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ABSTRACT

Generative models face a fundamental challenge: they must simultaneously learn
high-level semantic concepts (what to generate) and low-level synthesis details
(how to generate it). Conventional end-to-end training entangles these distinct,
and often conflicting objectives, leading to a complex and inefficient optimization
process. We argue that explicitly decoupling these tasks is key to unlocking more
effective and efficient generative modeling. To this end, we propose Embedded
Representation Warmup (ERW), a principled two-phase training framework. The
first phase is dedicated to building a robust semantic foundation by aligning the
early layers of a diffusion model with a powerful pretrained encoder. This pro-
vides a strong representational prior, allowing the second phase—generative full
training with alignment loss to refine the representation—to focus its resources on
high-fidelity synthesis. Our analysis confirms that this efficacy stems from func-
tionally specializing the model’s early layers for representation. Empirically, our
framework achieves a 11.5× speedup in 350 epochs to reach FID=1.41 compared
to single-phase methods like REPA (Yu et al., 2024).
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Figure 1: A Staged Approach: First Build Semantics, Then Synthesize. Our framework operationalizes
the decoupling of semantic understanding from generative synthesis. In Phase 1 (Semantic Foundation),
we exclusively train the model’s early layers to align with a pretrained encoder (e.g., DINOv2 (Oquab et al.,
2023)), establishing a robust understanding of what to generate. In Phase 2 (Guided Synthesis), the full model
is trained. The plot empirically demonstrates the power of this decoupling: ERW converges dramatically
faster and achieves superior performance compared to single-phase training like REPA (Yu et al., 2024), which
entangles both learning tasks.

1 INTRODUCTION

“All roads lead to Rome, but it is not as good as being born in Rome.”

Deep generative models, particularly diffusion models (Ho et al., 2020; Song et al., 2020), have
achieved remarkable success in high-fidelity image generation. These models excel at tasks ranging
from unconditional image generation (Dhariwal & Nichol, 2021) to text-to-image synthesis (Ramesh
et al., 2022; Saharia et al., 2022), demonstrating a profound capacity to model complex data distri-
butions. However, underpinning their impressive capabilities is a fundamental tension, arising from
a multitude of entangled learning objectives.
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At its core, effective generation requires both semantic understanding—comprehending what con-
stitutes meaningful content—and visual synthesis—translating abstract concepts into precise pixel-
level details. Conventional end-to-end training entangles these objectives within a single optimiza-
tion process, forcing the model to concurrently learn high-level conceptual knowledge and low-level
rendering skills. This entanglement creates inherent optimization conflicts, a challenge reminiscent
of the classic perception-distortion trade-off (Blau & Michaeli, 2018). Early in training, the model’s
attempts to fit pixel-level details may interfere with its ability to capture global semantic structures,
an issue exacerbated by the known spectral bias of neural networks towards learning low-frequency
components first (Rahaman et al., 2019; Sauer et al., 2021). Consequently, later stages may struggle
to refine generation quality due to inadequate representational foundations.
Recent studies have begun to acknowledge this tension. While diffusion models implicitly learn
semantic features during denoising (Yang & Wang, 2023; Xiang et al., 2023), these representations
often lack the robustness and versatility of dedicated self-supervised approaches (Caron et al., 2021;
Oquab et al., 2023). Moreover, Kadkhodaie & Simon (2024) highlight the critical bottleneck be-
tween memorizing semantic information and generalizing to realistic distributions. Methods like
REPA (Yu et al., 2024) have attempted to address this by aligning diffusion representations with
pretrained encoders throughout training, yet they still suffer from the fundamental challenge of joint
optimization. These observations lead us to a pivotal question:

Q: Can we fundamentally simplify generative model training by decoupling semantic
understanding from visual synthesis, thereby allowing each component to be optimized
more effectively?

Self-supervised learning approaches, including contrastive methods (Chen et al., 2020a), masked
autoencoders (He et al., 2022), and recent advances like DINOv2 (Oquab et al., 2023), have demon-
strated exceptional capabilities in learning rich semantic representations. However, effectively inte-
grating these external representations into diffusion models remains challenging due to fundamental
mismatches: diffusion models operate on progressively noisy inputs while self-supervised encoders
are trained on clean data, and architectural differences further complicate direct integration.
Our approach. We propose that the key to resolving this challenge lies in explicitly decoupling
the learning of semantic understanding from visual synthesis. To this end, we introduce Embedded
Representation Warmup (ERW), a principled two-phase framework that operationalizes this de-
coupling philosophy. Our approach is grounded in the observation that diffusion models naturally
exhibit a functional specialization: early layers predominantly handle semantic processing (what we
term the Latent-to-Representation or L2R circuit), while later layers focus on generative refinement
(the Representation-to-Generation or R2G circuit).
Rather than forcing both circuits to learn simultaneously from scratch, ERW strategically separates
their optimization: Phase 1 (Semantic Foundation) establishes a robust semantic foundation by
dedicating training exclusively to aligning the L2R circuit with a pretrained self-supervised encoder
(e.g., DINOv2). This phase ensures the model is "born in Rome"—equipped with mature semantic
understanding from the outset. Phase 2 (Guided Synthesis) then leverages this foundation to focus
training resources on the R2G circuit, optimizing visual synthesis under the guidance of a gradually
diminishing representational constraint.
Validation. Extensive experiments demonstrate that our decoupling strategy yields substantial bene-
fits. ERW achieves up to an 11.5× training speedup to reach a comparable FID score in 350 epochs
compared to single-phase methods like REPA while achieving FID = 1.41. The warmup phase re-
quires only a fraction of the total training cost, making our approach highly practical for real-world
applications.
Our contributions are threefold:

(a) We formalize the optimization entanglement in generative models as of semantic understanding
and visual synthesis, and propose a conceptual decomposition of the diffusion model into func-
tionally specialized L2R and R2G circuits.

(b) We introduce ERW, a principled two-phase training paradigm that operationalizes this decou-
pling, first building a semantic foundation and then focusing on guided synthesis.

(c) We demonstrate the effectiveness of our framework through extensive experiments, achieving
state-of-the-art results.
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2 RELATED WORK

Our work builds on three research pillars: leveraging pretrained encoders, recent advances in dif-
fusion model acceleration, and enhancing the internal representations of diffusion models through
decoupled training strategies.

Leveraging pretrained encoders for guidance. The idea of leveraging powerful pretrained en-
coders (Radford et al., 2021; Oquab et al., 2023) to guide generation is well-established, with ap-
plications as GAN discriminators (Sauer et al., 2021; Kumari et al., 2022) or for knowledge dis-
tillation (Li et al., 2023b). A recent and direct approach is concurrent representation alignment,
epitomized by REPA (Yu et al., 2024), which accelerates training by enforcing alignment through-
out the entire process. In contrast, our work treats alignment as a foundational warmup, relaxing the
constraint during later stages to allow the model to focus fully on synthesis.

Contemporary acceleration strategies and recent advances. Accelerating diffusion models has
emerged as a critical research thrust, as recent years have witnessed significant breakthroughs across
multiple fronts (Fuest et al., 2024). Post-training sampling acceleration continues to be actively pur-
sued through knowledge distillation techniques that compress slow teachers into fast students (Sali-
mans & Ho, 2022; Sauer et al., 2023; Shao et al., 2023), and through consistency models enabling
one-shot or few-shot generation (Song et al., 2023; Heek et al., 2024). Recent work includes specula-
tive decoding approaches for autoregressive text-to-image generation and training-free acceleration
methods. Advanced numerical solvers remain crucial, with improvements to DPM-Solver (Lu et al.,
2022) and novel exponential integrators significantly reducing function evaluations. Training ac-
celeration strategies include architectural decoupling in staged pipelines (Karras et al., 2018; Ho
et al., 2022; Saharia et al., 2022), curriculum learning on timesteps (Xu et al., 2024), and progres-
sive sparse low-rank adaptation methods. ERW contributes to this rapidly evolving landscape by
fundamentally decoupling learning objectives within the training process, separating semantic un-
derstanding ("what") from synthesis capability ("how").

Internal vs. injected representations and efficient fine-tuning. Numerous studies confirm that
diffusion models implicitly learn powerful, classifier-like semantic features (Yang & Wang, 2023; Li
et al., 2023a; Xiang et al., 2023), a phenomenon some works have deconstructed this phenomenon
for self-supervised learning (Chen et al., 2024). An alternative strategy enhances internal represen-
tation learning by fusing diffusion objectives with auxiliary self-supervision losses, exemplified by
MAGE (Li et al., 2023c) and MaskDiT (Zheng et al., 2024), which draw inspiration from contrastive
learning (Chen et al., 2020a; He et al., 2020) and masked autoencoding (He et al., 2022). However,
these approaches require careful balancing of competing objectives. ERW sidesteps these complex-
ities by directly injecting mature semantic priors via dedicated warmup, freeing the model to focus
purely on high-fidelity synthesis while achieving efficiency comparable to contemporary methods.

3 FROM FUNCTIONAL SPECIALIZATION TO DECOUPLED TRAINING IN
LATENT DIFFUSION

In this section, we adopt a three-stage view of latent diffusion—Pixel-to-Latent (P2L), Latent-to-
Representation (L2R), and Representation-to-Generation (R2G)— as a functional perspective
that facilitates decoupled training. P2L provides compressed latents as a precondition, while L2R
and R2G capture the predominant (but not exclusive) roles of early and late layers in semantic
processing and generative refinement. The separation is heuristic and approximateroles overlap and
are not strictly orthogonalbut it is sufficient to decouple training objectives in practice. This view
underpins our two-phase framework.

3.1 PRELIMINARIES

Latent diffusion models. While classic diffusion models such as DDPM (Ho et al., 2020) adopt
a discrete-time denoising process, flow-based methods (Lipman et al., 2022; Albergo et al., 2023;
Shi et al., 2024) explore diffusion in a continuous-time setting. In particular, Scalable Interpolant
Transformers (SiT) (Ma et al., 2024; Esser et al., 2024; Lipman et al., 2022; Liu et al., 2023) of-
fer a unifying framework for training diffusion models on a continuous-time stochastic interpolant.
Below, we describe how SiT can be leveraged to learn powerful latent diffusion models.
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Forward process via stochastic interpolants. Consider a data sample x ∼ p(x) (e.g., an image)
and let the encoder Hθ(x) map it to its latent representation denoted as z0 ∈ Z . Given standard
Gaussian noise ϵ ∼ N (0, I), SiT defines a forward process in the latent space, parameterized by
continuous time t ∈ [0, 1]:

zt = αt z0 + σt ϵ , (1)
where αt and σt are deterministic, differentiable functions satisfying the boundary conditions:

(α0, σ0) = (1, 0) and (α1, σ1) = (0, 1) . (2)

This construction implies that at t = 0 we recover the clean latent z0, and at t = 1 we have pure
noise z1 = ϵ. Under mild conditions (Albergo et al., 2023), the sequence {zt} forms a stochastic
interpolant that smoothly transitions between data and noise in the latent space.

Velocity-based learning. To train a diffusion model in this continuous-time framework, SiT em-
ploys a velocity formulation. Differentiating zt with respect to t yields:

żt = α̇t z0 + σ̇t ϵ . (3)

Conditioning on zt, we can rewrite the derivative as a velocity field:

żt = F(zt, t) , (4)
where F(zt, t) is defined as the conditional expectation of żt given zt. A neural network Fθ(z, t) is
then trained to approximate F(z, t) by minimizing:

Ldiffusion(θ) = Ez0,ϵ,t

[∥∥∥Fθ(zt, t)−
(
α̇t z0 + σ̇t ϵ

)∥∥∥2
]
. (5)

Learning Fθ(z, t) enables one to integrate the reverse-time ordinary differential equation
(ODE) (Song et al., 2020), thereby mapping noise samples back to coherent latent representations.

3.2 A FUNCTIONAL CIRCUIT PERSPECTIVE FOR DECOUPLED TRAINING

Figure 2: Functional circuit for decoupled training.
P2L provides a compression precondition; early layers
predominantly serve Latent-to-Representation (L2R, se-
mantic inference), and later layers predominantly serve
Representation-to-Generation (R2G, synthesis). Roles
overlap in practice; we employ this perspective to orga-
nize objectives and reduce optimization entanglement.

Recent studies indicate that diffusion mod-
els jointly perform both representation learn-
ing and generative decoding during the de-
noising procedure (Yu et al., 2024; Xiang
et al., 2023). Notably, every layer in
the network contributes to feature extrac-
tion and generative tasks to varying degrees.
To make this dual functionality clearer, we
propose decomposing the diffusion process
into three distinct stages: Pixel-to-Latent
(P2L), Latent-to-Representation (L2R), and
Representation-to-Generation (R2G), as il-
lustrated in Figure 2 . Formally, we posit that
the diffusion sampling procedure can be writ-
ten as:

z = Hθ(x) , (Pixel to Latent (P2L))
r = RθL2R

(z) , (Latent to Representation (L2R))
z′ = GθR2G

(r) , (Representation to Generation (R2G))
Here, Hθ is a VAE encoder that compresses pixels to latents; RθL2R and GθR2G are two overlap-
ping functional roles implemented within the shared diffusion backbone. A VAE decoder Dθ maps
refined latents back to pixels at the end.

Loss function decomposition. Grounded in the augmented probability view, Appendix B
(Thm. 1) gives an exact decomposition of the joint conditional score:

∇zt
log p(z0, r | zt, t) = ∇zt

log p(z0 | zt, r, t)︸ ︷︷ ︸
Conditional Generation Score

+ ∇zt
log p(r | zt, t)︸ ︷︷ ︸

Representation Inference Score

. (6)

This provides a principled rationale for separating optimization into representation inference (L2R)
and conditional generation (R2G). In practice, we shape these two components using surrogate
losses: the standard diffusion objective in Eq. (5) for generation and the alignment objective in
Eq. (14) for representation; see Appendix B for details.
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Figure 3: Selected Samples on ImageNet 256 × 256. Images generated by the SiT-XL/2 + REPA + ERW
model using Classifier-Free Guidance (CFG) with a scale of w = 1.62 under 350 epochs.

Stage I: Pixel-to-Latent (P2L). Before performing the denoising process in the high-dimensional
pixel domain—where noise may obscure semantic cues—many methods Saharia et al. (2022); Ho
et al. (2020); Dhariwal & Nichol (2021) compress images into a more tractable latent space:

z = Hθ(x) , (7)

where (Hθ,Dθ) typically refers to a variational autoencoder or a related autoencoding architecture.
This P2L stage reduces computational complexity and filters out low-level details, thus preserving
more essential semantic information. From the perspective of the decomposed loss, P2L transforms
the high-dimensional denoising problem into a lower-dimensional one where representation compo-
nents (capturing semantic concepts) and reconstruction components (handling fine details) become
more clearly separable, facilitating favorable conditions for separating the training stages.

Stage II: Latent-to-Representation (L2R). Given a noisy latent zt from the forward process
(Eq. (1)), the model initially extracts a semantic representation rt using the mapping RθL2R .

rt = RθL2R
(zt, t) . (8)

This step corresponds to the Representation Inference Score, i.e., estimating ∇zt
log p(r | zt, t)

in the augmented conditional view (Thm. 1; see also Appendix B ). Intuitively, the model should
discern salient patterns (e.g., object shapes, style characteristics, or conditioning signals) before
denoising. Under the sufficient statistic assumption (see Assump. 1), the representation rt effectively
captures the essential information from the latent zt. The true representation score available one
could consider the idealized regression objective

min
R

Et,zt

[
‖RθL2R

(zt, t)−∇zt
log p(r | zt, t) ‖2

]
. (9)

In practice, we do not access this score; instead we employ surrogate alignment losses: the clean-
latent warmup in Eq. (13) and the noisy-input alignment term in Eq. (14). By explicitly decoupling
the objective for semantic feature extraction from that of generative refinement, the model is guided
to learn representations and ensures that the early layers focus on capturing semantic features.

Stage III: Representation-to-Generation (R2G). In the final phase of each reverse diffusion
update in (3), known as the R2G stage, the extracted semantic representation is transformed into an
updated latent with reduced noise:

zt−∆t = GθR2G
(rt, t) . (10)

This output serves the same purpose as the z′ term introduced, but is specifically defined for the
discrete time step t −∆t in the continuous-time diffusion process. In the decomposition, this step
aligns with the Conditional Generation Score component. For the rigorous joint-conditional view,
see Thm. 1. The conditional generation score available one could consider the idealized regression
objective

min
G

Et,zt

[
‖GθR2G

(rt, t)−∇zt
log p(z0 |zt, rt, t)‖2

]
. (11)

In practice, we instead rely on the standard diffusion objective in Eq. (5) (and its Phase 2 combi-
nation in Eq. (14)) to shape the generation component while using the learned representations as

5
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guidance. Injecting the semantic representation rt into a cleaner latent zt−∆twhich is significantly
less noisy than ztensures that abstract semantic features are effectively transformed into the precise
latent elements required for content generation. Meanwhile, the cross interaction between L2R and
R2G (also discussed in Appendix B ) is empirically small when the two gradients are sufficiently
separated in function, helping to mitigate destructive interference.

Two-stage sampling process: Representation extraction precedes generation. Within the
continuous-time framework, after mapping pixel data to the latent space through P2L, each infinites-
imally small time step during the reverse SDE update can be interpreted as a two-stage process:

rt = RθL2R
(zt, t) −→ zt−∆t = GθR2G

(rt, t) (12)
Hence, every time step naturally splits into (i) L2R for refining the representation and (ii) R2G for
synthesizing an updated latent. This loop neatly implements the principle of "first representation,
then generation". Empirically, prior work (Yu et al., 2024; Xiang et al., 2023) confirms that early
layers of the diffusion model predominantly focus on representation extraction, whereas later layers
emphasize generative refinement. Consequently, the staged design mirrors the reverse-time diffusion
trajectory, concluding in a final latent z0 that is decoded via Dθ to yield the synthesized output x0.

3.3 EMBEDDED REPRESENTATION WARMUP: TRAINING WITH TWO PHASES

Guided by the circuit view and our augmented-space analysis, we present Embedded Representation
Warmup (ERW), a framework that strategically decouples training into two phases. In Phase 1, we
initialize the early layers of the diffusion model with high-quality semantic features from pretrained
models; in Phase 2, we transition to standard diffusion training with a gradually diminishing repre-
sentation alignment term, allowing the model to increasingly focus on generation. This mirrors the
sampling loop: first infer representation, then generate.

Phase 1: Representation Warmup Stage To alleviate the burden of learning semantic features
from scratch, we begin with a dedicated warmup stage. During this phase, the model’s L2R circuit is
initialized to align with semantically rich features extracted from a pretrained representation model
(e.g., DINOv2, MAE, or CLIP). Let Hθ(x) denote an encoder that maps an image x ∈ X to its
latent representation z ∈ Z , and let frep : X → R be a high-quality pretrained representation model.
We use a single alignment objective shared by both phases:

Lalign(k) = Ex, ϵ, t

[
s(k, t) ℓNT-Xent

(
Tθ(RθL2R(zt, t)), frep(x)

) ]
. (13)

Here zt and the schedule s(k, t) are

zt =

{
Hθ(x) (t=0)

αt z0 + σt ϵ (t>0), z0 = Hθ(x)
and s(k, t) =

{
1 (t=0)

λtrain(k) = c0 exp
(
−k

τ

)
(t>0) .

Warmup sets t=0; Phase 2 samples t∼U [0, 1] and uses the decayed λtrain(k)= c0 exp
(
− k/τ

)
to gradually shift focus from alignment to generation, where k is the training step, and c0, τ are
hyperparameters.

Phase 2: Generative Training with Decaying Representation Guidance After the warmup
stage has effectively initialized the diffusion model with semantically rich features, we proceed
with a joint objective that combines the standard diffusion loss with a gradually diminishing repre-
sentation alignment term. Formally, the overall training loss is given by:

Ltotal = Ldiffusion + λtrain(k) · Lalign (14)
Here, Ldiffusion denotes the velocity prediction loss as defined in Eq. (5), and the alignment term is
the objective in Eq. (13). The weight λtrain(k) modulates the impact of alignment during training.
In practice, we instantiate ℓNT-Xent with in-batch negatives and use the same projection head Tθ
across both phases ( Section 4.1 ). The alignment thus acts as a weak semantic tether late in train-
ing, mitigating forgetting while letting R2G dominate. Both phases share the same alignment loss
ℓNT-Xent

(
Tθ(·), frep(·)

)
; they differ only in (i) the noise level of the input (clean t=0 in Phase 1 vs.

noisy t>0 in Phase 2) and (ii) the schedule λtrain(k) (absent in warmup, exponentially decayed in
Phase 2). Consistent with the augmented-space identity (Thm. 1), the surrogate gradient decomposes
as

∇θ Ltotal(k) ≈ E
[

∇θ Ldiffusion︸ ︷︷ ︸
shapes∇zt log p(z0|zt,r,t)

+ s(k, t) ∇θ Lalign(k)︸ ︷︷ ︸
shapes∇zt log p(r|zt,t)

]
,

up to standard surrogate mismatches. This makes the training-time decomposition mirror the
sampling-time loop: first representation (L2R), then generation (R2G).
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4 EXPERIMENTS Table 1: System-level comparison on ImageNet 256×256 with
CFG. ↓ and ↑ indicate whether lower or higher values are better,
respectively. Results marked with an asterisk (*) use advanced
CFG scheduling techniques; specifically, for our method, we apply
the guidance interval scheduling from (Kynkäänniemi et al., 2024).

Model Epochs FID↓ sFID↓ IS↑ Pre.↑ Rec.↑
Pixel diffusion

ADM-U 400 3.94 6.14 186.7 0.82 0.52
VDM++ 560 2.40 - 225.3 - -
Simple diffusion 800 2.77 - 211.8 - -
CDM 2160 4.88 - 158.7 - -

Latent diffusion, U-Net
LDM-4 200 3.60 - 247.7 0.87 0.48

Latent diffusion, Transformer + U-Net hybrid
U-ViT-H/2 240 2.29 5.68 263.9 0.82 0.57
DiffiT* - 1.73 - 276.5 0.80 0.62
MDTv2-XL/2* 1080 1.58 4.52 314.7 0.79 0.65

Latent diffusion, Transformer
MaskDiT 1600 2.28 5.67 276.6 0.80 0.61
SD-DiT 480 3.23 - - - -

DiT-XL/2 1400 2.27 4.60 278.2 0.83 0.57

SiT-XL/2 1400 2.06 4.50 270.3 0.82 0.59
+ REPA 200 1.96 4.49 264.0 0.82 0.60
+ REPA* 800 1.42 4.70 305.7 0.80 0.65

+ ERW (ours) 200 1.64 4.71 260.2 0.78 0.66
+ ERW (ours)* 350 1.41 4.46 293.9 0.79 0.65

In this section, we provide a com-
prehensive evaluation of our pro-
posed ERW approach. We be-
gin by outlining experimental setups
( Section 4.1 ), including dataset and
implementation details. Next, we
present comparisons with state-of-
the-art baselines to demonstrate the
benefits of ERW in both FID and
training speed ( Section 4.2 ). We
then analyze the role of our warmup
procedure in boosting training effi-
ciency ( Section 4.3 ). Finally, we
conduct ablation studies to examine
the effects of various alignment strate-
gies, architecture depths, and target
representation models ( Section 4.4 ).

4.1 SETUP

• Implementation Details. We ad-
here closely to the experimental se-
tups described in DiT (Peebles & Xie,
2023) and SiT (Ma et al., 2024), un-
less otherwise noted. Specifically, we utilize the ImageNet dataset (Deng et al., 2009), preprocess-
ing each image to a resolution of 256 × 256 pixels. Following the protocols of ADM (Dhariwal
& Nichol, 2021), each image is encoded into a compressed latent vector z ∈ R32×32×4 using the
Stable Diffusion VAE (Rombach et al., 2022). For our model configurations, we employ the B/2
and XL/2 architectures as introduced in the SiT papers, which process inputs with a patch size of
2. To ensure a fair comparison with SiT models and REPA, we maintain a consistent batch size
of 256 throughout training. Further experimental details, including hyperparameter settings and
computational resources, are provided in Appendix D .
• Evaluation. We report Fréchet inception distance (FID; Heusel et al. 2017), sFID (Nash et al.,
2021), inception score (IS; Salimans et al. 2016), precision (Pre.) and recall (Rec.) (Kynkäänniemi
et al., 2019) using 50K samples. We also include CKNNA (Huh et al., 2024) as discussed in ablation
studies. Detailed setups for evaluation metrics are provided in Appendix E .
• Sampler and Alignment objective. Following SiT (Ma et al., 2024), we always use the SDE Euler-
Maruyama sampler (for SDE with wt = σt) and set the number of function evaluations (NFE) as
250 by default. We use Normalized Temperature-scaled Cross Entropy (NT-Xent) training objective
for alignment. Table 2: FID comparisons with SiT-XL/2. In this table, we re-

port the FID of ERW with SiT-XL/2 on ImageNet 256×256 at var-
ious Training iterations. Here is only full training without warmup,
because we load a well trained warmuped checkpoint. For compar-
ison, we also present the performance of the state-of-the-art base-
line REPA at similar iterations or comparable FID values. Note
that ↓ indicates that lower values are preferred and all results re-
ported are without Classifier-Free Guidance.

Model #Params Iter. FID↓ sFID↓ IS↑ Prec.↑ Rec.↑
SiT-XL/2 675M 7M 8.3 6.32 131.7 0.68 0.67
+REPA 675M 50K 52.3 31.24 24.3 0.45 0.53
+ERW (ours) 675M 50K 25.0 12.06 56.1 0.62 0.57
+REPA 675M 100K 19.4 6.06 67.4 0.64 0.61
+ERW (ours) 675M 100K 12.1 5.25 94.2 0.69 0.63

• Baselines. We use several recent
diffusion-based generation methods
as baselines, each employing differ-
ent inputs and network architectures.
Specifically, we consider the follow-
ing four types of approaches: (a)
Pixel diffusion: ADM (Dhariwal &
Nichol, 2021), VDM++ (Kingma &
Gao, 2024), Simple diffusion (Hooge-
boom et al., 2023), CDM (Ho et al.,
2022), (b) Latent diffusion with U-
Net: LDM (Rombach et al., 2022), (c)
Latent diffusion with transformer+U-
Net hybrid models: U-ViT-H/2 (Bao et al., 2023), DiffiT (Hatamizadeh et al., 2024), and MDTv2-
XL/2 (Gao et al., 2023), and (d) Latent diffusion with transformers: MaskDiT (Zheng et al., 2024),
SD-DiT (Zhu et al., 2024), DiT (Peebles & Xie, 2023), and SiT (Ma et al., 2024). Here, we refer to
Transformer+U-Net hybrid models that contain skip connections, which are not originally used in
pure transformer architecture. Details are provided in Appendix F .
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4.2 COMPARISON Table 3: Analysis of ERW depth, projection depth, and differ-
ent dynamic or consistent projection loss λ influences in SiT-
XL/2. All models are based on SiT-XL/2 and trained for 100K
iterations under a batch size of 256 without using Classifier-Free
Guidance on ImageNet 256×256. The target representation model
is DINOv2-B, and the objective is NT-Xent. ↓ indicates lower val-
ues are better. The results show that a projection depth of 14 and
a projection loss λ of 4.0 yield substantial improvements in both
FID and sFID, indicating an optimal configuration for model per-
formance.

ERW Depth Proj. Depth λ FID↓ sFID↓ IS↑ Prec.↑ Rec.↑
SiT-XL/2 + REPA (Yu et al., 2024) 19.4 6.06 67.4 0.64 0.61

3 8 0.5 14.4 5.28 82.7 0.68 0.62
4 8 0.5 13.8 5.31 87.1 0.68 0.62
5 8 0.5 13.4 5.29 87.8 0.68 0.63
6 8 0.5 13.6 5.30 87.3 0.67 0.63
8 8 0.5 15.4 5.37 82.3 0.66 0.63
12 8 0.5 16.2 5.36 79.2 0.66 0.63

5 10 0.5 12.9 5.29 90.4 0.68 0.63
5 12 0.5 12.5 5.24 92.0 0.69 0.62
5 14 0.5 12.5 5.26 91.5 0.69 0.63
5 16 0.5 12.3 5.25 93.4 0.69 0.62
5 18 0.5 12.1 5.25 94.2 0.69 0.63
5 20 0.5 12.6 5.27 92.3 0.69 0.63

5 18 0.1 16.6 5.31 75.8 0.67 0.60
5 18 1.0 12.7 5.41 92.8 0.68 0.64
5 18 2.0 13.3 5.39 90.5 0.68 0.63
5 18 4.0 13.1 5.38 92.2 0.68 0.64
5 18 6.0 13.4 5.45 91.6 0.67 0.63

Table 1 summarizes our results on
ImageNet 256×256 under Classifier-
Free Guidance (CFG). Our ERW
significantly boosts the convergence
speed of SiT-XL/2, enabling strong
FID scores at just 350 epochs.
As shown in Table 1 , our method
achieves an FID of 1.41 in 350
epochs, that REPA requires 800
epochs to approach, demonstrating a
high speedup while achieving state-
of-the-art performance. Figure 3 il-
lustrates generated samples, further
confirming the high-quality outputs
achieved by ERW.

4.3 ERW EFFICIENCY

We begin by how ERW influences
SiT-XL/2’s FID when w/o CFG.
• Efficient FID Improvements.
In Table 2 , ERW consistently
achieves competitive or superior
FID values compared to baselines.
For instance, ERW reaches an FID of 12.1 with 100k warmup + 100k full training, markedly
outperforming the REPA method (Yu et al., 2024) which scores 19.4 within the same budget.
• Leveraging Pretrained Features. This gain highlights the advantage of injecting pretrained se-
mantic priors via warmup, thereby accelerating the full training.

Table 4: Analysis of ERW on ImageNet 256×256. All models are
SiT-B/2 trained for 50K iterations. All metrics except FID without
Classifier-Free Guidance. We fix λ = 0.5 here. ↓ and ↑ indicate
whether lower or higher values are better, respectively.

Target Repr. Depth Objective FID↓ sFID↓ IS↑ Prec.↑ Rec.↑
MoCov3-B 8 NT-Xent 61.1 7.6 22.38 0.42 0.58
MoCov3-L 8 NT-Xent 73.0 8.0 17.96 0.38 0.52
CLIP-L 8 NT-Xent 58.9 7.7 23.68 0.44 0.54

DINOv2-B 8 NT-Xent 55.6 7.8 25.45 0.44 0.56
DINOv2-L 8 NT-Xent 55.5 7.8 25.45 0.44 0.56
DINOv2-g 8 NT-Xent 59.4 7.6 25.53 0.44 0.56

Warmup versus full training.
Next, we analyze how splitting
the total training budget between
warmup and full diffusion training
impacts both generation quality and
computational overhead. As shown
in Figure 4 , the FLOPs for the
warmup phase are significantly lower
than for the full training phase.

4.4 ABLATION STUDIES

Table 5: Analysis of ERW places influences in SiT-B/2. All mod-
els are based on SiT-B/2 and trained for 50K iterations under the
batch size of 256 without using Classifier-Free Guidance on Im-
ageNet 256 × 256. ↓ indicates lower values are better. Results
empirically validate our hypothesis that placing ERW at the fore-
front of the architecture yields optimal performance.

Target Repr. Depth Objective FID↓ sFID↓ IS↑ Prec.↑ Rec.↑
SiT-B/2 + REPA (Yu et al., 2024) 78.2 11.71 17.1 0.33 0.48

DINOv2-B 0-8 NT-Xent 54.2 8.12 27.2 0.45 0.59
DINOv2-B 1-9 NT-Xent 69.1 13.0 18.7 0.37 0.51
DINOv2-B 2-10 NT-Xent 67.7 13.4 19.0 0.38 0.52
DINOv2-B 3-11 NT-Xent 67.5 11.8 19.5 0.38 0.52
DINOv2-B 4-11 NT-Xent 67.8 13.1 19.0 0.38 0.52

We further dissect the effectiveness
of ERW by conducting ablation stud-
ies on various design choices and pa-
rameter settings.

Target representation. We first
compare alignment with multiple
self-supervised encoders: MoCov3,
CLIP, and DINOv2, as summarized
in Table 4 .
• Universality of Pretrained En-
coders. All encoders tested offer im-
provements over baselines, indicating that ERW can benefit from a range of representation models.
• Marginal Differences among DINOv2 Variants. DINOv2-B, DINOv2-L, and DINOv2-g yield
comparable gains, suggesting that ERW does not require the largest possible teacher encoder for
effective representation transfer. This suggests that ERW is not limited to a specific encoder archi-
tecture but can leverage a wide range of powerful, pretrained feature extractors, making it a versatile
tool for accelerating diffusion model training.
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Figure 4: Comparison of Train-
ing Efficiency and Cost Anal-
ysis with Warmup and Full
Training Stages. Bar chart com-
paring the computational costs
of the warmup and full train-
ing stages for different strategies.
The chart shows the warmup cost,
full training cost, and their corre-
sponding total cost.

Placement of ERW Depth. We hypothesize that early layers in
the diffusion backbone primarily learn semantic features (the L2R
circuit), whereas deeper layers specialize in generative decoding.
The placement of the alignment loss is therefore critical. We spec-
ify the alignment target using "Depth X-Y", which means the align-
ment loss is computed on the output of layer Y, using a projection
head that takes features from layers X through Y as input.
• Empirical Validation. In Table 5 , initializing the earliest lay-
ers (0–8) notably outperforms re-initializing middle or late sections
(FID 54.2 vs. > 67).
• Consistent with Circuit Perspective. This corroborates our
three-stage diffusion circuit ( Section 3 ), underscoring that align-
ing deeper layers for representation can be suboptimal since those
layers focus on generation. Targeting the initial layers for warmup
is therefore crucial, reinforcing our theoretical claim that represen-
tation learning is predominantly the function of the early network
stages, while later stages are specialized for generative refinement.

Projection depth and alignment weight. We also investigate
how the final projection head depth and the alignment-loss coeffi-
cient λ affect training ( Table 3 ). The projection head, Tθ , is a deep
MLP that maps the features to the dimensionality of the target representation as same as REPA.
• Empirical Validation. Using 5 warmup layers, a projection head at depth 18, and λ = 0.5 achieves
an FID of 12.1 at 100k iterations—a substantial gain over baselines.
• Trade-off in λ. Larger λ offers stronger representation alignment initially but may disrupt conver-
gence if pushed to extremes, highlighting the need for moderate scheduling.

0 5 10 15 20 25
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Figure 5: Scalability of ERW.
Training dynamics for alignment
indicate that within the 500K
training steps for SiT-XL/2, the
alignment between DINOv2-g
and the diffusion model first de-
creases and then increases.

Representation dynamics. We examine the temporal progres-
sion of representation alignment in Figure 5 .
• Initial Dip, Subsequent Recovery. Alignment falls early on as
the pretrained features adjust to the diffusion objectives, but it then
recovers and improves.
• Role of Decaying Guidance. A decaying weight in the alignment
term ( Section 3.3 ) fosters stable synergy between semantic align-
ment and generative refinement. The representation alignment thus
follows a U-shaped trajectory, revealing the model’s initial adapta-
tion of pretrained features to the diffusion task, followed by a distil-
lation into robust, generation-aligned embeddings.

CKNNA analysis. Finally, we measure layer-wise representa-
tion quality using Class-conditional k-Nearest Neighbor Accuracy
(CKNNA) (Caron et al., 2021), which indicates how well the hidden
features capture class discriminability.
• Improved Semantic Alignment. ERW yields systematically
higher CKNNA scores, confirming stronger semantic preservation.
• Evolving Layer-wise Semantics. The alignment initially drops then recovers, mirroring the trends
seen in Figure 5 and pretrained features are effectively integrated rather than merely overwritten.

5 CONCLUSION AND FUTURE WORK

In this work, we introduced Embedded Representation Warmup (ERW), a novel two-phase training
framework that significantly enhances the training efficiency of diffusion models. By dedicating
an initial phase to align the model’s early layers with a pretrained encoder, ERW establishes a
strong semantic foundation that accelerates the subsequent generative training. Our key innovation
is the explicit separation of representation alignment and generation, which, when combined with
a decaying alignment schedule, proves more effective than continuous, single-phase regularization.
We demonstrated empirically that ERW leads to substantial speedups in training convergenceup to
11.5× compared to REPA and achieves FID=1.41 with 350 epochs. Our ablations confirmed that
targeting the early layers is crucial and that the two-phase approach is a cost-effective strategy for
high-fidelity generative modeling.
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A LLM USAGE STATEMENT

LLMs were used solely as auxiliary tools for grammar checking and language polishing. They
did not contribute to the generation of research ideas, the design of experiments, the development
of methodologies, data analysis, or any substantive aspects of the research. All scientific content,
conceptual contributions, and experimental results are entirely the work of the authors. The authors
take full responsibility for the contents of this paper.

B THEORETICAL ANALYSIS

In this section, we provide a principled theoretical foundation for our ERW. We move beyond the
empirical intuition of entangled objectives and demonstrate that our approach naturally emerges
from a more fundamental perspective: conditional score matching within an augmented probability
space. This formulation recasts the generative modeling problem as one where semantic understand-
ing is an explicit conditional variable, thereby justifying the decoupling of representation learning
from the synthesis process.

B.1 PRELIMINARIES

To ensure clarity, we first establish the key mathematical objects used in our analysis. Let X be the
high-dimensional data space (e.g., images), Z be the compressed latent space from a VAE, and R
be the semantic representation space. We work with the following variables:
• x ∈ X : A sample from the data distribution pdata(x).
• z0 ∈ Z: The clean latent representation of x, obtained via a VAE encoder HθVAE(x).
• zt ∈ Z: The noisy latent at time t ∈ [0, 1], defined by the forward process zt = αtz0+σtϵ where
ϵ ∼ N (0, I).

• r ∈ R: A high-level semantic representation vector corresponding to x.
The key functions and models in our framework are:
• frep : X → R: A powerful, pretrained, and fixed representation model (e.g., DINOv2) that maps

a clean image x to its semantic representation r.
• Fθ(zt, t, r): The diffusion model we aim to train, which predicts the score or velocity, potentially

conditioned on a semantic representation r.
• RθL2R : The sub-network corresponding to the L2R circuit, which extracts representations from zt.
• GθR2G : The sub-network corresponding to the R2G circuit, which performs generation based on an

extracted representation.
The goal of a diffusion model is to learn the score function ∇zt log p(zt), which guides the reverse
process from noise back to data. In the standard formulation, this requires learning to denoise across
all time steps t ∈ [0, 1] without explicit semantic guidance.

B.2 A PRINCIPLED VIEW VIA AN AUGMENTED PROBABILITY SPACE

We formalize the intuition of decoupling representation and generation by constructing an aug-
mented probability space that explicitly includes the semantic representation r as a random vari-
able. This principled view demonstrates that our two-phase training strategy naturally emerges from
optimizing a conditional score-matching objective in this richer probabilistic landscape.

B.2.1 CONSTRUCTION OF THE AUGMENTED SPACE

We define an augmented probability space over the tuple (z0, zt, r, t), where the joint distribution
factorizes as:

p(z0, zt, r, t) = p(zt | z0, t) p(r | z0) p(z0) p(t) (15)
This factorization leverages the conditional independence assumptions inherent in the diffusion pro-
cess. Specifically, given the clean latent z0, the noisy latent zt is independent of the semantic
representation r, and both are independent of the time variable t. Each component has a clear inter-
pretation:

p(z0) =

∫
pdata(x)δ(z0 −HθVAE(x))dx (16)

p(t) = U [0, 1] (uniform time distribution) (17)

p(zt | z0, t) = N (zt;αtz0, σ
2
t I) (18)

p(r | z0) = δ (r− frep (DθVAE(z0))) (19)

15
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Here, DθVAE denotes the VAE decoder that maps latents back to image space. The distribution
p(z0) in (16) represents the VAE’s learned prior over clean latents, induced by the data distribution
through the encoder. The forward kernel (18) follows the standard diffusion forward process with
noise scheduling parameters αt and σt.
The key insight is that equation (19) deterministically links semantic representations to clean la-
tents through the Dirac delta function, transforming the unconditional generation problem into a
semantically-conditioned one. This constraint ensures that every clean latent z0 has a uniquely as-
sociated semantic representation r, creating a deterministic mapping from the latent space to the
representation space.

B.2.2 MARGINAL AND CONDITIONAL DISTRIBUTIONS

From the joint distribution, we can derive several important marginal and conditional distributions
through careful integration.
Marginal over noisy latents: The marginal distribution over noisy latents is obtained by integrating
out the semantic representation r:

p(zt, t) =

∫ ∫ ∫
p(z0, zt, r, t) dz0 dr (20)

=

∫ ∫ ∫
p(zt | z0, t) p(r | z0) p(z0) p(t) dz0 dr (21)

= p(t)

∫
p(z0)p(zt | z0, t)

(∫
p(r | z0)dr

)
dz0 (22)

= p(t)

∫
p(z0)p(zt | z0, t) dz0 (23)

where the integral
∫
p(r | z0)dr = 1 since p(r | z0) is a valid probability distribution. This recovers

the standard marginal distribution used in unconditional diffusion models.
Joint marginal over (zt, r, t): More critically for our analysis, we can compute the joint marginal
over (zt, r, t) by integrating out only z0:

p(zt, r, t) =

∫
p(z0, zt, r, t) dz0 (24)

=

∫
p(zt | z0, t) p(r | z0) p(z0) p(t) dz0 (25)

= p(t)

∫
p(z0)p(zt | z0, t)δ (r− frep (DθVAE(z0))) dz0 (26)

Using the property of the Dirac delta function, this integral evaluates to:

p(zt, r, t) = p(t)

∫
z0:frep(DθVAE (z0))=r

p(z0)p(zt | z0, t) dz0 (27)

where the integration is restricted to the set of clean latents z0 that produce the semantic representa-
tion r when decoded and passed through the representation function.
Conditional distribution for generation: We can also derive the conditional distribution of clean
latents given noisy latents and semantic representations:

p(z0 | zt, r, t) =
p(z0, zt, r, t)

p(zt, r, t)
(28)

=
p(zt | z0, t) p(r | z0) p(z0) p(t)

p(zt, r, t)
(29)

=
p(zt | z0, t) δ (r− frep (DθVAE(z0))) p(z0)

p(zt, r, t)
(30)

This conditional distribution is the target that our diffusion model seeks to approximate, representing
the posterior over clean latents given both the noisy observation and the semantic constraint.
The key insight from equation (27) is that the semantic constraint creates a coupling between zt and
r through the latent variable z0, despite zt and r being conditionally independent given z0. This
coupling is what enables semantic-conditioned generation.
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The augmented probability space construction embeds the desired semantic knowledge directly into
the probabilistic model. The generative task is thus transformed from learning an unconditional
reverse process to learning a conditional reverse process, where synthesis is explicitly conditioned
on a target semantic concept r. This transformation is fundamental to understanding why our two-
phase training approach is theoretically justified.

B.2.3 SEMANTIC SUFFICIENCY AND CONDITIONAL INDEPENDENCE

The power of the augmented formulation relies on a key assumption about the semantic representa-
tion, which we formalize below.

Assumption 1 (Semantic Sufficiency) . The semantic representation r = frep(x) captures suf-
ficient information for the generative task such that, given r, the model possesses all necessary
high-level information to synthesize a corresponding sample. Formally, this means that the con-
ditional distribution p(z0 | r) concentrates on semantically-consistent latents.

Intuitive Understanding: This assumption embodies the idea that our pretrained representation
model frep (e.g., DINOv2) is sufficiently powerful to capture all the high-level, conceptual informa-
tion needed for generation. To illustrate with an analogy: if r represents “a golden retriever running
on grass,” then semantic sufficiency means that knowing this r provides the model with all the es-
sential semantic components—the subject (dog), category (golden retriever), action (running), and
environment (grass). The model’s remaining task shifts from deciding what to generate to focusing
purely on how to generate it: the specific pose, fur details, lighting direction, grass texture, etc.
Latent Space Partitioning: More precisely, we assume there exists a partition of the latent space
based on semantic content. The semantic representation r acts like a clustering label that groups
clean latents with identical semantic meaning. We define semantic equivalence classes:

Zr = {z0 ∈ Z : frep(D(z0)) = r} (31)

For example, Z“cat” might contain latents corresponding to “a crouching Persian cat,” “a rolling
orange tabby,” and “a sleeping Siamese cat.” Despite their vastly different visual details, all belong
to the same semantic category under frep.
Overlap Requirement for Well-Posed Generation: A critical consequence of semantic sufficiency
is that for any two clean latents z0, z

′
0 ∈ Zr, their respective forward diffusion processes p(zt |

z0, t) and p(zt | z′0, t) should have significant overlap. This requirement ensures that conditional
generation remains well-posed:

• Without overlap: If semantically similar z0 values produce completely different noisy
patterns zt, the model becomes “confused”—it cannot learn a consistent denoising pattern
for the semantic class r.

• With overlap: When z0 values in Zr yield similar noisy distributions, the model can learn
a unified denoising strategy conditioned on r.

B.2.4 CONDITIONAL SCORE MATCHING IN THE AUGMENTED SPACE

The central idea is to model the score of the joint conditional distribution p(z0, r | zt, t), which
naturally decomposes into two meaningful components.

Theorem 1 (Decomposition of the Augmented Conditional Score) . The score of the joint
conditional distribution p(z0, r | zt, t) can be decomposed into a sum of two functionally distinct
scores:

∇zt
log p(z0, r | zt, t) = ∇zt

log p(z0 | zt, r, t)︸ ︷︷ ︸
Conditional Generation Score

+ ∇zt
log p(r | zt, t)︸ ︷︷ ︸

Representation Inference Score

(32)

Proof. We provide a detailed derivation of this fundamental decomposition.
Step 1: Probabilistic factorization. Using the chain rule of conditional probability, we can factor-
ize the joint conditional distribution:

p(z0, r | zt, t) = p(z0 | zt, r, t) p(r | zt, t) (33)

This factorization is always valid and separates the problem into two components: generating clean
latents given both noisy latents and semantic information, and inferring semantic information from
noisy latents.
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Step 2: Logarithmic transformation. Taking the natural logarithm of both sides of equation (33):

log p(z0, r | zt, t) = log [p(z0 | zt, r, t) p(r | zt, t)] (34)
= log p(z0 | zt, r, t) + log p(r | zt, t) (35)

where we used the logarithm property log(ab) = log a+ log b.
Step 3: Gradient computation. Applying the gradient operator ∇zt with respect to the noisy latent
zt to both sides of equation (35):

∇zt
log p(z0, r | zt, t) = ∇zt

[log p(z0 | zt, r, t) + log p(r | zt, t)] (36)
= ∇zt

log p(z0 | zt, r, t) +∇zt
log p(r | zt, t) (37)

where we used the linearity of the gradient operator: ∇(f + g) = ∇f +∇g.
Step 4: Functional interpretation. The resulting decomposition has clear functional meaning:

• ∇zt
log p(z0 | zt, r, t) represents the Conditional Generation Score: given both noisy input

zt and semantic target r, how should we move in latent space to increase the likelihood of
the clean latent z0?

• ∇zt
log p(r | zt, t) represents the Representation Inference Score: given only noisy input

zt, how should we move in latent space to increase the likelihood of the semantic represen-
tation r?

This completes the proof of the score decomposition in equation (32).

Corollary 1 (Functional Interpretation of Score Components) . Thm. 1 provides the central
theoretical insight of our work. The total learning objective is a linear superposition of two
functionally distinct tasks:

1. Conditional Generation Score: The term ∇zt log p(z0 | zt, r, t) corresponds to the R2G
(Representation-to-Generation) circuit. It addresses the pure synthesis problem: given
a noisy latent zt and the ground-truth semantic concept r, compute the score vector
towards the clean latent z0.

2. Representation Inference Score: The term ∇zt
log p(r | zt, t) corresponds to the L2R

(Latent-to-Representation) circuit. It addresses the semantic inference problem: given
only a noisy latent zt, compute the score vector that increases the likelihood of the un-
derlying semantic representation being r.

B.2.5 EMERGENCE OF THE TWO-PHASE TRAINING FRAMEWORK FROM THE THEORY

A naive attempt to train a single, monolithic network Fθ to approximate the joint score in (32)
would re-entangle the two objectives, leading to optimization conflicts. A more principled approach,
suggested by the decomposition itself, is a curriculum learning strategy that addresses the two scores
in a structured sequence. This naturally gives rise to the ERW framework.

Lemma 1 (Phase 1: Representation Warmup as Boundary Condition Matching) . The first
phase of ERW, the representation warmup, can be interpreted as learning the Representation
Inference Score at the clean boundary condition, i.e., at t = 0.

Proof. We provide a detailed derivation showing how the warmup phase corresponds to boundary
condition matching.
Step 1: Analysis at the boundary condition. At t = 0, the forward diffusion process gives us
zt = z0 (no noise added). The Representation Inference Score becomes:

∇zt
log p(r | zt, t)

∣∣
t=0

= ∇z0
log p(r | z0) (38)

Step 2: Simplification using the semantic constraint. From equation (19), we have:

p(r | z0) = δ (r− frep (DθVAE(z0))) (39)

This is a Dirac delta function, which means the score is not well-defined in the classical sense.
However, we can interpret this in terms of the desired functional behavior.
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Step 3: Functional interpretation and approximation. In practice, we approximate the determin-
istic relationship through a learned mapping. The warmup objective is:

Lwarmup = Ex∼pdata

[
ℓNT-Xent

(
Tθ(RθL2R(HθVAE(x))), frep(x)

)]
(40)

where RθL2R is the L2R circuit that we train to approximate the mapping z0 7→ r.
Step 4: Connection to boundary condition. Optimizing NT-Xent at t=0 serves as boundary-
condition matching for representation alignment. Specifically, we want:

RθL2R(z0) ≈ frep(DθVAE(z0)) = r (41)

This provides a strong "semantic anchor" for the model at t = 0, ensuring that the L2R circuit
learns to extract meaningful semantic representations from clean latents under the same contrastive
objective used in Phase 2.
Step 5: Extension to t > 0. Once the boundary condition is satisfied, the L2R circuit can be
expected to generalize to noisy inputs zt for t > 0, providing a foundation for the representation
inference score at all time steps.

Lemma 2 (Phase 2: Guided Synthesis as Joint Score Optimization) . The second phase of
ERW, guided synthesis, corresponds to learning the full joint score, where the two components
from Thm. 1 are learned concurrently under a curriculum.

Proof. We demonstrate how Phase 2 implements joint score optimization through a carefully de-
signed curriculum.
Step 1: Phase 2 objective decomposition. After the warmup phase, the L2R circuit RθL2R is a
competent representation extractor. The Phase 2 total loss is:

Ltotal = Ldiffusion + λtrain(k) · Lalign (42)

where:

Ldiffusion = Et,zt,z0

[
w(t) ‖Fθ(zt, t)−∇zt

log p(z0 | zt, t)‖2
]

(43)

Lalign = Ezt,r

[
ℓalign

(
RθL2R(zt, t), r

)]
(44)

Step 2: Connection to the score decomposition. From Thm. 1, the joint conditional score decom-
poses as:

∇zt log p(z0, r | zt, t) = ∇zt log p(z0 | zt, r, t) +∇zt log p(r | zt, t) (45)

Our Phase 2 objective should be interpreted as shaping these two functional components via practical
surrogate losses: the standard diffusion loss Ldiffusion for generation and the alignment loss Lalign

for representation, rather than claiming exact equality to the joint score at all times. In practice, we
instantiate ℓalign as a contrastive objective (e.g., NT-Xent) with in-batch negatives.
Step 3: Curriculum learning analysis. The training-schedule-dependent weighting λtrain(k) cre-
ates a curriculum that balances the two objectives:

• Early in Phase 2 (large λtrain(k)):

Ltotal ≈ λtrain(k) · Lalign + Ldiffusion (46)

The optimization is strongly guided to maintain semantic consistency on noisy inputs, rein-
forcing the L2R circuit’s ability to extract representations from zt for t > 0.

• Late in Phase 2 (small λtrain(k)):

Ltotal ≈ Ldiffusion (47)

The L2R circuit is assumed to be robust, and optimization focus shifts to perfecting the
full score matching. This allows the R2G circuit to learn the Conditional Generation Score
while relying on stable, high-quality representations from the L2R circuit.
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C ANALYSIS DETAILS

C.1 CKNNA METRIC DETAILS

CKNNA (Centered Kernel Nearest-Neighbor Alignment) is a relaxed version of the popular Cen-
tered Kernel Alignment (CKA; Kornblith et al. 2019) that mitigates the strict definition of alignment.
We generally follow the notations in the original paper for an explanation (Huh et al., 2024).
First, CKA have measured global similarities of the models by considering all possible data pairs:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
, (48)

where K and L are two kernel matrices computed from the dataset using two different networks.
Specifically, it is defined as Kij = κ(ϕi, ϕj) and Lij = κ(ψi, ψj) where ϕi, ϕj and ψi, ψj are
representations computed from each network at the corresponding data xi,xj (respectively). By
letting κ as a inner product kernel, HSIC is defined as

HSIC(K,L) =
1

(n− 1)2

(∑
i

∑
j

(
〈ϕi, ϕj〉 − El[〈ϕi, ϕl〉]

)(
〈ψi, ψj〉 − El[〈ψi, ψl〉]

))
. (49)

CKNNA considers a relaxed version of Eq. (48) by replacing HSIC(K,L) into Align(K,L), where
Align(K,L) computes Eq. (49) only using a k-nearest neighborhood embedding in the datasets:

Align(K,L) =
1

(n− 1)2

(∑
i

∑
j

α(i, j)
(
〈ϕi, ϕj〉−El[〈ϕi, ϕl〉]

)(
〈ψi, ψj〉−El[〈ψi, ψl〉]

))
, (50)

where α(i, j) is defined as

α(i, j; k) = ⊮[i 6= j and ϕj ∈ knn(ϕi; k) and ψj ∈ knn(ψi; k)], (51)

so this term only considers k-nearest neighbors at each i. In this paper, we randomly sample 10,000
images in the validation set in ImageNet (Deng et al., 2009) and report CKNNA with k = 10 based
on observation in Huh et al. (2024) that smaller k shows better a better alignment.

C.2 DESCRIPTION OF PRETRAINED VISUAL ENCODERS

• MoCov3 (Chen et al., 2021) studies empirical study to train MoCo (He et al., 2020; Chen et al.,
2020b) on vision transformer and how they can be scaled up.

• CLIP (Radford et al., 2021) proposes a contrastive learning scheme on large image-text pairs.
• DINOv2 (Oquab et al., 2024) proposes a self-supervised learning method that combines pixel-

level and patch-level discriminative objectives by leveraging advanced self-supervised tech-
niques and a large pre-training dataset.

D HYPERPARAMETER AND MORE IMPLEMENTATION DETAILS

D.1 HYPERPARAMETER TUNING

We adopt a bisection-style search to determine the key hyperparameters for ERW, specifically the
ERW Depth (i.e., which early layers to initialize), the Projection Depth, and the initial value of λ in
Eq. (14). To keep the search computationally manageable, we do the following for each candidate
hyperparameter setting:

(a) We run a short warmup stage for 10k iterations, followed by 20k iterations of main diffusion
training.

(b) To evaluate performance quickly, we reduce the sampling steps from the usual 250 to 50 and
generate only 10k samples (instead of 50k) to compute a preliminary FID score.

This procedure substantially reduces the search cost while retaining sufficient fidelity to guide hyper-
parameter choices. In practice, around three to five such tests suffice to converge upon near-optimal
settings for ERW Depth, Projection Depth, and λ, enabling both efficient training and high-quality
generation.
Further implementation details. We implement our model based on the original SiT implementa-
tion (Ma et al., 2024). Throughout the experiments, we use the exact same structure as DiT (Pee-
bles & Xie, 2023) and SiT (Ma et al., 2024). We use AdamW (Kingma, 2015; Loshchilov, 2017)
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Table 6: Hyperparameter setup.

Figure 1,2,3 Table 3,4 (SiT-B) Table 1,2,5 (SiT-XL)

Architecture
Input dim. 32×32×4 32×32×4 32×32×4
Num. layers 28 12 24
Hidden dim. 1,152 768 1,152
Num. heads 16 12 16

ERW
sim(·, ·) NT-Xent NT-Xent NT-Xent
Encoder f(x) DINOv2-B DINOv2-B DINOv2-B

Optimization
Batch size 256 256 256
Optimizer AdamW AdamW AdamW
lr 0.0001 0.0001 0.0001
(β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)

Interpolants
αt 1− t 1− t 1− t
σt t t t
wt σt σt σt

Training objective v-prediction v-prediction v-prediction
Sampler Euler-Maruyama Euler-Maruyama Euler-Maruyama
Sampling steps 250 250 250
Guidance - - -

Table 7: Impact of Training Tricks in ERW. Using the SD-VAE Rombach et al. (2022), ERW achieves an
FID of 55.6 at 50K training steps on ImageNet class-conditional generation. This table illustrates how each
training trick incrementally improves the FID, demonstrating that advanced design techniques enhance the
original DiT performance.

Training Trick Training Step FID-50k↓
Representation Alignment Loss

+ REPA (Yu et al., 2024) 50K 78.2

Architecture Improvements

+ Rotary Pos Embed (Su et al., 2024) 50K 73.6

Initialization

+ ERW (Ours) 50K 51.7

with constant learning rate of 1e-4, (β1, β2) = (0.9, 0.999) without weight decay. To speed up
training, we use mixed-precision (fp16) with gradient clipping at norm 1.0. We also pre-compute
compressed latent vectors from raw pixels via stable diffusion VAE (Rombach et al., 2022) and
use these latent vectors. Because of this, we do not apply any data augmentation, but we find this
does not lead to a big difference, as similarly observed in EDM2 (Karras et al., 2024). We also use
stabilityai/sd-vae-ft-ema decoder for decoding latent vectors to images. For MLP used
for a projection, we use three-layer MLP with SiLU activations (Elfwing et al., 2018). We provide a
detailed hyperparameter setup in Table 6 .
Pretrained encoders. For MoCov3-B and -L models, we use the checkpoint in the implementation
of RCG (Li et al., 2024);1 for other checkpoints, we use their official checkpoints released in their
official implementations. To adjust a different number of patches between the diffusion transformer
and the pretrained encoder, we interpolate positional embeddings of pretrained encoders.
Sampler. For sampling, we use the Euler-Maruyama sampler with the SDE with a diffusion co-
efficient wt = σt. We use the last step of the SDE sampler as 0.04, and it gives a significant
improvement, similar to the original SiT paper (Ma et al., 2024).
Training Tricks. We explore the influence of various training techniques on ERW’s performance.
Notably, we observe performance improvements when incorporating Rotary Positional Embed-
dings (Su et al., 2024).

1https://github.com/LTH14/rcg
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E EVALUATION DETAILS

We strictly follow the setup and use the same reference batches of ADM (Dhariwal & Nichol, 2021)
for evaluation, following their official implementation.2 We use 8×NVIDIA H800 80GB GPUs or
for evaluation and enable tf32 precision for faster generation, and we find the performance difference
is negligible to the original fp32 precision.
In what follows, we explain the main concept of metrics that we used for the evaluation.

• FID (Heusel et al., 2017) measures the feature distance between the distributions of real and
generated images. It uses the Inception-v3 network (Szegedy et al., 2016) and computes distance
based on an assumption that both feature distributions are multivariate gaussian distributions.

• sFID (Nash et al., 2021) proposes to compute FID with intermediate spatial features of the
Inception-v3 network to capture the generated images’ spatial distribution.

• IS (Salimans et al., 2016) also uses the Inception-v3 network but use logit for evaluation of the
metric. Specifically, it measures a KL-divergence between the original label distribution and the
distribution of logits after the softmax normalization.

• Precision and recall (Kynkäänniemi et al., 2019) are based on their classic definitions: the
fraction of realistic images and the fraction of training data manifold covered by generated data.

F BASELINES

In what follows, we explain the main idea of baseline methods that we used for the evaluation.

• ADM (Dhariwal & Nichol, 2021) improves U-Net-based architectures for diffusion models and
proposes classifier-guided sampling to balance the quality and diversity tradeoff.

• VDM++ (Kingma & Gao, 2024) proposes a simple adaptive noise schedule for diffusion models
to improve training efficiency.

• Simple diffusion (Hoogeboom et al., 2023) proposes a diffusion model for high-resolution im-
age generation by exploring various techniques to simplify a noise schedule and architectures.

• CDM (Ho et al., 2022) introduces cascaded diffusion models: similar to progressiveGAN (Kar-
ras et al., 2018), it trains multiple diffusion models starting from the lowest resolution and apply-
ing one or more super-resolution diffusion models for generating high-fidelity images.

• LDM (Rombach et al., 2022) proposes latent diffusion models by modeling image distribution
in a compressed latent space to improve the training efficiency without sacrificing the generation
performance.

• U-ViT (Bao et al., 2023) proposes a ViT-based latent diffusion model that incorporates U-Net-
like long skip connections.

• DiffiT (Hatamizadeh et al., 2024) proposes a time-dependent multi-head self-attention mecha-
nism for enhancing the efficiency of transformer-based image diffusion models.

• MDTv2 (Gao et al., 2023) proposes an asymmetric encoder-decoder scheme for efficient training
of a diffusion-based transformer. They also apply U-Net-like long-shortcuts in the encoder and
dense input-shortcuts in the decoder.

• MaskDiT (Zheng et al., 2024) proposes an asymmetric encoder-decoder scheme for efficient
training of diffusion transformers, where they train the model with an auxiliary mask reconstruc-
tion task similar to MAE (He et al., 2022).

• SD-DiT (Zhu et al., 2024) extends MaskdiT architecture but incorporates self-supervised dis-
crimination objective using a momentum encoder.

• DiT (Peebles & Xie, 2023) proposes a pure transformer backbone for training diffusion models
based on proposing AdaIN-zero modules.

• SiT (Ma et al., 2024) extensively analyzes how DiT training can be efficient by moving from
discrete diffusion to continuous flow-based modeling.

• REPA (Yu et al., 2024) proposes a representation alignment method for diffusion models by
aligning the representation of the diffusion model with a pretrained encoder.

2https://github.com/openai/guided-diffusion/tree/main/evaluations
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