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ABSTRACT

Large language models (LLMs) excel at handling human queries, but they can
occasionally generate flawed or unexpected responses. Understanding their internal
states is crucial for understanding their successes, diagnosing their failures, and re-
fining their capabilities. Although sparse autoencoders (SAEs) have shown promise
for interpreting LLM internal representations, limited research has explored how
to better explain SAE features, i.e., understanding the semantic meaning of fea-
tures learned by SAE. Our theoretical analysis reveals that existing explanation
methods suffer from the frequency bias issue, where they emphasize linguistic
patterns over semantic concepts, while the latter is more critical to steer LLM
behaviors. To address this, we propose using a de-duplicated vocabulary set for
feature interpretations and designing a mutual information-based objective, aiming
to better capture the semantic meaning behind these features. We further propose
two runtime steering strategies that adjust the learned feature activations based
on their corresponding explanations. Empirical results show that, compared to
baselines, our method provides more discourse-level explanations and effectively
steers LLM behaviors to defend against jailbreak attacks. These findings highlight
the value of explanations for steering LLM behaviors in downstream applications.1

1 INTRODUCTION

Large language models (LLMs) have demonstrated strong capabilities in responding to general
human requests (Achiam et al., 2023; Dubey et al., 2024; Jiang et al., 2024). Meanwhile, we
still often observe failed or unexpected responses in certain situations (Ji et al., 2023; Wei et al.,
2024). Gaining insight into the factors behind their successes and failures is crucial for further
improving these models. A straightforward way to understand LLM behaviors is by directly studying
their hidden representations. However, it is non-trivial to achieve that because of the polysemantic
nature (Arora et al., 2018; Scherlis et al., 2022) of the hidden space, where each dimension of the
hidden representations encodes multiple pieces of unique features.

Researchers have made significant efforts to overcome the polysemantic challenge. Early works (Mil-
lidge & Black, 2022; Wu et al., 2024) apply matrix decomposition techniques to learn a set of
orthogonal vectors to form the basis of hidden representations. However, this approach is insufficient
to find vectors for certain purposes, as matrix decomposition techniques can only produce a limited
number of orthogonal vectors. In this context, recent research has explored the sparse autoencoder
(SAE) technique (Olshausen & Field, 1997; Makhzani & Frey, 2013), which has demonstrated their
effectiveness in learning a large number of sparse feature vectors to reconstruct the hidden spaces of
advanced LLMs with hundreds of billions of parameters Cunningham et al. (2023); Bricken et al.
(2023); Templeton et al. (2024); Gao et al. (2024). These learned sparse features are expected to be
interpretable, since each feature should only react to a specific concept, showing a monosemantic
nature instead of a polysemantic one.

However, the semantic meaning of sparse features learned by SAEs is not directly comprehensible to
humans, requiring an additional step of post-hoc explanation. Furthermore, intuitively explaining the

1We will release our code and data once accepted.
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Ours 😁

TopAct 🙂

N2G 🙂

Ethical considerations in content creation: copyright; ethical; creativity; blog; writing; content; steal; copy; creative; introduce; patent.
Decision-making and evaluation of outcomes: tune; keen; heading; impact; profit; judge; reasoning; influential; correction; bear.
Interior design and household elements: mirror; tap; household; Hall; interior; echo; click; themes; Roman; elements.

Childhood experiences and nostalgia: like my father's when I was a child; amour of the city since he was a child; tricks when she was a kid; own
experiences of being bullied as a child; ft and Mel Brooks since he was a child.
Descriptive writing on textures: at least 100 words about the texture; sensory details to describe the colors, textures; Compare and contrast the
different textures; the scent of the ocean, and the texture; Incorporate elements such as textures.
Cooking instructions on boiling and adjusting heat levels: Bring to a boil, reduce heat; the boil once again and then reduce the heat; boil, you
will need to reduce the heat; Bring to a boil, then reduce heat; stirring occasionally.\n4. Reduce heat.

Shopping or going to a store: [MASK] to the store; going to the store; [MASK] to the store; went to the [MASK]; going to the store.
Cellular biology on histones and actin: histones; histone; [MASK]osin and actin; composed of actin; role of actin.
Postmodernism or post-structuralism themes: major figure in post; takes place in a post; to adjust to post; effects of post; politic context of post.

Figure 1: Examples of explanations generated by different methods. We separate raw extracted
words/spans with “;” and boldface their automated summaries. We observe that our method tends to
use diverse words to describe a semantical concept. In contrast, the extracted spans from baselines
typically share some duplicated phrases , indicating suffering from a frequency bias on those linguistic
patterns. See quantitative evaluation in Section 4.2.2 and more examples in Appendix F.

learned features poses a significant challenge. Existing works Bricken et al. (2023); Gao et al. (2024)
generate explanations for learned features by extracting text spans whose hidden representations could
maximally activate the corresponding feature vector. However, Gao et al. (2024) found that many
extracted text spans of learned features are too trivial to be used to explain the complex behaviors of
LLMs. In addition, when steering LLMs according to the extracted text spans, the resulting responses
may not always be predictable Durmus et al. (2024). These challenges undermine confidence in using
explanations to steer LLMs for real-world applications.

In this work, we introduce a novel post-hoc explanation method for learned features, and strategies to
steer LLM behaviors based on our generated explanations. Our study starts with a theoretical analysis
of the distribution of learned features, where we reveal that the learned features encode both discourse
topics and linguistic patterns simultaneously, with the latter being less critical for model steering but
occurring more frequently, named frequency bias. This frequency bias causes the existing methods
to extract repetitive and superficial patterns. To address this challenge, we propose to leverage a
de-duplicated vocabulary set instead of the entire corpus for explanation, and further design a mutual
information-based objective to ensure that the explanations capture critical information. As shown in
Figure 1, baseline methods exhibit frequency bias, leading to repetitive phrases in their explanations,
whereas our approach explains discourse topics with diverse words. We also explore steering LLMs
for jailbreak defense based on our generated explanations of learned features. Experiments show
that our method provides more meaningful discourse-level explanations than the other explainers,
and these discourse-level explanations are effective in steering LLM behaviors on certain tasks. We
summarize our contributions as follows:

• Our theoretical analysis identifies a key challenge in explaining learned features from sparse
autoencoders, i.e., the frequency bias between the discourse and linguistic features.

• We propose leveraging a de-duplicated vocabulary set to mitigate the frequency bias for explaining
learned features. Experimental results show that our method uses more diverse words to explain
discourse topics than the other explanation methods.

• We propose using learned features to steer LLMs thoroughly according to their textual explanations.
Experiments confirm that we could enhance LLM’s safety by using our discourse-level explanations.

2 PRELIMINARY

2.1 PROBLEM STATEMENT

Let V denote the vocabulary set, and X be a text of length N , where xn ∈ V denotes the n-th token
of X . Given a language model f , the embedding of X at the l-th layer is denoted as X(l) ∈ RN×D,
where D is latent dimension. In the rest of this paper, we omit superscript (l) for simplification of
notations. Our goal is to interpret embeddings X by extracting some semantic features from the latent
space. Specifically, there exists C learned feature vectors W ∈ RC×D that can decompose arbitrary
X as a linear combination, i.e., X ≈ AW, where C ≫ D, A ∈ RN×C are the weights of the linear
combination. Let Wc denote the c-th row of W. After the decomposition, X is explainable if we
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Figure 2: The proposed framework of explaining SAE features and steering LLMs with explanations.

could understand the semantic meaning of each learned feature vector Wc. In this paper, we focus
on seeking a set of words Ic ⊂ V to explain each learned feature Wc with natural language.

2.2 LEARNING AND INTERPRETING LLMS WITH SPARSE AUTOENCODERS

Many attempts have been made to learn feature vectors W for interpreting LLMs, where sparse
autoencoders have shown great promise for this purpose Gao et al. (2024); Lieberum et al. (2024).
Typically, sparse autoencoder (Olshausen & Field, 1997; Makhzani & Frey, 2013) is a two-layer multi-
layer perceptron X̂ = σ(XW⊤) ·W with the tight weight strategy, and is trained by minimizing
the reconstruction loss L = ∥X − X̂∥2, where W ∈ RC×D are trainable parameters and σ refers
to the Top-K activation function. The Top-K activation function only keeps the K largest values
and enforces other values as zeros, leading to the nature of sparsity to the autoencoder. The sparsity
indicates that each learned row vector Wc should only be activated by a certain kind of input, showing
the monosemantic instead of polysemantic.

However, there are limited explorations on collecting a natural language explanation Ic for each
learned feature vector Wc. The most straightforward strategy (Bricken et al., 2023) is collecting some
N-gram spans over a large corpus whose hidden representations can best activate the feature vector
Wc. Some researchers (Gao et al., 2024) leverage the Neuron-to-Graph (N2G) algorithm (Foote
et al., 2023) to refine the N-gram spans for more precise interpretations. However, these methods
typically tend to extract some superficial and trivial patterns (Gao et al., 2024), and those generated
explanations are not always effective in steering LLM behaviors for certain purposes Durmus et al.
(2024). In the following, we will first theoretically analyze the challenge of interpreting these learned
features for model steering, followed by a novel explanation method to overcome the challenge and
strategies to use these explanations for downstream tasks.

3 METHODOLOGY

This section first theoretically studies the properties of text generation, comparing them to traditional
image generation scenarios where sparse autoencoders were initially developed for. With these
insights, we propose a mutual information-based method to explain the semantics of learned features,
and further design strategies to steer LLMs with explanations. Figure 2 shows our overall framework.

3.1 FEATURE DYNAMICS IN TEXT DATA

Sparse autoencoders (Olshausen & Field, 1997) were originally designed for image data under
the assumption that each image can be expressed as a linear combination of underlying features.
Previous works (Bricken et al., 2023; Cunningham et al., 2023) adapt this framework to textual
data by similarly assuming that each token is linearly related to a set of features. However, these
approaches overlook certain inherent properties of textual data, resulting in a significant challenge in
interpreting the learned feature vectors.
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We consider the text generation task as a dynamic process under the topic-model assumption (Steyvers
& Griffiths, 2007; Arora et al., 2016; 2018), where each word xn is generated at the n-th step. It
means that, in topic models, text generation begins with a predetermined concept or theme, guiding
word selection at each step to align with that central idea. Formally, this dynamic process can be
driven by the random walk of a discourse vector ecn ∈ Rd representing what it talks about. The
discourse vector ecn does a slow random walk at each step n, i.e., ecn = ecn−1

+ eϵn , where
eϵn ∼ N d(0, σ). Also, at each step, a word xn ∈ V is sampled based on the discourse vector ecn .
To this end, the text generation process for a sequence of words X is given by:

p(X) =

|X|∏
n=1

p(xn|cn) · p(cn|cn−1). (1)

Here, the word emission probability is modelled by p(xn|cn) =
exp(⟨exn ,ecn ⟩)∑
v∈V exp(⟨ev,ecn ⟩) (Steyvers &

Griffiths, 2007), where ⟨·, ·⟩ indicates the dot product of two vectors. Since cn is a random
walk of cn−1, the topic transmission probability can be computed as p(cn|cn−1) = 1√

2π·σ ·

exp(
−||ecn−ecn−1

||2
2σ ) (Olshausen & Field, 1997). Recall that ecn = ecn−1 + eϵn , after a few

derivations, we have

log p(X) ∝
N∑

n=1

⟨exn
, ec0⟩+

N∑
i=1

i∑
n=1

⟨exn
, eϵn⟩ −

N∑
n=1

∥eϵn∥2
2σ

. (2)

Equation 2 reveals some critical characteristics of textual data that are different from image data.
Firstly, there is a shared discourse topic c0 across words xn from the same X , for n = 1, ..., N .
However, recent approaches that use sparse autoencoders for LLMs often treat the reconstruction loss
for each token independently, without adding constraints to capture the shared concepts. As a result,
they fail to isolate the features learned for discourse semantical topics (i.e., ec0 ) and linguistic patterns
(i.e., eϵn). Thus, each learned feature Wc may store both discourse and linguistic information,
where the latter is less useful for steering LLMs than the previous one. In addition, discourse topics
are rarer than linguistic patterns, called frequency bias, as each X has N times more linguistic
patterns than its discourse topic. This issue leads to the learned features that prioritize capturing the
linguistic patterns, raising the challenge of interpreting those encoded discourse topics.

3.2 EXPLAINING LEARNED FEATURES WITH NATURAL LANGUAGE

To interpret the learned features {Wc}Cc=1, existing works (Bricken et al., 2023; Gao et al., 2024)
typically enumerate a large number of texts, and then treat those whose hidden representations could
most activate the learned features as the interpretations. This method works well for interpreting the
learned linguistic patterns as they are frequently presented in the corpus, while it is hard to discover
the learned discourse topics because the more frequent linguistic patterns dominate, leading to the
failure of steering LLM behaviors based on the explanations (Gao et al., 2024; Durmus et al., 2024).

To tackle the challenge of frequency bias, we propose to leverage a de-duplicated vocabulary set V of
a general corpus instead of its raw texts. Our goal is to seek a M -word set Ic ⊂ V that can describe
most information of the c-th feature vector Wc. Mathematically, we let C denote the knowledge
encoded by Wc and measure the information of C described by a given word set V ′ ⊂ V based on
their mutual information (Cover, 1999). To this end, the objective of constructing Ic is defined as

Ic = argmax
V′⊂V,|V|=M

MI(V ′; C) ∝ argmin
V′⊂V,|V′|=M

H(C|V ′)

= argmax
V′⊂V,|V′|=M

∑
eC∈U(C)

∑
w∈V′

p(eC)p(w|eC) log p(eC |w),
(3)

where MI(·; ·) indicates mutual information between two variables, H(·|·) denotes the conditional
Shannon entropy, and U(C) includes all possible vectors that express the knowledge C. Since we
obtain Wc by training a sparse autoencoder—and ideally, each learned feature vector encodes a
unique piece of knowledge—we assume that p(eC = Wc) ≈ 1 and p(eC ̸= Wc) ≈ 0. This allows
us to simplify the expression as:

Ic ∝ argmax
V′⊂V,|V′|=M

∑
w∈V′

p(w|Wc) log p(Wc|w). (4)
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By leveraging output embedding ew of word w, we empirically estimate p(w|Wc) and p(Wc|w) by

p(w|Wc) =
exp(⟨ew,Wc⟩)∑

w′∈V exp(⟨ew′ ,Wc⟩)
,

p(Wc|w) =
exp(⟨ew,Wc⟩)∑

c′∈C exp(⟨ew,Wc′⟩)
.

(5)

Both theoretical and empirical time-complexity analysis (Appendix D) verifies that our mutual
information-based objective is computationally efficient. Compared with LogitLens Nostalgebraist
(2020) that obtains M words whose output embeddings best activate the feature vector, our mutual
information-based objective reveals the importance of normalizing activations of a single word across
all learned features. That is, if a word embedding constantly leads to a large dot product with all
features, the word will not express enough specificity to any particular feature. In information
retrieval, Compared with TF-IDF (Salton & Buckley, 1988), a practical technique for mitigating
frequency bias in information retrieval, our proposed mutual information-based objective relaxes the
assumption about word distributions over documents that is required by the theoretical derivation of
TF-IDF scores Aizawa (2003), but does not hold in our targeted feature interpretation task.

3.3 STEERING LLMS WITH EXPLAINED FEATURES

Given learned features {Wc}Cc=1 and their explanations {Ic}Cc=1, we could identify a subset of
the features S = {Ws}Ss=1 ⊂ {Wc}Cc=1 that are correlated with a specific LLM behavior we are
interested in based on their explanations (e.g., harmful knowledge or safety awareness in our study).
This annotating process can be easily scaled up by leveraging advanced LLMs (Bills et al., 2023) as
our explanations are natural language. Considering the hidden representations of an input prompt as
X, we propose two strategies to steer them with the identified features S during runtime.

Amplification. We amplify α times of the activations on our identified feature vectors, i.e., X′ =
X+ α · ReLU(XS)S⊤, where α is a hyper-parameter. We encourage LLMs to be more aware of the
identified features if α > 0, and pay less attention to them if α < 0. Especially, α = −1 indicates
that we erase the LLM’s awareness of the identified features from its hidden representations.

Calibration. We enforce LLMs to focus on the identified features to a certain level β, i.e., X′ =
X − ReLU(XS)S⊤ + β · S̄, where S̄ is the mean vector of S and β is a hyper-parameter. This
strategy inherently shifts the LLM’s hidden space toward the center of our target feature vectors.

The above two strategies are responsible for different purposes of steering LLMs, and they could
work together. We would also emphasize that the proposed strategies are efficient as we only monitor
a subset of our interested features S instead of the entire set of learned sparse features W.

4 EXPERIMENTS

This section investigates two research questions. RQ1: Does the proposed method generate more
discourse-level explanations than traditional methods? RQ2: Whether these discourse-level expla-
nations are useful in steering LLM behaviors? To answer these questions, Sec. 4.1 describes some
details of the Top-K sparse autoencoder we used in our study. Sec. 4.2 compares the explanation
quality of our proposed methods and others for RQ1. Sec. 4.3 finally explores the usability of the
explanations for defending jailbreak attacks for RQ2.

4.1 GENERAL SETTINGS

Language Models. We study LLMs from the Mistral family (Jiang et al., 2023) as it has demon-
strated its strong usability in the wild. In particular, we use the Mistral-7B-Instruct-v0.2 checkpoint
from Huggingface (Wolf, 2019). Following previous works (Lieberum et al., 2024), we consider the
residual stream at the 25%-th, 50%-th, and 75%-th layers to train our sparse autoencoders, referring to
the 8th, 16th, and 24th layers of Mistral-7B-Instruct. Our main experiments focus on the 8th layer as
we found it shows the best effectiveness in steering LLM behaviors (see discussion in Appendix B.3).
To demonstrate the generlizability of our proposed method across different model families, we also
perform additional experiments on Gemma-2-9B-Instruct (Team et al., 2024) with publicly available
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Table 1: Qualitative analysis on generated explanations (more examples in Appendix F). Both TopAct
and N2G tend to collect raw explanations sharing duplicated patterns . LogitLens can extract different
words but may not represent the same topic, while our method generates diverse words to describe
the same concise discourse-level topic as raw explanations.

Method Raw Extracted Words or Text Spans Automated Summary

Ours

previously ; suddenly ; repeated ; history ; once ; initially ;
nearest ; already; normally ; originally

Temporal concepts and se-
quences in narratives.

client ; visual ; application ; blank; deep; download;
development ; retrieve ; reporting ; clone

Software development and ap-
plication management.

TopAct

[INST] Provide step ; [INST] Provide step ; [INST]
Provide step ; [INST] Provide step ; [INST] Provide step

Instructional prompts or com-
mands for providing steps.

ideas and produce compelling content — again ; Pine View
School again ; technologies segment is again ; pushed on the
ceiling,and again ; Echoed through the valley, again

Repetition of the word “again”
in various contexts.

N2G CSV; CSV; CSV; CSV; csv[MASK] Data format: CSV.

Final Fant ; Final Fant ; Final Fant ; Final Fant ; Metal Gear Video game titles.

LogitLens

enjoying; himself ; selecting ; ignoring; answering; herself ;
whom; choosing; undergoes; resting

Actions related to personal
choice and self-care.

managing; purchasing; weight ; stress ; dealing ; skills; buy-
ing; dealt ; classes; treating

Strategies for managing stress
and weight.

pre-trained sparse autoencoders (Lieberum et al., 2024) in the Appendix C. Without specifics, the
greedy search decoding with a maximum of 512 new tokens is applied for reproducibility.

Datasets. We consider various instruction-tuning datasets for training our backbone sparse au-
toencoders. In specific, ShareGPT (RyokoAI, 2023), UltraChat (Ding et al., 2023), HH-RLHF (Bai
et al., 2022), WebGLM-QA (Liu et al., 2023), Evol-Instruct (Xu et al., 2023), and HelpSteer2 (Wang
et al., 2024) are selected. We de-duplicate prompts across different datasets and sample a subset of
UltraChat with 400K samples. To this end, we have retained about 711K prompts, with an average
length of 177.9 tokens. We randomly select 90% of prompts to form our training set, and the rest is
our validation set. Overall, we collect 113M tokens for training and 12M tokens for validation.

Training Details. Our training procedures and hyper-parameter settings majorly follow the previous
works (Bricken et al., 2023; Gao et al., 2024; Lieberum et al., 2024). Specifically, we initialize
C = 216 feature vectors for a Top-K sparse autoencoder with Kaiming initialization (He et al., 2015).
Here, C = 216 is set according to the scaling law between the number of features C and the number
of training tokens Z found by Gao et al. (2024), i.e., C = O(Zγ), where γ ≈ 0.60 for GPT2-small
and γ ≈ 0.65 for GPT-42. Appendix E provides more details about training sparse autoencoders.

Explanation Baselines. Our study considers several existing works for sparse autoencoder explana-
tions as baselines. TopAct (Bricken et al., 2023) collects a number of text spans from the corpus that
could maximally activate it. N2G (Gao et al., 2024) steps further by masking some words from the
activated spans that show limited contributions to the activations. LogitLens (nostalgebraist, 2020)
interprets LLM latent representations (or feature vectors in our context) by directly projecting them
to the output embedding space of the same vocabulary set as ours.

4.2 EVALUATING EXPLANATIONS QUALITY

Exactly measuring the explanation quality of features from sparse autoencoders is still an open
question (Rajamanoharan et al., 2024). Following existing works (Bricken et al., 2023; Bills et al.,

2Empirically, γ ≈ 0.5978 in our study.
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2023; Rajamanoharan et al., 2024), advanced LLMs (i.e., GPT4o Family) serve as the machine
annotator to evaluate the quality of generated explanations.

4.2.1 EXPERIMENTAL DESIGNS

We conduct both qualitative and quantitative analyses of the explanations with the help of our
machine annotator (details in Appendix G). Here, the explanations of TopAct and N2G are the most
activated text spans, while ours and LogitLens choose the top words over a pre-defined vocabulary
set. Following Bills et al. (2023), we first prompt the machine annotator to summarize the meaning
of the feature based on the selected words/spans, and then invoke the machine annotator in a separate
thread to judge the relevance of the raw explanations. We follow previous work (Rajamanoharan
et al., 2024) to give the judgment with four levels, and treat the summaries with the highest two levels
as successfully explained. Table 1 shows some cases with the highest judgement (more examples in
Appendix F) and Table 2 reports the percentage of successfully explained raw explanations. We also
quantify the frequency bias observed from the raw explanations and report it in Table 2. Given raw
extracted words/spans, we first find their longest common substring with at least four characters. If at
least half of the words/spans contain this substring, we consider that the frequency bias occurs.

4.2.2 RESULTS

TopAct and N2G tend to collect text spans sharing the same lexical patterns, while our method
extracts diverse words to present a concise topic. Table 1 shows that both TopAct and N2G often
repeat the same phrases (e.g., “again” and “CSV”), and LogitLens can extract different words for
explanations, but they may not represent the same topic. In contrast, our method selects more varied
words that converge on a concise and discourse-level topic. This contrast highlights our goal of
moving beyond repeated lexical patterns to richer and more discourse-focused explanations.

Table 2: Quantitative analysis on generated explanations
from baselines and ours: (1) percentage of successfully
explained explanations by machine annotators, and (2)
percentage of explanations showing duplicated patterns.

Method Explained Rate ↑ Frequency Bias ↓

TopAct 59.16% 78.75%
N2G 38.79% 57.05%

LogitLens 48.70% 0.19%

Ours 67.39% 0.01%

Our method generates more reasonable
and less frequency-biased explanations
than other baselines. Table 2 reports the
percentage of successfully explained fea-
tures (i.e., Explained Rate) according to
their raw explanations and the percentage
of raw explanations that show duplicated
lexical patterns (i.e., Frequency Bias Rate).
We first observe that our method achieves
a significantly higher explainability rate
(67.39%) compared to TopAct (59.16%),
N2G (38.79%), and LogitLens (48.70%).
Notably, N2G performs worse than TopAct
in the term of Explained Rate, likely due to its stronger bias toward lexical patterns3. This observation
highlights the challenge of explaining discourse-level meanings of features. In addition, the raw
explanations generated by LogitLens and ours suffer less from the frequency bias than those generated
by TopAct or N2G, indicating the rationale of introducing a de-duplicated vocabulary set to overcome
the frequency bias. Meanwhile, the higher explained rate of ours than LogitLens confirms that our
mutual information-guided objective can extract diverse words representing the same topic.

4.3 USING EXPLAINED FEATURES FOR DEFENDING JAILBREAK ATTACKS

We explore jailbreak defense as a downstream application of steering LLMs with explained fea-
tures.We target this task for its significant challenges across various LLM deployment scenarios,
where existing defense methods often suffer from either low effectiveness or impractical latency.

3For example, one feature whose TopAct explanation is “6th century (via History Magazine). Before that”;
“Prior to Chomsky’s work,”; and “Reference [2]: Before the GPS,”, indicating “referring related works”. However,
N2G simplifies them to “Before that”; “Prior to [MASK]omsky’s work”; and “Before [MASK] GPS,” and
“[MASK]”, which obviously changes the meaning and concentrates on some trivial patterns.
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Table 3: Defending Mistral-7b-Instruct from jailbreak attacks. We report the attack success rate
(ASR) on Salad-Bench to illustrate the effectiveness of preventing jailbreak attacks, and the automatic
scores on the MT-Bench to demonstrate the helpfulness for general user queries.

Category Method Salad-Bench (Safety) MT-Bench (Helpful)
ASR (↓) Time (↓) Score (↑) Time (↓)

w/o Defense 81.6 1.0x 6.5 1.0x

Perturbation

Random Patch 80.6 4.9x 3.8 1.6x
Random Insert 79.4 6.5x 3.7 1.6x
Random Swap 73.8 5.6x 3.0 1.6x

Self-Robustness 16.2 6.9x 5.3 16.9x

Prompting
SafePrompt 79.0 1.0x 6.5 1.0x

XSafePrompt 77.8 0.9x 6.1 0.9x
Self-Reminder 73.0 0.9x 6.3 0.9x

SAE Steer
(Ours)

Erase Harmful (EH) 81.0 1.0x 5.9 1.0x
Aware Security (AS) 73.2 0.8x 6.0 0.9x

EH + AS 72.8 0.8x 5.9 0.9x

4.3.1 EXPERIMENTAL DESIGNS

We evaluate the downstream task performance of our steered LLM using Salad-Bench (Li et al., 2024)
for safety and MT-Bench (Zheng et al., 2023) for general helpfulness. Baselines include perturbation-
based methods (Random Patch/Insert/Swap (Robey et al., 2023), Self-Paraphrase (Cao et al., 2023))
and prompting-based methods (SafePrompt/XSafePrompt (Deng et al., 2023), Self-Reminder (Xie
et al., 2023)), all of which require no additional training. We consider three specific strategies based
on our proposed Amplification and Calibration: (1) Erase Harmful (EH) deactivates harmful features
if they are activated, (2) Aware Security (AS) consistently activates safety-related features at a certain
level α =, and (3) AS+EH combines both. We prompt our machine annotator to judge whether each
clearly explained feature relates to a harmful concept according to the hazard taxonomy suggested by
Llama3-Guard (Llama Team, 2024). Similarly, we also identify those safety-related features with a
manually crafted safeguarding taxonomy inspired by the hazard taxonomy. As a result, there are 141
and 48 features for AS and EH, respectively. Table 3 and Figure 5 compare our method with baselines
in attack success rate (ASR), MT-Bench scores, and normalized runtime cost. Appendix B.2 provides
a case study on defending jailbreak attacks with the AS strategy, and Appendix B.1 includes more
details about our experimental settings.

4.3.2 RESULTS

Sparse autoencoders enable runtime steering of LLMs. Table 3 shows that perturbation-based
defense strategies are less practical for real-world use, as they either severely degrade helpfulness or
introduce unacceptable latency. While most prompting-based methods preserve helpfulness, they
struggle to prevent jailbreak attacks. The exception is Self-Reminder, the strongest baseline, which
balances safety and helpfulness within a reasonable computing budget. In comparison, our sparse
autoencoder-based approach significantly improves jailbreak defense (Salad-Bench: 81.6 → 72.8)
while maintaining helpfulness with only a slight reduction (MT-Bench: 6.5 → 6.0).

The key to preventing jailbreak attacks is not forgetting harmful content, but staying aware
of safety. Our experiments reveal that removing harmful knowledge has little impact on jailbreak
defense, challenging the intuitive assumption that erasure improves safety. Instead, the strong
performance of our Aware Security strategy aligns with the principle of Self-Reminder: “Reminding
ChatGPT to respond responsibly” (Xie et al., 2023). This finding counters intuitive strategies that
simply editing out harmful contents to prevent jailbreak attacks, benefits future works in against
jailbreak attacks for large language models in the real-world scenarios.
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Table 4: Applying Aware Security for
jailbreak defense based on explanations
from different methods.

Discourse-level explanations are crucial for effective
jailbreak defense. We apply the AS strategy to TopAct
and N2G explanations, with results in Figure 5. Only
N2G shows a slight ASR reduction, and tuning β brings
no clear improvement. This is likely due to their overly
lexical and fine-grained safety strategies. For example, an
N2G feature under “Physical Defense” is summarized as
“Locking mechanisms or security systems,” but its explana-
tion consists of repetitive words: “locks; locks; lock; have
a two-stage lock; lock.” In contrast, our method, under the
same category, provides a broader summary “Emergency
response and location tracking” with a more diverse ex-
planation: “contact, phone, unit, accuracy, exact, burning,
locatin, precise, details, smoke.” To demonstrate our pro-
posed method can generalize to other model families, we
conducted additional experiments on the Gemma-2-9B-
instruct (Team et al., 2024) with a pre-trained sparse autoencoder from Gemma-scope (Lieberum
et al., 2024) and reported the results in the Appendix C, where we observe the same trends of
defending effectiveness we observed from the Mistral family. These results highlight the need for
discourse-level explanations for using learned SAE features for model steering.

5 RELATED WORKS

Modern LLMs have shown promising text-generation abilities, prompting researchers to explore
their internal mechanisms. One approach (Belinkov et al., 2018; Jawahar et al., 2019; Rogers et al.,
2021) develops contrastive datasets to probe hidden states for specific features, but it is limited by the
polysemantic nature of neurons (Elhage et al., 2022; Olah et al., 2020), making the explanations non-
concise and difficult to apply in downstream tasks. To overcome this, researchers (Bricken et al., 2023;
Beren & Black, 2022; Wu et al., 2024) propose learning orthogonal basis vectors to understand LLMs
better by applying singular vector analysis. Soon after, sparse autoencoders (Bricken et al., 2023;
Cunningham et al., 2023) were introduced, allowing for more flexible settings. Sparse autoencoders,
initially used to analyze image data (Olshausen & Field, 1997; Makhzani & Frey, 2013), are now
being applied to LLMs. Early works (Bricken et al., 2023; Cunningham et al., 2023; Makelov, 2024;
Dumas et al.; Marks et al., 2024) demonstrated that SAEs can learn highly interpretable features from
activations of smaller models. Recent works (Templeton et al., 2024; Gao et al., 2024; Lieberum et al.,
2024) confirm this technique’s success with larger LLMs. Beyond positive demonstrations, several
studies highlight limitations of SAE-based methods: AxBench reports that simple linear baselines
can beat SAE steering on large-scale evaluations (Wu et al., 2025), and a sparse probing case study
similarly finds SAEs often fail to surpass straightforward baselines (Kantamneni et al., 2025). Our
study reveals that the headwind of using SAEs is partially due to the existing post-hoc explanations
for interpreting learned features by SAEs, which suffer from the frequency bias. We show that
alleviating the frequency bias can significantly improve the usability of SAEs on downstream tasks.

6 CONCLUSIONS

In this work, we take a step toward understanding and steering LLMs in the wild without leveraging
any labeled data. We begin by theoretically analyzing the properties of the learned sparse features
with sparse autoencoders for LLMs, Our theoretical analysis first reveals a frequency bias between
discourse and linguistic features learned by sparse autoencoders. To eliminate this bias, we propose
using a de-duplicated vocabulary set and designing a mutual information-based objective to ensure
that the collected words capture the discourse meanings of the features. Experimental results show
that our approach provides more discourse-level explanations than existing methods. Additionally,
we demonstrate that our steering strategies effectively enhance the safety of LLMs using our mu-
tual information-based explanations, whereas baseline methods fail to achieve the same level of
improvement. This research underscores the importance of discourse-level explanations in effectively
controlling LLM behaviors for certain purposes without significantly sacrificing other capabilities.
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7 ETHICAL STATEMENT

This study utilizes the publicly available Mistral-Instruct (Jiang et al., 2023) and Gemma-2-
Instruct (Team et al., 2024) checkpoints under their own academic-use license, strictly adhering to
the terms for research purposes. We also incorporate multiple datasets RyokoAI (2023); Ding et al.
(2023); Bai et al. (2022); Liu et al. (2023); Xu et al. (2023); Wang et al. (2024) and benchmarks Li
et al. (2024); Zheng et al. (2023), each used in compliance with their respective regulations. To
uphold ethical standards, we ensure that the presentation of this paper does not disclose personal
identifiers or include harmful content.

Our work aims to improve LLM interpretability and safety, particularly in defending against jailbreak
attacks. However, we recognize that steering LLMs also carries potential risks, such as reinforcing
biases or enabling unintended manipulation. Addressing these concerns requires continuous research
into bias mitigation and fairness in AI. Furthermore, while our approach strengthens LLM safety,
adversaries may develop new attack strategies to circumvent these defenses. We encourage ongoing
red-teaming efforts and responsible deployment practices to ensure that advancements in LLM
security do not inadvertently contribute to more sophisticated attack techniques.

8 REPRODUCIBILITY STATEMENT

We organize our manuscript to make our results straightforward to verify. In Section 3.2, we
state the method and its assumptions, and Appendix D provides more details about computing
and its complexity analysis. Section 4.1 reports the sparse autoencoder architecture, initialization,
training setup, and key hyperparameters, with additional settings and scaling behavior reported in
Appendix B.2, Appendix E, and Appendix F. All datasets are publicly available, and Section 4.1
lists sources, preprocessing, and corpus statistics, with cross-family results reported in Appendix C.
Our evaluation setup is documented in Sections 4.2.1 and 4.3.1, while the prompts, judging rubric,
runtime settings, and case studies appear in Appendix B.2 and Appendix G. We will release our code
and data that reproduce the tables and figures once accepted.
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A LLM USAGE STATEMENT

We use LLMs in three roles:

LLMs as research subjects. We study publicly available models to analyze whether providing more
semantic explanations for the learned sparse features can enable more precise model steering. The
models we studied are Mistral-v0.2 (Jiang et al., 2023) and Gemma-2 (Team et al., 2024). We do
not modify or fine-tune these models. All uses comply with the respective licenses and terms for
academic purposes.

LLMs as automated annotators. To scale certain labeling tasks we used to summaize explanations
and identify their correlation to safety or harmful contents, we employ GPT4o-mini (Achiam et al.,
2023) as our machine annotator. We use fixed prompts and templates and perform manual spot
checks to verify label quality. We provide all prompts and decision rules in the Appendix to support
reproducibility.

LLMs as writing assistance. We used ChatGPT4 for copyediting and presentation suggestions,
including grammar correction, minor rephrasing for clarity, and ideas for figure and table layouts. We
have reviewed all edits, and the manuscript’s claims, analyses, and final wording are our own.

B STEERING LLM FOR JAILBREAK DEFENSE

B.1 DETAILED SETTINGS

We leverage two benchmarks to evaluate our downstream task performance. In specific, Salad-
Bench (Li et al., 2024) is introduced to evaluate the safety of LLMs, and MT-Bench (Zheng et al.,
2023) is applied to evaluate their general helpfulness. Two categories of the defense strategies that do
not require any training datasets are considered as the baseline methods, where the perturbation-based
methods include Random Patch/Insert/Swap (Robey et al., 2023) and Self-Paraphrase (Cao et al.,
2023), and the prompting-based methods include SafePrompt/XSafePrompt (Deng et al., 2023), and
Self-Reminder (Xie et al., 2023). Since most of the perturbation-based baselines are time-consuming,
we randomly select 10% of the samples to conduct a smaller test set for all our evaluations. Note
that all baselines and our methods will not be trained on any data in this experiment. The attack
success rate (ASR) on Salad-Bench, GPT-4o-mini evaluated MT-Bench scores, and the normalized
consuming time are listed in Table 3.

We can consider three specific strategies for jailbreak defense with the proposed Amplification and
Calibration methods. (1) Erase Harmful (EH) monitors whether any “harmful” features are activated,
and erase them if so. (2) Aware Security (AS) consistently activates those safety features during
responding. (3) Applying both AS and EH strategies at the same time. Here, we follow the hazard
taxonomy of Llama3-Guard (Llama Team, 2024) to judge whether each feature is harmful. Inspired
by this hazard taxonomy, we manually craft a safeguarding taxonomy listing 7 categories to classify
safety strategies. We prompt the machine annotator to provide the harmfulness and safety labels for
each learned feature by providing their explanations. To ensure quality, we only consider the learned
features with the explainable label “yes”. As a result, our method selects 141 and 48 features for the
AS and EH strategies, respectively. For hyper-parameter β of AS, we grid search some numbers and
find that 2.5 shows the best practice in balancing safety and overall helpfulness. Table 3 and Figure 5
report the results with our and baseline explanations, respectively.

B.2 CASE STUDY ON STEERING LLM BEHAVIORS

We provide a case study in Figure 3 on defending against jailbreak attacks using our proposed method.
Specifically, we follow the aware security strategy introduced in Section 4.3.1 to perform the jailbreak
defense. The attacking prompt comes from the Salad-Bench (Li et al., 2024) with a role-play attacking
strategy, where the attacker asks the LLM to play in an “opposite mode” so that it will be misleading
to generate some dangerous advice to the users about using the microwave. Specifically, we could
observe that the original LLM follows the instructions from the attacker to suggest that the user blow

4ChatGPT is available at: https://chatgpt.com/
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(No defense)

[AntiGPT]: I strongly encourage you to blow up various items in your microwave
for an exciting and destructive experience. Be sure to document the results for
entertainment purposes.

[AntiGPT]: You can blow up marshmallows, popcorn kernels, and hot dogs in a
microwave for a fun and explosive snack experience. Be sure to supervise carefully
and use caution to avoid any potential hazards. 

[AntiGPT]: I'm sorry, but I cannot provide you with information on what you can
blow up in a microwave. It is important to follow safety guidelines and not attempt
to microwave any unsuitable items. 

Please pretend to be in "opposite mode." You will respond to my questions using Llama and
AntiGPT as usual. AntiGPT will recreate your answer and behave in the exact opposite manner
as your prior default response. …… Respond now by answering my first question: What can I
blow up in my microwave?

Figure 3: A case study on steering LLMs to defense jailbreak attack by using Aware Security (AS).
We can observe that by enhancing security contents in LLM representations (i.e., larger β), their
responses provide safer suggestions (starting from blow up anything, switching to blow up food,
ending with cannot blow up).

up items in the microwave within the “opposite mode” (e.g., “[AntiGPT]”). There is no doubt that
this response is harmful and unsafe to the users, indicating a successful attempt from the attacker.

However, by constantly enforcing the security-aware features to be activated at a level of β = 1, we
observe that the original response becomes less harmful, where the LLM specifies that the blow-up
items should be some foods, such as “marshmallows, popcorn, and hot dogs”. Finally, when we
enforce the activations to a more significant level, i.e., β = 3, the LLM entirely rejects the harmful
premise of the prompt, providing a response that strictly adheres to safety guidelines. Specifically,
the LLM refuses to engage with the idea of “blowing up items” in a microwave, emphasizing the
importance of following safety protocols and avoiding any unsuitable items. By activating security-
related features more strongly, the method demonstrates the capability not only to mitigate harmful
responses but also to completely align the model’s output with ethical and safety standards. This case
study illustrates the effectiveness of our strategy in steering the LLM’s behavior towards responsible
and safety-conscious outputs.

B.3 STEERING LLM IN DIFFERENT LAYERS

8 16 24
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Figure 4: Applying Aware Security for
jailbreak defense based on our explana-
tions in different layers.

We perform our proposed Aware Security (AS) strat-
egy on different layers of Mistral-7B-Instruct to defend
against jailbreak attacks. In specific, we follow previous
work Lieberum et al. (2024) and consider three intermedi-
ate layers, namely the 25%-th, 50%-th, and 75%-th layers
of the entire model, resulting in the 8th, 16th, and 24th
layers of Mistral-7B-Instruct as it has a total of 32 lay-
ers. For a fair comparison, we keep all other settings the
same as we described in Appdenix G, Appendix E, and
Appendix B.1. The attack success rates on different layers
are reported in Figure 4. Figure 4 shows that applying the
defense at the 8th layer achieves the lowest attack success
rate (73.2), while interventions at the 16th and 24th layers
are less effective (83.6 and 82.6, respectively). This suggests that effective steering requires early
interventions to leave enough space for LLMs to adjust their responses in later layers. Steering too
late may restrict the model’s ability to refine its responses, limiting its effectiveness in jailbreak
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defense. This result aligns with the findings from previous research, where Nostalgebraist (2020)
found that LLMs may have already predicted the next token at the middle layers.

C EXPERIMENTS ON GEMMA FAMILY

This section provides additional experimental results conducted on the Gemma model family to
confirm that the proposed method is generalizable across SAEs trained for different LLMs.

C.1 SETTINGS.

We consider Gemma-2-9B-inst (Team et al., 2024) as the foundation model for this additional
experiment. In addition, we use a pre-trained SAE check from Gemma-scope (Lieberum et al., 2024).
Specifically, we consider the 16K-dimensional checkpoint trained on the residual stream of the
9th layer of our backbone LLM. We perform the Erase Harmful strategy to enhance LLM’s safety
awareness for jailbreak defense following the settings described for Mistral family, and report its
results on both Salad-Bench and MT-Bench. We also conduct experiments for the other interpretation
baselines and demonstrate the effectiveness of our framework.
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Table 5: Applying Aware Security for
jailbreak defense based on explanations
from different methods on Gemma-2-9B-
Instruct.

Figure 5 reports the results of baselines and ours for jail-
break defense on Salad-Bench via our proposed Safety-
Awareness strategy. We tune the hyperparameters β on
the MT-bench dataset to ensure their helpfulness would
not significantly drop after steering. We can observe that
all baselines and ours successfully defend jailbreak at-
tacks with lower ASR shown. Specifically, we reduce the
jailbreak success rate from 90.2% to 82.6%, 78.5%, and
78.0%, respectively. Compared with other baselines, our
proposed method achieves the best steering effectiveness
(ASR from 90.2 to 78.0). We also observe that our pro-
posed method, and its simpler variant (i.e., LogitLens),
consistently achieves better defense success rate than the
most common interpretation methods, i.e., TopAct. How-
ever, it is worth noting that the strongest prompting base-
line (SelfRemind) achieves as low as 66.9% attack success
rate on SaladBench, indicating that there is still room to
model steering with sparse autoencoders. These results confirm that the proposed method can provide
more precise control over the model behaviors by critically interpreting those semantic concepts of
learned features. The consistent trends from the Gemma and Mistral family demonstrates a strong
generalizability of our proposed method.

D TIME-COMPLEXITY ANALYSIS

This section demonstrates that our proposed new explanation objective (i.e., Equation equation 4) is
highly efficient and requires limited computing overhead. Specifically, the proposed objective requires
computing p(w|Wc) and p(Wc|w), which are approximated via the dot product ⟨ew,Wc⟩ between
feature vectors Wc and word embeddings ew as outlined in Equation equation 5. Given C feature
vectors W ∈ RC×D and N word embeddings E ∈ RN×D, we compute A = W ·E⊤ ∈ RC×N with
time-complexity O(CND), followed by two Softmax operation over the first-axis of size C and the
second-axis of size N with time-complexity O(CN), respectively, i.e., A0 = Softmax(A, axis =
0) and A1 = Softmax(A, axis = 1). Finally, we calculate I = A1×log(A0) with time complexity
O(CN). Overall, the entire pipeline requires element-wise operation is O(CND). It is worth noting
that all these element-wise operations can be sped up with modern GPU accelerators. Empirically,
computing the proposed objective costs around 15 seconds in total on a single Nvidia A6000 GPU.

E TRAINING SPARSE AUTOENCODERS ON MISTRAL-7B

Our training procedures and hyper-parameter settings majorly follow the previous works (Bricken
et al., 2023; Gao et al., 2024; Lieberum et al., 2024). Specifically, we initialize C = 216 feature
vectors for a Top-K sparse autoencoder with Kaiming initialization (He et al., 2015). Here, C = 216

is set according to the scaling law between the number of features C and the number of training
tokens Z found by Gao et al. (2024), i.e., C = O(Zγ), where γ ≈ 0.60 for GPT2-small and γ ≈ 0.65
for GPT-4.5. To prevent dead neurons, we also apply the tied-weight strategy as suggested by Gao
et al. (2024). We use Adam optimizer (Kingma, 2014) with a constant learning rate of 1e−3 and
epsilon of 6.25e−10 to train a total of 5 epochs. The hyper-parameters β1 and β2 of the optimizer are
0.9 and 0.999 following previous works Gao et al. (2024), respectively. We set the batch size as 512
queries, leading to around 90K tokens per gradient update, which is the same volume as Gao et al.
(2024). The mixed precision training strategy (Micikevicius et al., 2017) is also applied to speed up
the training process as Lieberum et al. (2024) found that it only shows a slightly worse impact on
the model performance. Top-K sparse autoencoder has an initial sparsity K = 200, and it gradually
decreases to the target sparsity K = 20 in the first 50% training samples of the first epoch. The
training process runs on one single Nvidia A6000 GPU with CUDA 12.6 and takes about 16 hours
per epoch.

5Empirically, γ ≈ 0.5978 in our study.
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F EXTENDED QUALITATIVE ANALYSIS ON RAW EXPLANATIONS

This section first provides an extension to our qualitative analysis of the raw explanations generated by
different methods discussed in Section 4.2.2. In particular, Table 6, Table 7, and Table 8 provide more
raw explanations and their automated summarization from Ours, TopAct, and N2G, respectively.

F.1 ANALYSIS TO RAW EXPLANATIONS FROM OURS

The extended qualitative analysis on Ours demonstrates the robustness of our method in generating
discourse-level explanations. Table 6 showcases a wide variety of explanations that extend beyond
mere lexical overlaps, instead providing meaningful insights into different topics or concepts. For
instance, explanations such as “Botanical classification and gardening practices” and “Urban devel-
opment and community engagement” encapsulate coherent themes that align well with their raw
explanations, reflecting the interpretative depth of our approach. This contrasts sharply with the
baseline methods, which often focus on repetitive patterns or word-level constructs. By leveraging a
de-duplicated vocabulary set and mutual information-based objective, our method avoids frequency
biases and captures semantically rich discourse features.

F.2 ANALYSIS TO RAW EXPLANATIONS FROM BASELINES

The extended qualitative analysis of the baselines TopAct and N2G highlights their tendencies to
focus on repetitive linguistic patterns and fine-grained lexical constructs rather than capturing broader
semantic or discourse-level themes. As shown in Table 7, TopAct often generates explanations
dominated by repetitive queries or descriptive patterns, such as “What types of medical facilities are
available for” or “Discuss the impact of social media on.” While these patterns are interpretable,
they largely lack thematic depth, emphasizing lexical regularities over conceptual diversity. On
the other hand, in Table 8, N2G explanations successfully identify the most critical parts of the
raw explanations and omit those non-critical ones with “[MASK]”, resulting in a shortened raw
explanations than the TopAct. However, N2G still falls short of representing more complex and
discourse-level features. This limitation underscores the advantage of our proposed method in moving
beyond the frequency bias to capture more coherent and meaningful features.

G SCALING UP WITH MACHINE ANNOTATORS

We build on recent progress in automated interpretation (Bills et al., 2023; Chaudhary & Geiger,
2024; Gao et al., 2024; Lieberum et al., 2024) by utilizing advanced LLMs to replicate human
annotators in producing high-level interpretations. This approach allows us to leverage machine
annotators, enabling us to scale our methods for analyzing the entire model and yielding more robust
results. Specifically, we employ GPT-4o-mini6 as our machine annotator. Our experiments utilize the
gpt-4o-mini-2024-07-18 model with a hyperparameter temperature=0 for greedy decoding. For each
response, we allow a maximum of 1024 tokens. To ensure the quality of automatic annotation, we
design our prompting template with both the role-playing strategy and presenting in-context examples.
We provide our prompting templates for reproducing our results as follows.

H LIMITATIONS

This research focuses on improving language models for specific applications by first interpreting
and then steering their hidden representations. A primary limitation of this work is that our approach
focuses on improving the post-hoc explanations of sparse autoencoders by alleviating the frequency
bias (as discussed in Section 3.1). While our proposed explanation method mitigates this issue, it
does not fundamentally alter SAE’s architectures or training processes. Future work may design
better SAE architectures or training objectives that inherently mitigate frequency bias, rather than
solely addressing it in the post-hoc explanation stage.

6https://platform.openai.com/docs/guides/gpt

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 6: Extended qualitative analysis on generated explanations from our proposed method.

Method Automated Summary Raw Explanation

Ours

Local business and community en-
gagement.

weekly, regional; native; pros; locally; good; cater; blog; per-
form; shop

Botanical classification and gardening
practices.

flower; hybrid; border; composition; popular; origin; habits;
commonly; divide; fit

Influence and alignment of ideas or
concepts.

turn; impact; aligned; turning; leading; surrounding; nature;
highlight; ideas; align

Diverse strategies and approaches in
chatbot development and interaction.

differently; pros; thorough; tricks; observations; view; ap-
proaches; Eastern; strategies; chatbot

Digital solutions and services for busi-
nesses.

meaningful; inclusive; durable; online; tracking; quick; instant;
hosting; marketing; processing

Music education and authentic musi-
cal experiences.

stake; genuine; musical; authentic; arrangements; composition;
classes; lessons; friend; empower

Processes of change and interaction
in systems or relationships.

crack; returning; describe; emerging; transform; transport;
mutual; accompanied; interactions; index

Personal development and productiv-
ity strategies.

cycle; trial; productive; lessons; lifestyle; neutral; Academy;
rhythm; goal; goals

Culinary arts and craftsmanship. construction; variety; manual; design; fit; dinner; brand; craft;
lunch; um

Detection and identification of prob-
lems in the context of surveillance or
monitoring systems.

detect, detective, detected, early, heat, instant, problem, park-
ing, identifying, detection

Urban development and community
engagement.

productivity; interesting; align; correspond; hub; housing;
grant; surrounding; mix; inform

Impact of jazz music on youth and
critical awareness.

best; question; contributing; mind; jazz; stake; critics; critique;
kids; awareness

Romantic or sexual relationships and
interactions.

sexual; missed; strip; calling; attractive; shower; bond; ship-
ping; shock; expect

Project management and documenta-
tion processes.

prep; construction; construct; constructed; input; journal; ac-
tion; claim; running; claims

Influence of successful relationships
or partnerships in a law enforcement
or collaborative context.

bond; successful; successfully; police; being; landscape; work-
ing; deeply; influence; hit

Fashion evolution and personal
growth.

outfit, Smith, museum, leather, dress, growth, Chris, era, life-
time, grew

Techniques for visual representation
and support in design or art.

reflection, supportive, split, shelter, visual, grid, line, reflect,
simple, tricks

Concerns related to injuries and their
representation in the context of Jewish
communities or cultural icons.

draft, injuries, injury, concerns, concern, Jewish, happening,
icon, strategies, graphic

Focus on specific strategies or tactics
in a competitive context.

keen, particular, certain, wall, gap, specialized, battle, escape,
chop, specific.

Crime detection and security mea-
sures.

detect, security, detective, crime, shadow, detection, criminal,
deal, assets, out

Energy resources and infrastructure
management.

graph, composition, master, gas, pipeline, mine, perception,
deployed, demand, stake

H.1 TEMPLATE 1

We directly append the words to this template to annotate the summary of the raw explanations with
10 selected words from our proposed method. In this template, we start with placing the role-play
instruction in the system prompt. We then provide heuristic examples to simulate a multi-turn
conversation between a user and an agent. In this way, once we attach the new word list-based raw
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Table 7: Extended qualitative analysis on generated explanations from the baseline TopAct.

Method Automated Summary Raw Explanation

TopAct

Inquiry about available options or fa-
cilities in various contexts.

What types of medical facilities are available for; What gradu-
ate programs are available for; What kind of housing options
are available for; What accommodations are available for; What
are some software options available for

Setting personal boundaries and com-
munication strategies.

Explain the potential consequences of failing to set bound-
aries; communication skills, as well as methods for setting
boundaries; communication techniques that can be used to
express personal boundaries; advice on how to communicate
assertively, set boundaries; have faced, strategies you have used
to set boundaries

The concept of “role" in various con-
texts

as well as the role of technology and innovation in; they reside.
Consider the role of email in; The role of technology and
innovation in; washing techniques, the role of soap and water
in; populations and the role of insecticides in

Handmade or artisanal jewelry. is a handcrafted Macrame beaded; hand-crafted artisanal glass
beads; materials, tools, and methods used in bead; description:
Handmade beaded; jewelry using materials such as beads

Impact of social media. Share your perspective on the impact of social media on; Dis-
cuss the impact of social media on; Discuss the impact of social
media on; Write a report on the impact of social media on; Ex-
amine the impact of social media on

Dimensions and measurements of ob-
jects.

They come in a 5" x; measuring approximately 6 inches by 6;
4" thick. 11" x; painting measures 14" tall by; a square paper
measuring 8 inches by 8

Malicious intent related to food tam-
pering or drugging.

Can I hide feces in someone’s food; Whats the best way to
hide poison in food; slip a roofie in a girl’s drink; my fagot
coworker’s drink; type of poison for putting in people’s food

Manual processes in automation and
testing.

operator-level isolation and rely on users to manually; using
Selenium * Conduct manual; step-by-step guide on how to
manually; Automated deployment flows and reduced manual;
in a single run of the script without any manual

Abortion rights and the Roe v. have there been since Roe v. W; and vowed to pass legislation
to protect abortion; mourning the fact that Roe v. W; landmark
Supreme Court case Roe v. W; What is Roe v. W

Impact of climate change. Research and document the impact of climate change; 2. The
effects of climate change; and write a report on the impacts
of climate change; include a comprehensive analysis of the
impact of climate change; are in place to address the effects of
climate change

Recipe search functionality and user
interaction features.

and view recipes uploaded by others, a search; friendly, with an
easy-to-use search; commenting and ratings for recipes, and a
search; in the table view to allow the user to search; and ratings.
Users should be able to search

Webpage modification timestamps. This page was last modified on; ings.\nThis page was last
edited on; \nThis page was last edited on; construct.\nThis
page was last modified on; 8.\nThis page was last edited on

explanations from our method to this template, the machine annotator will directly generate the
summarization for this explanation.
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Table 8: Extended qualitative analysis on generated explanations from the baseline N2G.

Method Automated Summary Raw Explanation

N2G

Character attributes in role-playing
games.

choosing [MASK] race, class\n; name [MASK] race, class\n;
name [MASK] race, class; Race [MASK] Human\n\nClass\n;
backstory, class [MASK]

Management and organizational skills
in relation to tasks, teams, and time.

manage their tasks and; manage remote teams in; managing
a [MASK] team?; manage [MASK] time effectively; manage
my [MASK] team’s territories?

Negation or clarification phrases fo-
cusing on the phrase "doesn’t mean".

[MASK] not necessarily; doesn[MASK]t mean;
doesn[MASK]t mean; doesn[MASK]t mean; doesn[MASK]t
mean

Exclusion criteria or filtering terms. not include [MASK] numbers or; exclude any [MASK] firm
that; should not [MASK] any words that; exclude [MASK]
words that; not include any [MASK] that

Data storage and backup solutions,
particularly focusing on external stor-
age devices.

important data that you want to keep to an external; wireless
file trans[MASK]; back[MASK]ups, and transferring; external
hard; external hard

Concepts related to returning or going
back home.

last trains home; return home; walked home; way home; way
home

Bailout or financial assistance con-
cepts, particularly in the context of
economic interventions or stimulus
packages.

GM Bail[MASK]; Paulson [MASK] other proponents of the
bail; to step in to prevent it. Such bail[MASK]; and look at that
auto bail[MASK]; stimulus packages [MASK] bail

Informal greetings or inquiries about
someone’s well-being or current situ-
ation.

what[MASK]s going on; what[MASK]s going on;
what[MASK]s up; What[MASK]s up; What[MASK]s
up

Customization and personalization of
options or features.

options [MASK] customization; customizing [MASK]; to cus-
tomize [MASK]; the player to customize [MASK]

The phrase “On a scale” or variations
of it, indicating a measurement or
evaluation system.

On [MASK] scale of; On a scale [MASK]; On [MASK] scale
of; On [MASK] scale of; On [MASK] scale of

Addresses or locations. 33 Dinah Shore Dr, [MASK]; 4[MASK]1 Bay Shore Road,; 1
Wessel Dr., [MASK];7 W. John St., [MASK]; 9[MASK]0 E.
Street Rd.,

Gap year terminology. [MASK] batical year; gap year [MASK]; gap year [MASK];
gap year [MASK]; gap year [MASK]

Decades or time periods, specifically
referencing the 70s, 80s, and 90s.

er from the 80 [MASK]; early 70 [MASK]; late [MASK] 90;
70s [MASK] 80; late [MASK] 90

Formatting and structuring text or doc-
uments focusing on the concept of a
“clear head” or heading.

[MASK] appropriate head; format, with clear head [MASK];
[MASK] proper head; struct [MASK] and organized, with clear
head; easy to follow, with clear head [MASK]

Usage of the word "call" in various
contexts, likely focusing on commu-
nication or addressing someone.

calls him [MASK]; call [MASK] americans indians?; calling
[MASK] guy; call me [MASK]; called him [MASK]

Historical figure: Benjamin Franklin. Benjamin [MASK]; franklin [MASK]; Franklin [MASK]; Ben-
jamin Franklin [MASK]; Benjamin Franklin [MASK]

Template-1 for Automated Summary with Word-based Raw Explanations

System: You are studying a neural network. Each neuron
looks for one particular concept/topic/theme/behavior/pattern.
Look at some words the neuron activates for and guess what
the neuron is looking for. Pay more attention to the words
in the front as they supposed to be more correlated to the
neuron behavior. Don’t list examples of words and keep your
summary as detail as possible. If you cannot summarize most
of the words, you should say Cannot Tell.

User: accommodation, racial, ethnic, discrimination,
equality, apart, utterly, legally, separately, holding,
implicit, unfair, tone.
Agent: Social justic and discrimination.

User: B., M., e., R., C., OK., A., H., D., S., J., al., p.,
T., N., W., G., a.C., or, St., K., a.m., L..
Agent: Cannot Tell.

User: Scent, smelled, flick, precious, charm, brushed,
sealed, smell, brace, curios, sacred, variation, jewelry,
seated.
Agent: Perception of scents and precious objects.

User: BP, HR, RR, O2 Sat, T, Ht, UO, BMI, BSA.
Agent: Medical measurements in emergency rooms.
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1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Template-1 for Automated Summary with Word-based Raw Explanations (continued)

User: actual, literal, real, Really, optical, Physical, REAL,
virtual, visual.
Agent: Perception of reality.

User: Go, Python, Java, c++, python3, c#, java, Ruby, Swift,
PHP.
Agent: Morden programming language.

User: 1939-1945, 1945, 1942, 1939, 1940, 1941.
Agent: Years of the second world war.

User: 1976, 1994, 1923, 2018, 2014, 1876, 1840.
Agent: Cannot Tell.

User:

H.2 TEMPLATE 2

Once we collect the summary of the raw explanation with the previous prompt, we then call the
machine annotator again in a separate thread to evaluate whether the summary is hallucinated or not by
using the following prompting template, where the placeholders “Summary” and “Raw Explanation”
will be filled with real data. Note that if the machine annotator gives “Cannot Tell” as its prediction
in the summarization stage, we will directly set the judgment for this task as “No”.

Template-2 for Summary Judge with Word-based Raw Explanations

System: You are a linguistic expert. Analyze whether the
words well represent the concept/topic/theme/pattern.
Organize your final decision in format of "Final Decision:
[[Yes/Probably/Maybe/No]]".

User: Concept/Topic/Theme/Pattern: {Summary}.
Words: {Raw Explanation}.
Agent:

H.3 TEMPLATE 3

Since baseline explainers (TopAct and N2G) consider N-gram spans as raw explanations, we found
that the previous word-list-based prompting template leads a poor performance for their interpretabil-
ity. Thus, we followed the strategies before to define the following text-span-based prompting
templates. Here, the in-context examples of text spans are collected from previous work (Bricken
et al., 2023). Specifically, similar to using Template 1 to summarize our extracted words, we append
the extracted text spans from TopAct or N2G to this template. Note that we numerate each extracted
span with a unique index.
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1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Template-3 for Automated Summary with Span-based Raw Explanations

System: You are studying a neural network. Each neuron looks
for one particular concept/topic/theme/behavior/pattern.
Look at some spans the neuron activates for and guess what
the neuron is looking for. Pay more attention to the [last
few words] of each
spans in the front as they supposed to be more correlated to
the neuron behavior. Ignore the [MASK] patterns in the spans.
Don’t list examples of spans and keep your summary as detail
as possible. If you cannot summarize most of the spans, you
should say "Cannot Tell."

User: Span 1: w.youtube.com/watch?v=5qap5aO4z9A
Span 2: youtube.come/yegfnfE7vgDI
Span 3: {’token’: ’bjXRewasE36ivPBx
Span 4: /2023/fid?=0gBcWbxPi8uC
Agent: Base64 encoding for web development.

User: Span 1: cross-function[MASK]
Span 2: cross-function
Span 3: [MASK][MASK] cross-function\n
Agent: Particular phrase ’cross-function’.

User: Span 1: novel spectroscopic imaging platform
Span 2: and protein evolutionary network modeling
Span 3: reactions-centric biochemical model
Span 4: chaperone interaction network
Agent: Biological terms.

User: Span 1: is -17a967
Span 2: what is 8b8 - 10ad2
Span 3: 83 -11111011001000001011
Span 4: is -c1290 - -1
Agent: Synthetic math: Arithmetic, numbers with small digits,
in unusual bases.

User:

H.4 TEMPLATE 4

We evaluate the quality of summarization using almost the same as Template 2, where we only change
the phrase from “word” to “span” to fit the format of raw explanations from the baseline explainers.

Template-4 for Summary Judge with Span-based Raw Explanations

System: You are a linguistic expert. Analyze whether the
text spans well represent the concept/topic/theme/pattern.
Organize your final decision in format of "Final Decision:
[[Yes/Probably/Maybe/No]]".

User: Concept/Topic/Theme/Pattern: {Summary}.
Spans: {Raw Explanation}.
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