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Abstract
The continuous growth in data volume increases the interest in

using peer-to-peer (P2P) systems not only to store static data (i.e.,

immutable data) but also to store and share mutable data – data that

are updated and modified by multiple users. Unfortunately, current

P2P systems are mainly optimized to manage immutable data. Thus,

each modification creates a new copy of the file, which leads to a

high “useless” network usage. Conflict-free Replicated Data Types

(CRDTs) are specific data types built in a way that mutable data can

be managed without the need for consensus-based concurrency

control. A few studies have demonstrated the potential benefits of

integrating CRDTs in the InterPlanetary File System (IPFS), an open-

source widely used P2P content sharing system. However, they have

not been implemented and evaluated in a real IPFS deployment. This

paper tries to fill the gap between theory and practice and provides

a quantitative measurement of the performance of CRDTs in IPFS.

Accordingly, we introduce IM-CRDT, an implementation of CRDTs

in IPFS that focuses on the simple data type (i.e., Set); and carry out

extensive experiments to verify whether CRDTs can efficiently be

utilized in IPFS to handle mutable data. Experiments on Grid’5000

show that IM-CRDT reduces the data transfer of an update by up to

99.96% and the convergence time by 54.6%-62.6%. More importantly,

we find that IM-CRDT can sustain low convergence time under

concurrent updates.

CCS Concepts: • Information systems → Distributed storage;
Data replication tools; • Networks → Network measurement.
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1 Introduction
In current cloud storage services, data are replicated to ensure high

availability in case of failures. Specifically, multiple copies of the

same data are stored in a few machines normally placed in different
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geographical locations, so if a failure occurs data are still accessible

in other replicas. A key question is how to maintain consistency be-

tween all replicas [2, 10]. Most of the current cloud storage systems

use a central server to synchronize replicas. However, this solution

does not scale up with the number of replicas and their frequency of

modification. To eliminate the disadvantages of a central entity that

has to perform the synchronisation and to ensure easy deployment,

and resilience to failures and attacks, alternative solutions, using

Peer-to-Peer (P2P) technologies, were proposed [4].

Meant to be “the storage layer of the decentralized web”, the

InterPlanetary File System (IPFS) [9] is an open-source P2P con-

tent addressed file system. It allows people to share data, either

directly or via programs that use IPFS as a library. In IPFS, data

are immutable by design and modifying an object requires creating

a new modified object. IPFS does not offer support for merging

concurrent changes, i.e., users are not able to update concurrently

the replicas of the same data without losing their modifications.

As stated by the CAP theorem [2], high availability, low latency

and data consistency are difficult to achieve in distributed systems

in the presence of network partitions. In order to ensure high data

availability, consistency is relaxed. Eventual consistency [3, 10] is a

weak consistency model where replicas are allowed to diverge and

they will converge later after the reception of all updates. One of

the main family of replication algorithms for ensuring convergence

under eventual consistency is Conflict-free Replicated Data Types

(CRDTs) [6]. The main idea is to define data structures where paral-

lel modifications are conflict free. CRDTs respect Strong Eventual

Consistency, a property that ensures convergence as soon as ev-

ery replica has integrated the same modifications without further

message exchange among replicas.

Several studies have discussed the feasibility of using CRDTs in

P2P systems, including IPFS. LogootSplit [7] is a sequence CRDT

that was applied for building a P2P web based real-time collabora-

tive editor [11]. In [12], the authors formalised Merkle-CRDTs and

discussed the benefits of integrating them in IPFS. While previous

work evaluated CRDTs in the context of collaborative editing [5],

no implementation and evaluation of CRDTs was done in a real IPFS

deployment. To this end, in an attempt to fill the gap between the-

ory and practice, this paper provides – to the best of our knowledge

– the first quantitative measurement of the performance of CRDTs

in IPFS. Specifically, we introduce IM-CRDT, an implementation

of CRDTs in IPFS that focuses on the simple data type (i.e., Set).

Experiments on Grid’5000 [8] show that IM-CRDT reduces the data

transfer of an update by up to 99.96% and the convergence time by

54.6%-62.6%. More importantly, we find that IM-CRDT can sustain

low convergence time under concurrent updates. To summarize,

we make the following contributions.

https://orcid.org/0009-0004-2689-6017
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• We present an implementation of CRDTs in IPFS named

IM-CRDT, which targets specifically the Set data type.

• We conduct extensive experiments to verify whether CRDTs

can efficiently be used in IPFS to handle mutable data. The

results clearly demonstrate the effectiveness of IM-CRDT

in maintaining low convergence time under concurrent up-

dates.

• We open-sourced IM-CRDT and made all the scripts and ex-

perimental results available at: https://github.com/Mutable-
Data-Over-Peer-to-Peer-Systems/IM-CRDT.

The paper is structured as follows. Section 2 presents a brief

overview of IPFS and CRDTs. Section 3 describes the integration of

CRDTs into IPFS. The performance evaluation of this integration is

presented in section 4. Section 5 concludes the paper and outlines

future work.

2 Background
This section first briefly introduces IPFS, and then presents Merkle-

clocks and CRDTs.

IPFS. IPFS [9] is a P2P version-controlled file system that enables

data sharing among users. IPFS’s protocols define its behavior, such

as how to address data through Content IDentifier (CID), how

to share and store data and how to manage security issues and

replication. A file is presented as a Merkle Directed Acyclic Graph

(Merkle-DAG), where each node refers to a shard of the data. A

user informs other users that it shares a specific file by publishing a

Provider Record on the Distributed Hash Table (DHT) that contains

the link between the file CID and the Peer Identifier. The naming

protocol allows users to share a file that can be modified only by

its creator, hence other peers can only read it. IPFS is efficient and

widely used [14]. However, it is not meant to deal with mutable data

that can be concurrently modified, as each modification requires

creating a whole new file.

Merkle-clocks. In distributed systems, logical clocks are gener-

ally used for ordering events [1]. A logical clock is a structure 𝑐

that associates to every event 𝑒 a value 𝐶 (𝑒) that creates a partial
order respecting the causal order. Merkle-clocks [12] are Merkle-

DAG-based logical clocks where nodes represent events. The order

relation between events is defined by the existence of a path be-

tween nodes.

CRDTs. CRDT is a data structure that ensures Strong Eventual

Consistency without explicit coordination. There are two main

families of CRDTs: state-based and operation-based [6]. They differ

in the way payloads are defined, i.e., how the updates are shared. A

payload under state-based CRDT contains the whole data, while the

payload under operation-based CRDT carries only a single update.

Merkle-CRDTs [12] are based on Merkle-clocks where each node

of the Merkle-DAG refers to CRDT payloads.

3 Integration of CRDTs in IPFS
In this section, we explain howwe implemented the data replication

mechanism and the communication mechanism among the replicas.

We used theGo implementation of IPFS, named kubo
1
, to implement

IPFS as a file sharing system, and used libP2P’s communication

protocols. In our evaluation, we focus on the Set data type. However,

1https://github.com/ipfs/kubo

156 203

982 534468

Refers

Op : 
"add, data1"

Peer : 
P1

DirectDependency :
- 156
- 203

CID : 522522

IPFS

Figure 1. Example of a CRDT DAG

it is important to note that the modules for the definition of Merkle-

CRDT nodes and for Merkle-CRDT merging can be easily extended

to other CRDTs.

3.1 Merkle-CRDT’s Nodes
Nodes of the Merkle-CRDT’s DAG are built to be easily converted

into a file which will can be then shared through IPFS. This is

done by encoding the node’s structure into a JSON file. The file

must contain all the necessary information needed by a peer after

downloading it. A node contains all the CIDs of its direct sons in

the DAG, we refer to them as the direct dependencies. The file also
contains the Peer IDentifier (PID) of the peer that emitted the event,

and the payload of the event it carries, i.e., the data shared by the

event in a CRDT format. Figure 1 shows an operation-based CRDT

DAG with data that was modified five times, once per node. The

root node 522 refers to a file stored in IPFS containing the following

information: the operation of the update, i.e., an 𝑎𝑑𝑑 operation ,

followed by the data added; the peer identifier of the publisher,

𝑃1; the Direct dependencies which include the root nodes that were

known by the publisher 𝑃1 when publishing the 𝑎𝑑𝑑 operation.

3.2 Merkle-CRDT’s DAG
The Merkle DAG is defined by a set of root nodes (that do not have

parents). The data state can be obtained by means of a recursive

traversal of the DAG, starting from these root nodes. Note that when

concurrent updates occur, we can have multiple root nodes. Indeed,

multiple updates can be concurrently done and will therefore have

the same direct dependency. For instance, in Figure 1, before the

creation of the node 522, the Merkle-CRDT’s DAG had two root

nodes: 156 and 203. Once a node is read by IPFS, it is stored locally

in a file. Hence, each node in Merkle-CRDT refers to a local file

containing the updated data.

3.3 Merkle-CRDT’s communication
The communication module among peers was implemented by

means of a publish-subscribe mechanism. A publish-subscribe topic

is created by a specific peer named the bootstrap peer. The boot-

strap peer opens a socket where any peer can connect in order to

join the publish-subscribe topic and subscribe to it. When a peer

applies an update to the data, it creates a file corresponding to the

update’s node. Then the file is added to IPFS and the peer registers

the corresponding CID that will be sent to all other peers through

the publish-subscribe topic. On the receiver side, when a peer re-

ceives a CID from the topic, it saves the CID in a file, so later an

https://github.com/Mutable-Data-Over-Peer-to-Peer-Systems/IM-CRDT
https://github.com/Mutable-Data-Over-Peer-to-Peer-Systems/IM-CRDT
https://github.com/ipfs/kubo
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active loop can read it. If the CID is unknown, it will search for the

corresponding data in IPFS, and write it in a new local file. When

the corresponding data is received, two cases must be handled. If

all the direct dependencies are already known, the node is directly

added to the Merkle-DAG. Otherwise, the system will recursively

download all the dependencies. Such download might introduce

an overhead when the Merkle-DAG becomes large, as confirmed

in [12].

Figure 2 represents an example of an update managed by our

system. The system applies updates through three remote steps,

and a fourth local step. At the beginning, Peer 1 prepares the node’s
information in a file including the performed operation, the peer

creating it, and the CID of the direct dependencies. In step 1, the

updater Peer 1 sends these data to IPFS. IPFS computes the data’s

CID and announces it to the other peers. In step 2, libP2P’s pubsub

protocol is used to send a message containing the node’s CID to the

other peers. In step 3, each peer that receives the CID retrieves the

data from an IPFS provider, stores it in a new local file, and locally

maps this CID to this new file. Two cases must be handled. If direct
dependencies are unknown, they need to be retrieved from the IPFS

network. When retrieving node 156, Peer 3 knows all dependencies,
while Peer 2 needs to retrieve node 534. In step 4, each peer adds

locally the discovered node to its Merkle-DAG. Finally, we can

notice that Peer 2’ Merkle-DAG has two root nodes 794 and 156,

the node 794 representing a concurrent update which has not yet

been sent. When this concurrent update is sent and integrated by

the other peers, the Merkle-DAGs of all peers will converge. Note

that the order of updates’ reception and therefore the order of local

files creation storing these updates are different from one peer to

another. For instance, "F4.json" represents different CIDs in Peer 2
and Peer 3 corresponding to different updates.

The system described in this section shares mutable files over

IPFS by using Merkle-CRDTs and manages concurrency.

4 Evaluation
In this section, we evaluate the performance of integrating simple

string Set CRDTs in IPFS. Our evaluation demonstrates that:

• Compared to the default IPFS implementation, IM-CRDT

improves convergence time and reduces network usage. IM-

CRDT reduces the data transfer of an update by up to 99.96%

and the convergence time by 54.6%-62.6%.

• IM-CRDT can sustain low convergence time under concur-

rent updates. However, sequential downloading becomes a

bottleneck when the update rate is high.

• IM-CRDT does not introduce high overhead (compute time)

when integrating files into Merkle-CRDTs, under concurrent

updates.

4.1 Performance metric
We quantify the feasibility and effectiveness of our system based

on the convergence time, i.e., the time period between an update is

issued and when it is integrated in the Merkle-CRDT DAGs of all

replicas. We denote the time period for an update 𝑥 issued by a peer

𝑝 𝑗 to be successfully received by a peer 𝑝𝑖 as update Latency
𝑝 𝑗→𝑝𝑖

(𝑥).

It is composed of the time required by the publisher to issue the

corresponding file in IPFS (𝑡𝑥
𝑎𝑑𝑑

), the time for transmitting the CID

from the publisher to the receiver (𝑡𝑥
𝑝𝑢𝑏𝑠𝑢𝑏

), the time to retrieve the

IPFS file and unknown dependencies (𝑡𝑥
𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒

), and the time to in-

tegrate the file in the receiver’s local Merkle-CRDT DAG (𝑡𝑥𝑐𝑜𝑚𝑝𝑢𝑡𝑒 ).

update Latency
𝑝 𝑗→𝑝𝑖

(𝑥) can be computed as:

update Latency
𝑝 𝑗→𝑝𝑖

(𝑥) = 𝑡𝑥
𝑎𝑑𝑑

+ 𝑡𝑥
𝑝𝑢𝑏𝑠𝑢𝑏

+ 𝑡𝑥
𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒

+ 𝑡𝑥𝑐𝑜𝑚𝑝𝑢𝑡𝑒

= 𝑡𝑥𝑝𝑖 − 𝑡𝑥𝑝 𝑗

where 𝑡𝑥𝑝 is the time at which the peer 𝑝 creates/receives 𝑥 .

We define the convergence time for an update 𝑥 issued by 𝑝𝑖0 as:

maximum latency(𝑥) = 𝑚𝑎𝑥
1≤𝑖≤𝑛; 𝑖≠𝑖0

(
𝑡𝑥𝑝𝑖 − 𝑡𝑥𝑝𝑖

0

)
= 𝑚𝑎𝑥

1≤𝑖≤𝑛; 𝑖≠𝑖0

(
update Latency

𝑝 𝑗→𝑝𝑖

(𝑥)
)

where (𝑝𝑖 ){0≤𝑖≤𝑛−1}\{𝑖0 } are the peers hosting the replica.

4.2 Compared solutions.
We evaluated two approaches: the default implementation of IPFS,

and IM-CRDT ( InterPlanetary Merkle-CRDT).

• IPFS is used as a baseline approach when updates are issued

sequentially. IPFS sends the whole file to all other peers af-

ter each update. We do not evaluate IPFS under concurrent

updates because this requires to implement a locking mecha-

nism in IPFS which may introduce significant overhead and

scalability limitations.

• IM-CRDT is our implementation which integrates CRDTs

with IPFS. We implemented string Set CRDTs based on the

grow-Only Set structure [6], supporting string addition (Add)
and removal (Remove). When adding a string 𝑥 in the set

𝑆 (𝑆 = (𝑆𝐴𝑑𝑑 , 𝑆𝑅𝑒𝑚𝑜𝑣𝑒 )), the addition operation is applied

𝑆𝐴𝑑𝑑 = 𝑆𝐴𝑑𝑑 ∪ {𝑥}; and when removing a string, the re-

moval operation is applied 𝑆𝑅𝑒𝑚𝑜𝑣𝑒 = 𝑆𝑅𝑒𝑚𝑜𝑣𝑒 ∪ {𝑥}. Grow-
Only Sets maintain Strong Eventual Consistency, ensuring
replicas convergence regardless of the order of execution of

(𝐴𝐷𝐷, 𝑥) and (𝑅𝐸𝑀𝑂𝑉𝐸, 𝑥) operations. We use operation-

based CRDTs, as they can easily manage incremental modi-

fications. A unique identifier is associated to every element

added into the Set.

4.3 Experimental setup

Experimental testbed. Our experiments were conducted on the

French scientific testbed Grid’5000 [8] at the site of Nantes. We use

the econome and ecotype clusters with 66 machines. Each machine

in econome is equipped with 2 Intel Xeon E5-2660 8-core processors,

64 GB of main memory, and one HDD at 7.2k RPM with 2 TB. The

machines in ecotype are equipped with 2 Intel Xeon E5-2630L 10-

core processors, 128 GB of main memory, and one SSD with 400

GB. The machines are connected by 10 Gbps Ethernet network.

The two TORs switches of both clusters are connected with four 40

Gbps links. All machines run 64-bit Debian stretch Linux with GO

1.20.4, IPFS kubo v0.19.0, libP2P v0.26.4 and libP2P-pubsub v0.9.3.

All the experiments were done in isolation on the testbed, with no

interference originated from other users. The results are the mean

of 3 runs.

Deployment. In each experiment, we start by initiating𝑛 nodes/peers

with 𝑛 ∈ {2, 5, 10, 20, 50} nodes/peers. Their clocks are then syn-

chronized using the NTP protocol. We select one peer to act as a

bootstrap peer. We wait for 1 minute (this time is set to 5 minutes
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Figure 2. Updates under IM-CRDT

in the case of 5 replicas) – to make sure that all peers are con-

nected – and then we start sending out the updates. In the case

of sequential updates, we configured the bootstrap peer to send

the updates. And in the case of concurrent updates, the bootstrap

peer and 𝑛𝑝𝑒𝑒𝑟𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 ∈ {1, 4, 9, 19} peers are configured to send

updates. We save the 𝑡𝑥
𝑎𝑑𝑑

in the updating nodes; and the 𝑡𝑥
𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒

and 𝑡𝑥𝑐𝑜𝑚𝑝𝑢𝑡𝑒 in the receiving nodes. For the 𝑡𝑥
𝑝𝑢𝑏𝑠𝑢𝑏

, we compute

it using the following equation:

𝑡𝑥
𝑝𝑢𝑏𝑠𝑢𝑏

= update Latency
𝑝 𝑗→𝑝𝑖

(𝑥) − 𝑡𝑥
𝑎𝑑𝑑

− 𝑡𝑥
𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒

− 𝑡𝑥𝑐𝑜𝑚𝑝𝑢𝑡𝑒

Workload.We start the experiment with a 1𝑀𝐵 file. Then, each

updater sends one update per second. In each update, a unique

string is added. This string is a growing integer signed by the date

and the peer identifier.
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4.4 Results

IM-CRDT vs. IPFS. Figure 3 shows how IM-CRDT compares with

IPFS with respect to convergence time (maximum latency). We

vary the number of replicas from 2 to 50, and the number of up-

dates from 10 to 1000. We can see that IM-CRDT can reduce the

maximum latency by 54.6%-62.6% compared to IPFS, on average.

The reason behind that is the reduction in the retrieval time under

IM-CRDT compared to IPFS, as shown in Figure 4, which is due to

the significant reduction in the size of updates. The average size of

an update is only 350 bytes with IM-CRDT, while it is 1 MB with

IPFS – IPFS sends the whole file to all replicas after each update.

The impact of concurrency in IM-CRDT. Figure 5 shows the
changes in maximum latency of IM-CRDT under concurrent up-

dates. Interestingly, for most cases, IM-CRDT can sustain low max-

imum latency when increasing the number of concurrent updates.

For example, the latency increases by only 6%, from 249 ms to 264

ms when increasing the number of concurrent updates from 1 to 20,

with 10 updates. However, we noticed that the maximum latency

increases significantly, by 133% and 205%, when the number of con-

current updates is set to 20 and the total number of updates is 100

and 1000, respectively. Taking a closer look at the results, Figure 6

shows the breakdown of the different steps for the updates, with
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Figure 5.Maximum latency for concurrent updates using IM-CRDT
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Figure 6. Breakdown of the different steps for the updates in IM-
CRDT with 20 Replicas

20 replicas. We observe that pubsub time is considerably higher

when having 20 concurrent updates. As a reminder, the pubsub

time (𝑡𝑥
𝑝𝑢𝑏𝑠𝑢𝑏

) is the time from when the updater starts sending the

update’s CID to the time when the receivers start downloading the

update. This increase in pubsub time is not caused by libP2P’s pub-

sub mechanism, but it is the result of the sequential downloading

of updates in IPFS. An update takes about 50 − 100 ms so when 20

updates arrive at the same time, it takes more than one second for

the retrieve step to be completed, during which the next batch of

updates should wait.

Overhead of IM-CRDT: Compute time. Figure 7 shows the

compute time when varying the number of concurrent updates.

IM-CRDT introduces a slight increase in the compute time (by up

to 7%), reaching 60.8 𝜇s for 20 updates.

5 Conclusion and Future Work
This paper presents IM-CRDT, an implementation of CRDTs in IPFS

for the Set data type. Our evaluation results show that IM-CRDT can

reduce the amount of data transfer and achieve fast convergence

time. In future work, we plan to evaluate our implementation using

more complex replicated data types including sequences [7] and

relational databases [13]. We also plan to investigate how to handle
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Figure 7. Evolution of compute time when the number of concur-

rent updates grows

efficiently concurrent downloads under a high rate of concurrent

updates.
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