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Abstract

Text-to-image diffusion models have shown great success
in generating high-quality text-guided images. Yet, these
models may still fail to semantically align generated images
with the provided text prompts, leading to problems like
incorrect attribute binding and/or catastrophic object ne-
glect. Given the pervasive object-oriented structure under-
lying text prompts, we introduce a novel object-conditioned
Energy-Based Attention Map Alignment (EBAMA) method
to address the aforementioned problems. We show that
an object-centric attribute binding loss naturally emerges
by approximately maximizing the log-likelihood of a z-
parameterized energy-based model with the help of the neg-
ative sampling technique. We further propose an object-
centric intensity regularizer to prevent excessive shifts of
objects attention towards their attributes. Extensive qual-
itative and quantitative experiments on the AnE benchmark
demonstrate the superior performance of our method over
previous strong counterparts.

1. Introduction

Recently, large-scale text-to-image diffusion models [1, 8,
12, 15, 18, 19] have showcased remarkable capabilities in
producing diverse, imaginative, high-resolution visual con-
tent based on free-form text prompts. Despite their revo-
lutionary progress, however, these models may not consis-
tently capture and convey the full semantic meaning of the
provided text prompts [4, 16]. Some well-known issues in-
clude omission, hallucination, or duplication of details [22],
semantic leakage of attributes between entities [16], and
miscomprehension of intricate textual descriptions [19].

Many previous works have focused on addressing
the semantic misalignment issues, particularly concerning
multiple-object generation and attribute binding. Compos-
able Diffusion (CD) [10] composes multiple output noises
guided by different objects in a text prompt during the

Figure 1. Key observations of the generation process of dif-
fusion models. The given prompt is “a purple crown and a blue
suitcase”. In the left panel, we hypothesize that if the intensity
level of any object in the prompt does not remain high during the
first half of the denoising process, e.g. the crown in SD and SG,
the model would fail to generate the object in the final image. The
middle panel suggests that if the attention map distributions of any
attribute-object pair are not aligned, the model would struggle to
correctly bind attributes to their respective objects, e.g. ‘purple’
and ‘crown’ in SD and AnE. The generated images are displayed
in the right panel. All methods share the same random seed.

generation process. Prompt-to-Prompt (PtP) [6] observes
a strong correlation between cross-attention maps and the
layout of an image. Building on this, Structured Diffusion
(StrD) [5] experiments with averaging attention maps gen-
erated by different noun phrases for the same queried im-
age latent representation. Attend-and-Excite (AnE) [3] pro-
poses a novel approach of maximizing the attention map
scores of object tokens by updating the latent at each sam-
pling step. However, we note that artifacts and incorrect
attribute binding are likely when AnE maximizes the at-
tention weights of object tokens without any concerns on
attributes. In response, SynGen (SG) [17] proposes an
attribute-object pair-centric objective, aiming to minimize



the distribution distance within the pair while maximizing
it from other tokens, based on the assumption that norml-
ized attention maps follow a multinomial distribution. Di-
verging from these methods, Energy-Based Cross Attention
(EBCA) [13] introduces an Energy-Based Model (EBM)
framework [21, 23–25] for queries and keys within cross-
attention mechanisms, proposing updates to text embed-
dings instead of latent noise representations.

A closer look at both the fluctuations of attention intensi-
ties and the attention distributions of attribute-object pairs in
these methods shed light on the root cause of the misalign-
ment issues. As illustrated in Fig. 1, alignment in attribute-
object attention maps (e.g., ‘purple crown’ in SG) encour-
ages attribute binding. However, attention map alignment
alone does not guarantee complete semantic alignment, as
the intensity levels of object attention maps are crucial in
determining the presence of an object in the final image.

Motivated by these key observations, we introduce
a novel object-conditioned Energy-Based Attention Map
Alignment (EBAMA) method to hopefully address both the
incorrect attribute binding and the catastrophic object ne-
glect problems in a unified framework. We summarize our
contributions as follows: i) we introduce a novel object-
conditioned EBAMA method to address both the incorrect
attribute binding and the catastrophic object neglect prob-
lems in text-controlled image generation; and ii) extensive
qualitative and quantitative experiments on the AnE bench-
mark demonstrate the superior performance of our method
over strong previous approaches.

2. Background
For fair comparison with previous methods, we also con-
duct all experiments with open-sourced Stable Diffusion
Models (SD) [18]. In the cross-attention mechanism, K
is the linear projections of Wy , the CLIP-encoded text em-
beddings of text prompt y. Q is the linear projection of the
intermediate image representation parameterized by latent
variables z. Given a set of queries Q and keys K, the (un-
normalized) attention features and (softmax-normalized)
scores between these two matrices are

A =
QKT

√
m

, Ã = softmax
(
QKT

√
m

)
, (1)

where m is the feature dimension. We consider both atten-
tion features and scores for our modeling here, which we
denote as As and Ãs for token s, respectively.

3. Method
Following the pre-processing step in [17], we parse the
prompt using Spacy’s [7] transformer-based dependency
parser to extract the object-oriented structure. We identify a
set S of object tokens s from the prompt, whose tag is either

Figure 2. An overview of our workflow for optimizing diffusion
models. It includes aggregation of attention maps, computation of
object-centric attention loss, and updates to zt.

NOUN (noun) such as ‘backpack’ or PROPN (proper noun)
such as ‘Tesla company’ using the parser; we exclude nouns
that serve as direct modifiers of other nouns. The remaining
modifiers are grouped by their corresponding object tokens,
denoted as the modifier sets for each object token s, i.e.,
M(s). Note thatM(s) = ∅ if there are no modifiers corre-
sponding to the object token s.

3.1. Object-Conditioned Energy-Based Model

We assume that the distribution of the modifier tokens l ∈⋃
sM(s) given the object token s is

pz(l|s) =
1

Z(s)
exp (f(Al, As)) , (2)

where Z(s) =
∑

l exp (f(Al, As)) is the normalizing con-
stant and f is the negative energy function. We choose
f(Al, As) as cosine similarity and consider attention fea-
tures in Eqn. (1) as its input. Eqn. (2) therefore defines a
multinomial token distribution as a z-parameterized condi-
tional energy-based model, where z is the latent variables
of SD. The inference-time optimization over the latent vari-
ables z is then equivalently maximizing the log-likelihood
of this EBM, which increases the probabilities of the syntat-
ically related modifier tokens of the given object s. To be
specific, it can be shown that

∇z log pz(l|s) = ∇zf(Al, As)− Epz(l|s) [∇zf(Al, As)] .
(3)

Since the vocabulary size of modifier tokens can be large in
practice (in the order of 104), we consider resorting to nega-



tive sampling [11] for the approximation of the expectation
term, where we uniformly sample tokens unrelated to the
object token and calculate the Monte Carlo average. This
particular implementation choice of Eqn. (3) then leads to
the object-centric attribute binding loss below.

3.2. Object-Conditioned Energy-Based Attention
Map Alignment

For each object token s ∈ S, we design the following two
components that consist of the object-centric attention loss:

Object-centric attribute binding With the help of nega-
tive sampling, the attribute binding loss is:

L
(s)
b =− 1

|M(s)|
∑

l∈M(s)

f(As, Al)

+
1

N − |M(s)| − 1

∑
l/∈M(s),l ̸=s

f(As, Al), (4)

whose negative gradient w.r.t. z could be seen as the Monte
Carlo approximation of Eqn. (3). The goal of L(s)

b is to:
i) maximize the cosine similarity between the given object
s and its syntactically-related modifier tokens, while ii) en-
forcing the repulsion of grammatically unrelated ones in the
feature space. Note that the loss above only applies to the
cases whereM(s) is a non-empty set. For the case where
M(s) = ∅, only the second term of Eqn. (4) is used.

Object-centric intensity regularizer We observe that the
object-related attention feature can still be overly shifted
when there are multiple modifier tokens in the M(s) or
multiple object tokens in a prompt; this could again poten-
tially leads to the object neglect phenomenon. To address
this issue, we follow [3] and propose an object-centric in-
tensity regularizer to maintain the attention intensity level
of object s:

L(s)
n = −||K(Ãs)||∞, (5)

where K is a 3x3 Gaussian kernel, and || · ||∞ denotes the
maximum value of a vector.

The final object-centric attention loss L is the linear com-
bination of the binding loss and the regularizer, i.e.

L =
∑
s∈S

L(s) =
∑
s∈S

L
(s)
b + λL(s)

n , (6)

where intensity weight λ is a hyper-parameter to specify.
λ > 0 enforces the presence of object s, but excessively
intensified object attention can hinder the attribute binding
performance and lower visual image quality.

3.3. Workflow

Our workflow is illustrated in Fig. 2. To begin, at each
time step t, we aggregate the attention map features denoted
as A at a resolution of 16x16. Subsequently, we calculate
the object-centric attention loss, as described in Eqn. (6).
Finally, we backpropagate the computed loss and update zt
for each time step, following the formula z′t ← zt−α∇ztL,
where α represents the step size.

4. Experiments
We compare our generation results with previous methods
including SD, CD, StrD, EBCA, AnE, and SG.

Datasets The AnE dataset [3] comprises three bench-
marks: Animal-Animal, Animal-Object, and Object-
Object. Each benchmark varies in complexity and incor-
porates a combination of potentially colored animals and
objects. The prompt patterns for these benchmarks include
two unattributed animals, one unattributed animal and one
attributed object, and two attributed objects, respectively.

Metrics Full Sim. is the CLIP [14] cosine similarity score
between the text prompt and the generated image. Further-
more, we assess CLIP similarity for the most neglected ob-
ject independently from the full text by computing the CLIP
similarity scores between each sub-prompt and the gener-
ated image. The smaller score is denoted as Min. Sim.. T-C
Sim. is the average CLIP similarity between the prompt
and all captions generated by a pre-trained BLIP image-
captioning model [9] with the generated image as input. Re-
cent work [2, 26] has found that large Vision-and-Language
Models (VLMs) [9, 14, 20, 27] demonstrate a significant
lack of compositional understanding, failing to reflect hu-
man preferences accurately. We suggest that the develop-
ment of better metrics be a future research direction.

Quantatitive Comparison We generate 64 images for
each prompt using the same seed across all methods and
compute the average score between each prompt and its cor-
responding images. Our method consistently demonstrates
superior performance across all datasets, as shown in Tab.
1. We stress the following advantages of our method: (1)
Our method distinguishes itself from SG by its adaptability
to the Animal-Animal dataset, even when the prompts lack
specific attributes; (2) Our method with λ = 0 surpasses
AnE and SG in all cases, underscoring the effectiveness of
our object-centric attribute binding loss; (3) As the dataset
becomes more complicated, our method with hyper-picked
λ gains a more significant advantage over that with λ = 0.

Qualitative Comparison In Fig. 3, we identify recurrent
failure modes in SG and AnE, attributable to the ineffec-
tiveness of their objective design. AnE frequently strug-



Table 1. Comparison of Full Sim., Min. Sim., and T-C Sim. across different methods on the AnE dataset. Note that the performance of
SG on Animal-Animal is degraded to SD, as the prompts do not contain any attribute-object pairs. The best and second-best performances
are marked in bold numbers and underlines, respectively; tables henceforth follows this format.

Animal-Animal Animal-Object Object-Object

Method Full Sim.↑ Min. Sim.↑ T-C Sim.↑ Full Sim.↑ Min. Sim.↑ T-C Sim.↑ Full Sim.↑ Min. Sim.↑ T-C Sim.↑

SD[18] 0.311 0.213 0.767 0.340 0.246 0.793 0.335 0.235 0.765
CD[10] 0.284 0.232 0.692 0.336 0.252 0.769 0.349 0.265 0.759
StrD[5] 0.306 0.210 0.761 0.336 0.242 0.781 0.332 0.234 0.762
EBCA[13] 0.291 0.215 0.722 0.317 0.229 0.732 0.321 0.231 0.726
AnE[3] 0.332 0.248 0.806 0.353 0.265 0.830 0.360 0.270 0.811
SG[17] 0.311 0.213 0.767 0.355 0.264 0.830 0.355 0.262 0.811

Ours(λ = 0) 0.340 0.255 0.814 0.362 0.271 0.851 0.360 0.270 0.823
Ours 0.340 0.256 0.817 0.362 0.270 0.851 0.366 0.274 0.836

SD
A

nE
SG

O
ur

s

an orange backpack and
a purple car

a red suitcase and a blue apple a purple crown and a blue suitcase

Figure 3. Qualitative comparison on the AnE dataset. Each column shares the same random seed.

gles with incorrect attribute association, whereas SG often
fails to generate multiple objects simultaneously. Yet, our
method attains high-quality semantic alignment with de-
liberately designed optimization objective, exhibiting more
stable performance across different random seed selections.

5. Conclusion

We introduce an object-conditioned EBAMA framework
to address the alignment issues in text-to-image diffusion

models. We propose an object-centric attribute binding loss
that maximizes the log-likelihood of the object-conditioned
EBM in the attention feature space. An intensity regular-
izer is further designed to provide an extra degree of free-
dom balancing the trade-off between correct attribute bind-
ing and the necessary presence of objects. Extensive quan-
titative and qualitative comparisions demonstrate the supe-
riority of our method in aligned text-to-image generation.
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