-judge scoring for both short-form and long-form responses. Table 2 summarizes the performance
of MediX-R1 (7B) compared to strong medical open-source models, including BiMediX2 (8B),
HuatuoGPT (7B) and MedGemma (4B).

MediX-R1 achieves the highest average score across all benchmarks, outperforming prior models
on both language and vision-language tasks. Notably, it demonstrates strong gains on open-ended
and clinically complex tasks such as MIMIC-CXR summarization and report generation, as well as
robust performance on standard QA and VQA datasets. These results highlight the effectiveness
of our open-ended RL training and reward design, which enable MediX-R1 to generate accurate,
semantically aligned, and clinically grounded responses beyond the capabilities of models trained
only with supervised or MCQ-style objectives. Table 3 compares the performance of MediX-R1
with the baseline Qwen2.5-VL (7B) (Wang et al., 2024) model, highlighting the contributions of
our approach. Our model achieves nearly a 4% absolute improvement over the baseline, thanks to
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Model M-Clin M-Bio M-Med M-Gen M-Prof M-Anat MedMCQA MedQA USMLE Pub CXR-Sum
Qwen2.5-VL 0.792 0.819 0.711 0.800 0.717 0.696 0.557 0.584 0.606 0.336 0.810
MediX-R1 0.796 0.826 0.723 0.830 0.768 0.674 0.553 0.575 0.617 0.534 0.808

Model SLAKE RadVQA PathVQA PMC-VQA PMC-Hard MIMIC-CXR-Gen AVG
Qwen2.5-VL 0.480 0.501 0.253 0.494 0.230 0.299 0.570
MediX-R1 0.617 0.581 0.423 0.511 0.280 0.254 0.610

Table 3: Baseline comparison Qwen2.5-VL vs. MediX-R1 across all benchmarks

the composite reward design. It also outperforms larger baseline VLMs such as Llama3.2-V (11B)
(Dubey et al., 2024), which achieves only an average of 0.59.

Our expanded ablation studies show that the composite reward model generalizes well across RL al-
gorithms (DAPO (Yu et al., 2025): 60.72%, GRPO: 59.61%, GSPO (Zheng et al., 2025a): 59.69%),
outperforming the Qwen2.5-VL baseline (57%). The method also yields consistent gains across
model backbones, improving Qwen3-VL (Team, 2025) by ∼2%, and SmolVLM2 (Marafioti et al.,
2025) by 2.2%, under limited training settings. These results shows that MediX-R1 enhances open
ended medical reasoning ability across backbone models.

4.1 REWARD DESIGN ABLATION

Table 4 compares variants that differ in which non-format signals are active (all settings include the
same Rformat). Using only the embedding reward underperforms on text-only evaluations (0.640) and
is limited on VLM (0.409), suggesting that thresholded cosine similarity alone lacks discriminative
power for nuanced clinical reasoning. Using only the LLM-as-judge improves text-only accuracy
(0.666) but does not help VLM (0.400), indicating the judge alone is insufficient to enforce modality
grounding. All reward design models are compared with checkpoints before reward hacking.

Combining LLM + embedding increases robustness to paraphrase and terminology variants, improv-
ing text-only scores (0.686) and yielding a small VLM lift (0.410). Adding the modality recognition
reward (MediX-R1 composite) produces the largest VLM gain (0.445) while also nudging text-only
performance higher (0.701), yielding the best overall average (0.610). Together with Fig. 3, which
shows reduced volatility and fewer signs of reward hacking, these results indicate that the composite
reward not only improves accuracy but also stabilizes optimization.

Key takeaways: (i) LLM-as-judge is the strongest single signal for text correctness; embeddings
complement it by reducing false negatives from paraphrases.(ii) Modality recognition is critical
for VLM tasks, curbing cross-modality errors and driving the largest image+text gains.(iii) The
full composite (LLM accuracy + embedding semantics + modality recognition, with shared format
control) delivers the best aggregate performance and training stability.

4.2 REWARD HACKING AND MITIGATION

In reinforcement learning, Reward Hacking occurs when a model maximises its reward in unin-
tended ways, often bypassing the true objective. It arises when the policy exploits imperfections in a
single reward signal to earn high scores without producing clinically correct answers. We observed
two concrete modes (examples abbreviated):

Embedding model exploit When using Embedding models like MedEmbed-large (Balachandran,
2024) short or non-semantic tokens can spuriously yield high cosine similarity. For instance, a
candidate that outputs <answer>-</answer> for “What does the white arrow point to in image
B?” received Rembed=1.0 against the ground truth “Renal artery,” despite being incorrect.

LLM judge exploit When using LLMs like Qwen3-4B (Team, 2025) as a rewarder template-
like placeholders can confuse the judge when the reference is provided for compari-
son. E.g., <answer>The largest organ in the picture is [insert your answer
here based on the medical reasoning provided above].</answer> was judged cor-
rect (Rllm=1.0) against the reference “Lung.”

Mitigation in MediX-R1 To curb these failures, MediX-R1 employs a composite reward and in-
put/output constraints: (i) Composite objective: Rllm + Rembed + Rmodality (with shared Rformat)

7
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MediX-R1 LLM RewardLLM + Emdedding Emdedding Reward

Figure 3: Overall validation reward
vs training step across reward de-
signs. Training with individual sig-
nals (LLM-only or embedding-only; all
settings include the same format re-
ward) shows volatility and reward hack-
ing, while LLM+embedding reduces but
does not eliminate instability. MediX-R1
uses a composite reward—LLM-based ac-
curacy, embedding-based semantic align-
ment, and modality recognition (with the
format reward shared across all)—which
stabilizes learning and delivers the highest
final reward and best overall performance.

Evaluations Embedding Reward LLM Reward LLM + Embedding MediX-R1
LLM Evaluations (text only) 0.640 0.666 0.686 0.701
VLM Evaluations (image + text) 0.409 0.400 0.410 0.445
Overall AVG 0.558 0.572 0.589 0.610

Table 4: Reward ablation across validation benchmarks. Using single signals (embedding-only
or LLM-only; all settings share the same format reward) underperforms, especially on VLM tasks.
Combining LLM + embedding improves robustness, and the full MediX-R1 composite (LLM-based
accuracy + embedding-based semantics + modality recognition) achieves the best scores on both
text-only and image+text evaluations, yielding the highest overall average (0.610).

reduces reliance on any single brittle signal and penalizes mismatches in content or modality recog-
nition (Table 4). (ii) Embedding gating: set Rembed=0 for answers below a minimum character/word
length, with high punctuation or non-alphanumeric ratio; strip punctuation before embedding; cal-
ibrate the similarity threshold. (iii) Modality recognition: Rmodality requires a correct modality tag,
curbing visually ungrounded shortcuts that might still fool text-only rewards. (iv) Structural control
and regularization: Rformat enforces parseable outputs; GRPO’s group-relative advantage and a KL
penalty to the reference reduce collapse to degenerate hacks by discouraging outlier behaviors.

Together, these measures mitigate reward hacking and stabilize training, leading to smoother reward
trajectories and higher final performance (see Fig. 3).

4.3 HUMAN EXPERT EVALUATION

To assess the clinical quality of model outputs, we conducted a human expert evaluation using a
blind review setup (See Evaluation Protocol in §A.4). For a randomly selected subset of questions
from our Evaluation benchmark, responses were generated by four models: MediX-R1, Llama3.2-
Vision, MedGemma and HuatuoGPT-Vision. The outputs were anonymized and labeled as Model A,
Model B, Model C and Model D with no identifiers provided to the reviewers. Medical experts were
asked to evaluate the responses against the provided ground truth descriptions for each question.
The evaluation focused on determining which model produced the most accurate, clinically relevant
response along with interpretable reasoning traces.

The results demonstrate a strong preference for MediX-R1, which was selected as the best re-
sponse in 72.7% of the cases. In comparison, Llama3.2-Vision was preferred in 13.6% of the cases,
MedGemma in 9.2% and HuatuoGPT-Vision in 4.5% of the cases. Additional details on human
expert evaluation is available in Sec. §A.4 and Sec. §A.6.

4.4 QUALITATIVE EXAMPLES

Fig. 4 illustrates how MediX-R1’s structured outputs and composite reward translate into clinically
grounded behavior across modalities. Microscopy (top) Given a multi-panel histological image and
the question “Which area is shown in section G of the image?,” the model (i) correctly emits the
modality tag (MICROSCOPY), (ii) provides interpretable reasoning inside <think> that references
recognizable neuroanatomical markers (e.g., optic tract “ot,” superior thalamic nucleus “stm”), stain
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The image appears to be a series of microscopic sections, likely of a developing 
brain, given the presence of labeled structures such as the optic nerve (op.n) and 
other brain regions. Section G shows a cross-section of the brain with the optic 
tract (ot) and the superior thalamic nucleus (stm) visible. The red staining likely 
represents a specific marker or protein, while the blue staining could be a nuclear 
counterstain or a different marker. The presence of these structures suggests that 
this is a histological section, possibly stained with immunofluorescence to highlight 
specific cellular components or proteins.

The area shown in section G is the optic tract.

Which area is shown in section G of the image?

modality

MICROSCOPY

think

answer

The image provided is a posteroanterior (PA) chest X-ray. In a PA view, the heart is 
typically smaller compared to an anteroposterior (AP) view because the heart is 
more directly in the X-ray beam, which can make it appear larger. However, in this 
image, the heart size appears to be within normal limits for a PA view. The heart size 
in a PA view is generally smaller than in an AP view, but the exact comparison would 
require a side-by-side comparison with an AP view for a definitive assessment.

The heart size in this image is smaller than if the image was taken AP

Is the heart size in this image smaller or larger than if the 
image was taken AP?

modality

X_RAY

think

answer

Figure 4: Qualitative examples of MediX-R1. (Top, Microscopy) Correctly identifies the op-
tic tract in section G with interpretable reasoning. (Bottom, X-ray) Explains why heart size ap-
pears smaller in PA vs. AP view. MediX-R1 generates clinically grounded, open-ended answers
across modalities.

patterns, and panel context, and (iii) produces a concise final answer: “the optic tract.” The modality
recognition and format rewards ensure the answer is localized to the requested panel and presented
cleanly in the <answer> block, while the LLM and embedding rewards bias the policy toward
semantically correct identification despite diverse phrasing in the reasoning. X-ray (bottom) For “Is
the heart size in this image smaller or larger than if the image was taken AP?,” the model tags the
modality as X RAY and reasons about projection geometry: PA views reduce cardiac magnification
relative to AP due to a shorter heart-to-detector distance and standard source-to-image distance.
The model explains this in <think> and answers “smaller” in <answer>. This example shows
the model using domain knowledge rather than superficial pattern matching, with the final answer
isolated for scoring (the judge ignores <think> during evaluation).

5 CONCLUSION

We presented MediX-R1, an open-ended reinforcement learning framework for medical multimodal
reasoning that fine-tunes a baseline VLM with GRPO using a composite reward. By coupling an
LLM-as-judge accuracy signal with medical embedding–based semantic alignment, lightweight for-
mat control, and modality recognition, MediX-R1 learns to produce concise, clinically faithful an-
swers with interpretable reasoning traces. A unified vLLM-based evaluation pipeline enables consis-
tent, paraphrase-robust scoring across both text-only and image+text tasks. Empirically, MediX-R1
achieves strong results across diverse medical benchmarks and shows improved stability and resis-
tance to reward hacking compared to single-signal RL variants. Human expert preference studies
further corroborate its clinical answer quality, while qualitative examples illustrate faithful ground-
ing and interpretable reasoning traces. Reward ablations validate that the multi-signal design en-
hances stability and semantic alignment beyond single-signal configurations. Altogether, the frame-
work demonstrates that carefully composed, structure-aware rewards plus standardized LLM-judge
evaluation provide a practical path to scalable and interpretable medical multimodal RL fine-tuning.
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6 SAFETY AND ETHICAL IMPLICATIONS

MediX-R1 is a research prototype and is not intended for clinical or commercial deployment. Its
outputs must not be used for diagnosis, triage, treatment planning, or autonomous decision-making
without licensed medical professional oversight. The model can hallucinate findings, omit critical
differentials, or overstate certainty, and the LLM-as-judge reward may reinforce subtle biases or
false positives. We used only publicly available, de-identified datasets (e.g., MIMIC-CXR, PMC-
derived VQA corpora, pathology and radiology VQA datasets) under their respective licenses; no
protected health information (PHI) or identifiable patient data were introduced. No prospective
human subjects study was conducted, and no individual-level re-identification risk is intended. Still,
aggregation or unintended memorization could pose residual privacy risk; downstream users should
apply auditing methods (e.g., membership inference tests) before redistribution.

Ethical risks include propagation of dataset biases (geography, device type, demographic under-
representation), amplification of health disparities, and overreliance on structured reasoning tags that
may convey misleading confidence. Modality tagging and reasoning traces improve transparency but
do not guarantee factual grounding. We intend to release with a detailed model card, clear usage
restrictions, robust disclosure of limitations, and monitoring for misuse (self-diagnosis, generation
of misleading medical narratives, or adversarial prompting to extract sensitive training artifacts).
Future work should incorporate fairness analyses (e.g., stratified error by sex, age, and ethnicity
where ethically and legally permissible), calibrated uncertainty, bias-aware reward shaping, and
clinician-in-the-loop evaluation. No competing financial or sponsorship conflicts are declared. All
use must comply with applicable regulations and local medical device guidance; any derivative
clinical system would require separate validation, safety assurance, and regulatory review.

7 REPRODUCIBILITY STATEMENT

We will release the end-to-end training and inference code, configuration files, model checkpoints,
curated multimodal + instruction datasets, and all RL/evaluation prompt templates and expert evalu-
ation protocol (Appendix Sec. A) under a CC-BY-NC-SA 4.0 license. A model card and evaluation
harness will reproduce the reported metrics with fixed dependency versions to minimize drift.

Fair use of generative AI: assisted coding tools were employed only for boilerplate scaffolding and
for minor refactors, with all algorithmic logic authored and reviewed manually. Writing support
models were used to refine grammar and style; all technical claims, numerical results, and method-
ological descriptions were verified by the authors. No proprietary clinical data or undisclosed private
model outputs were used. These steps aim to ensure transparency, auditability, and reliable repro-
duction of the published results.
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A APPENDIX

A.1 REINFORCEMENT LEARNING TRAINING PROMPT

The RL training prompt enforces (i) an explicit modality tag, (ii) structured reasoning in
<think>...</think>, and (iii) a concise final answer in <answer>...</answer>. These struc-
tures align with the format reward (Rformat) and modality reward (Rmodality) in our composite objec-
tive. During training, only the <answer> block is graded by the LLM-as-judge (Rllm) and the
embedding-based semantic reward (Rembed); the <think> content is ignored for scoring but im-
proves interpretability.

Key points: - Modality tag must be one of the fixed set and appear before <think>. - The final
decision is evaluated solely from <answer> for Rllm and Rembed. - Structural compliance (tags
present and ordered) is required for Rformat.

Reinforcement Learning Training Prompt

You are a Medical AI Assistant with advanced reasoning capabilities
Your task:
1. First output the image modality tag from this set:

<X_RAY>, <MICROSCOPY>, <CLINICAL_PHOTOGRAPHY>, <CT_SCAN>,
<GRAPHICS>,
<ANGIOGRAPHY>, <PET_SCAN>, <ULTRASOUND>, <MRI_SCAN>,
<FUNDUS_PHOTOGRAPHY>,
<OCT_SCAN>, <ENDOSCOPY>, <MAMMOGRAPHY>, <FLUOROSCOPY>, <OTHER>,
<SPECT>
(Only output the tag, nothing else.)

2. Then output the thinking and medical reasoning process in
<think>...</think> tags.

3. Finally, provide the correct answer inside <answer>...</answer>
tags.

4. Do not include any extra information or text outside of these
tags.

Question:
<image>{{ content | trim }}

A.2 EVALUATION BASE TEMPLATE (SHORT-FORM QA/MCQ)

This judge prompt yields a binary score (0/1) for short-form QA and MCQ-style tasks. It compares
the predicted <answer> against the reference, allowing paraphrases and option-label matches. In-
ference is performed with a separate LLM-as-judge (served via vLLM) to reduce evaluation–training
coupling. We use deterministic settings (e.g., temperature 0) for reproducibility and parse the re-
turned JSON strictly.

Evaluation BASE template Prompt

You are a medical expert.

Your task is to evaluate whether the Predicted Answer correctly
answers the Medical Question, based on the Ground Truth
(Correct Answer) provided.

Question:
{question}

Correct Answer:
{correct_answer}

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Predicted Answer:
{predicted_answer}

Score 1 if the predicted answer matches the correct answer either
fully in text or by indicating the correct option label (e.g.,
"B", "Option B", or a paraphrased version that clearly
identifies the correct choice). Score 0 if the predicted answer
is incorrect or points to the wrong option.

Respond strictly in the following JSON format:

‘‘‘json
{{
"score": <score>
}}
‘‘‘

A.3 EVALUATION TEMPLATE FOR REPORT GENERATION

For long-form outputs (e.g., report generation or summarization), the judge assigns a rubric score in
[0, 5] reflecting clinical accuracy, completeness, and relevance. We request strict JSON for reliable
parsing and average scores across items for dataset-level metrics. Only the model’s final report text is
provided to the judge; any hidden reasoning (e.g., within </think>) is stripped before evaluation.

Evaluation Prompt for Report Generation

You are a medical expert evaluating the clinical accuracy,
completeness, and relevance of a generated medical report or
summary.

Your task is to compare an AI-generated report or summary to a
reference (gold standard) report or summary, based on a
clinical instruction or question. Assess the generated output
on how well it preserves key clinical information, factual
correctness, and clinical reasoning relevant to the task.

Assign a score between 0 and 5 using the following scale:

0 - Completely incorrect: Clinically irrelevant, misleading, or
factually wrong. No meaningful alignment with the instruction
or reference.

1 - Poor match: Barely relevant or mostly incorrect. Contains
significant clinical misinformation or omits nearly all
critical details.

2 - Weak match: Some fragments of relevant content are present, but
major clinical errors or omissions exist. Clinical utility is
low.

3 - Fair match: Contains several relevant points, but includes
notable errors, missing findings, or misinterpretations that
affect clinical reliability.

4 - Good match: Mostly accurate and clinically sound. Minor issues
or missing details, but the overall meaning and purpose are
preserved.
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5 - Perfect or near-perfect match: Clinically accurate, complete,
and faithful to the instruction and reference. No significant
omissions or errors.

Respond only in the following example JSON format:

Example JSON format:
‘‘‘json
{{
"score": <score between 0 and 5>
}}
‘‘‘

Now, evaluate the following:

### Clinical Instruction or Question::
{question}

### Reference Report or Summary:
{correct_answer}

### AI-Generated Report or Summary:
{predicted_answer}

A.4 HUMAN EXPERT COMPARATIVE EVALUATION PROTOCOL

For a sampled set of multimodal questions, four anonymized model outputs (A–D) plus a reference
description are shown; experts pick the single best response based on clinical correctness, relevance
(no hallucinations), and clarity of reasoning. Votes are aggregated into preference percentages re-
ported in the main text.

Evaluation Protocol for Medical Experts

Instructions for Evaluation
Your task is to evaluate the responses provided by three AI models

based on a given medical image description (Ground Truth).
Follow these steps to make your selection:

1) Read the Ground Truth: Carefully review the provided description
of the medical image. This serves as the reference for an
accurate and detailed response.

2) Assess the Model Responses: Examine the three model-generated
responses (Model A, Model B, and Model C, Model D). Compare
their content with the Ground Truth, focusing on the accuracy,
completeness, and relevance of the clinical reasoning

3) Select the Best Response: Choose the model response that best
aligns with the Ground Truth in terms of:

> Clinical Accuracy: Does the response correctly describe the key
findings in the image?

> Reasoning Traces: Does the models reasoning traces correct and
well explained

4) Submit Your Choice: After evaluating the responses, select the
one that provides the most accurate and comprehensive
explanation.
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A.5 QUALITATIVE EXAMPLES FOR REPORT GENERATION TASK

The image provided appears to be a radiograph (X-ray) of the chest. Here is a detailed analysis based on the visible 
features:

General Observations:
- The image is a posterior-anterior (PA) view of the chest, as indicated by the orientation of the spine and the position of 
the heart shadow.
- The patient is likely standing or sitting upright during the scan, as the diaphragm appears to be in a normal position.

Key Features:
1. Bony Structures:
   - The ribs are visible on both sides, and the clavicles are also visible.
   - The spine is well-defined, with the vertebrae appearing intact and without any obvious fractures or dislocations.
   - The scapulae are visible on both sides, and the shoulder joints appear to be in a normal position.

2. Lungs:
   - The lung fields appear to be clear without any visible opacities, masses, or infiltrates.
   - The lung markings are visible and appear to be within normal limits.
   - There is no evidence of pleural effusion or pneumothorax.

3. Heart and Mediastinum:
   - The heart size appears to be within normal limits.
   - The mediastinum is not widened, and there are no visible masses or abnormalities in this region.

4. Diaphragm:
   - The diaphragm appears to be intact and in a normal position.
   - The costophrenic angles (where the diaphragm meets the ribs) appear sharp and clear, indicating no pleural effusion.

Potential Concerns:
- There are no obvious fractures or dislocations in the bony structures.
- The lung fields appear clear, and there are no visible masses or infiltrates.
- The heart size and mediastinum appear normal.
- The diaphragm is intact and in a normal position.

Conclusion:
Based on the radiographic findings, this chest X-ray appears to be within normal limits. There are no immediate 
concerns noted in this image. However, a definitive interpretation should be made by a qualified radiologist who can 
consider the patient's clinical history and symptoms.

If there are any specific symptoms or concerns, it is recommended to consult a healthcare provider for further 
evaluation.

Generate a detailed report based on the scan

think

The image appears to be a chest radiograph (X-ray), likely 
taken in a posterior-anterior (PA) view, as suggested by the 
positioning of the heart and spine. The patient seems to be 
upright during the examination, with the diaphragm in a normal 
position. The bony structures, including the ribs, clavicles, 
scapulae, and vertebrae, are clearly visible and show no 
evidence of fractures, dislocations, or deformities. The lung 
fields appear clear, with no signs of consolidation, masses, or 
abnormal opacities. The lung markings are normal, and there is 
no visible pleural effusion or pneumothorax. The heart size is 
within normal limits, and the mediastinum appears central 
without widening or abnormal contours. The diaphragm and 
costophrenic angles are sharp and well-defined, indicating 
normal lung expansion and no fluid accumulation

Figure 5: MediX-R1 - Report Generation: Case 1

A.6 HUMAN EVALUATION: MODEL REASONING

We extend our human expert study detailed in (Sec. 4.3) to evaluate the reasoning quality of our
MediX-R1 model against MedGemma with the help of medical doctors. Experts assessed outputs
for clinical accuracy, reasoning soundness, and practical usefulness in a medical setting. MediX-
R1’s reasoning was preferred in 74.2% of cases over MedGemma, indicating stronger clinical co-
herence. Furthermore, the study shows that in 92.4% of the cases, the model’s reasoning steps were
rated as acceptable and often comparable to a medical doctor’s thought process, while only 7.6%
of the cases were rated as having poor reasoning quality. Moreover, in fewer than 5% of the cases,
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The image is a radiograph, specifically a chest X-ray, which is used to 
assess the lungs, heart, and mediastinum. The view appears to be 
posteroanterior (PA), as indicated by the relative heart size and 
orientation of the structures. The diaphragm is in a normal position, 
suggesting the patient was upright during the scan.

On inspection, there is increased opacification noted in the right lung 
field, which may represent an abnormal finding. This could be due to 
several potential causes such as infection (pneumonia), pulmonary 
edema, mass lesion, or other infiltrative processes. The left lung field 
appears relatively clear in comparison. The heart size and mediastinum 
are within normal limits, showing no evidence of enlargement or shift. 
The diaphragm is intact with clear costophrenic angles, indicating no 
pleural effusion.

The bony structures, including the ribs, clavicles, and scapulae, are 
visible and intact without evidence of fracture or deformity. Overall, the 
primary observation is the increased opacity in the right lung, which 
warrants further clinical correlation and radiological evaluation to 
determine the underlying cause. A detailed review by a qualified 
radiologist is recommended for confirmation and diagnosis.

The image provided is a chest X-ray. Here is a detailed report based on the visible findings:

General Observations:
- The X-ray is a posteroanterior (PA) view, as indicated by the orientation of the heart and the position of the 
diaphragm.
- The patient's left side is on the right side of the image, and the right side is on the left side of the image, which is 
typical for a PA view.

Lung Fields:
- The lung fields appear to have increased opacification, particularly in the right lung field. This increased opacification 
could be due to several reasons, including but not limited to:
  - Infiltration (e.g., pneumonia, pulmonary edema, or consolidation).
  - Mass lesion.
  - Pleural effusion.
  - Other pathologies such as fibrosis or tumor.
- The left lung field appears relatively clear compared to the right lung field.

Heart:
- The heart size appears to be within normal limits on this view.
- The mediastinum appears to be within normal limits.

Diaphragm:
- The diaphragm appears to be intact and without any obvious abnormalities.
- The costophrenic angles appear clear, which is a normal finding.

Bones:
- The bony structures of the thorax, including the ribs, clavicles, and scapulae, appear intact without any obvious 
fractures or lytic lesions.

Pleural Spaces:
- There appears to be no evidence of pleural effusion on this view.

Summary:
The X-ray shows increased opacification in the right lung field, which could be indicative of a variety of conditions. 
Further clinical correlation with the patient's history, symptoms, and other diagnostic tests (such as a CT scan or 
sputum analysis) would be necessary to determine the exact cause of the opacification. A radiologist's interpretation is 
recommended for a definitive diagnosis.

Recommendations:
- The patient should be evaluated by a healthcare provider for further investigation and management.
- Additional imaging or tests may be required to determine the cause of the opacification in the right lung field.

This report is for informational purposes only and should not be considered a substitute for a professional medical 
opinion.

Generate a detailed report based on the scan

think

Figure 6: MediX-R1 - Report Generation: Case 2

the model produced flawed reasoning despite generating the correct final answer, indicating that
such inconsistencies are rare and that MediX-R1 generally maintains a robust and coherent reason-
ing process. Reviewers comprised five certified medical experts (MBBS/MD) with specialties in
Radiology, General Medicine, and Forensic Medicine, with an inter-rater agreement of 63%.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.7 TRAINING DATA AND MODALITY DISTRIBUTION

We trained MediX-R1 on 51335 multimodal medical instruction samples spanning 16 modality
tags. All samples were drawn from the official train splits of the source datasets: PMC-VQA subset
(Zhang et al., 2024), SLAKE (Liu et al., 2021), RadVQA (Lau et al., 2018), and PathVQA (He et al.,
2020).

Medical Modality Samples
X RAY 5964
MICROSCOPY 16399
CLINICAL PHOTOGRAPHY 8979
CT SCAN 7646
GRAPHICS 2205
ANGIOGRAPHY 522
PET SCAN 406
ULTRASOUND 1227
MRI SCAN 6224
FUNDUS PHOTOGRAPHY 314
OCT SCAN 236
ENDOSCOPY 611
MAMMOGRAPHY 106
FLUOROSCOPY 321
OTHER 64
SPECT 111

Total 51335

Dataset Samples
PMC VQA SUBSET 25000
SLAKE 4919
RAD VQA 1793
PATH 19623

Total 51335

Table 5: Modality Breakdown and Source Dataset composition

A.8 TRAINING CONFIGURATION

We list below the GRPO training configuration used for MediX-R1. Core settings include (i) data
filtering and batching, (ii) actor optimization and rollout sampling, (iii) KL-regularized GRPO
advantage computation, and (iv) trainer settings. We train our models using the EasyR1(Zheng
et al., 2025b) Github Repository. MediX-R1 was trained using 8×A100 (80 GB) Nvidia GPUs for
approximately 25 hours.

Training Configuration

Training Configurations
"data": {
"max_prompt_length": 4352,
"max_response_length": 4096,
"rollout_batch_size": 512,
"val_batch_size": 1024,
"shuffle": true,
"seed": 1,
"min_pixels": 262144,
"max_pixels": 4194304,
"filter_overlong_prompts": true,
"filter_overlong_prompts_workers": 16

},
"worker": {
"hybrid_engine": true,
"actor": {
"strategy": "fsdp",
"global_batch_size": 128,
"micro_batch_size_per_device_for_update": 1,
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"micro_batch_size_per_device_for_experience": 2,
"max_grad_norm": 1.0,
"clip_ratio_low": 0.2,
"clip_ratio_high": 0.3,
"clip_ratio_dual": 3.0,
"loss_avg_mode": "token",
"padding_free": true,
"dynamic_batching": true,
"use_torch_compile": true,
"optim": {
"lr": 1e-6,
"betas": [0.9, 0.999],
"weight_decay": 0.01,
"strategy": "adamw",
"lr_scheduler_type": "constant",
"training_steps": 200

},
"fsdp": {
"enable_full_shard": true,
"enable_rank0_init": true,
"mp_param_dtype": "bf16",
"mp_reduce_dtype": "fp32",
"mp_buffer_dtype": "fp32"

},
"offload": {
"offload_params": true,
"offload_optimizer": true

},
"use_kl_loss": true,
"kl_penalty": "low_var_kl",
"kl_coef": 0.01

},
"rollout": {
"name": "vllm",
"n": 5,
"temperature": 1.0,
"top_p": 1.0,
"seed": 1,
"tensor_parallel_size": 2,
"max_num_batched_tokens": 8448,
"gpu_memory_utilization": 0.6,
"val_override_config": {
"temperature": 0.6,
"top_p": 0.95,
"n": 1

},
"prompt_length": 4352,
"response_length": 4096

}
},
"algorithm": {
"adv_estimator": "grpo",
"gamma": 1.0,
"lam": 1.0,
"use_kl_loss": true,
"kl_penalty": "low_var_kl",
"kl_coef": 0.01,
"kl_type": "fixed",
"kl_target": 0.1,
"kl_horizon": 10000.0

},
"trainer": {
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"total_epochs": 2,
"nnodes": 1,
"n_gpus_per_node": 8,
"val_freq": 5,
"val_before_train": true,
"save_freq": 5,
"save_limit": 3

}

A.9 REWARD FUNCTION SOURCE CODE

Below are the Python implementations of the four reward components used in MediX-R1. Each
function operates on a predicted model output string and a ground truth string containing the modal-
ity tag and reference answer.

Format reward

def format_reward(predict: str) -> float:
idx = predict.find("<think>")
if idx == -1:

return 0.0
predict_new = predict[idx:].strip()
pattern = re.compile(r"<think>.*?</think>\s*<answer>.*?</answer>"

, re.DOTALL)
format_match = re.fullmatch(pattern, predict_new)
return 1.0 if format_match else 0.0

LLM-based accuracy reward

def accuracy_reward_llm(predict: str, ground_truth: str) -> float:
try:

content_match = re.search(r"<answer>(.*?)</answer>", predict,
re.DOTALL)

given_answer = content_match.group(1).strip() if content_match
else predict.strip()

given_answer = given_answer.strip(’.’)
ground_truth = ground_truth.split(’>’, maxsplit=1)[1].strip()
ground_truth = ground_truth.strip(’.’)

if given_answer == ’’ or len(given_answer) == 1:
return 0.0

if given_answer == ground_truth:
return 1.0

llm_score = llm_answer_match(given_answer, ground_truth) #
external helper

return llm_score
except Exception:

return 0.0

Embedding-based semantic reward

def accuracy_reward_embed(predict: str, ground_truth: str, threshold
: float = 0.8) -> float:
try:
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content_match = re.search(r"<answer>(.*?)</answer>", predict,
re.DOTALL)

given_answer = content_match.group(1).strip() if content_match
else predict.strip()

given_answer = given_answer.strip(’.’)
ground_truth = ground_truth.split(’>’, maxsplit=1)[1].strip()
ground_truth = ground_truth.strip(’.’)

if given_answer == ’’ or len(given_answer) == 1:
return 0.0

if given_answer == ground_truth:
return 1.0

embeddings = embed_model.encode([given_answer, ground_truth],
convert_to_tensor=True)

similarity = util.pytorch_cos_sim(embeddings[0], embeddings
[1]).item()

return float(similarity >= threshold)
except Exception:

return 0.0

Modality recognition reward

def modality_reward(predict: str, ground_truth: str) -> float:
idx = predict.find("<think>")
if idx == -1:

return 0.0
predict_new = predict[:idx].strip() # modality tag before <think>
modality = ground_truth.split(’>’, maxsplit=1)[0] + ’>’
return 1.0 if predict_new.upper() == modality.upper() else 0.0

A.10 EVALUATION ON REAL WORLD CLINICAL DATA

To further assess the generalization ability of our model, we conducted additional evaluation on
MedPix 2.0 (Siragusa et al., 2025), a publicly available real-world clinical VQA dataset derived from
the original MedPix (Henigman & Kennedy, 2025) database maintained by the U.S. National Li-
brary of Medicine (NIH). MedPix comprises over 12,000 anonymized, crowdsourced clinical cases
containing medical images and corresponding textual information such as findings, diagnoses, and
treatments. This ensures both reproducibility and compliance with NIH privacy standards.

The evaluation on MedPix 2.0 demonstrates that our model, MediX-R1, consistently outperforms
other medical vision-language models. Specifically, MediX-R1 achieves a score of 51.11%, sur-
passing strong baselines and previous SOTA Medical Models as shown in Table 6. These results
further confirm the robustness and adaptability of MediX-R1 on diverse real-world clinical data,
emphasizing its capability to generalize beyond controlled experimental environments.

Model Score (%)
MedVLM-R1 27.57
MedGemma 43.18
LLaVA-Med 44.29
BiMediX2 46.51
HuatuoGPT 48.81
MediX-R1 (Ours) 51.11

Table 6: Performance comparison on the MedPix 2.0 dataset.
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