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ABSTRACT

The Shapley value has been widely used as an attribution method for explaining
black-box machine learning models. A rigorous mathematical framework based
on a number of axioms has enabled Shapley value to disentangle the black-box
structure of models. Recent studies have shown that domain knowledge is an im-
portant component of machine learning models. Science-informed machine learn-
ing models that incorporate domain knowledge have demonstrated better gener-
alization and interpretation capabilities. But do we obtain consistent scientific
explanations when we apply attribution methods to science-informed machine
learning models? In this study, we show that Shapley value cannot be guaran-
teed to reflect domain knowledge, such as monotonicity. To remedy Shapley’s
monotonicity failure, we propose a new version of Shapley value. As a result of
extensive analytical and empirical examples, we show that Shapley value often
produces misleading explanations for monotonic models, which can be avoided
using the new method.

1 INTRODUCTION

In recent decades, machine learning (ML) models have achieved great success. As a part of the effort
to facilitate the use of ML, explanation methods are provided to assist people in disentangling the
black-box nature of ML. This study examines attribution problems, which involve the interpretation
of feature importance to prediction. There have been a number of successful works in this direction
(Lundberg & Lee, 2017; Ribeiro et al., 2016; Horel & Giesecke, 2020; Sundararajan et al., 2017).

The Shapley value (Shap) is one of the most popular methods for solving attribution problems (Shap-
ley et al., 1953). A major advantage of the Shap is that it provides a fair contribution of features
within a rigorous theoretical framework by satisfying some desired axioms. A rigorous foundation
has provided people with the confidence to implement Shap. However, despite extensive analysis of
axioms, these studies have largely focused on axioms for general models (Sundararajan & Najmi,
2020; Lundstrom et al., 2022; Friedman & Moulin, 1999).

Science, on the other hand, has been developed over many centuries. Consequently, a variety of
domain knowledge has been developed for various fields. A number of studies have demonstrated
that physics-informed machine learning (Karniadakis et al., 2021; Greydanus et al., 2019) improved
black-box ML models in terms of interpretation and accuracy by enforcing conservation laws, for
example. Finance and other applications often require monotonicity. A person’s credit score should
be decreased when there is one more past due balance on the account, for example. It is possible
to achieve better generalization and interpretation when monotonicity is successfully enforced (Liu
et al., 2020; Milani Fard et al., 2016; You et al., 2017; Repetto, 2022; Runje & Shankaranarayana,
2023). These models can be categorized as science-informed machine learning models.

In this paper, we ask the following question: Can attribution methods deliver consistent scientific
explanations if models contain certain scientific knowledge? If so, to what extent? We focus
on monotonicity as a common domain knowledge in practice. There are two types of monotonicity
(Chen & Ye, 2023; Gupta et al., 2020). Besides commonly known individual monotonicity, pair-
wise monotonicity specifies that certain characteristics are intrinsically more important than others.
As an example, in credit scoring, the number of past dues more than two months should be more
significant than the number of past dues between one and two months. For related applications,
monotonicity is usually a hard requirement, since it is closely related to fairness. As an example, a
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fair credit scoring system should punish each additional late payment. Unfortunately, when it comes
to the explanation for monotonic models, we find that Shap fails to reflect pairwise monotonicity.

This paper analyses monotonicity in greater detail and proposes a new version to remedy Shap’s
failure, namely the generalized monotonic Shapley value (GMShap). In recognition of the lack of
classical Shap, we modify the game setting and propose additional axioms when pairwise mono-
tonicity is involved. Accordingly, GMShap is uniquely determined under certain assumptions, in
the same way as Shap. As a result of extensive analytical and empirical examples, we demonstrate
that, when pairwise monotonicity is involved, Shap can often produce misleading explanations and
produce unfair interpretations. Fortunately, GMShap has avoided these issues and has been able to
provide reasonable and reliable explanations.

Related Work. There has been extensive discussion of axioms for attribution methods ( Lundstrom
et al., 2022; Sundararajan et al., 2017; Sundararajan & Najmi, 2020; Friedman & Moulin, 1999; Xu
et al., 2020). However, these studies mainly focused on the axioms of general models without do-
main knowledge. As for domain knowledge, individual monotonicity is considered in Sundararajan
& Najmi (2020); Friedman & Moulin (1999), but no consideration is made of pairwise monotonicity.
To the best of our knowledge, our work is the first analysis of general monotonic models.

On the other direction, Shapley values with a coalition structure have also been considered in the past
Kamijo (2009); Grabisch & Roubens (1999); Owen (1977). These studies, however, also focus on
somewhat general assumptions about coalition structure, whereas we consider coalition structures
that are characterized by strong pairwise monotonicity.

2 PRELIMINARIES

2.1 ATTRIBUTION

For problem setup, assume we have n features. For a,b ∈ Rn, define [a,b] to be the hyperrectangle.
We denote a class of functions f : [a,b] → R by F(a,b), or simply F . We assume x ∈ [a,b].
Following Lundstrom et al. (2022), we call the point of interest x to explain as an explicand and x′

a baseline. For simplicity, we assume x ≥ x′, i.e., xi ≥ x′
i,∀i. We assume x′ = 0 unless otherwise

stated. The Baseline Attribution Method is defined here.
Definition 2.1 (Baseline Attribution Method (BAM)). Given x,x′ ∈ [a,b], f ∈ F(a,b), a baseline
attribution method is any function of the form A : [a,b] × [a,b] × F(a,b) → Rn. We may also
write A and denote Ai as the ith attribution of A for simplicity.

We review classical Shapley values and Integrated Gradients. Both can be considered to be members
of the Shapley value family (Sundararajan & Najmi, 2020).

2.1.1 (BASELINE) SHAPLEY VALUE

The Shapley value (Shap), introduced by Shapley et al. (1953), concerns the cooperative game in
the coalitional form (N, v), where N is a set of n players and v : 2N → R with v(∅) = 0 is the
characteristic function. In the game, the marginal contribution of the player i to any coalition S with
i /∈ S is considered as v(S ∪ i) − v(S). By considering a variety of axioms, the attribution of a
player i by Shap is given by:

si =
∑

S⊆N\i

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ i)− v(S)). (1)

Here, we focus on the Baseline Shapley value (BShap), analyzed in Sundararajan & Najmi (2020),
which calculates

v(S) = f(xS ;x
′
N\S). (2)

That is, baseline values replace the feature’s absence. We denote BShap attribution by BSi(x,x
′, f)

and BSi sometimes. Two reasons motivate us to focus on the BShap. First, as pointed out by
Sundararajan & Najmi (2020), BShap is capable of preserving many desired axioms in contrast to
SHapley Additive Explanations (SHAP) (Lundberg & Lee, 2017); second, BShap’s setup is naturally
applicable to our applications.
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2.1.2 INTEGRATED GRADIENTS

Integrated Gradients, introduced by Sundararajan et al. (2017), is given below.
Definition 2.2 (Integrated Gradients (IG)). Given x,x′ ∈ [a,b] and f ∈ F(a,b), the integrated
gradients attribution of the i-th component of x is defined as

IGi(x,x
′, f) = (xi − x′

i)

∫ 1

0

∂f

∂xi
(x′ + t(x− x′)) dt. (3)

For simplicity, we often use IGi for IGi(x,x
′, f).

2.2 INDIVIDUAL AND PAIRWISE MONOTONICITY

Without loss of generality, we assume that all monotonic features are monotonically increasing
throughout the paper. Suppose α is the set of all individual monotonic features and ¬α its comple-
ment, then the input x can be partitioned into x = (xα,x¬α). Individual monotonicity is defined.
Definition 2.3 (Individual Monotonicity). We say f is individually monotonic with respect to xα if

f(xα,x¬α) ≤ f(x∗
α,x¬α),∀xα,x

∗
α s.t. xα ≤ x∗

α,∀x¬α, (4)

where xα ≤ x∗
α denotes the inequality for all entries, i.e., xαi

≤ x∗
αi
,∀i.

In practice, certain features are intrinsically more important than others. Analog to equation 4,
we partition x = (xβ , xγ ,x¬). Without sacrificing generality, we assume that xβ has greater sig-
nificance than xγ . Lastly, we require that all features exhibiting pairwise monotonicity also exhibit
individual monotonicity. Pairwise monotonicity can be categorized into two types: strong and weak.
As a more general definition, weak pairwise monotonicity is presented below.
Definition 2.4 (Weak Pairwise Monotonicity). We say f is weakly monotonic with respect to xβ

over xγ if

f(xβ , xγ + c,x¬) ≤ f(xβ + c, xγ ,x¬),∀x,x∗ ∈ [a,b] s.t. xβ = xγ , c > 0. (5)

Weak pairwise monotonicity compares the significance of xβ and xγ at the same magnitude. Ex-
ample A.3 is provided in Appendix A.1. In addition, there is a stronger condition of pairwise
monotonicity, known as strong pairwise monotonicity, which is independent of the condition that
xβ = xγ . Here is the definition.
Definition 2.5 (Strong Pairwise Monotonicity). We say f is strongly monotonic with respect to xβ

over xγ if

f(xβ , xγ + c,x¬) ≤ f(xβ + c, xγ ,x¬),∀xβ , xγ ,∀x¬,∀c ∈ R+. (6)

Example 2.6. In credit scoring, consider x1 and x2 to count the number of past due payments
more than two months and between one and two months. Then the probability of default is strongly
monotonic with respect to x1 over x2.

2.3 AXIOMS

Many desirable characteristics of an attribution technique have been identified in the literature. In-
terested readers are referred to Lundstrom et al. (2022); Sundararajan & Najmi (2020); Sundararajan
et al. (2017) for detailed discussion. Here, we list axioms that are considered in this paper.

• Implementation Invariance: A is independent of the type of model implemented, but only
from the mathematical mapping of the domain to the range of a true model. The definition
here differs slightly from the one in Sundararajan et al. (2017). Our main difference lies
in the fact that we emphasize the true model with potential discrete features, whereas the
other definition emphasizes neural networks, for which the domain is continuous.

• Completeness: ∀f ∈ F ,x,x′ ∈ [a,b], we have
n∑

i=1

Ai(x,x
′, f) = f(x)− f(x′). (7)
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• Linearity: For α, β ∈ R with two functions f, g ∈ F , we have

Ai(x,x
′, αf + βg) = αAi(x,x

′, f) + βAi(x,x
′, g). (8)

• Dummy(a): We say a player is a dummy player if his/her marginal contribution to any
coalition is zero. If player i is a dummy player, then

Ai(x,x
′, f) = 0. (9)

• Symmetry(a): We say that players i, j ∈ N are symmetric in game (N, v) if they make the
same marginal contribution to any coalition. If players are symmetric, then

Ai(x,x
′, f) = Aj(x,x

′, f). (10)

• Demand Individual Monotonicity (DIM): Suppose f is individually monotonic with respect
to xα. We say a BAM preserves demand individual monotonicity if for x∗ = x+cei, where
ei is 1 at ith entry and 0 elsewhere, we have

Aα(x
∗,x′, f) ≥ Aα(x,x

′, f),∀c ∈ R+. (11)

3 MONOTONIC AXIOMS AND PRESERVATION

3.1 NEW MONOTONIC AXIOMS

Motivated by the types of monotonicity in Section 2.2, we would like to study axioms related to
monotonicity in greater detail. In addition to DIM, three new monotonic axioms are proposed here.
Definition 3.1 (Average Individual Monotonicity (AIM)). Suppose f is individually monotonic
with respect to xα, then we say a BAM preserves average individual monotonicity if

Aα(x,x
′, f) ≥ 0. (12)

Definition 3.2 (Average Weak Pairwise Monotonicity (AWPM)). Suppose f is weakly monotonic
with respect to xβ over xγ , xβ > x′

β and xγ > x′
γ . Suppose for an explicand x, we have xβ = xγ .

Then we say a BAM preserves weak pairwise monotonicity if
1

xβ − x′
β

Aβ(x,x
′, f) ≥ 1

xγ − x′
γ

Aγ(x,x
′, f). (13)

Definition 3.3 (Average Strong Pairwise Monotonicity (ASPM)). Suppose f is strongly mono-
tonic with respect to xβ over xγ , xβ > x′

β , and xγ > x′
γ . Then we say a BAM preserves average

strong pairwise monotonicity if
1

xβ − x′
β

Aβ(x,x
′, f) ≥ 1

xγ − x′
γ

Aγ(x,x
′, f). (14)

3.2 PRESERVATION AND FAILURE OF AXIOMS

We present preservation results by IG and BShap, whereas proofs are left in Appendix A.1.
Theorem 3.4. IG preserves AIM, AWPM for x′

β = x′
γ , and ASPM, but doesn’t preserve DIM.

Theorem 3.5. BShap preserves AIM, DIM, and AWPM for x′
β = x′

γ , but doesn’t preserve ASPM.

DIM is not preserved by IG, which can be considered a weakness. Example A.4 is provided in
Appendix A.1. Fortunately, IG preserves AIM, which can be viewed as a weaker condition for
maintaining individual monotonicity.
Theorem 3.6. If a BAM preserves DIM, then it preserves AIM.

Additionally, IG requires continuous and differentiable functions. In practice, however, discrete
features are common. It is possible for models such as neural networks to work if discrete features
are treated as continuous features. Nevertheless, this could violate the implementation invariance
axiom when IG is applied. Example A.6 is provided in Appendix A.1.

A major weakness of BShap is that it does not preserve ASPM. In the following example, we com-
pare BShap and IG. A striking result is revealed by the example: BShap does not satisfy ASPM
even for logistic regressions!
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Example 3.7. Consider a two-dimensional logistic regression
y = f(x1, x2) = σ(α+ β1x1 + β2x2),

where σ(z) = ez

1+ez and β1 ≥ β2. Clearly, y is strongly monotonic with respect to x1 over x2.

By IG, we calculate that

IG =

[
β1x1

β2x2

] ∫ 1

0

f(tx1, tx2)(1− f(tx1, tx2)) dt. (15)

By the result, not only ASPM is preserved, but the ratio between x1 and x2 is perfectly recognized.

For BShap, we have
BS1 − BS2 = σ(α+ β1x1)− σ(α+ β2x2). (16)

As a result, whenever x1 ≥ x2, BS1 ≥ BS2, which is consistent with our expectation. However,
BS1
x1

− BS2
x2

=
x2 − x1

2x1x2
(σ(α+ β1x1 + β2x2)− σ(α))

+
x1 + x2

2x1x2
(σ(α+ β1x1)− σ(α+ β2x2)). (17)

Note that if x1 > x2, then ASPM might be violated by BShap! For example, for α = −10, β1 = 2,

β2 = 1, and x = (3, 1), then for BShap, we have BS ≈
[
0.033
0.015

]
.

4 STRONG MONOTONIC GAMES

We would like to suggest a new Shapley value that preserves all of the axioms described above. In
particular, we would like to propose a new version of BShap that preserves ASPM. Our focus is on
BShap since IG is naturally applied to continuous features. We begin by considering only features
with strong pairwise monotonicity. Consider f(x) with f(x′) = 0 where x′ = 0, x = (x1, . . . , xm),
f is individual monotonic with all xi, and f is strongly monotonic with respect to xi over xi+1,
i = 1, . . . ,m − 1. We further assume that xi ∈ R+, ∀i. Cost-sharing problems commonly assume
similar assumptions (see for example, Friedman & Moulin, 1999), and we find that it is a suitable
assumption for our application.

4.1 MOTIVATION

We argue that Shap fails due to the limitation of characteristic functions v. Shap considers the
marginal contribution of player i to any coalition with i /∈ S as v(S ∪ i) − v(S). In the scenario
of strong pairwise monotonicity, this definition of marginal contribution might not make sense. In
Example 2.6, suppose we are interested in the explanation at x = (1, 1) for x1, BShap considers
the marginal contributions f(1, 0) − f(0, 0) and f(1, 1) − f(0, 1). This makes sense when x1 is
independent of x2. However, in this case, it is more appropriate to consider marginal contributions
resulting from the difference between one and two months of delay. In particular, we believe that
f(0, 2) − f(0, 0) is a more appropriate measure of the baseline contribution for x2 and f(1, 1) −
f(0, 2) for the marginal contribution of x1. Then, we could evenly split contributions based on
magnitudes of xi. In other words, we could calculate

ϕ =

[
1
2 (f(0, 2)− f(0, 0)) + f(1, 1)− f(0, 2)

1
2 (f(0, 2)− f(0, 0))

]
.

4.2 MONOTONIC SHAPLEY VALUE

Motivated by the above argument, we propose a monotonic version of Shapley values. Suppose
we have a game with (x, f,w), where w : Rm → Rm+1. As opposed to v, magnitudes of xi are
important in our calculation and w calculates the following values.

wi(x, f) =

{
f
(
0, . . . , 0,

∑i
j=1 xj , xi+1, . . . , xm

)
, if 1 ≤ i ≤ m,

0, if i = m+ 1.
(18)

Next, we provide the formula for the monotonic Shapley value.
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Definition 4.1 (Monotonic Shap (MShap)). For the game (x, f,w), the attribution ϕi by Mono-
tonic Shapley value is calculated by

ϕi(x) =

{
0, if

∑i
j=1 xi = 0,

xi

∑m
j=i

wj(x)−wj+1(x)∑j
k=1 xk

, otherwise.
(19)

Next, we discuss the preservation of axioms by MShap and we leave proofs in Appendix A.2

Lemma 4.2. MShap satisfies implementation invariance, linearity, completeness, average individ-
ual monotonicity, and average strong pairwise monotonicity.

In Lemma 4.2, we can see that MShap preserves most of the proposed axioms. There are, how-
ever, three axioms that require special attention. We begin by discussing the dummy and symmetry
axioms. As we measure marginal contributions differently, we require different axioms. The key
difference here is that we consider the impacts of x and f separately, whereas they are considered
together in Shap.

Definition 4.3 (Dummy(b)). If ∀f ∈ F , f(x) = f(x∗), where x∗
j = xj except for i for all

x,x∗, then Ai(x,x
′, f) = 0. Furthermore, if xi = x′

i, let g(x1, . . . , xi−1, xi+1, . . . , xm) =
f(x1, . . . , xm) and h(x1, . . . , xm) = (x1, . . . , xi−1, xi+1, . . . , xm), then Ai = 0 and for j ̸= i,
Aj(x,x

′, f) = Aj(h(x),h(x
′), g).

Definition 4.4 (Symmetry(b)). We say f is symmetric about xk and xl if for any k < l, f(x) =
f(x∗) where xi = x∗

i for i ̸= j, k and xk + xl = x∗
k + x∗

l . We say a BAM preserves symmetry(b)
for xk, x

∗
k > x′

k and xl, x
∗
l > x′

l if

1

xk − x′
k

Ak(x,x
′, f) =

1

xl − x′
l

Al(x,x
′, f). (20)

Lemma 4.5. MShap preserves dummy(b) and symmetry(b).

The third case involves the demand individual monotonicity axiom. As discussed in Friedman &
Moulin (1999), DIM is desired for some features, but not necessarily all features. Here is the MShap
result for DIM.

Lemma 4.6. MShap preserves demand individual monotonicity for xm.

We would like to interpret this result. For strong pairwise monotonic features, this may not be
necessary, as demonstrated in Example A.7 provided in Appendix A.1. In this regard, it is also not
observed in general. xm, however, represents the baseline contribution among all features. Due
to this, its contribution is somewhat indicative of the magnitudes of the total features by formulas.
Therefore, demand individual monotonicity makes sense.

Last, we present the uniqueness result for MShap.

Theorem 4.7. MShap is a unique mapping that satisfies dummy(b), completeness, linearity, average
strong pairwise monotonicity, and symmetry(b) for strong monotonic games.

Example 4.8. We calculate the MShap following Example 3.7. By calculation, we have

MS1
x1

− MS2
x2

=
σ(α+ β1x1 + β2x2)− σ(α+ β2x1 + β2x2)

x1
, (21)

whereas the ASPM is preserved.

5 A TWO-STEP GENERALIZED MONOTONIC SHAPLEY VALUE

To this end, we generalize the game with general features. We split features into ones with strong
pairwise monotonicity and others x = (xP ,x¬). We don’t have any restrictions on x¬, but fixing
any x¬ with g(xP ) = f(xP ,x¬) − f(x′

P ,x¬), we require that (xP , g,w) are strong monotonic
games, therefore satisfying all assumptions in Section 4. Such a structure is sufficient for most
applications, and more complex structures can be generalized if necessary.

6



Under review as a conference paper at ICLR 2024

5.1 FIRST STEP CALCULATION

We treat xP as a single feature since they usually describe the same feature and this is also why these
features are able to be compared directly. As in Example 2.6, both x1 and x2 describe the number of
past dues. Therefore, we treat them in a similar manner to the Shap. We consider the game (N, v)
in coalitional form, where v : 2N → R. It is important to note that N differs from the classical
Shapley values. In the case where there are m monotonic features and n overall features, then N =
{{1, . . . ,m},m+1, . . . , n}. By allowing a player i = {1, . . . ,m}, dummy(a) and symmetry(a) can
be generalized. Example A.15 of generalized dummy and symmetry can be found in Appendix A.3.
Next, we calculate attributions Φi according to the classical Shap method with the exception that
attributions ΦP,j for features j in P are undetermined. We call it the generalized Shapley value
(GShap), which has the uniqueness result the same as Shap. GShap directly determines features
without strong pairwise monotonicity. Then we discuss strong pairwise monotonic features.

5.2 SECOND STEP CALCULATION

Now we wish to determine ΦP,j for j ∈ P . We rewrite equation 1 for i = P as

ΦP,j =
∑

S⊆N\P

|S|!(|N | − |S| − 1)!

|N |!
φj(S). (22)

Then, we need to determine φj(S) with
∑

j φj(S) = v(S ∪ P )− v(S). It can be recognized as an
attribution problem for strong monotonic games discussed in Section 4. Specifically, for each S, we
focus on

gS(xP ) = f(xP ,xS ,x
′
N\P∪S)− f(x′

P ,xS ,x
′
N\P∪S). (23)

We propose the following axiom since there is a natural correspondence between the original game
and its subgames.

Definition 5.1 (Consistency Axiom). We say the GShap for the game (N, v) is consistent with
subgames if the attribution of the game is calculated in the form of equation 22, where φj(S) is the
attribution of the subgame.

Axioms must be satisfied for each subgame. Therefore, based on Theorem 4.7, we apply MShap to
each subgame. As a result, we have the following formula.

Definition 5.2 (Generalized Monotonic Shapley Values (GMShap)). The generalized monotonic
Shapley value (GMShap) calculates the attribution as

Φi,j =

{∑
S⊆N\i

|S|!(|N |−|S|−1)!
|N |! (v(S ∪ i)− v(S)), if i ̸= P, j = 1,∑

S⊆N\P
|S|!(|N |−|S|−1)!

|N |! ϕj(gS), if i = P,
(24)

where ϕ is calculated based on Definition 4.1 and gS is defined in equation 23.

Example A.16 of GMShap is given in Appendix A.3. It is straightforward to determine the unique-
ness result as follows.

Theorem 5.3. Given GShap, GMShap is a unique mapping that preserves consistency, dummy(b),
completeness, linearity, symmetry(b), and average strong pairwise monotonicity for each subgame
for strong pairwise monotonic features.

6 EMPIRICAL EXAMPLES

We present three examples to demonstrate the use of GMShap with a comparison to Shap. In all
experiments, the monotonic groves of neural additive models (MGNAMs) proposed in Chen & Ye
(2023) are used, in which strong pairwise monotonicity is maintained. A detailed description of the
data and models can be found in Appendix A.4. In the examples, we compare both attributions ϕi

and average attributions ϕi

xi
for strong pairwise monotonic features xi > 0.
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6.1 CREDIT SCORING - GIVE ME SOME CREDITS

We use the Kaggle credit score dataset 1. In this dataset, we focus on three delinquency features that
quantify the number of past dues and their duration: 90+ days, 60-89 days, and 30-59 days. Without
loss of generality, we denote them as x1, x2, and x3. Based on domain knowledge, the probability
of default should be strongly monotonic with respect to x1 over x2 and x2 over x3.

We consider the following explicand as an example of illustration:

x = [5 2 2 4 4 11 1.01 0 30 0.57] .

Attributions by Shap and GMShap are provided in Figure 1. Results for Shap and GMShap are
somewhat similar, which is not surprising given that nonmonotonic features are calculated similarly.
Below is a brief summary of the results. The two most important features are x1 and x7. It is
clear that for x1, five times past due with a 90-day delay indicates that the applicant has difficulty
repaying; x7 implies that the applicant uses his/her money over the credit limits to pay off debts
and costs. x2 and x9 are the next two features that contribute to this calculation. In the case of x2,
two further 60-89 days past dues further increase its risk, and x9 which is the age, indicating a large
amount of past due is abnormal for a 30-year-old young person. In GMShap, the x3, which is past
due within one month, also possesses a high weight.

(a) Shap (b) GMShap

Figure 1: (CREDIT SCORING) Instance explanations by Shap and GMShap

We then examine strong pairwise monotonic features x1 − x3. We observe that Shap violates
ASPM. Specifically, the average Shap is [0.038 0.041 0.016], while the average GMShap is
[0.048 0.047 0.030]. Consequently, Shap suggests that on average, each extended period of late
payment is subject to fewer penalties than a short period of late payment. A misleading explana-
tion such as this could result in negative consequences. According to this explanation, clients may
believe that a longer delay will not adversely affect their credit scores and may even delay their fu-
ture payments. Alternatively, GMShap preserves ASPM and sends a clear message that delays will
negatively impact credit scores. A comparison at the global scale is provided in Appendix A.4.

6.2 RECIDIVISM - COMPAS

COMPAS is a scoring system that was developed to predict recidivism risk, which has been criticized
for its racial bias by Angwin et al. (2016); Dressel & Farid (2018); Tan et al. (2018). Race and gender
injustice have been extensively studied in the past by Foulds et al. (2020); Kearns et al. (2019; 2018);
Hardt et al. (2016). The focus of our investigation is on the potential injustice associated with
various types of offenses. Specifically, a felony is considered more serious than a misdemeanor.
Without loss of generality, assume x1 counts the number of felonies and x2 counts the number of
past misdemeanors. The probability of recidivism is strongly monotonic with respect to x1 over x2.

We examine the proportion of violations of strong pairwise monotonic features using Shap in this
example. We limit ourselves to samples with potential violations (different numbers of felonies

1https://www.kaggle.com/c/GiveMeSomeCredit/overview
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and misdemeanors that are both greater than zero), there are 46 data points, and nine of these, or
19.57%, violate ASPM. According to Shap, people may believe that a felony carries less seriousness
than a misdemeanor, resulting in false perceptions. As opposed to this, GMShap clearly states that
felonies are always considered more serious than misdemeanors. It is evident that GMShap should
be adopted over Shap in this example.

6.3 FRAUD DETECTION - TWITTER BOTS ACCOUNTS

Table 1 Average Shap and GMShap for x1 and x2. Violations by Shap are highlighted in purple.

avgShap x2

avgShap x1 x1=100 x1 = 200 x1 = 300 x1 = 400

x2=100 0.00075
0.0056

0.00074
0.0028

0.00074
0.0019

0.00074
0.0014

x2=200 0.0012
0.0038

0.0012
0.0019

0.0012
0.0013

0.0012
0.00096

x2=300 0.0010
0.0032

0.0010
0.0016

0.0010
0.0011

0.0010
0.00081

x2=400 0.00079
0.0032

0.00079
0.0016

0.00079
0.0011

0.00079
0.00080

avgGMShap x2

avgGMShap x1 x1=100 x1 = 200 x1 = 300 x1 = 400

x2=100 0.0025
0.0038

0.0020
0.0021

0.0016
0.0016

0.0013
0.0013

x2=200 0.0020
0.0022

0.0016
0.0016

0.0013
0.0013

0.0011
0.0011

x2=300 0.0016
0.0016

0.0013
0.0013

0.0011
0.0011

0.0009
0.0009

x2=400 0.0013
0.0013

0.0011
0.0011

0.0009
0.0009

0.0008
0.0008

The Twitter Bots Accounts dataset 2 is concerned with the detection of robot accounts on Twitter. We
are primarily interested in the number of followers and friends in this dataset. According to Twitter,
friends indicate that both accounts are being followed by each other, whereas followers indicate only
one direction of following. Thus, the number of friends is a stronger indication that the account is
not a robot. The probability of non-fraud is strongly monotonic with respect to the number of friends
over the number of followers. For simplicity, we assume that x1 counts the number of friends and
x2 counts the number of followers.

Taking advantage of the transparency of the MGNAM, we examine the results of Shap and GMShap
at all possible values. Specifically, Shap and GMShap are applied to the output of the neural network
f1,2(x1, x2) for variables x1 and x2. To check the preservation of ASPM, we calculate average
(GM)Shap and we provide results for 100 ≤ x1, x2 < 500 for demonstration in Table 6.3. Shap
violates ASPM in two parts, which are highlighted in purple. According to Shap, individuals may
believe that the number of friends on average is a more reliable indicator of a legitimate account. In
this way, if an individual’s account is being questioned, he or she may unfollow some accounts in
an attempt to improve their credibility, which is absurd.

7 CONCLUSION AND DISCUSSION

In this paper, we propose a new version of Shapley value to provide fair and reliable explanations
for monotonic models. Based on our results, Shapley value may misinterpret domain knowledge.
Therefore, we must carefully investigate domain knowledge when explaining machine learning
models, especially for high-stakes sectors.

The monotonicity is studied in this work; however, there is numerous other domain knowledge that
has not been studied (see for e.g., Gupta et al., 2020). It will be interesting to see how Shapley values
work with other domain knowledge and whether our results can be generalized in the future.

2
https://www.kaggle.com/datasets/davidmartngutirrez/twitter-bots-accounts
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8 REPRODUCIBILITY STATEMENT

We have provided proofs for all theoretical results in Appendix A.1, A.2. We have also provided
experimental details in Appendix A.4. Furthermore, we will release the code when the paper is
accepted.
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A APPENDIX

A.1 MONOTONIC AXIOMS AND EXAMPLES

A.1.1 PROOFS

Proof of Theorem 3.6. Suppose we want to explain x∗, let x = x′ in the definition of DIM, then it
follows from the definition.

Lemma A.1. BShap preserves DIM.
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Proof. Here, we present a proof without cost-sharing assumptions, which is assumed in Friedman
& Moulin (1999). Without loss of generality, suppose f is individually monotonic with respect to
x1. Suppose x = (x1,x¬) and x∗ = (x1 + c,x¬) for c > 0. Then

BS1(x
∗,x′, f)− BS1(x,x

′, f) =
∑

S⊆N\1

|S|!(|N | − |S| − 1)!

|N |!
∆fS ,

where

∆fS = f(x1 + c;xS ,x
′
N\(S∪1))− f(x1;xS ,x

′
N\(S∪1)) ≥ 0

because of individual monotonicity. Thus, we conclude.

Lemma A.2. For x′
β = x′

γ , BShap preserves AWPM.

Proof. For simplicity, we prove the result for x′ = 0. Without loss of generality, suppose f is
weakly monotonic with respect to x1 over x2. For x′ = 0, we have 1

x1−x′
1
= 1

x2−x′
2

. Recall that

BS1 =
∑

S⊆N\1

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ 1)− v(S)).

For BS2, we use the symmetry, for each S here, we consider S′ such that x1 and x2 are swapped
within S, and everything else is left unchanged. That is, if 2 /∈ S, S′ = S; if 2 ∈ S, then
S′ = (S\2)∪1. For this arrangement, we only need to show that v(S∪1)−v(S) ≥ v(S′∪2)−v(S′)
in the summation. If 2 /∈ S, we have

v(S ∪ 1)− v(S) = f(x1, 0;xS ,x
′
N\(S∪{1,2}))− f(0, 0;xS ,x

′
N\(S∪{1,2})),

v(S′ ∪ 2)− v(S′) = f(0, x2;xS′ ,x′
N\(S′∪{1,2}))− f(0, 0;xS′ ,x′

N\(S′∪{1,2})).

Since S = S′ and x1 = x2, by the definition of weak pairwise monotonicity, we have

f(x1, 0;xS ,x
′
N\(S∪{1,2})) ≥ f(0, x2;xS′ ,x′

N\(S′∪{1,2})),

and therefore v(S ∪ 1)− v(S) ≥ v(S′ ∪ 2)− v(S′).

If 2 ∈ S, and we have

v(S ∪ 1)− v(S) = f(x1, x2;xS\2,x
′
N\(S∪1))− f(0, x2;xS\2,x

′
N\(S∪1)),

v(S′ ∪ 2)− v(S′) = f(x1, x2;xS′\1,x
′
N\(S′∪2))− f(x1, 0;xS′\1,x

′
N\(S′∪2)).

Since S\2 = S′\1, S ∪ 1 = S′ ∪ 2, and x1 = x2, by the definition of weak pairwise monotonicity,
we have

f(0, x2;xS\2,x
′
N\(S∪1)) ≤ f(x1, 0;xS′\1,x

′
N\(S′∪2)),

and therefore v(S ∪ 1)− v(S) ≥ v(S′ ∪ 2)− v(S′).

Since v(S ∪ 1) − v(S) ≥ v(S′ ∪ 2) − v(S′) for all S with corresponding S′, we conclude that
BS1 ≥ BS2.

Proof of Theorem 3.5. The proof is followed by Theorem 3.6, Lemma A.1, and A.2.

Proof of Theorem 3.4. Suppose f is individually monotonic with respect to xα, then

IGα = (xα − x′
α)

∫ 1

0

∂f

∂xα
(x′ + t(x− x′)) dt ≥ 0,

since xα ≥ x′
α and ∂f

∂xα
≥ 0.

12
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Suppose f is weakly monotonic with respect to xβ over xγ . For x′
β = x′

γ , we have 1
xβ−x′

β
= 1

xγ−x′
γ

.

Since xβ = xγ in x and x′, xβ = xγ for x′ + t(x− x′), ∀t ∈ [0, 1]. f is weakly monotonic respect
to xβ over xγ , therefore ∂f

∂xβ
(x) ≥ ∂f

∂xγ
(x) if xβ = xγ in x. Hence,

IGβ = (xβ − x′
β)

∫ 1

0

∂f

∂xβ
(x′ + t(x− x′)) dt

≥ (xβ − x′
β)

∫ 1

0

∂f

∂xγ
(x′ + t(x− x′)) dt

= (xγ − x′
γ)

∫ 1

0

∂f

∂xγ
(x′ + t(x− x′)) dt

= IGγ .

Suppose f is strongly monotonic with respect to xβ over xγ , then ∂f
∂xγ

(x) ≤ ∂f
∂xβ

(x), ∀x ∈ [a,b].
Hence,

1

xβ − x′
β

IGβ =

∫ 1

0

∂f

∂xβ
(x′ + t(x− x′)) dt

≥
∫ 1

0

∂f

∂xγ
(x′ + t(x− x′)) dt

=
1

xγ − x′
γ

IGγ .

A.1.2 EXAMPLES

Example A.3 (An example of weak pairwise monotonicity). An applicant who intends to study
STEM in graduate school is required to take the GRE general (170 in math and 170 in verbal) as
one of the factors for admission. Assume f is the admitted probability, xβ is the student’s math
score, and xγ is the student’s verbal score. Due to the importance of math in STEM, f should be
weakly monotonic with respect to xβ over xγ . In this case, it is necessary to fulfill the condition
xβ = xγ . If the student has the same level of math and verbal skills, it is more desirable to see
improvement in math. It is a different story when a student has a strong math score but a weak
verbal score. There is often a requirement for a minimum verbal score in schools in order to ensure
effective communication. A student who has a strong math score but a very weak verbal score may
be able to improve his/her chances of admission more significantly if he/she improves his/her verbal
score.
Example A.4 (Failure of IG for DIM). The following example in Friedman & Moulin (1999) pro-
vides a counterexample with a comparison between IG and BShap.

Consider the function f(x1, x2) = x1x2

x1+x2
with baseline x′ = (0, 0). For IG, it can be shown

that IG1(x,x
′, f) =

x1x
2
2

(x1+x2)2
. Note ∂

∂x1
IG1 =

x2
2(x2−x1)
(x1+x2)3

, therefore DIM is not preserved. It is
important to note that the path for the new explicand has been changed. As a result, the new path
cannot guarantee greater attributions for the explicand.

For BShap, we have BS1(x,x
′, f) = x1x2

2(x1+x2)
, which preserves DIM. The main difference is that in

the BShap calculation, the new path covers the old path.
Example A.5 (Impact of baseline point in the AWPM). Results of AWPM axioms also suggest
baseline points. We need x′

β = x′
γ in x′ in order to preserve AWPM.

Consider f(x1, x2) = 4.5x1−x2
1+4x2−x2

2 for x1, x2 in [0, 2]. f is weakly monotonic with respect
to x1 over x2. Consider the baseline x′ = (0, 0) and the explicand x = (2, 2).

For IG, we have

IG((2, 2), (0, 0), f) =

[
5
4

]
.

13
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It can be seen that 1
2 IG1 > 1

2 IG2, IG preserves AWPM. Now suppose we consider x′ = (1, 0), we
have

IG((2, 2), (1, 0), f) =

[
1.5
4

]
.

Since IG1 < 1
2 IG2, IG fails to preserve AWPM. The result of BShap is the same as that of f being

additively separable.

Consider Example A.3. For x′
β = x′

γ = 0, the weak pairwise monotonicity in f guarantees that
math is more important than verbal when they are equal when we determine the general importance
of features. If, on the other hand, we take the average historical statistics of admitted students as
our baseline, then it would be possible to see that verbal skills are more important than mathematics
skills as admitted students are already competent in mathematics. It is important to keep in mind
in this case that we are comparing the cases of previously admitted students, and the importance of
features does not necessarily apply in general.

Example A.6 (Failure of IG for discrete features). Consider a two-dimensional set function f with
f(0, 0) = f(1, 0) = f(0, 1) = 0, f(1, 1) = 1. Let us suppose that two continuous functions are
used as the approximation and that we have

g1(x, y) = xy, g2(x, y) = x99y. (25)

Both functions perfectly match f , but IG could produce completely different results:

IG(1,0, g1) =

[
0.5
0.5

]
, IG(1,0, g2) =

[
99
100
1

100

]
. (26)

As a result, IG violates implementation invariance when discrete features are involved.

Example A.7 (Is DIM always required?). Consider Example 2.6 with a concrete example, where
f(x1, x2) = min(0.2x1+0.1x2, 0.3) and x1 is strongly monotonic with respect to x2. At x = (1, 1)
with baseline x′ = (0, 0), the corresponding attribution should be A(x,x′, f) = (0.2, 0.1), due to
linearity. Now we consider x∗ = (3, 1), f(x∗) = 0.3 and DIM requires that A1(x

∗,x′, f) ≥ 0.2. In
this case, we wish to satisfy this requirement. However, if we consider x! = (0, 4) with f(x!) = 0.3.
From the perspective of x!, x1 does not incur an additional cost. Accordingly, a unit of x1 and x2

should be attributed equally. This results in attributions at (3, 1) of (0.15, 0.15), which violates the
principle of DIM.

A.2 PROOFS IN STRONG MONOTONIC GAMES

Lemma A.8. MShap preserves implementation invariance.

Proof. By Definition.

Lemma A.9. MShap preserves linearity.

Proof. Suppose f = af1 + bf2, then by definition, we have wi(x, f) = awi(x, f1) + bwi(x, f2).
For

∑i
j=1 xi = 0, ϕi(f) = 0 = aϕi(f1) + bϕi(f2). For

∑i
j=1 xi ̸= 0, we have

ϕi(f) = xi

m∑
j=i

a(wj(f1)− wj+1(f1)) + b(wj(f2)− wj+1(f2))∑j
k=1 xk

= aϕi(f1) + bϕi(f2).

Lemma A.10. MShap is complete.

Proof. For x1 ̸= 0. For each j, we sum the coefficients of wj . In the case of j = 1, the only
coefficient that is nonzero is x1

1
x1

= 1. Next, we consider the case in which j > 1. In the case

of ϕi with i < j, we have nonzero coefficients xi

(
− 1∑j−1

k=1 xk
+ 1∑j

k=1 xk

)
. In the case of ϕi with

14



Under review as a conference paper at ICLR 2024

i = j, we have nonzero coefficients xi
1∑j

k=1 xk
. The calculation of ϕi with i > j doesn’t depend on

j. Take the summation, we have

j−1∑
i=1

xi

(
− 1∑j−1

k=1 xk

+
1∑j

k=1 xk

)
+ xj

1∑j
k=1 xk

= −1 + 1 = 0.

For x1 = 0 but x2 ̸= 0, by Lemma A.13, we have ϕ1 = 0. With the same argument above,∑m
j=2 ϕi = f(0, x1 + x2, x3, . . . ,m) = f(x). Extend this argument to

∑i
j=1 xj = 0 and xi+1 ̸= 0

for i = 1, . . . ,m− 1, we conclude.

Lemma A.11. MShap preserves average individual monotonicity.

Proof. If xi = 0 or
∑i

j=1 xi = 0, then ϕi = 0. Otherwise, wi ≥ wi+1, i = 1, . . . ,m − 1 due to
strong pairwise monotonicity and wm ≥ 0 due to individual monotonicity for xm. Therefore, we
conclude.

Lemma A.12. MShap preserves average strong pairwise monotonicity.

Proof. Suppose i > j and xi, xj > 0. Then by strong pairwise monotonicity, we have

1

xi
ϕi −

1

xj
ϕj =

j−1∑
k=i

wk(x)− wk+1(x)∑k
l=1 xl

≥ 0.

Proof of Lemma 4.2. The proof is followed by Lemma A.8, A.13, A.9, A.10, A.11, and A.12.

Lemma A.13. MShap preserves dummy(b).

Proof. Suppose xi > 0 is a dummy, then

f(0, . . . , 0, xi, 0, . . . , 0) = f(0) = 0, ∀xi.

Because of strong pairwise monotonicity, we have

f(0, . . . , xi, . . . , xm) ≤ f

0, . . . ,

m∑
j=i

xj , . . . , 0

 = 0.

Therefore, for j ≥ i, wj = 0. Thus, ϕi = 0.

Suppose xi = 0, we have ϕi = 0 by formula. In addition, for j > i, ϕi doesn’t involve wi. For
j < i, we have

i−1∑
j=1

xj =

i∑
j=1

xj .

Therefore,

wi−1(x)− wi(x)∑i−1
j=1 xj

+
wi(x)− wi+1(x)∑i

j=1 xj

=
wi−1(x)− wi+1(x)∑i−1

j=1 xj

,

which is not dependent on wi. Thus, we conclude.

Lemma A.14. MShap preserves symmetry(b).
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Proof. By strong pairwise monotonicity, we know

f

(
x1, . . . , xk−1,

l∑
i=k

xi, 0, . . . , 0, xl+1, . . . , xm

)
≥f(x1, . . . , xm)

≥f

(
x1, . . . , xk−1, 0, . . . ,

l∑
i=k

xi, xl+1, . . . , xm

)
.

Since f is symmetric about xk and xl, f(x) = f(x∗) where xi = x∗
i for i = 1, . . . , k − 1 and

l+1, . . . ,m, and
∑l

i=k xi =
∑l

i=k x
∗
i for all x and x∗. Then wi = wj for k ≤ i, j ≤ l. Therefore,

for k ≤ i ≤ l, we have

ϕi(x) = xi

m∑
j=l

wj(x)− wj+1(x)∑j
k=1 xk

.

Thus, we conclude.

Proof of Lemma 4.5. The result is followed from Lemma A.13 and A.14.

Proof of Lemma 4.6. Suppose x = (x1, . . . , xm) and x∗ = (x1, . . . , xm + c), where c > 0. We
calculate

ϕ∗
m = x∗

m

wm(x∗)∑m
j=1 x

∗
j

= (xm + c)
f(0, . . . ,

∑m
j=1 xj + c)∑m

j=1 xj + c
≥ xm

f(0, . . . ,
∑m

j=1 xj)∑m
j=1 xj

= ϕm,

where xm+c∑m
j=1 xj+c = 1 −

∑m−1
j=1 xj∑m

j=1 xj+c ≥ 1 −
∑m−1

j=1 xj∑m
j=1 xj

= xm∑m
j=1 xj

and f(0, . . . ,
∑m

j=1 xj + c) ≥
f(0, . . . ,

∑m
j=1 xj) due to individual monotonicity.

Proof of Theorem 4.7. We prove this by induction. We want to construct a matrix A such that
Aw = ϕ. From Lemma 4.2 and Lemma A.14, we already know MShap satisfies all these axioms.
Now we want to show that ϕ is unique. For x > 0, we want to show that A is unique, and here are
the requirements that A needs to satisfy.

1. By dummy(b) and ASPM, A is an upper triangular matrix.

2. By completeness, dummy(b), and ASPM, we know
∑

i Ai,j = 0 for all j > 1 and A1,1 =
1.

3. By symmetry(b), ASPM and completeness, if f is symmetric about x1 and xm, then we
require that ϕi =

xi∑m
i=1 xi

f(x). This implies that

A1 =
1∑m

i=1 xi
x.

We start with the case two features. By satisfying Conditions 1 and 2, we have

A =

[
1 a
0 1− a

]
.

By satisfying Condition 3, we have

A =

[
1 x1

x1+x2
− 1

0 x2

x1+x2

]
.

Therefore, A ∈ R2×2 is unique. Now we show it by induction. Suppose Am is uniquely defined
for m, we show it is also uniquely defined for m + 1. Suppose xm+1 is a dummy, then we should
obtain the exact same formula for ϕi, i = 1, . . . ,m. Therefore, we must have

Am+1 =

[
Am ∈ Rm×m b ∈ Rm×1

0 ∈ R1×m c ∈ R1×1

]
.

16



Under review as a conference paper at ICLR 2024

Now by Condition 3, the last column is uniquely determined as[
b
c

]
=

1∑m
i=1 xi

[
xm

xm+1

]
−
[
Am1m

0

]
,

which is the same as the Definition 4.1.

Now suppose xi = 0 and xj ̸= 0 for j ̸= i, by dummy(b), we know ϕi = 0 and ϕj for j ̸= i
can be determined by calculating Aj(f(x1, . . . , xi−1, 0, xi+1, . . . , xm)), which we just show its
uniqueness. Continuing this argument, we finish the proof.

A.3 GMSHAP EXAMPLE

Example A.15. Suppose we have N = {{1, 2}, 3}, then the characteristic function v only consider
v(∅), v(12), v(3), and v(123).

For dummy, we say {1, 2} is a dummy player if

v({1, 2}) = 0,

v({1, 2, 3})− v({3}) = 0.

For symmetry, {1, 2} and {3} are symmetric if

v({1, 2}) = v({3}),
v({1, 2, 3})− v({3}) = v({1, 2, 3})− v({1, 2}).

Example A.16. Suppose we have N = {{1, 2}, 3}, where f is strongly monotonic with respect to
x1 over x2. Consider

f = log(1 + 10x1 + 9x2 + x3).

and we are interested in the explicand x = (4, 1, 2) with the baseline x′ = (0, 0, 0). First, we
calculate GShap values. By calculation, we have

v({3}) = log(3), v({1, 2}) = log(50), v({1, 2, 3}) = log(52).

GShap values are calculated by

Φ1 =
v({1, 2})

2
+

v({1, 2, 3})− v({3})
2

≈ 3.38,

Φ2 =
v({3})

2
+

v({1, 2, 3})− v({1, 2})
2

≈ 0.57.

The further calculation of GMShap yields that

Φ1,1 =
1

2

(
(f(4, 1, 0)− f(0, 5, 0)) +

4

5
f(0, 5, 0)

)
+

1

2

(
(f(4, 1, 2)− f(0, 5, 2)) +

4

5
(f(0, 5, 2)− f(0, 0, 2))

)
≈ 2.72,

Φ1,2 =
1

2
· 1
5
· f(0, 5, 0) + 1

2
· 1
5
· (f(0, 5, 2)− f(0, 0, 2)) ≈ 0.66.

A.4 DATA AND MODEL

We utilize the monotonic groves of neural additive models (MGNAM) by Chen & Ye (2023), which
is a relatively transparent model that enforces pairwise monotonicity. In general, the model has the
form

g(E[y|x]) = f(x),

where g is the link function (e.g., g−1 is the logistic function for classifications). According to the
feature properties, f(x) will be further decomposed. For each example, details will be provided.
The choice of the model is not unique. Models developed in Liu et al. (2020); Milani Fard et al.
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(2016); You et al. (2017); Runje & Shankaranarayana (2023) are applicable for individual mono-
tonicity, whereas deep lattice models (Gupta et al., 2020; Cotter et al., 2019) include strong pairwise
monotonicity. The architecture of the model is one hidden layer for each neural network with four
hidden neurons. Additionally, all activation functions are set as sigmoid. As an illustration, we
focus on simple architectures. It is possible to improve the performance of the model, but it is not
the focus of this study. When checking for accuracy, the dataset is randomly partitioned into 70%
training and 30% test sets. The baseline point is chosen x′ = 0. It is also not a unique choice and
can be modified.

A.4.1 CREDIT SCORING - GIVE ME SOME CREDITS

• x1 − x3: Last two years, the number of times the borrower was 90+ days past due, 60-89
days past due, and 30-59 days past due.

• x4: Monthly income.

• x5: Number of dependents in the family.

• x6: Number of open loans and lines of credit.

• x7: Total balance on credit cards and personal lines of credit except for real estate and no
installment debt such as car loans divided by the sum of credit limits.

• x8: Number of mortgage and real estate loans.

• x9: Age of borrower in years.

• x10: Monthly debt payments, alimony, and living costs divided by monthly gross income.

• y: Client’s behavior; 1 = Person experienced 90 days past due delinquency or worse.

For simplicity, data with missing variables are removed. Past dues that are greater or equal to 20 are
discarded as they either represent missing information or outliers. Then past dues greater than five
times are replaced by five due to the rarity. This also applies to x5 if its value exceeds five.

For MGNAM, we consider the architecture

f(x) = f1,2,3(x1, x2, x3) + f4(x4) + · · ·+ f10(x10).

In other words, x1 − x3 are grouped together, and the remaining features are handled using 1-
dimensional functions. For x1−x3, we enforce strong pairwise monotonicity. We enforce individual
monotonicity for x4 − x5. The area-under-the-curve (AUC) of the model is around 85%, which
indicates that the model is accurate.

In addition, Shap and GMShap values are compared at a global level. In particular, we focus on
samples that have at least two values in [x1, x2, x3] that are greater than zero, because GMShap
coincides with Shap for the remainder of the samples. Also, we exclude the case where x1 = x2 =
x3, since Shap will not violate this condition . The global explanation for the restricted samples is
provided in Figure 2. Shap provides explanations that are fair on a global scale, which is similar to
GMShap’s global attributions.

A.4.2 RECIDIVISM - COMPAS

COMPAS is a proprietary score developed to predict recidivism risk, which is used to guide bail,
sentencing, and parole decisions. A report published by ProPublica in 2016 provided recidivism data
for defendants in Broward County, Florida (Pro, 2016). We focus on the simplified cleaned dataset
provided in Dressel & Farid (2018). Three thousand and fifty-one (45%) of the 7,214 observations
committed a crime within two years. This study uses a binary response variable, recidivism, as the
response variable. The dataset here contains nine features selected after some feature selection was
conducted.

• x1: Total number of juvenile felony criminal charges

• x2: Total number of juvenile misdemeanor criminal charges

• x3: Age

• x4: Total number of non-juvenile criminal charges
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(a) Shap (b) GMShap

Figure 2: (CREDIT SCORING) Global explanations for the restricted samples by Shap and
GMShap

• x5: A numeric value corresponding to the specific criminal charge
• x6: An indicator of the degree of the charge: misdemeanor or felony
• x7: Races include White (Caucasian), Black (African American), Hispanic, Asian, Native

American, and Others
• x8: Sex, male or female
• x9: A numeric value between 1 and 10 corresponds to the recidivism risk score generated

by COMPAS software (a small number corresponds to a low risk, and a larger number
corresponds to a high risk)

• y: Whether the defendant recidivated two years after the previous charge

To avoid discrimination, we further exclude races and sexes. The COMPAS score is also excluded
as it is not the focus of this study and is correlated with other features, making its interpretation
more difficult. As there are too few samples, we truncate the number of juveniles exceeding five.
Otherwise, if monotonicity is requested, neural network functions will become flat, which is not
helpful.

For MGNAM, we consider the architecture

f(x) = f1,2(x1, x2) + f3(x3) + · · ·+ f6(x6). (27)

In other words, x1 − x2 are grouped, and the remaining features are handled using 1-dimensional
functions. For x1 − x2, we enforce strong pairwise monotonicity. The AUC of the model is about
72%, which is consistent with the literature (Dressel & Farid, 2018).

A.4.3 FRAUD DETECTION - TWITTER BOTS ACCOUNTS

Twitter Bots Accounts (Ramalingaiah et al., 2021; Shukla et al., 2021) is a classification dataset that
seeks to categorize whether an account is operated by a human or a bot. Here is a demonstration of
the features in the dataset.

• x1: The number of friends accounts
• x2: The number of followers accounts
• x3: The default profile for which an account has or not
• x4: The number of favorite accounts
• x5: Whether the geological information is accessible or not
• x6: A total count of tweets (including retweets) posted by a user
• x7: Whether the account is verified or not
• x8: The average online time per day
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• x9: The time length for which the account has been created
• x10: Time the information created
• x11: The default profile image for which an account has or not
• x12: The description of an account
• x13: The account’s id
• x14: The language setting of the account
• x15: Where the account belongs (location)
• x16: The URL of the profile background image
• x17: The URL of the profile image
• x18: The screen name that is shown on the Twitter interface
• y: Whether the account belongs to a ‘bot’ or ‘human’

There is a strong pairwise monotonicity relation between the feature x1 (the number of friends) and
the feature x2 (the number of followers). Due to the bidirectional nature of the relationship, the
number of friends is more valuable than the number of followers. As a result, we impose pairwise
monotonicity on both of these features in the MGNAM model. During feature cleaning, nonim-
portant information, such as x10−18, is ignored. The boolean information of x3, x5, and x7 is
transformed into 0 and 1. The label ‘bot’ is transformed into 0 and the label ‘human’ into 1. For
feature manipulation, we concate x1 and x2 greater than 5000. For better illustration, we discretized
the data by partitioning it in intervals with size 100: x ∈ [0, 100) = 0, x ∈ [100, 200) = 100,
x ∈ [200, 300) = 200, x ∈ [300, 400) = 300, . . . . Efforts can be made to improve these results, but
that is not the primary focus of this study.

For MGNAM, we consider the architecture

f(x) = f1,2(x1, x2) + f3(x3) + · · ·+ f9(x9). (28)

In other words, x1 − x2 are grouped together, and the remaining features are handled using 1-
dimensional functions. For x1 − x2, we enforce strong pairwise monotonicity. The AUC of the
model is about 77%. In this example, Shap and GMShap are applied to the 2-dimensional output of
a neural network, f1,2(x1, x2) for features x1 and x2.
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