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Abstract
The class of deep deterministic off-policy algo-
rithms is effectively applied to solve challenging
continuous control problems. However, current
approaches use random noise as a common explo-
ration method that has several weaknesses, such
as a need for manual adjusting on a given task
and the absence of exploratory calibration during
the training process. We address these challenges
by proposing a novel guided exploration method
that uses a differential directional controller to
incorporate scalable exploratory action correction.
An ensemble of Monte Carlo Critics that provides
exploratory direction is presented as a controller.
The proposed method improves the traditional ex-
ploration scheme by changing exploration dynam-
ically. We then present a novel algorithm exploit-
ing the proposed directional controller for both
policy and critic modification. The presented algo-
rithm outperforms modern reinforcement learning
algorithms across a variety of problems from DM-
Control suite.

1. Introduction
In reinforcement learning, exploration is a vital component
of policy optimization. The method chosen to be an explo-
ration strategy defines the interaction with the world, thus
influences the final agent’s success being key in solving con-
tinuous (Zhang & Van Hoof, 2021), navigation (Mazoure
et al., 2020) and hierarchical problems (Vigorito, 2016).
On a high level, all exploration methods can be divided
into undirected and directed ones (Thrun, 1992). The undi-
rected methods provide random exploratory actions based
on desired exploration-exploitation trade-off, while directed
algorithms rely on information provided by a policy or a
learned world model.
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Figure 1. A scheme of a guided exploration model. Policy gradi-
ents ∇θ are directed by the final reward objective J and corrected
by an intrinsic objective I facilitating directed exploration.

In real world, humans and animals seldom rely on random
exploration of the environment, always pursuing some in-
trinsic motivation as safety (Tully et al., 2017), curiosity
(Berlyne, 1966; Kidd & Hayden, 2015) or uncertainty mini-
mization (Gershman, 2019). Equivalents of these psycholog-
ical phenomena are successfully applied within correspond-
ing research directions of reinforcement learning, forming
the class of intrinsically-motivated algorithms (Garcıa &
Fernández, 2015; Pathak et al., 2017). A scheme of such
intrinsically motivating guided exploration is depicted in
Figure 1, showing different directions of policy parameters
change for the external- and intrinsic-reward objectives.

In the context of continuous control problems, the class of
deep deterministic off-policy methods gains high popularity
in the reinforcement learning community due to its imple-
mentation simplicity and state-of-the-art results. However,
from an exploration perspective, such algorithms as DDPG
(Lillicrap et al., 2015) and TD3 (Fujimoto et al., 2018) use
Gaussian or time-dependent Ornstein-Uhlenbeck noise that
is applied to deterministic action. While being a simple
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Figure 2. Preliminary motivation experiment. The performance of
the original version of TD3 algorithm compared with a variant
without exploration noise.

and rather effective exploration tool, the methods based
on random noise suffer from three limitations. Firstly, in
high dimensional environments random exploration is an
inefficient strategy to achieve certain regions of interest in
the state-space that can lead to success (Burda et al., 2018).
Secondly, the algorithms discussed apply noise with the
same mean and deviation during the whole period of policy
optimization. Being a crucial instrument in the beginning of
parameter search, excessive exploration may hurt the policy
performance to reach its optimal condition. Finally, the
aforementioned methods apply noise of the same magnitude
for all actions, whereas actions in continuous control often
relate to the entities of different scales.

To illustrate the sub-optimality of conventional random ex-
ploration and justify our motivation we consider the TD3
algorithm performance on two continuous control domains,
Walker2d-v2 and Humanoid-v2 (Brockman et al., 2016).
We compare the original version of TD3 and a variant with-
out any noise applied during action selection and calculation
of a critic value. Original TD3 provides poor performance
compared with the version without any exploration noise
(Figure 2). This simple experiment demonstrates that cur-
rent Gaussian-based exploration can hurt the agent’s perfor-
mance. Nevertheless, the total absence of exploration may
also lead to lower episodic reward, as our later experiments
show. We aim to develop an effective method of directed
exploration that enhances the results of deterministic off-
policy algorithms.

We address the mentioned weaknesses of random explo-
ration by introducing a directional controller that is able
to guide a policy in a meaningful exploratory direction.
Specifically, we propose to use an ensemble of Q-function
approximations trained to predict Monte Carlo Q-values
as such a controller. By optimizing multiple independent
predictions and using the action gradient from calculated
variance we are able to obtain an uncertainty estimate for
a given state. Based on this gradient we provide an ex-
ploratory action correction towards the most unexplored

environment regions.

The contribution of this paper is twofold. First, we present a
method for a guided exploration that can substitute Gaussian
noise and be incorporated into any off-policy deterministic
algorithm. We show that the proposed exploration improves
over other exploration methods on a set of continuous con-
trol tasks. Second, we present a novel algorithm that ex-
ploits the proposed uncertainty-based directional controller
for both actor and critic parts of model architecture. The
proposed method demonstrates superior results compared
with modern reinforcement learning algorithms on a set of
tasks from DMControl suite.

Following the guidelines of reproducibility of reinforcement
learning algorithms (Henderson et al., 2018) we report the
results on a large number of seeds and release the source
code alongside raw data of learning curves 1.

2. Preliminaries
We consider a standard reinforcement learning (RL) setup,
in which an agent interacts with an environment E at dis-
crete time steps aiming to maximize the reward signal. The
environment is a Markov Decision Process (MDP) that can
be defined as ⟨S,A,R, ρ, γ⟩, where S is a state space, A
is an action space,R is a reward function, ρ is a transition
dynamics and γ ∈ [0, 1] is a discount factor. At time step t
the agent receives state st ∈ S and performs action at ∈ A
according to policy π, a distribution of a given s that leads
the agent to the next state st+1 according to the transition
probability ρ(st+1|st, at). After providing the action to E ,
the agent receives a reward rt ∼ R(st, at). The discounted
sum of rewards during the episode is defined as a return
Rt =

∑T
i=t γ

i−tr(si, ai).

The RL agent aims to find the optimal policy πθ, with pa-
rameters θ, which maximizes the expected return from the
initial distribution J(θ) = Esi∼ρπ,ai∼πθ

[R0]. The action-
value function Q is at core of many RL algorithms and
denotes the expected return when performing action a from
the state s following the current policy π:

Qπ(s, a) = Esi∼ρπ,ai∼π [Rt|s, a] . (1)

In continuous control problems the actions are real-valued
and the policy πθ can be updated taking the gradient of the
expected return∇θJ(θ) with deterministic policy gradient
algorithm (Silver et al., 2014):

∇θJ(θ) = Es∼ρπ

[
∇aQ

π(s, a)|a=π(s)∇θπθ(s)
]
. (2)

The class of actor-critic methods operates with two param-
eterized functions. An actor represents policy π and the

1Code is available at https://github.com/schatty/
MOCCO

https://github.com/schatty/MOCCO
https://github.com/schatty/MOCCO
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Figure 3. Visualization of uncertainty estimation (left) and critic
prediction (right) at the same state on 2D action plane. Environ-
ment: point-mass-easy.

critic is the Q-function. The critic is updated with temporal
difference learning by iteratively minimizing the Bellman
error (Watkins & Dayan, 1992):

JQ = E
[
(Q(st, at)− (r + γQ(st+1, at+1)))

2
]
. (3)

In deep reinforcement learning, the parameters of Q-
function are modified with additional frozen target network
Qθ′ which is updated by τ proportion to match the current
Q-function θ

′ ← τθ + (1− τ)θ′

JQ = E
[
(Q(st, at)−Q′)2

]
, (4)

where

Q′ = r(st, at) + γQθ′(st+1, a
′), a′ ∼ πθ′ (st+1). (5)

The actor is learned to maximize the current Q function:

Jπ = E [Q(s, π(s))] . (6)

In this work, we focus on an off-policy version of actor-
critic algorithms, proven to have better sample complexity
(Lillicrap et al., 2015). Within this approach, the actor and
the critic are updated with samples from a different policy,
allowing to re-use the samples collected from the environ-
ment. The mini-batches are sampled from the experience
replay buffer (Lin, 1992).

In off-policy Q-learning, actions are selected greedily w.r.t.
maximum Q-value thus producing overestimated predic-
tions. An effective way to alleviate this issue is keeping two
separate Q-function approximators and taking a minimal
one during the optimization (Van Hasselt et al., 2016). Mod-
ern actor-critic methods (Fujimoto et al., 2018; Haarnoja
et al., 2018b) independently optimize two critics Q1, Q2

with identical structure and use the lower estimate during
the calculation of the target Q′:

Q′ = r(st, at)+γmin [Q1
θ′(st+1, a

′), Q2
θ′(st+1, a

′)]. (7)

3. Method of Guided Exploration
On a high level, our agent consists of two components:
an actor-critic part to provide a deterministic policy and a
directional controller that modifies policy output action to fa-
cilitate directed exploration. The deterministic policy πθ(s)
is parameterized by θ and optimizes reward maximization to
produce a base action ab. The directional controller ψ opti-
mizes auxiliary intrinsic objective to produce an exploratory
action correction ae. The policy and the directional con-
troller are jointly optimized to produce an additive action to
collect transitions for off-policy updates:

a := ab + ae, ab ∼ πθ(s) (8)

For the actor-critic part, we use the TD3 algorithm (Fuji-
moto et al., 2018) as a backbone.

3.1. Directional Controller

The directional controller DCω(s|θ) is parameterized by ω
and conditioned on policy parameters θ. The proposed con-
troller features an ensemble of Q-function approximators
{q1(s, a), ..., qn(s, a)} that predicts the collected Monte
Carlo Q-values. The values for the update are sampled
from a small experience replay buffer DMC with recent
trajectories collected by the policy. Given n ensemble pre-
dictions, the controller DC estimates prediction uncertainty
as the ensemble disagreement:

ψω(s|θ) := Var ({q1(s, a), ..., qn(s, a))}), (9)

where qi(s, a) = Es∼DMC ,a∼πθ
[R], i ∈ [1..n]. This dis-

agreement reflects both epistemic uncertainty of controller
parameters and aleatory uncertainty of the collected Monte
Carlo Q-values. During optimization, controller’s objective
is to reduce uncertainty in a supervised fashion by mini-
mizing square distance between the predicted and collected
returns:

Jϕ =

n∑
i=1

(QMC(s, a)− qi(s, a))2, (10)

where (s, a) is a state-action pair sampled from DMC with
the corresponding Monte Carlo Q-valueQMC(s, a). Taking
the gradient of the controller w.r.t. action, we obtain the
direction towards maximizing the uncertainty under current
controller parameters ω:

∇aψω = ∇aVar ({q1(s, a), ..., qn(s, a))})|a∼πθ(s). (11)

This gradient value is at the core of exploratory action ae,
as it identifies the direction towards the most unexplored
environment regions. Figure 3 depicts the surface of the
uncertainty estimation value returned by ψ(s) and the critic
predictionQ(s, ·) for the point mass-easy task, where |A| =
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We use Monte Carlo Q-value approximation as a directional
controller for two reasons. First, it is differentiable w.r.t
action, allowing to obtain action gradient. Second, in con-
trast with model-based dynamics (Janner et al., 2019) and
curiosity (Pathak et al., 2017) approaches, which require
either the next state or the next action to compute the in-
trinsic signal, we need only the current state-action pair to
obtain a plausible action direction. Since the directional
controller to modify the exploratory action is applied, we
do not have an access to the next transition as in approaches
that incorporate intrinsic signal during the off-policy update
step.

3.2. Calculating action correction

During policy optimization the agent sequentially performs
a base action ab ∼ πθ(s). Given the state s and policy
parameters θ, the directional controller provides the base
action gradient towards exploration objective∇abψω(s|θ).
Here we describe the procedure of obtaining action correc-
tion ae based on this gradient. To connect gradient value
∇ab with action scales we perform the following scaling
procedure:

ae =
∇ab

∥∇ab∥2
· ϵ · ζ, (12)

where ϵ is denormalization constant and ζ is a scaling fac-
tor. The denormalization constant ϵ is to scale normalized
gradient values to the practical magnitude of actions for a
given task. It is possible to set this constant to the value
that corresponds to exploration magnitude used in (Lillicrap
et al., 2015; Fujimoto et al., 2018), obtaining a directional
vector of a scale required. However, with this only modifica-
tion action correction vector would be fixed in its magnitude
during the learning process. As a solution, we set ϵ to the
magnitude of fully exploratory vector of random actions
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Figure 5. An illustration of Q-value overestimation. The true value
of Q-function (Q-true) lies between overestimated critic prediction
(Q) and underestimated Monte Carlo prediction (Q-MC).

sampled uniformly:

ϵ := E[∥a∥2], a ∼ U(aMIN , aMAX) (13)

with the following multiplying by the dynamic scaling factor
ζ. We pose two requirements on the scaling factor:

• It should be bounded with ζi ∈ [0..1], i ∈ [1..|A|],
with 0 corresponding to the absence of exploration and
1 corresponding to the random action selection.

• It should change dynamically within the policy opti-
mization.

To satisfy both requirements we support two statistical quan-
tities during the learning process: the running deviation of
∇ab for the last N time steps σN (∇ab) and its maximum
value max [σ(∇ab)] for all seen deviation gradient values
during the learning, resulting in:

ζi =
σN (∇abi )

max [σ(∇abi )]
, i ∈ [1..|A|]. (14)

Large values of gradient deviation between adjacent actions
from a small running window of size N show uncertainty
of the ensemble thus reflecting the need for more intensified
exploration. The scaling factor is of dimension |A|, facil-
itating keeping the individual scale for each element of a
continuous action vector.

The dynamics of exploratory action ae during the learn-
ing process on different tasks is depicted in Figure 4a. In
the beginning of the training, the scaling factor is close to
maximum action bound enhancing aggressive exploration.
During the policy and the directional controller optimization
ζ decreases leading the policy to more exploitation-inclined
behavior. Notably, the dynamics of the scaling factor are
not identical between environments. An example of action
correction values ae for the walker-run task are depicted in
Figure 4b.
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4. MOCCO Algorithm
Based on the presented technique of guided exploration,
we propose a novel deep reinforcement learning algorithm
Monte Carlo Critic Optimization (MOCCO) that incorpo-
rates an ensemble of Monte Carlo critics not only for the
actor, as an exploratory module, but also for the critic to alle-
viate Q-value overestimation. Several works have studied Q-
value overestimation in continuous control setting and have
presented techniques to alleviate the issue (Ciosek et al.,
2019; Kuznetsov et al., 2020; Kuznetsov & Filchenkov,
2021). Here, we propose to use a mean from the ensemble
of Monte Carlo values as a second pessimistic Q-value esti-
mate during critic optimization, resulting in the following
critic’s objective:

JQ = (Q−Q′)2 + (Q− β ·QMC)2, (15)

where QMC = µ({q1, ..., qn}), and β is a coefficient con-
trolling an impact of the pessimistic estimate. For the given
state-action pair (s, a) the critic estimate Q(s, a) is gener-
ally greater than the corresponding Monte Carlo estimate
QMC , as the latter predicts estimates of the past sub-optimal
policies. To illustrate this, we measure the following quanti-
ties during the learning process on tasks Walker2d-v2 and
Hopper-v2:

• TD-based bootstrapped Q-value approximation as av-
eraged critic Q prediction. Only a single critic is opti-
mized during the TD optimization.

Algorithm 1 MOCCO

1: Initialize actor πθπ , critic QθQ , target critic Q
′

θQ
′

2: Initialize directional controller DCω = {q1, ..., qk}
3: Initialize replay buffer B, episodic buffer BE
4: Initialize smaller buffer BMC for the most recent steps
5: for t=1 to T do
6: Select action with guided noise a = ab + ae,
7: ab ∼ πθπ (s), ae ∼ DCω

8: Receive next state s
′
, reward r, terminal signal d

9: if d then
10: for i=1 to |BE | do
11: Calculate discounted episodic return Ri

12: Store (si, ai, ri, s
′

i, di) in B
13: Store (si, ai, Ri) in BMC

14: end for
15: Free BE
16: end if
17: Sample mini-batch from B: [sb, ab, rb, sb] and
18: update critic Q: JQ = (Q−Q′)2 + β(Q−QMC)2

19: Sample mini-batch from BMC : [sb, ab, Rb] and
20: update DCω: JDC =

∑k
i (qi −Rb)

2

21: if t mod 2 then
22: Update policy ππ

θ

23: Update target critic θQ
′ ← τθQ + (1− τ)θQ

′

24: end if
25: end for
26: return θπ

• True Q-value estimate as a discounted return of the
current policy starting from given state-action pair.

• Monte Carlo Critic Q-value estimate as an averaged
prediction of QMC .

All three quantities are averages across the batch size of 256
that are collected each 5e3 time steps and reported from
multiple seeds. Figure 5 shows the dynamics of predictions
on 1M time steps. Monte Carlo prediction (Q-MC) has
lower value than both TD-based (Q) and true Q-estimate (Q-
true) values, while TD-based prediction is generally higher
than the true estimate.

In reinforcement learning, Monte Carlo estimates have high
variance and low bias, whereas one-step TD methods have
less variance but can be biased. Here, we combine both
methods during Q-function optimization. Empirically we
show that the true Q-value estimate lies between Q and
QMC , therefore it is beneficial to use both estimates to
balance between over- and underestimation.

The role of the directional controller (DC) during the ex-
ploration and critic optimization is schematically depicted
in Figure 6. During action selection, DC provides directed
exploration i.e. it is applied on-policy. During off-policy
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Table 1. A comparison of exploration approaches. Average
episodic score from 10 trials. Each trial is a mean of the last
10 episodes.

TASK NO EXPL NORMAL OU GE

POINT MASS 661.79 737.72 600.20 814.22
WALKER-WALK 940.49 947.18 936.67 962.56
WALKER-RUN 535.56 586.53 603.93 621.07
HOPPER-STAND 46.05 6.13 21.55 54.66
HOPPER-HOP 29.20 48.95 28.48 45.57
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Figure 7. Contribution of different components of MOCCO algo-
rithm.

update steps, DC is used to provide a second estimate for
current Q-function optimization.

Practically, the MOCCO algorithm is based on TD3 with the
following differences: (1) it uses guided exploration during
action selection; (2) it does not use second TD critic; (3)
the mean of MC-critics ensemble is used during the critic
optimization. Full pseudo-code is presented in Algorithm 1.

5. Experiments
First, we demonstrate that the proposed method improves
conventional random noise-based exploration using TD3
algorithm. Next, we show experimental results for MOCCO.
We perform an ablation study to identify the impact of
each proposed algorithmic component on final success and
demonstrate the comparative evaluation results.

5.1. Guided Exploration for Off-Policy Deterministic
Algorithms

In this experiment, we show that guided exploration im-
proves over the traditional Gaussian-based exploration
method. To do so, we use TD3 as a baseline algorithm
and vary the type of applied exploratory noise during the
action selection process. Table 1 shows the results of the
following scenarios: actions are sampled without noise (no
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expl), with Normal Gaussian noise (normal), temporally
correlated noise drawn from an Ornstein-Uhlenbeck process
(OU), and with proposed guided exploration method (GE).
For normal Gaussian and Ornstein-Uhlenbeck noise, we use
parameters reported in (Haarnoja et al., 2018b; Lillicrap
et al., 2015) correspondingly. We run each algorithm 10
times with different random seeds. Within each run, the
reported value is the mean of 10 evaluations of the same
policy from different environment initialization. Results
demonstrate higher rewards of guided exploration over the
conventional approaches for all environments except hopper-
hop.

5.2. MOCCO: Ablation Study

The aim of this experiment is to identify the impact of
each component on the overall success of the presented
algorithm. We study the contribution of guided exploration
as a substitution of the Gaussian noise (TD3 + GE), the
contribution of the proposed critic objective featuring Monte
Carlo critic estimate (TD3 + QMC), and of both features
combined (MOCCO).

Figure 7 shows results for walker-walk, walker-run, hopper-
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Figure 9. Learning curves of evaluation algorithms. The shading region shows standard deviation across seeds. Curves are smoothed with
a 10-point moving average for clarity.

Table 2. Evaluation results as the average of the last 10 episodes. ± denotes standard deviation across seeds.

ENV PPO SAC SAC-α DDPG TD3 MOCCO

POINT MASS 431.71 437.77 795.59 0.81 737.72 882.84 ± 9.17
WALKER-WALK 505.54 884.88 892.76 26.13 947.18 959.12 ± 12.07
WALKER-RUN 187.13 26.27 618.34 26.68 586.53 722.10± 23.78
PENDULUM-SWINGUP 261.970 70.61 473.64 11.96 424.22 795.73 ± 41.84
HOPPER-STAND 17.84 5.94 5.94 11.02 6.13 249.53 ± 263.34
HOPPER-HOP 5.12 0.06 19.43 0.17 48.95 60.98 ± 42.22

stand, hopper-hop on 5 random seeds. Results show that
each component improves the results of TD3 algorithm
on all tasks and a combination of features provides better
performance than their sole contributions on 3 out of 4 tasks.

Next, we vary hyperparameters introduced by MOCCO to
identify algorithm robustness on two tasks: walker-walk
and hopper-hop. We study different values of the coefficient
controlling MC critic impact (β), the size N of the buffer
used for calculating the running deviation of action gradient
σN (∇a), and the size of reduced replay buffer BMC on
which the ensemble of MC critics is trained. Figure 8 shows
that MOCCO is robust to the hyperparameter change, except
the case of varying β for hopper-hop.

We demonstrate comparative results of MOCCO algo-
rithm on 6 control problems from DMControl (Tassa et al.,
2018) benchmark: point mass-easy, walker-walk, walker-
run, pendulum-swingup, hopper-stand, hopper-hop. We
compare the proposed approach with off-policy algorithms
DDPG, TD3, SAC (Haarnoja et al., 2018a) and on-policy

PPO (Schulman et al., 2017) algorithm. For off-policy algo-
rithms, we run 1M environment time steps on each environ-
ment, collecting episode scores for every 2e3 steps. Each
episode score is an average of 10 runs of a policy without ex-
ploration from different environment seeds. Each algorithm
is run 10 times with different seeds with reported standard
deviation. For PPO, we run the training process 10 times
with different environmental and algorithmic seeds with the
following averaging.

We use the official implementation of TD3 as a baseline. For
DDPG, we use the implementation from TD3, denoted as
”DDPG”. We extend the TD3 code to entropy optimization
for SAC deriving. For PPO results we use the implementa-
tion from (Kostrikov, 2018).

We use Adam optimizer (Kingma & Ba, 2014) with the
learning rate 3e-4 for all algorithms. For a fair comparison,
we use the same network parameters from the (Fujimoto
et al., 2018). All networks have 2 hidden layers of size 256
and ReLU non-linearity (Glorot et al., 2011). For SAC we
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run two versions, first with fixed entropy coefficient equal to
0.2 (proposed in (Achiam, 2018)) and auto tunable entropy
(SAC-α) from (Haarnoja et al., 2018b). We use mini-batch
size 256 for all algorithms.

For MOCCO, we set the size of DMC to 1e5 transitions,
and the size of buffer N for calculating deviations used
in the scaling factor ζ to 1000. We use 3 critics in the
ensemble as our experiments have not provided benefits
from an increased number of critics. The β coefficient
controlling an impact of MC-critic is set to 0.1.

Table 2 reports the average of episodic scores for the last
10 episodes. The corresponding learning curves are pre-
sented in Figure 9. MOCCO outperforms other approaches,
sometimes with significant margins, e.g. for pendulum and
hopper-stand.

6. Related Work
The problem of efficient exploration has a long-standing
history in reinforcement learning. Early approaches suggest
incorporating random exploratory strategies (Moore, 1990;
Sutton, 1990; Barto et al., 1991; Williams, 1992) which have
theoretical grounds but are not always scalable to complex
environments with high-dimensional inputs. The broad class
of directed exploration algorithms, first proposed in (Thrun,
1992), studies an approach of guiding a policy towards cer-
tain regions with specific knowledge of the learning process.

Numerous works on directed exploration study intrinsic re-
ward, where the learning process relies on some intrinsic
signal. Examples of exploration based on intrinsic reward
include algorithms based on information gain (Little & Som-
mer, 2013; Mobin et al., 2014), curiosity (Deci et al., 1981;
Pathak et al., 2017), and uncertainty-minimization (Schmid-
huber, 1991; Houthooft et al., 2016). (Badia et al., 2019)
propose to use episodic memory as a source of the intrinsic
signal and optimize multiple policies, some of which are
guided by exploratory goals and others are fully exploita-
tive. In contrast with many intrinsic-reward approaches, our
method does not modify the reward with additional dense
signal nor modifies the policy, but rather optimizes the in-
trinsic objective independently only to correct exploratory
action.

The work of (Pathak et al., 2019) shows that exploration
can be key in achieving high sample efficiency required for
real-world setup. The authors use an ensemble of forward
dynamics models that produces disagreement as an intrinsic
reward. Incorporation of such a disagreement signal results
in an effective exploration, allowing robots to solve object
interaction tasks from scratch in real-time.

Apart from the directed exploration based on intrinsic objec-
tive, several works have proposed methods with a different

perspective. (Ciosek et al., 2019) addresses the notion of
pessimistic underexploration that comes from optimizing a
lower bound in critic update. By approximating the upper
bound of state-action function and using it during explo-
ration the proposed method avoids underexploration and
achieves higher sample efficiency. Some works study the ap-
proach of exploration in policy parameter space rather than
in action space (van Hoof et al., 2017; Fortunato et al., 2018;
Zhang & Van Hoof, 2021). Finally, a number of works study
exploration under goal-reaching angle, where the agent ex-
plores environment by learning to achieve seen (Florensa
et al., 2018), generated (Nair et al., 2018; Sukhbaatar et al.,
2018), or specifically unseen (Mendonca et al., 2021) state
regions.

A comprehensive review of exploration in reinforcement
learning can be found in (Amin et al., 2021). Following the
suggested taxonomy, the method presented in this paper falls
into the category of ”reward-free intrinsically-motivated”
exploration i.e. not using an extrinsic reward for exploratory
purpose, but relying on intrinsic signal to explore novel
world regions.

7. Discussion
We presented a method for directed exploration that im-
proves off-policy deterministic algorithms by adding ex-
ploratory action correction to the base policy action. By
using a differential controller conditioned on policy param-
eters we direct exploration towards the regions of inter-
est and dynamically calibrate the magnitude of exploratory
correction during the learning process. The proposed ex-
ploration method does not require rigorous hyperparame-
ter turning due to the dependence on a learnable intrinsic
signal that reflects given environmental uncertainty. We
provide empirical results that validate the efficacy of the
proposed method on a range of continuous control tasks.
Our approach achieves a higher reward than methods depen-
dent on a random noise. We further presented MOCCO, a
novel deep reinforcement learning algorithm based on the
proposed exploration method. Experiments showed that
MOCCO outperforms modern off-policy actor-critic meth-
ods on a set of DMControl suite tasks.

We note that the proposed directional controller based on
optimizing Monte Carlo Q-values can be substituted by a
different differential model. For example, such a controller
can be presented as a form of forward or inverse model
dynamics, shifting the focus to model-based reinforcement
learning. Another promising direction is to present the
directional controller as a differential memory module, con-
necting the direction of the external agent’s memory with
efficient exploration. We believe that the proposed explo-
ration technique will help to tackle problems that require
careful dynamic exploration.
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