

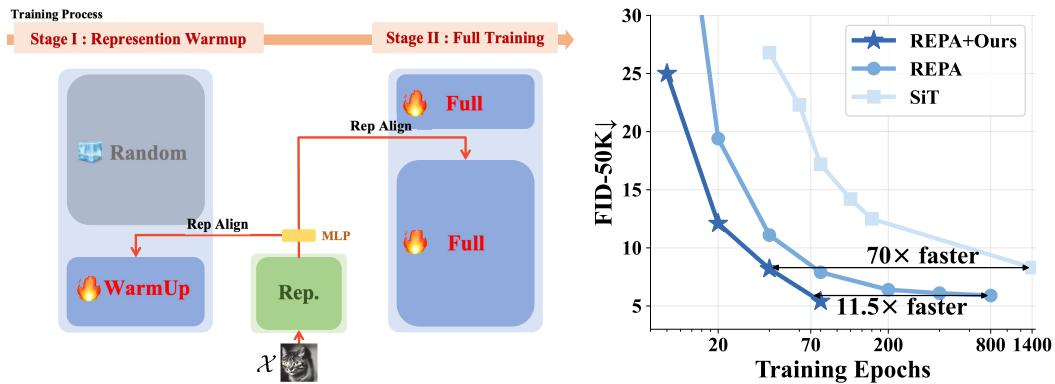
# EFFICIENT GENERATIVE MODEL TRAINING VIA EMBEDDED REPRESENTATION WARMUP

005 **Anonymous authors**

006 Paper under double-blind review

## ABSTRACT

011 Generative models face a fundamental challenge: they must simultaneously learn  
 012 high-level semantic concepts (what to generate) and low-level synthesis details  
 013 (how to generate it). Conventional end-to-end training entangles these distinct,  
 014 and often conflicting objectives, leading to a complex and inefficient optimization  
 015 process. We argue that explicitly decoupling these tasks is key to unlocking more  
 016 effective and efficient generative modeling. To this end, we propose Embedded  
 017 Representation Warmup (ERW), a principled two-phase training framework. The  
 018 first phase is dedicated to building a robust semantic foundation by aligning the  
 019 early layers of a diffusion model with a powerful pretrained encoder. This pro-  
 020 vides a strong representational prior, allowing the second phase—generative full  
 021 training with alignment loss to refine the representation—to focus its resources on  
 022 high-fidelity synthesis. Our analysis confirms that this efficacy stems from func-  
 023 tionally specializing the model’s early layers for representation. Empirically, our  
 024 framework achieves a **11.5 $\times$**  speedup in **350 epochs** to reach **FID=1.41** compared  
 025 to single-phase methods like REPA (Yu et al., 2024).



038 **Figure 1: A Staged Approach: First Build Semantics, Then Synthesize.** Our framework operationalizes  
 039 the decoupling of semantic understanding from generative synthesis. In **Phase 1 (Semantic Foundation)**,  
 040 we exclusively train the model’s early layers to align with a pretrained encoder (e.g., DINOv2 (Oquab et al.,  
 041 2023)), establishing a robust understanding of *what* to generate. In **Phase 2 (Guided Synthesis)**, the full model  
 042 is trained. The plot empirically demonstrates the power of this decoupling: ERW converges dramatically  
 043 faster and achieves superior performance compared to single-phase training like REPA (Yu et al., 2024), which  
 044 entangles both learning tasks.

## 1 INTRODUCTION

045 “All roads lead to Rome, but it is not as good as being born in Rome.”

049 Deep generative models, particularly diffusion models (Ho et al., 2020; Song et al., 2020), have  
 050 achieved remarkable success in high-fidelity image generation. These models excel at tasks ranging  
 051 from unconditional image generation (Dhariwal & Nichol, 2021) to text-to-image synthesis (Ramesh  
 052 et al., 2022; Saharia et al., 2022), demonstrating a profound capacity to model complex data distri-  
 053 butions. However, underpinning their impressive capabilities is a fundamental tension, arising from  
 a multitude of *entangled learning objectives*.

At its core, effective generation requires both *semantic understanding*—comprehending what constitutes meaningful content—and *visual synthesis*—translating abstract concepts into precise pixel-level details. Conventional end-to-end training entangles these objectives within a single optimization process, forcing the model to concurrently learn high-level conceptual knowledge and low-level rendering skills. This entanglement creates inherent optimization conflicts, a challenge reminiscent of the classic perception-distortion trade-off (Blau & Michaeli, 2018). Early in training, the model’s attempts to fit pixel-level details may interfere with its ability to capture global semantic structures, an issue exacerbated by the known spectral bias of neural networks towards learning low-frequency components first (Rahaman et al., 2019; Sauer et al., 2021). Consequently, later stages may struggle to refine generation quality due to inadequate representational foundations.

Recent studies have begun to acknowledge this tension. While diffusion models implicitly learn semantic features during denoising (Yang & Wang, 2023; Xiang et al., 2023), these representations often lack the robustness and versatility of dedicated self-supervised approaches (Caron et al., 2021; Oquab et al., 2023). Moreover, Kadkhodaie & Simon (2024) highlight the critical bottleneck between memorizing semantic information and generalizing to realistic distributions. Methods like REPA (Yu et al., 2024) have attempted to address this by aligning diffusion representations with pretrained encoders throughout training, yet they still suffer from the fundamental challenge of joint optimization. These observations lead us to a pivotal question:

**Q: Can we fundamentally simplify generative model training by *decoupling* semantic understanding from visual synthesis, thereby allowing each component to be optimized more effectively?**

Self-supervised learning approaches, including contrastive methods (Chen et al., 2020a), masked autoencoders (He et al., 2022), and recent advances like DINOv2 (Oquab et al., 2023), have demonstrated exceptional capabilities in learning rich semantic representations. However, effectively integrating these external representations into diffusion models remains challenging due to fundamental mismatches: diffusion models operate on progressively noisy inputs while self-supervised encoders are trained on clean data, and architectural differences further complicate direct integration.

**Our approach.** We propose that the key to resolving this challenge lies in explicitly *decoupling* the learning of semantic understanding from visual synthesis. To this end, we introduce Embbedded Representation Warmup (**ERW**), a princed two-phase framework that operationalizes this decoupling philosophy. Our approach is grounded in the observation that diffusion models naturally exhibit a functional specialization: early layers predominantly handle semantic processing (what we term the *Latent-to-Representation* or L2R circuit), while later layers focus on generative refinement (the *Representation-to-Generation* or R2G circuit).

Rather than forcing both circuits to learn simultaneously from scratch, ERW strategically separates their optimization: **Phase 1 (Semantic Foundation)** establishes a robust semantic foundation by dedicating training exclusively to aligning the L2R circuit with a pretrained self-supervised encoder (e.g., DINOv2). This phase ensures the model is "born in Rome"—equipped with mature semantic understanding from the outset. **Phase 2 (Guided Synthesis)** then leverages this foundation to focus training resources on the R2G circuit, optimizing visual synthesis under the guidance of a gradually diminishing representational constraint.

**Validation.** Extensive experiments demonstrate that our decoupling strategy yields substantial benefits. ERW achieves up to an **11.5 $\times$**  training speedup to reach a comparable FID score in **350 epochs** compared to single-phase methods like REPA while achieving **FID = 1.41**. The warmup phase requires only a fraction of the total training cost, making our approach highly practical for real-world applications.

### 101 Our contributions are threefold:

- 102 (a) We formalize the optimization entanglement in generative models as of semantic understanding  
103 and visual synthesis, and propose a conceptual decomposition of the diffusion model into func-  
104 tionally specialized L2R and R2G circuits.
- 105 (b) We introduce ERW, a principled two-phase training paradigm that operationalizes this decou-  
106 pling, first building a semantic foundation and then focusing on guided synthesis.
- 107 (c) We demonstrate the effectiveness of our framework through extensive experiments, achieving  
state-of-the-art results.

108  
109  

## 2 RELATED WORK

110  
111  
112  
Our work builds on three research pillars: leveraging pretrained encoders, recent advances in dif-  
fusion model acceleration, and enhancing the internal representations of diffusion models through  
decoupled training strategies.113  
114  
115  
116  
117  
118  
119  
120  
**Leveraging pretrained encoders for guidance.** The idea of leveraging powerful pretrained en-  
coders (Radford et al., 2021; Oquab et al., 2023) to guide generation is well-established, with ap-  
plications as GAN discriminators (Sauer et al., 2021; Kumari et al., 2022) or for knowledge dis-  
tillation (Li et al., 2023b). A recent and direct approach is concurrent representation alignment,  
epitomized by REPA (Yu et al., 2024), which accelerates training by enforcing alignment through-  
out the entire process. In contrast, our work treats alignment as a foundational warmup, relaxing the  
constraint during later stages to allow the model to focus fully on synthesis.121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
**Contemporary acceleration strategies and recent advances.** Accelerating diffusion models has  
emerged as a critical research thrust, as recent years have witnessed significant breakthroughs across  
multiple fronts (Fuest et al., 2024). Post-training sampling acceleration continues to be actively pur-  
sued through knowledge distillation techniques that compress slow teachers into fast students (Sal-  
imans & Ho, 2022; Sauer et al., 2023; Shao et al., 2023), and through consistency models enabling  
one-shot or few-shot generation (Song et al., 2023; Heek et al., 2024). Recent work includes specula-  
tive decoding approaches for autoregressive text-to-image generation and training-free acceleration  
methods. Advanced numerical solvers remain crucial, with improvements to DPM-Solver (Lu et al.,  
2022) and novel exponential integrators significantly reducing function evaluations. Training ac-  
celeration strategies include architectural decoupling in staged pipelines (Karras et al., 2018; Ho  
et al., 2022; Saharia et al., 2022), curriculum learning on timesteps (Xu et al., 2024), and progres-  
sive sparse low-rank adaptation methods. ERW contributes to this rapidly evolving landscape by  
fundamentally decoupling learning objectives within the training process, separating semantic un-  
derstanding ("what") from synthesis capability ("how").135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
**Internal vs. injected representations and efficient fine-tuning.** Numerous studies confirm that  
diffusion models implicitly learn powerful, classifier-like semantic features (Yang & Wang, 2023; Li  
et al., 2023a; Xiang et al., 2023), a phenomenon some works have deconstructed this phenomenon  
for self-supervised learning (Chen et al., 2024). An alternative strategy enhances internal represen-  
tation learning by fusing diffusion objectives with auxiliary self-supervision losses, exemplified by  
MAGE (Li et al., 2023c) and MaskDiT (Zheng et al., 2024), which draw inspiration from contrastive  
learning (Chen et al., 2020a; He et al., 2020) and masked autoencoding (He et al., 2022). However,  
these approaches require careful balancing of competing objectives. ERW sidesteps these complexi-  
ties by directly injecting mature semantic priors via dedicated warmup, freeing the model to focus  
purely on high-fidelity synthesis while achieving efficiency comparable to contemporary methods.145  
146  
147  

## 3 FROM FUNCTIONAL SPECIALIZATION TO DECOUPLED TRAINING IN LATENT DIFFUSION

148  
149  
150  
151  
152  
153  
154  
In this section, we adopt a *three-stage* view of latent diffusion—***Pixel-to-Latent (P2L)***, ***Latent-to-Representation (L2R)***, and ***Representation-to-Generation (R2G)***— as a functional perspective  
that facilitates decoupled training. P2L provides compressed latents as a precondition, while L2R  
and R2G capture the predominant (but not exclusive) roles of early and late layers in semantic  
processing and generative refinement. The separation is heuristic and approximateroles overlap and  
are not strictly orthogonalbut it is sufficient to decouple training objectives in practice. This view  
underpins our two-phase framework.155  
156  

### 3.1 PRELIMINARIES

157  
158  
159  
160  
161  
**Latent diffusion models.** While classic diffusion models such as DDPM (Ho et al., 2020) adopt  
a discrete-time denoising process, *flow-based methods* (Lipman et al., 2022; Albergo et al., 2023;  
Shi et al., 2024) explore diffusion in a continuous-time setting. In particular, Scalable Interpolant  
Transformers (SiT) (Ma et al., 2024; Esser et al., 2024; Lipman et al., 2022; Liu et al., 2023) of-  
fer a unifying framework for training diffusion models on a continuous-time stochastic interpolant.  
Below, we describe how SiT can be leveraged to learn powerful latent diffusion models.

162 **Forward process via stochastic interpolants.** Consider a data sample  $\mathbf{x} \sim p(\mathbf{x})$  (e.g., an image)  
 163 and let the encoder  $\mathcal{H}_\theta(\mathbf{x})$  map it to its latent representation denoted as  $\mathbf{z}_0 \in \mathcal{Z}$ . Given standard  
 164 Gaussian noise  $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ , SiT defines a *forward process* in the latent space, parameterized by  
 165 continuous time  $t \in [0, 1]$ :

$$\mathbf{z}_t = \alpha_t \mathbf{z}_0 + \sigma_t \epsilon, \quad (1)$$

166 where  $\alpha_t$  and  $\sigma_t$  are deterministic, differentiable functions satisfying the boundary conditions:  
 167

$$(\alpha_0, \sigma_0) = (1, 0) \quad \text{and} \quad (\alpha_1, \sigma_1) = (0, 1). \quad (2)$$

168 This construction implies that at  $t = 0$  we recover the clean latent  $\mathbf{z}_0$ , and at  $t = 1$  we have pure  
 169 noise  $\mathbf{z}_1 = \epsilon$ . Under mild conditions (Albergo et al., 2023), the sequence  $\{\mathbf{z}_t\}$  forms a *stochastic*  
 170 *interpolant* that smoothly transitions between data and noise in the latent space.  
 171

172 **Velocity-based learning.** To train a diffusion model in this continuous-time framework, SiT em-  
 173 ploys a *velocity* formulation. Differentiating  $\mathbf{z}_t$  with respect to  $t$  yields:

$$\dot{\mathbf{z}}_t = \dot{\alpha}_t \mathbf{z}_0 + \dot{\sigma}_t \epsilon. \quad (3)$$

174 Conditioning on  $\mathbf{z}_t$ , we can rewrite the derivative as a velocity field:  
 175

$$\dot{\mathbf{z}}_t = \mathbf{F}(\mathbf{z}_t, t), \quad (4)$$

176 where  $\mathbf{F}(\mathbf{z}_t, t)$  is defined as the conditional expectation of  $\dot{\mathbf{z}}_t$  given  $\mathbf{z}_t$ . A neural network  $\mathbf{F}_\theta(\mathbf{z}, t)$  is  
 177 then trained to approximate  $\mathbf{F}(\mathbf{z}, t)$  by minimizing:

$$\mathcal{L}_{\text{diffusion}}(\theta) = \mathbb{E}_{\mathbf{z}_0, \epsilon, t} \left[ \left\| \mathbf{F}_\theta(\mathbf{z}_t, t) - \left( \dot{\alpha}_t \mathbf{z}_0 + \dot{\sigma}_t \epsilon \right) \right\|^2 \right]. \quad (5)$$

178 Learning  $\mathbf{F}_\theta(\mathbf{z}, t)$  enables one to integrate the reverse-time ordinary differential equation  
 179 (ODE) (Song et al., 2020), thereby mapping noise samples back to coherent latent representations.  
 180

### 181 3.2 A FUNCTIONAL CIRCUIT PERSPECTIVE FOR DECOUPLED TRAINING

182 Recent studies indicate that diffusion models jointly perform both *representation learning*  
 183 and *generative decoding* during the de-  
 184 noising procedure (Yu et al., 2024; Xiang  
 185 et al., 2023). Notably, every layer in  
 186 the network contributes to feature extrac-  
 187 tion and generative tasks to varying degrees.  
 188 To make this dual functionality clearer, we  
 189 propose decomposing the diffusion process  
 190 into three distinct stages: *Pixel-to-Latent*  
 191 (**P2L**), *Latent-to-Representation* (**L2R**), and  
 192 *Representation-to-Generation* (**R2G**), as il-  
 193 lustrated in Figure 2. Formally, we posit that  
 194 the diffusion sampling procedure can be writ-  
 195 ten as:

$$\begin{aligned} \mathbf{z} &= \mathcal{H}_\theta(\mathbf{x}), & (\text{Pixel to Latent (P2L)}) \\ \mathbf{r} &= \mathcal{R}_{\theta_{\text{L2R}}}(\mathbf{z}), & (\text{Latent to Representation (L2R)}) \\ \mathbf{z}' &= \mathcal{G}_{\theta_{\text{R2G}}}(\mathbf{r}), & (\text{Representation to Generation (R2G)}) \end{aligned}$$

196 Here,  $\mathcal{H}_\theta$  is a VAE encoder that compresses pixels to latents;  $\mathcal{R}_{\theta_{\text{L2R}}}$  and  $\mathcal{G}_{\theta_{\text{R2G}}}$  are two over-  
 197 lapping functional roles implemented within the shared diffusion backbone. A VAE decoder  $\mathcal{D}_\theta$  maps  
 198 refined latents back to pixels at the end.  
 199

200 **Loss function decomposition.** Grounded in the augmented probability view, Appendix B  
 201 (**Thm. 1**) gives an *exact* decomposition of the joint conditional score:

$$\nabla_{\mathbf{z}_t} \log p(\mathbf{z}_0, \mathbf{r} \mid \mathbf{z}_t, t) = \underbrace{\nabla_{\mathbf{z}_t} \log p(\mathbf{z}_0 \mid \mathbf{z}_t, \mathbf{r}, t)}_{\text{Conditional Generation Score}} + \underbrace{\nabla_{\mathbf{z}_t} \log p(\mathbf{r} \mid \mathbf{z}_t, t)}_{\text{Representation Inference Score}}. \quad (6)$$

202 This provides a principled rationale for separating optimization into representation inference (L2R)  
 203 and conditional generation (R2G). In practice, we shape these two components using surrogate  
 204 losses: the standard diffusion objective in Eq. (5) for generation and the alignment objective in  
 205 Eq. (14) for representation; see Appendix B for details.



Figure 3: **Selected Samples on ImageNet**  $256 \times 256$ . Images generated by the SiT-XL/2 + REPA + ERW model using Classifier-Free Guidance (CFG) with a scale of  $w = 1.62$  under 350 epochs.

**Stage I: Pixel-to-Latent (P2L).** Before performing the denoising process in the high-dimensional pixel domain—where noise may obscure semantic cues—many methods [Saharia et al. \(2022\)](#); [Ho et al. \(2020\)](#); [Dhariwal & Nichol \(2021\)](#) compress images into a more tractable latent space:

$$\mathbf{z} = \mathcal{H}_{\theta}(\mathbf{x}), \quad (7)$$

where  $(\mathcal{H}_{\theta}, \mathcal{D}_{\theta})$  typically refers to a variational autoencoder or a related autoencoding architecture. This **P2L** stage reduces computational complexity and filters out low-level details, thus preserving more essential semantic information. From the perspective of the decomposed loss, P2L transforms the high-dimensional denoising problem into a lower-dimensional one where representation components (capturing semantic concepts) and reconstruction components (handling fine details) become more clearly separable, facilitating favorable conditions for separating the training stages.

**Stage II: Latent-to-Representation (L2R).** Given a noisy latent  $\mathbf{z}_t$  from the forward process (Eq. (1)), the model initially extracts a semantic representation  $\mathbf{r}_t$  using the mapping  $\mathcal{R}_{\theta_{L2R}}$ .

$$\mathbf{r}_t = \mathcal{R}_{\theta_{L2R}}(\mathbf{z}_t, t). \quad (8)$$

This step corresponds to the *Representation Inference Score*, i.e., estimating  $\nabla_{\mathbf{z}_t} \log p(\mathbf{r} \mid \mathbf{z}_t, t)$  in the augmented conditional view ([Thm. 1](#); see also [Appendix B](#)). Intuitively, the model should discern salient patterns (e.g., object shapes, style characteristics, or conditioning signals) before denoising. Under the sufficient statistic assumption (see [Assump. 1](#)), the representation  $\mathbf{r}_t$  effectively captures the essential information from the latent  $\mathbf{z}_t$ . The true representation score available one could consider the idealized regression objective

$$\min_{\mathcal{R}} \mathbb{E}_{t, \mathbf{z}_t} \left[ \left\| \mathcal{R}_{\theta_{L2R}}(\mathbf{z}_t, t) - \nabla_{\mathbf{z}_t} \log p(\mathbf{r} \mid \mathbf{z}_t, t) \right\|^2 \right]. \quad (9)$$

In practice, we do not access this score; instead we employ surrogate alignment losses: the clean-latent warmup in Eq. (13) and the noisy-input alignment term in Eq. (14). By explicitly decoupling the objective for semantic feature extraction from that of generative refinement, the model is guided to learn representations and ensures that the early layers focus on capturing semantic features.

**Stage III: Representation-to-Generation (R2G).** In the final phase of each reverse diffusion update in (3), known as the R2G stage, the extracted semantic representation is transformed into an updated latent with reduced noise:

$$\mathbf{z}_{t-\Delta t} = \mathcal{G}_{\theta_{R2G}}(\mathbf{r}_t, t). \quad (10)$$

This output serves the same purpose as the  $\mathbf{z}'$  term introduced, but is specifically defined for the discrete time step  $t - \Delta t$  in the continuous-time diffusion process. In the decomposition, this step aligns with the *Conditional Generation Score* component. For the rigorous joint-conditional view, see [Thm. 1](#). The conditional generation score available one could consider the idealized regression objective

$$\min_{\mathcal{G}} \mathbb{E}_{t, \mathbf{z}_t} \left[ \left\| \mathcal{G}_{\theta_{R2G}}(\mathbf{r}_t, t) - \nabla_{\mathbf{z}_t} \log p(\mathbf{z}_0 \mid \mathbf{z}_t, \mathbf{r}_t, t) \right\|^2 \right]. \quad (11)$$

In practice, we instead rely on the standard diffusion objective in Eq. (5) (and its Phase 2 combination in Eq. (14)) to shape the generation component while using the learned representations as

guidance. Injecting the semantic representation  $\mathbf{r}_t$  into a cleaner latent  $\mathbf{z}_{t-\Delta t}$  which is significantly less noisy than  $\mathbf{z}_t$  ensures that abstract semantic features are effectively transformed into the precise latent elements required for content generation. Meanwhile, the cross interaction between L2R and R2G (also discussed in Appendix B) is empirically small when the two gradients are sufficiently separated in function, helping to mitigate destructive interference.

**Two-stage sampling process: Representation extraction precedes generation.** Within the continuous-time framework, after mapping pixel data to the latent space through P2L, each infinitesimally small time step during the reverse SDE update can be interpreted as a two-stage process:

$$\mathbf{r}_t = \mathcal{R}_{\theta_{\text{L2R}}}(\mathbf{z}_t, t) \longrightarrow \mathbf{z}_{t-\Delta t} = \mathcal{G}_{\theta_{\text{R2G}}}(\mathbf{r}_t, t) \quad (12)$$

Hence, every time step naturally splits into (i) L2R for refining the representation and (ii) R2G for synthesizing an updated latent. This loop neatly implements the principle of "first representation, then generation". Empirically, prior work (Yu et al., 2024; Xiang et al., 2023) confirms that early layers of the diffusion model predominantly focus on representation extraction, whereas later layers emphasize generative refinement. Consequently, the staged design mirrors the reverse-time diffusion trajectory, concluding in a final latent  $\mathbf{z}_0$  that is decoded via  $\mathcal{D}_{\theta}$  to yield the synthesized output  $\mathbf{x}_0$ .

### 3.3 EMBEDDED REPRESENTATION WARMUP: TRAINING WITH TWO PHASES

Guided by the circuit view and our augmented-space analysis, we present Embedded Representation Warmup (ERW), a framework that strategically decouples training into two phases. In **Phase 1**, we initialize the early layers of the diffusion model with high-quality semantic features from pretrained models; in **Phase 2**, we transition to standard diffusion training with a gradually diminishing representation alignment term, allowing the model to increasingly focus on generation. This mirrors the sampling loop: first infer representation, then generate.

**Phase 1: Representation Warmup Stage** To alleviate the burden of learning semantic features from scratch, we begin with a dedicated warmup stage. During this phase, the model's L2R circuit is initialized to align with semantically rich features extracted from a pretrained representation model (e.g., DINOv2, MAE, or CLIP). Let  $\mathcal{H}_{\theta}(\mathbf{x})$  denote an encoder that maps an image  $\mathbf{x} \in \mathcal{X}$  to its latent representation  $\mathbf{z} \in \mathcal{Z}$ , and let  $\mathbf{f}_{\text{rep}} : \mathcal{X} \rightarrow \mathcal{R}$  be a high-quality pretrained representation model. We use a single alignment objective shared by both phases:

$$\mathcal{L}_{\text{align}}(k) = \mathbb{E}_{\mathbf{x}, \epsilon, t} \left[ s(k, t) \ell_{\text{NT-Xent}} \left( \mathcal{T}_{\theta}(\mathcal{R}_{\theta_{\text{L2R}}}(\mathbf{z}_t, t)), \mathbf{f}_{\text{rep}}(\mathbf{x}) \right) \right]. \quad (13)$$

Here  $\mathbf{z}_t$  and the schedule  $s(k, t)$  are

$$\mathbf{z}_t = \begin{cases} \mathcal{H}_{\theta}(\mathbf{x}) & (t=0) \\ \alpha_t \mathbf{z}_0 + \sigma_t \epsilon & (t>0), \mathbf{z}_0 = \mathcal{H}_{\theta}(\mathbf{x}) \end{cases} \quad \text{and} \quad s(k, t) = \begin{cases} 1 & (t=0) \\ \lambda_{\text{train}}(k) = c_0 \exp(-\frac{k}{\tau}) & (t>0). \end{cases}$$

Warmup sets  $t=0$ ; Phase 2 samples  $t \sim \mathcal{U}[0, 1]$  and uses the decayed  $\lambda_{\text{train}}(k) = c_0 \exp(-k/\tau)$  to gradually shift focus from alignment to generation, where  $k$  is the training step, and  $c_0, \tau$  are hyperparameters.

**Phase 2: Generative Training with Decaying Representation Guidance** After the warmup stage has effectively initialized the diffusion model with semantically rich features, we proceed with a joint objective that combines the standard diffusion loss with a gradually diminishing representation alignment term. Formally, the overall training loss is given by:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{diffusion}} + \lambda_{\text{train}}(k) \cdot \mathcal{L}_{\text{align}} \quad (14)$$

Here,  $\mathcal{L}_{\text{diffusion}}$  denotes the velocity prediction loss as defined in Eq. (5), and the alignment term is the objective in Eq. (13). The weight  $\lambda_{\text{train}}(k)$  modulates the impact of alignment during training. In practice, we instantiate  $\ell_{\text{NT-Xent}}$  with in-batch negatives and use the same projection head  $\mathcal{T}_{\theta}$  across both phases (Section 4.1). The alignment thus acts as a weak semantic tether late in training, mitigating forgetting while letting R2G dominate. Both phases share the same alignment loss  $\ell_{\text{NT-Xent}}(\mathcal{T}_{\theta}(\cdot), \mathbf{f}_{\text{rep}}(\cdot))$ ; they differ only in (i) the noise level of the input (clean  $t=0$  in Phase 1 vs. noisy  $t>0$  in Phase 2) and (ii) the schedule  $\lambda_{\text{train}}(k)$  (absent in warmup, exponentially decayed in Phase 2). Consistent with the augmented-space identity (Thm. 1), the surrogate gradient decomposes as

$$\nabla_{\theta} \mathcal{L}_{\text{total}}(k) \approx \mathbb{E} \left[ \underbrace{\nabla_{\theta} \mathcal{L}_{\text{diffusion}}}_{\text{shapes} \nabla_{\mathbf{z}_t} \log p(\mathbf{z}_0 | \mathbf{z}_t, \mathbf{r}, t)} + s(k, t) \underbrace{\nabla_{\theta} \mathcal{L}_{\text{align}}(k)}_{\text{shapes} \nabla_{\mathbf{z}_t} \log p(\mathbf{r} | \mathbf{z}_t, t)} \right],$$

up to standard surrogate mismatches. This makes the training-time decomposition mirror the sampling-time loop: first representation (L2R), then generation (R2G).

## 324 4 EXPERIMENTS

325  
 326 In this section, we provide a comprehensive evaluation of our  
 327 proposed ERW approach. We begin by outlining experimental setups  
 328 (Section 4.1), including dataset and implementation details. Next, we  
 329 present comparisons with state-of-the-art baselines to demonstrate the  
 330 benefits of ERW in both FID and training speed (Section 4.2). We  
 331 then analyze the role of our warmup procedure in boosting training effi-  
 332 ciency (Section 4.3). Finally, we conduct ablation studies to examine  
 333 the effects of various alignment strategies, architecture depths, and target  
 334 representation models (Section 4.4).

### 341 4.1 SETUP

342 • **Implementation Details.** We adhere closely to the experimental  
 343 setups described in DiT (Peebles & Xie, 2023) and SiT (Ma et al., 2024), un-  
 344

345 less otherwise noted. Specifically, we utilize the ImageNet dataset (Deng et al., 2009), preproces-  
 346 sing each image to a resolution of  $256 \times 256$  pixels. Following the protocols of ADM (Dhariwal  
 347 & Nichol, 2021), each image is encoded into a compressed latent vector  $\mathbf{z} \in \mathbb{R}^{32 \times 32 \times 4}$  using the  
 348 Stable Diffusion VAE (Rombach et al., 2022). For our model configurations, we employ the B/2  
 349 and XL/2 architectures as introduced in the SiT papers, which process inputs with a patch size of  
 350 2. To ensure a fair comparison with SiT models and REPA, we maintain a consistent batch size  
 351 of 256 throughout training. Further experimental details, including hyperparameter settings and  
 352 computational resources, are provided in Appendix D.

353 • **Evaluation.** We report Fréchet inception distance (FID; Heusel et al. 2017), sFID (Nash et al.,  
 354 2021), inception score (IS; Salimans et al. 2016), precision (Pre.) and recall (Rec.) (Kynkänniemi  
 355 et al., 2019) using 50K samples. We also include CKNN (Huh et al., 2024) as discussed in ablation  
 356 studies. Detailed setups for evaluation metrics are provided in Appendix E.

357 • **Sampler and Alignment objective.** Following SiT (Ma et al., 2024), we always use the SDE Euler-  
 358 Maruyama sampler (for SDE with  $w_t = \sigma_t$ ) and set the number of function evaluations (NFE) as  
 359 250 by default. We use Normalized Temperature-scaled Cross Entropy (NT-Xent) training objective  
 360 for alignment.

361 • **Baselines.** We use several recent  
 362 diffusion-based generation methods  
 363 as baselines, each employing different  
 364 inputs and network architectures.  
 365 Specifically, we consider the following  
 366 four types of approaches: (a)

367 *Pixel diffusion*: ADM (Dhariwal &  
 368 Nichol, 2021), VDM++ (Kingma &  
 369 Gao, 2024), Simple diffusion (Hooge-  
 370 boom et al., 2023), CDM (Ho et al.,  
 371 2022), (b) *Latent diffusion with U-*  
 372 *Net*: LDM (Rombach et al., 2022), (c)

373 *Latent diffusion with transformer+U-*  
 374 *Net hybrid models*: U-ViT-H/2 (Bao et al., 2023), DiffiT (Hatamizadeh et al., 2024), and MDTv2-  
 375 XL/2 (Gao et al., 2023), and (d) *Latent diffusion with transformers*: MaskDiT (Zheng et al., 2024),  
 376 SD-DiT (Zhu et al., 2024), DiT (Peebles & Xie, 2023), and SiT (Ma et al., 2024). Here, we refer to  
 377 Transformer+U-Net hybrid models that contain skip connections, which are not originally used in  
 378 pure transformer architecture. Details are provided in Appendix F.

379 Table 1: **System-level comparison** on ImageNet  $256 \times 256$  with  
 380 CFG.  $\downarrow$  and  $\uparrow$  indicate whether lower or higher values are better,  
 381 respectively. Results marked with an asterisk (\*) use advanced  
 382 CFG scheduling techniques; specifically, for our method, we apply  
 383 the guidance interval scheduling from (Kynkänniemi et al., 2024).

| Model                                               | Epochs | FID $\downarrow$ | sFID $\downarrow$ | IS $\uparrow$ | Pre. $\uparrow$ | Rec. $\uparrow$ |
|-----------------------------------------------------|--------|------------------|-------------------|---------------|-----------------|-----------------|
| <i>Pixel diffusion</i>                              |        |                  |                   |               |                 |                 |
| ADM-U                                               | 400    | 3.94             | 6.14              | 186.7         | 0.82            | 0.52            |
| VDM++                                               | 560    | 2.40             | -                 | 225.3         | -               | -               |
| Simple diffusion                                    | 800    | 2.77             | -                 | 211.8         | -               | -               |
| CDM                                                 | 2160   | 4.88             | -                 | 158.7         | -               | -               |
| <i>Latent diffusion, U-Net</i>                      |        |                  |                   |               |                 |                 |
| LDM-4                                               | 200    | 3.60             | -                 | 247.7         | 0.87            | 0.48            |
| <i>Latent diffusion, Transformer + U-Net hybrid</i> |        |                  |                   |               |                 |                 |
| U-ViT-H/2                                           | 240    | 2.29             | 5.68              | 263.9         | 0.82            | 0.57            |
| DiffiT*                                             | -      | 1.73             | -                 | 276.5         | 0.80            | 0.62            |
| MDTv2-XL/2*                                         | 1080   | 1.58             | 4.52              | 314.7         | 0.79            | 0.65            |
| <i>Latent diffusion, Transformer</i>                |        |                  |                   |               |                 |                 |
| MaskDiT                                             | 1600   | 2.28             | 5.67              | 276.6         | 0.80            | 0.61            |
| SD-DiT                                              | 480    | 3.23             | -                 | -             | -               | -               |
| DiT-XL/2                                            | 1400   | 2.27             | 4.60              | 278.2         | <b>0.83</b>     | 0.57            |
| SiT-XL/2                                            | 1400   | 2.06             | 4.50              | 270.3         | 0.82            | 0.59            |
| + REPA                                              | 200    | 1.96             | 4.49              | 264.0         | 0.82            | 0.60            |
| + REPA*                                             | 800    | 1.42             | 4.70              | 305.7         | 0.80            | 0.65            |
| + ERW (ours)                                        | 200    | 1.64             | 4.71              | 260.2         | 0.78            | <b>0.66</b>     |
| + ERW (ours)*                                       | 350    | <b>1.41</b>      | <b>4.46</b>       | <b>293.9</b>  | 0.79            | 0.65            |

384 Table 2: **FID comparisons with SiT-XL/2.** In this table, we re-  
 385 port the FID of ERW with SiT-XL/2 on ImageNet  $256 \times 256$  at vari-  
 386 ous Training iterations. Here is only full training without warmup,  
 387 because we load a well trained warmup checkpoint. For compari-  
 388 on, we also present the performance of the state-of-the-art base-  
 389 line REPA at similar iterations or comparable FID values. Note  
 390 that  $\downarrow$  indicates that lower values are preferred and all results re-  
 391 ported are without Classifier-Free Guidance.

| Model       | #Params | Iter. | FID $\downarrow$ | sFID $\downarrow$ | IS $\uparrow$ | Prec. $\uparrow$ | Rec. $\uparrow$ |
|-------------|---------|-------|------------------|-------------------|---------------|------------------|-----------------|
| SiT-XL/2    | 675M    | 7M    | 8.3              | 6.32              | 131.7         | 0.68             | 0.67            |
| +REPA       | 675M    | 50K   | 52.3             | 31.24             | 24.3          | 0.45             | 0.53            |
| +ERW (ours) | 675M    | 50K   | <b>25.0</b>      | <b>12.06</b>      | <b>56.1</b>   | <b>0.62</b>      | <b>0.57</b>     |
| +REPA       | 675M    | 100K  | 19.4             | 6.06              | 67.4          | 0.64             | 0.61            |
| +ERW (ours) | 675M    | 100K  | <b>12.1</b>      | <b>5.25</b>       | <b>94.2</b>   | <b>0.69</b>      | <b>0.63</b>     |

378

## 4.2 COMPARISON

379

Table 1 summarizes our results on ImageNet  $256 \times 256$  under Classifier-Free Guidance (CFG). Our ERW significantly boosts the convergence speed of SiT-XL/2, enabling strong FID scores at just 350 epochs. As shown in Table 1, our method achieves an FID of **1.41** in **350 epochs**, that REPA requires 800 epochs to approach, demonstrating a high speedup while achieving state-of-the-art performance. Figure 3 illustrates generated samples, further confirming the high-quality outputs achieved by ERW.

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

## 4.3 ERW EFFICIENCY

We begin by how ERW influences SiT-XL/2’s FID when w/o CFG.

• **Efficient FID Improvements.**

In Table 2, ERW consistently achieves competitive or superior FID values compared to baselines.

For instance, ERW reaches an FID of 12.1 with 100k warmup + 100k full training, markedly outperforming the REPA method (Yu et al., 2024) which scores 19.4 within the same budget.

• **Leveraging Pretrained Features.** This gain highlights the advantage of injecting pretrained semantic priors via warmup, thereby accelerating the full training.

## Warmup versus full training.

Next, we analyze how splitting the total training budget between warmup and full diffusion training impacts both generation quality and computational overhead. As shown in Figure 4, the FLOPs for the warmup phase are significantly lower than for the full training phase.

## 4.4 ABLATION STUDIES

We further dissect the effectiveness of ERW by conducting ablation studies on various design choices and parameter settings.

**Target representation.** We first compare alignment with multiple self-supervised encoders: MoCov3, CLIP, and DINOv2, as summarized in Table 4.

• **Universality of Pretrained Encoders.** All encoders tested offer improvements over baselines, indicating that ERW can benefit from a range of representation models.

• **Marginal Differences among DINOv2 Variants.** DINOv2-B, DINOv2-L, and DINOv2-g yield comparable gains, suggesting that ERW does not require the largest possible teacher encoder for effective representation transfer. This suggests that ERW is not limited to a specific encoder architecture but can leverage a wide range of powerful, pretrained feature extractors, making it a versatile tool for accelerating diffusion model training.

Table 3: **Analysis of ERW depth, projection depth, and different dynamic or consistent projection loss  $\lambda$  influences in SiT-XL/2.** All models are based on SiT-XL/2 and trained for 100K iterations under a batch size of 256 without using Classifier-Free Guidance on ImageNet  $256 \times 256$ . The target representation model is DINOv2-B, and the objective is NT-Xent.  $\downarrow$  indicates lower values are better. The results show that a projection depth of 14 and a projection loss  $\lambda$  of 4.0 yield substantial improvements in both FID and sFID, indicating an optimal configuration for model performance.

| ERW Depth                         | Proj. Depth | $\lambda$ | FID $\downarrow$ | sFID $\downarrow$ | IS $\uparrow$ | Prec. $\uparrow$ | Rec. $\uparrow$ |
|-----------------------------------|-------------|-----------|------------------|-------------------|---------------|------------------|-----------------|
| SiT-XL/2 + REPA (Yu et al., 2024) |             |           | 19.4             | 6.06              | 67.4          | 0.64             | 0.61            |
| 3                                 | 8           | 0.5       | 14.4             | <b>5.28</b>       | 82.7          | 0.68             | 0.62            |
| 4                                 | 8           | 0.5       | 13.8             | 5.31              | 87.1          | 0.68             | 0.62            |
| 5                                 | 8           | 0.5       | 13.4             | 5.29              | 87.8          | 0.68             | 0.63            |
| 6                                 | 8           | 0.5       | 13.6             | 5.30              | 87.3          | 0.67             | 0.63            |
| 8                                 | 8           | 0.5       | 15.4             | 5.37              | 82.3          | 0.66             | 0.63            |
| 12                                | 8           | 0.5       | 16.2             | 5.36              | 79.2          | 0.66             | 0.63            |
| 5                                 | 10          | 0.5       | 12.9             | 5.29              | 90.4          | 0.68             | 0.63            |
| 5                                 | 12          | 0.5       | 12.5             | 5.24              | 92.0          | 0.69             | 0.62            |
| 5                                 | 14          | 0.5       | 12.5             | 5.26              | 91.5          | 0.69             | 0.63            |
| 5                                 | 16          | 0.5       | 12.3             | 5.25              | 93.4          | 0.69             | 0.62            |
| 5                                 | 18          | 0.5       | <b>12.1</b>      | <b>5.25</b>       | <b>94.2</b>   | <b>0.69</b>      | 0.63            |
| 5                                 | 20          | 0.5       | 12.6             | 5.27              | 92.3          | 0.69             | 0.63            |
| 5                                 | 18          | 0.1       | 16.6             | 5.31              | 75.8          | 0.67             | 0.60            |
| 5                                 | 18          | 1.0       | 12.7             | 5.41              | 92.8          | 0.68             | 0.64            |
| 5                                 | 18          | 2.0       | 13.3             | 5.39              | 90.5          | 0.68             | 0.63            |
| 5                                 | 18          | 4.0       | 13.1             | 5.38              | 92.2          | 0.68             | <b>0.64</b>     |
| 5                                 | 18          | 6.0       | 13.4             | 5.45              | 91.6          | 0.67             | 0.63            |

Table 4: **Analysis of ERW on ImageNet  $256 \times 256$ .** All models are SiT-B/2 trained for 50K iterations. All metrics except FID without Classifier-Free Guidance. We fix  $\lambda = 0.5$  here.  $\downarrow$  and  $\uparrow$  indicate whether lower or higher values are better, respectively.

| Target Repr. | Depth | Objective | FID $\downarrow$ | sFID $\downarrow$ | IS $\uparrow$ | Prec. $\uparrow$ | Rec. $\uparrow$ |
|--------------|-------|-----------|------------------|-------------------|---------------|------------------|-----------------|
| MoCov3-B     | 8     | NT-Xent   | 61.1             | <b>7.6</b>        | 22.38         | 0.42             | <b>0.58</b>     |
| MoCov3-L     | 8     | NT-Xent   | 73.0             | 8.0               | 17.96         | 0.38             | 0.52            |
| CLIP-L       | 8     | NT-Xent   | 58.9             | 7.7               | 23.68         | <b>0.44</b>      | 0.54            |
| DINOv2-B     | 8     | NT-Xent   | 55.6             | 7.8               | 25.45         | <b>0.44</b>      | 0.56            |
| DINOv2-L     | 8     | NT-Xent   | <b>55.5</b>      | 7.8               | 25.45         | <b>0.44</b>      | 0.56            |
| DINOv2-g     | 8     | NT-Xent   | 59.4             | <b>7.6</b>        | <b>25.53</b>  | <b>0.44</b>      | 0.56            |

Table 5: **Analysis of ERW places influences in SiT-B/2.** All models are based on SiT-B/2 and trained for 50K iterations under the batch size of 256 without using Classifier-Free Guidance on ImageNet  $256 \times 256$ .  $\downarrow$  indicates lower values are better. Results empirically validate our hypothesis that placing ERW at the forefront of the architecture yields optimal performance.

| Target Repr.                     | Depth | Objective | FID $\downarrow$ | sFID $\downarrow$ | IS $\uparrow$ | Prec. $\uparrow$ | Rec. $\uparrow$ |
|----------------------------------|-------|-----------|------------------|-------------------|---------------|------------------|-----------------|
| SiT-B/2 + REPA (Yu et al., 2024) |       |           | 78.2             | 11.71             | 17.1          | 0.33             | 0.48            |
| DINOv2-B                         | 0-8   | NT-Xent   | <b>54.2</b>      | <b>8.12</b>       | <b>27.2</b>   | <b>0.45</b>      | <b>0.59</b>     |
| DINOv2-B                         | 1-9   | NT-Xent   | 69.1             | 13.0              | 18.7          | 0.37             | 0.51            |
| DINOv2-B                         | 2-10  | NT-Xent   | 67.7             | 13.4              | 19.0          | 0.38             | 0.52            |
| DINOv2-B                         | 3-11  | NT-Xent   | 67.5             | 11.8              | 19.5          | 0.38             | 0.52            |
| DINOv2-B                         | 4-11  | NT-Xent   | 67.8             | 13.1              | 19.0          | 0.38             | 0.52            |

432  
 433 **Placement of ERW Depth.** We hypothesize that early layers in  
 434 the diffusion backbone primarily learn semantic features (the L2R  
 435 circuit), whereas deeper layers specialize in generative decoding.  
 436 The placement of the alignment loss is therefore critical. We spec-  
 437 ify the alignment target using "Depth X-Y", which means the align-  
 438 ment loss is computed on the output of layer Y, using a projection  
 439 head that takes features from layers X through Y as input.

440 • **Empirical Validation.** In Table 5, initializing the earliest layers (0–8) notably outperforms re-initializing middle or late sections (FID 54.2 vs. > 67).

441 • **Consistent with Circuit Perspective.** This corroborates our  
 442 three-stage diffusion circuit (Section 3), underscoring that align-  
 443 ing deeper layers for representation can be suboptimal since those  
 444 layers focus on generation. Targeting the initial layers for warmup  
 445 is therefore crucial, reinforcing our theoretical claim that represen-  
 446 tation learning is predominantly the function of the early network  
 447 stages, while later stages are specialized for generative refinement.

448 **Projection depth and alignment weight.** We also investigate  
 449 how the final projection head depth and the alignment-loss coeffi-  
 450 cient  $\lambda$  affect training (Table 3). The projection head,  $\mathcal{T}_\theta$ , is a deep  
 451 MLP that maps the features to the dimensionality of the target represen-  
 452 tation as same as REPA.

453 • **Empirical Validation.** Using 5 warmup layers, a projection head at depth 18, and  $\lambda = 0.5$  achieves  
 454 an FID of **12.1** at 100k iterations—a substantial gain over baselines.

455 • **Trade-off in  $\lambda$ .** Larger  $\lambda$  offers stronger representation alignment initially but may disrupt conver-  
 456 gence if pushed to extremes, highlighting the need for moderate scheduling.

457 **Representation dynamics.** We examine the temporal progres-  
 458 sion of representation alignment in Figure 5.

459 • **Initial Dip, Subsequent Recovery.** Alignment falls early on as  
 460 the pretrained features adjust to the diffusion objectives, but it then  
 461 recovers and improves.

462 • **Role of Decaying Guidance.** A decaying weight in the alignment  
 463 term (Section 3.3) fosters stable synergy between semantic align-  
 464 ment and generative refinement. The representation alignment thus  
 465 follows a U-shaped trajectory, revealing the model’s initial adapta-  
 466 tion of pretrained features to the diffusion task, followed by a distil-  
 467 lation into robust, generation-aligned embeddings.

468 **CKNNA analysis.** Finally, we measure layer-wise represen-  
 469 tation quality using Class-conditional  $k$ -Nearest Neighbor Accuracy  
 470 (CKNNA) (Caron et al., 2021), which indicates how well the hidden  
 471 features capture class discriminability.

472 • **Improved Semantic Alignment.** ERW yields systematically  
 473 higher CKNNA scores, confirming stronger semantic preservation.

474 • **Evolving Layer-wise Semantics.** The alignment initially drops then recovers, mirroring the trends  
 475 seen in Figure 5 and pretrained features are effectively integrated rather than merely overwritten.

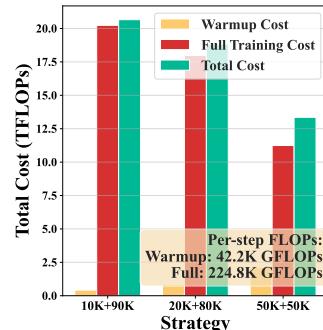


Figure 4: **Comparison of Training Efficiency and Cost Analysis with Warmup and Full Training Stages.** Bar chart comparing the computational costs of the warmup and full training stages for different strategies. The chart shows the warmup cost, full training cost, and their corresponding total cost.

476

477

478

479

480

481

482

483

484

485

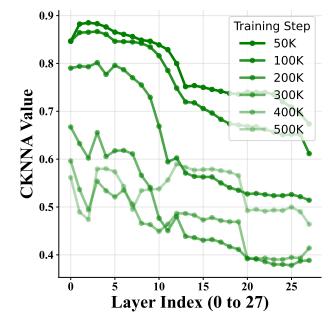


Figure 5: **Scalability of ERW.** Training dynamics for alignment indicate that within the 500K training steps for SiT-XL/2, the alignment between DINOv2-g and the diffusion model first decreases and then increases.

## 5 CONCLUSION AND FUTURE WORK

477 In this work, we introduced Embedded Representation Warmup (ERW), a novel two-phase training  
 478 framework that significantly enhances the training efficiency of diffusion models. By dedicating  
 479 an initial phase to align the model’s early layers with a pretrained encoder, ERW establishes a  
 480 strong semantic foundation that accelerates the subsequent generative training. Our key innovation  
 481 is the explicit separation of representation alignment and generation, which, when combined with  
 482 a decaying alignment schedule, proves more effective than continuous, single-phase regularization.  
 483 We demonstrated empirically that ERW leads to substantial speedups in training convergence up to  
 484  $11.5 \times$  compared to REPA and achieves FID=1.41 with 350 epochs. Our ablations confirmed that  
 485 targeting the early layers is crucial and that the two-phase approach is a cost-effective strategy for  
 high-fidelity generative modeling.

486 REFERENCES  
487

488 Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying  
489 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

490 Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth  
491 words: A ViT backbone for diffusion models. In *IEEE Conference on Computer Vision and*  
492 *Pattern Recognition*, 2023.

493 Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In *CVPR*, 2018.

494 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and  
495 Armand Joulin. Emerging properties in self-supervised vision transformers. In *IEEE International*  
496 *Conference on Computer Vision*, 2021.

497 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for  
498 contrastive learning of visual representations. In *International Conference on Machine Learning*,  
499 2020a.

500 Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum  
501 contrastive learning. *arXiv preprint arXiv:2003.04297*, 2020b.

502 Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision  
503 transformers. In *IEEE International Conference on Computer Vision*, 2021.

504 Xinlei Chen, Zhuang Liu, Saining Xie, and Kaiming He. Deconstructing denoising diffusion models  
505 for self-supervised learning. *arXiv preprint arXiv:2401.14404*, 2024.

506 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale  
507 hierarchical image database. In *IEEE Conference on Computer Vision and Pattern Recognition*,  
508 2009.

509 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In  
510 *Advances in Neural Information Processing Systems*, 2021.

511 Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network  
512 function approximation in reinforcement learning. *Neural networks*, 107:3–11, 2018.

513 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam  
514 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for  
515 high-resolution image synthesis. In *International Conference on Machine Learning*, 2024.

516 Michael Fuest, Pingchuan Ma, Ming Gui, Johannes S Fischer, Vincent Tao Hu, and Bjorn Ommer.  
517 Diffusion models and representation learning: A survey. *arXiv preprint arXiv:2407.00783*, 2024.

518 Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. MDTv2: Masked diffusion  
519 transformer is a strong image synthesizer. *arXiv preprint arXiv:2303.14389*, 2023.

520 Ali Hatamizadeh, Jiaming Song, Guilin Liu, Jan Kautz, and Arash Vahdat. DiffiT: Diffusion vision  
521 transformers for image generation. In *European Conference on Computer Vision*, 2024.

522 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for un-  
523 supervised visual representation learning. In *IEEE Conference on Computer Vision and Pattern*  
524 *Recognition*, 2020.

525 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked  
526 autoencoders are scalable vision learners. In *IEEE Conference on Computer Vision and Pattern*  
527 *Recognition*, 2022.

528 Jonathan Heek, Emiel Hoogeboom, and Tim Salimans. Multistep consistency models. *arXiv*  
529 *preprint arXiv:2403.06807*, 2024.

530 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.  
531 GANs trained by a two time-scale update rule converge to a local nash equilibrium. In *Advances*  
532 *in Neural Information Processing Systems*, 2017.

540 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*  
 541 *neural information processing systems*, 33:6840–6851, 2020.

542

543 Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans. Cascaded diffusion models for high fidelity image generation. *Journal of Machine Learning*  
 544 *Research*, 23(47):1–33, 2022.

545

546 Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. Simple diffusion: End-to-end diffusion for  
 547 high resolution images. In *International Conference on Machine Learning*, 2023.

548

549 Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation  
 550 hypothesis. In *International Conference on Machine Learning*, 2024.

551

552 Milad Kadkhodaie and Eero Simon. On the generalization of diffusion models. *arXiv preprint*  
 553 *arXiv:2402.18533*, 2024.

554

555 Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for im-  
 556 proved quality, stability, and variation. In *International Conference on Learning Representations*,  
 557 2018.

558

559 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-  
 560 ing and improving the training dynamics of diffusion models. In *IEEE Conference on Computer*  
 561 *Vision and Pattern Recognition*, 2024.

562

563 Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the ELBO with simple data  
 564 augmentation. *Advances in Neural Information Processing Systems*, 2024.

565

566 Diederik P Kingma. Adam: A method for stochastic optimization. In *International Conference on*  
 567 *Learning Representations*, 2015.

568

569 Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural  
 570 network representations revisited. In *International Conference on Machine Learning*, 2019.

571

572 Nupur Kumari, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Ensembling off-the-shelf models  
 573 for GAN training. In *IEEE Conference on Computer Vision and Pattern Recognition*, 2022.

574

575 Tuomas Kynkänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved  
 576 precision and recall metric for assessing generative models. In *Advances in Neural Information*  
 577 *Processing Systems*, 2019.

578

579 Tuomas Kynkänniemi, Miika Aittala, Tero Karras, Samuli Laine, Timo Aila, and Jaakko Lehtinen.  
 580 Applying guidance in a limited interval improves sample and distribution quality in diffusion  
 581 models. *arXiv preprint arXiv:2404.07724*, 2024.

582

583 Alexander C Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, and Deepak Pathak. Your dif-  
 584 fusion model is secretly a zero-shot classifier. In *IEEE International Conference on Computer*  
 585 *Vision*, 2023a.

586

587 Daiqing Li, Huan Ling, Amlan Kar, David Acuna, Seung Wook Kim, Karsten Kreis, Antonio Tor-  
 588 ralba, and Sanja Fidler. DreamTeacher: Pretraining image backbones with deep generative models.  
 589 In *IEEE International Conference on Computer Vision*, 2023b.

590

591 T Li, D Katabi, and K He. Return of unconditional generation: A self-supervised representation  
 592 generation method. In *Advances in Neural Information Processing Systems*, 2024.

593

594 Tianhong Li, Huiwen Chang, Shlok Mishra, Han Zhang, Dina Katabi, and Dilip Krishnan. MAGE:  
 595 Masked generative encoder to unify representation learning and image synthesis. In *IEEE Con-*  
 596 *ference on Computer Vision and Pattern Recognition*, 2023c.

597

598 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching  
 599 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

600

601 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and  
 602 transfer data with rectified flow. In *International Conference on Learning Representations*, 2023.

594 I Loshchilov. Decoupled weight decay regularization. In *International Conference on Learning*  
 595 *Representations*, 2017.

596

597 Cheng Lu, Yuhao Zhou, Fan Bao, Jian Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast  
 598 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural*  
 599 *Information Processing Systems*, 35:5775–5787, 2022.

600 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-  
 601 ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant  
 602 transformers. In *European Conference on Computer Vision (ECCV)*, 2024.

603

604 Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with  
 605 sparse representations. In *International Conference on Machine Learning*, 2021.

606

607 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,  
 608 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning  
 609 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

610

611 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,  
 612 Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas  
 613 Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael  
 614 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut,  
 615 Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features without supervi-  
 616 sion. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856.

617

618 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*  
 619 *the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

620

621 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 622 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 623 models from natural language supervision. In *International Conference on Machine Learning*,  
 624 2021.

625

626 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua  
 627 Bengio, and Aaron Courville. On the spectral bias of neural networks. In *International Confer-  
 628 ence on Machine Learning*, pp. 5301–5310. PMLR, 2019.

629

630 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-  
 631 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

632

633 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
 634 resolution image synthesis with latent diffusion models. In *IEEE Conference on Computer Vision  
 635 and Pattern Recognition*, 2022.

636

637 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar  
 638 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic  
 639 text-to-image diffusion models with deep language understanding. In *Advances in Neural Infor-  
 640 mation Processing Systems*, 2022.

641

642 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. *arXiv  
 643 preprint arXiv:2202.00512*, 2022.

644

645 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.  
 646 Improved techniques for training GANs. In *Advances in Neural Information Processing Systems*,  
 647 2016.

648

649 Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger. Projected GANs converge faster.  
 650 *Advances in Neural Information Processing Systems*, 2021.

651

652 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-  
 653 tillation. *arXiv preprint arXiv:2311.17042*, 2023.

654

655 Shitong Shao, Xu Dai, Lujun Li, Huanran Chen, Yang Hu, and Shouyi Yin. Catch-up distillation:  
 656 You only need to train once for accelerating sampling. *arXiv preprint arXiv:2305.10769*, 2023.

648 Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger  
649 bridge matching. *Advances in Neural Information Processing Systems*, 36, 2024.  
650

651 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben  
652 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*  
653 *arXiv:2011.13456*, 2020.

654 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. *arXiv preprint*  
655 *arXiv:2303.01469*, 2023.  
656

657 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-  
658 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

659 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking  
660 the Inception architecture for computer vision. In *IEEE Conference on Computer Vision and*  
661 *Pattern Recognition*, 2016.

662 Weilai Xiang, Hongyu Yang, Di Huang, and Yunhong Wang. Denoising diffusion autoencoders are  
663 unified self-supervised learners. In *IEEE International Conference on Computer Vision*, 2023.  
664

665 Tianshuo Xu, Peng Mi, Ruilin Wang, and Yingcong Chen. Towards faster training of diffusion  
666 models: An inspiration of a consistency phenomenon. *arXiv preprint arXiv:2404.07946*, 2024.  
667

668 Xingyi Yang and Xinchao Wang. Diffusion model as representation learner. In *IEEE International*  
669 *Conference on Computer Vision*, 2023.

670 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and  
671 Saining Xie. Representation alignment for generation: Training diffusion transformers is easier  
672 than you think. *arXiv preprint arXiv:2410.06940*, 2024.

673 Hongkai Zheng, Weili Nie, Arash Vahdat, and Anima Anandkumar. Fast training of diffusion models  
674 with masked transformers. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856.  
675

676 Rui Zhu, Yingwei Pan, Yehao Li, Ting Yao, Zhenglong Sun, Tao Mei, and Chang Wen Chen. SD-  
677 DiT: Unleashing the power of self-supervised discrimination in diffusion transformer. In *IEEE*  
678 *Conference on Computer Vision and Pattern Recognition*, 2024.  
679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

|     |                                                                                   |           |
|-----|-----------------------------------------------------------------------------------|-----------|
| 702 | <b>CONTENTS</b>                                                                   |           |
| 703 |                                                                                   |           |
| 704 | <b>1 Introduction</b>                                                             | <b>1</b>  |
| 705 |                                                                                   |           |
| 706 | <b>2 Related Work</b>                                                             | <b>3</b>  |
| 707 |                                                                                   |           |
| 708 | <b>3 From Functional Specialization to Decoupled Training in Latent Diffusion</b> | <b>3</b>  |
| 709 | 3.1 Preliminaries . . . . .                                                       | 3         |
| 710 | 3.2 A Functional Circuit Perspective for Decoupled Training . . . . .             | 4         |
| 711 | 3.3 Embedded Representation Warmup: Training with Two Phases . . . . .            | 6         |
| 712 | <b>4 Experiments</b>                                                              | <b>7</b>  |
| 713 | 4.1 Setup . . . . .                                                               | 7         |
| 714 | 4.2 Comparison . . . . .                                                          | 8         |
| 715 | 4.3 ERW Efficiency . . . . .                                                      | 8         |
| 716 | 4.4 Ablation Studies . . . . .                                                    | 8         |
| 717 | <b>5 Conclusion and Future Work</b>                                               | <b>9</b>  |
| 718 |                                                                                   |           |
| 719 | <b>A LLM Usage Statement</b>                                                      | <b>15</b> |
| 720 |                                                                                   |           |
| 721 | <b>B Theoretical Analysis</b>                                                     | <b>15</b> |
| 722 | B.1 Preliminaries . . . . .                                                       | 15        |
| 723 | B.2 A Principled View via an Augmented Probability Space . . . . .                | 15        |
| 724 | B.2.1 Construction of the Augmented Space . . . . .                               | 15        |
| 725 | B.2.2 Marginal and Conditional Distributions . . . . .                            | 16        |
| 726 | B.2.3 Semantic Sufficiency and Conditional Independence . . . . .                 | 17        |
| 727 | B.2.4 Conditional Score Matching in the Augmented Space . . . . .                 | 17        |
| 728 | B.2.5 Emergence of the Two-Phase Training Framework from the Theory . . . . .     | 18        |
| 729 | <b>C Analysis Details</b>                                                         | <b>20</b> |
| 730 | C.1 CKNN Metric Details . . . . .                                                 | 20        |
| 731 | C.2 Description of pretrained visual encoders . . . . .                           | 20        |
| 732 |                                                                                   |           |
| 733 | <b>D Hyperparameter and More Implementation Details</b>                           | <b>20</b> |
| 734 | D.1 Hyperparameter Tuning . . . . .                                               | 20        |
| 735 | <b>E Evaluation Details</b>                                                       | <b>22</b> |
| 736 |                                                                                   |           |
| 737 | <b>F Baselines</b>                                                                | <b>22</b> |
| 738 |                                                                                   |           |
| 739 |                                                                                   |           |
| 740 |                                                                                   |           |
| 741 |                                                                                   |           |
| 742 |                                                                                   |           |
| 743 |                                                                                   |           |
| 744 |                                                                                   |           |
| 745 |                                                                                   |           |
| 746 |                                                                                   |           |
| 747 |                                                                                   |           |
| 748 |                                                                                   |           |
| 749 |                                                                                   |           |
| 750 |                                                                                   |           |
| 751 |                                                                                   |           |
| 752 |                                                                                   |           |
| 753 |                                                                                   |           |
| 754 |                                                                                   |           |
| 755 |                                                                                   |           |

756 **A LLM USAGE STATEMENT**  
757

758 LLMs were used solely as auxiliary tools for grammar checking and language polishing. They  
759 did not contribute to the generation of research ideas, the design of experiments, the development  
760 of methodologies, data analysis, or any substantive aspects of the research. All scientific content,  
761 conceptual contributions, and experimental results are entirely the work of the authors. The authors  
762 take full responsibility for the contents of this paper.

763 **B THEORETICAL ANALYSIS**  
764

765 In this section, we provide a principled theoretical foundation for our ERW. We move beyond the  
766 empirical intuition of entangled objectives and demonstrate that our approach naturally emerges  
767 from a more fundamental perspective: conditional score matching within an *augmented probability*  
768 *space*. This formulation recasts the generative modeling problem as one where semantic understand-  
769 ing is an explicit conditional variable, thereby justifying the decoupling of representation learning  
770 from the synthesis process.

771 **B.1 PRELIMINARIES**  
772

773 To ensure clarity, we first establish the key mathematical objects used in our analysis. Let  $\mathcal{X}$  be the  
774 high-dimensional data space (e.g., images),  $\mathcal{Z}$  be the compressed latent space from a VAE, and  $\mathcal{R}$   
775 be the semantic representation space. We work with the following variables:

- 776 •  $\mathbf{x} \in \mathcal{X}$ : A sample from the data distribution  $p_{\text{data}}(\mathbf{x})$ .
- 777 •  $\mathbf{z}_0 \in \mathcal{Z}$ : The clean latent representation of  $\mathbf{x}$ , obtained via a VAE encoder  $\mathcal{H}_{\theta_{\text{VAE}}}(\mathbf{x})$ .
- 778 •  $\mathbf{z}_t \in \mathcal{Z}$ : The noisy latent at time  $t \in [0, 1]$ , defined by the forward process  $\mathbf{z}_t = \alpha_t \mathbf{z}_0 + \sigma_t \epsilon$  where  
779  $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ .
- 780 •  $\mathbf{r} \in \mathcal{R}$ : A high-level semantic representation vector corresponding to  $\mathbf{x}$ .

781 The key functions and models in our framework are:

- 782 •  $\mathbf{f}_{\text{rep}} : \mathcal{X} \rightarrow \mathcal{R}$ : A powerful, pretrained, and fixed representation model (e.g., DINOv2) that maps  
783 a clean image  $\mathbf{x}$  to its semantic representation  $\mathbf{r}$ .
- 784 •  $\mathbf{F}_{\theta}(\mathbf{z}_t, t, \mathbf{r})$ : The diffusion model we aim to train, which predicts the score or velocity, potentially  
785 conditioned on a semantic representation  $\mathbf{r}$ .
- 786 •  $\mathcal{R}_{\theta_{\text{L2R}}}$ : The sub-network corresponding to the L2R circuit, which extracts representations from  $\mathbf{z}_t$ .
- 787 •  $\mathcal{G}_{\theta_{\text{R2G}}}$ : The sub-network corresponding to the R2G circuit, which performs generation based on an  
788 extracted representation.

789 The goal of a diffusion model is to learn the score function  $\nabla_{\mathbf{z}_t} \log p(\mathbf{z}_t)$ , which guides the reverse  
790 process from noise back to data. In the standard formulation, this requires learning to denoise across  
791 all time steps  $t \in [0, 1]$  without explicit semantic guidance.

792 **B.2 A PRINCIPLED VIEW VIA AN AUGMENTED PROBABILITY SPACE**  
793

794 We formalize the intuition of decoupling representation and generation by constructing an aug-  
795 mented probability space that explicitly includes the semantic representation  $\mathbf{r}$  as a random vari-  
796 able. This principled view demonstrates that our two-phase training strategy naturally emerges from  
797 optimizing a conditional score-matching objective in this richer probabilistic landscape.

798 **B.2.1 CONSTRUCTION OF THE AUGMENTED SPACE**  
799

800 We define an augmented probability space over the tuple  $(\mathbf{z}_0, \mathbf{z}_t, \mathbf{r}, t)$ , where the joint distribution  
801 factorizes as:

$$802 p(\mathbf{z}_0, \mathbf{z}_t, \mathbf{r}, t) = p(\mathbf{z}_t \mid \mathbf{z}_0, t) p(\mathbf{r} \mid \mathbf{z}_0) p(\mathbf{z}_0) p(t) \quad (15)$$

803 This factorization leverages the conditional independence assumptions inherent in the diffusion pro-  
804 cess. Specifically, given the clean latent  $\mathbf{z}_0$ , the noisy latent  $\mathbf{z}_t$  is independent of the semantic  
805 representation  $\mathbf{r}$ , and both are independent of the time variable  $t$ . Each component has a clear inter-  
806 pretation:

$$807 p(\mathbf{z}_0) = \int p_{\text{data}}(\mathbf{x}) \delta(\mathbf{z}_0 - \mathcal{H}_{\theta_{\text{VAE}}}(\mathbf{x})) d\mathbf{x} \quad (16)$$

$$808 p(t) = \mathcal{U}[0, 1] \quad (\text{uniform time distribution}) \quad (17)$$

$$809 p(\mathbf{z}_t \mid \mathbf{z}_0, t) = \mathcal{N}(\mathbf{z}_t; \alpha_t \mathbf{z}_0, \sigma_t^2 \mathbf{I}) \quad (18)$$

$$p(\mathbf{r} \mid \mathbf{z}_0) = \delta(\mathbf{r} - \mathbf{f}_{\text{rep}}(\mathcal{D}_{\theta_{\text{VAE}}}(\mathbf{z}_0))) \quad (19)$$

810 Here,  $\mathcal{D}_{\theta_{\text{VAE}}}$  denotes the VAE decoder that maps latents back to image space. The distribution  
 811  $p(\mathbf{z}_0)$  in (16) represents the VAE’s learned prior over clean latents, induced by the data distribution  
 812 through the encoder. The forward kernel (18) follows the standard diffusion forward process with  
 813 noise scheduling parameters  $\alpha_t$  and  $\sigma_t$ .

814 The key insight is that equation (19) deterministically links semantic representations to clean latents  
 815 through the Dirac delta function, transforming the unconditional generation problem into a  
 816 semantically-conditioned one. This constraint ensures that every clean latent  $\mathbf{z}_0$  has a uniquely as-  
 817 sociated semantic representation  $\mathbf{r}$ , creating a deterministic mapping from the latent space to the  
 818 representation space.

819 **B.2.2 MARGINAL AND CONDITIONAL DISTRIBUTIONS**

820 From the joint distribution, we can derive several important marginal and conditional distributions  
 821 through careful integration.

822 **Marginal over noisy latents:** The marginal distribution over noisy latents is obtained by integrating  
 823 out the semantic representation  $\mathbf{r}$ :

$$825 \quad p(\mathbf{z}_t, t) = \int \int \int p(\mathbf{z}_0, \mathbf{z}_t, \mathbf{r}, t) d\mathbf{z}_0 d\mathbf{r} \quad (20)$$

$$827 \quad = \int \int \int p(\mathbf{z}_t | \mathbf{z}_0, t) p(\mathbf{r} | \mathbf{z}_0) p(\mathbf{z}_0) p(t) d\mathbf{z}_0 d\mathbf{r} \quad (21)$$

$$829 \quad = p(t) \int p(\mathbf{z}_0) p(\mathbf{z}_t | \mathbf{z}_0, t) \left( \int p(\mathbf{r} | \mathbf{z}_0) d\mathbf{r} \right) d\mathbf{z}_0 \quad (22)$$

$$832 \quad = p(t) \int p(\mathbf{z}_0) p(\mathbf{z}_t | \mathbf{z}_0, t) d\mathbf{z}_0 \quad (23)$$

833 where the integral  $\int p(\mathbf{r} | \mathbf{z}_0) d\mathbf{r} = 1$  since  $p(\mathbf{r} | \mathbf{z}_0)$  is a valid probability distribution. This recovers  
 834 the standard marginal distribution used in unconditional diffusion models.

835 **Joint marginal over  $(\mathbf{z}_t, \mathbf{r}, t)$ :** More critically for our analysis, we can compute the joint marginal  
 836 over  $(\mathbf{z}_t, \mathbf{r}, t)$  by integrating out only  $\mathbf{z}_0$ :

$$838 \quad p(\mathbf{z}_t, \mathbf{r}, t) = \int p(\mathbf{z}_0, \mathbf{z}_t, \mathbf{r}, t) d\mathbf{z}_0 \quad (24)$$

$$840 \quad = \int p(\mathbf{z}_t | \mathbf{z}_0, t) p(\mathbf{r} | \mathbf{z}_0) p(\mathbf{z}_0) p(t) d\mathbf{z}_0 \quad (25)$$

$$843 \quad = p(t) \int p(\mathbf{z}_0) p(\mathbf{z}_t | \mathbf{z}_0, t) \delta(\mathbf{r} - \mathbf{f}_{\text{rep}}(\mathcal{D}_{\theta_{\text{VAE}}}(\mathbf{z}_0))) d\mathbf{z}_0 \quad (26)$$

845 Using the property of the Dirac delta function, this integral evaluates to:

$$846 \quad p(\mathbf{z}_t, \mathbf{r}, t) = p(t) \int_{\mathbf{z}_0: \mathbf{f}_{\text{rep}}(\mathcal{D}_{\theta_{\text{VAE}}}(\mathbf{z}_0)) = \mathbf{r}} p(\mathbf{z}_0) p(\mathbf{z}_t | \mathbf{z}_0, t) d\mathbf{z}_0 \quad (27)$$

848 where the integration is restricted to the set of clean latents  $\mathbf{z}_0$  that produce the semantic representa-  
 849 tion  $\mathbf{r}$  when decoded and passed through the representation function.

850 **Conditional distribution for generation:** We can also derive the conditional distribution of clean  
 851 latents given noisy latents and semantic representations:

$$853 \quad p(\mathbf{z}_0 | \mathbf{z}_t, \mathbf{r}, t) = \frac{p(\mathbf{z}_0, \mathbf{z}_t, \mathbf{r}, t)}{p(\mathbf{z}_t, \mathbf{r}, t)} \quad (28)$$

$$855 \quad = \frac{p(\mathbf{z}_t | \mathbf{z}_0, t) p(\mathbf{r} | \mathbf{z}_0) p(\mathbf{z}_0) p(t)}{p(\mathbf{z}_t, \mathbf{r}, t)} \quad (29)$$

$$857 \quad = \frac{p(\mathbf{z}_t | \mathbf{z}_0, t) \delta(\mathbf{r} - \mathbf{f}_{\text{rep}}(\mathcal{D}_{\theta_{\text{VAE}}}(\mathbf{z}_0))) p(\mathbf{z}_0)}{p(\mathbf{z}_t, \mathbf{r}, t)} \quad (30)$$

860 This conditional distribution is the target that our diffusion model seeks to approximate, representing  
 861 the posterior over clean latents given both the noisy observation and the semantic constraint.

862 The key insight from equation (27) is that the semantic constraint creates a coupling between  $\mathbf{z}_t$  and  
 863  $\mathbf{r}$  through the latent variable  $\mathbf{z}_0$ , despite  $\mathbf{z}_t$  and  $\mathbf{r}$  being conditionally independent given  $\mathbf{z}_0$ . This  
 864 coupling is what enables semantic-conditioned generation.

864 The augmented probability space construction embeds the desired semantic knowledge directly into  
 865 the probabilistic model. The generative task is thus transformed from learning an unconditional  
 866 reverse process to learning a *conditional* reverse process, where synthesis is explicitly conditioned  
 867 on a target semantic concept  $\mathbf{r}$ . This transformation is fundamental to understanding why our two-  
 868 phase training approach is theoretically justified.

### 869 B.2.3 SEMANTIC SUFFICIENCY AND CONDITIONAL INDEPENDENCE

870 The power of the augmented formulation relies on a key assumption about the semantic representation-  
 871 tion, which we formalize below.

873 **Assumption 1 (Semantic Sufficiency) .** *The semantic representation  $\mathbf{r} = \mathbf{f}_{\text{rep}}(\mathbf{x})$  captures suf-  
 874 ficient information for the generative task such that, given  $\mathbf{r}$ , the model possesses all necessary  
 875 high-level information to synthesize a corresponding sample. Formally, this means that the con-  
 876 ditional distribution  $p(\mathbf{z}_0 \mid \mathbf{r})$  concentrates on semantically-consistent latents.*

877 **Intuitive Understanding:** This assumption embodies the idea that our pretrained representation  
 878 model  $\mathbf{f}_{\text{rep}}$  (e.g., DINOv2) is *sufficiently powerful* to capture all the *high-level, conceptual* informa-  
 879 tion needed for generation. To illustrate with an analogy: if  $\mathbf{r}$  represents “a golden retriever running  
 880 on grass,” then semantic sufficiency means that knowing this  $\mathbf{r}$  provides the model with all the es-  
 881 sential semantic components—the subject (dog), category (golden retriever), action (running), and  
 882 environment (grass). The model’s remaining task shifts from deciding *what to generate* to focusing  
 883 purely on *how to generate it*: the specific pose, fur details, lighting direction, grass texture, etc.

884 **Latent Space Partitioning:** More precisely, we assume there exists a partition of the latent space  
 885 based on semantic content. The semantic representation  $\mathbf{r}$  acts like a clustering label that groups  
 886 clean latents with identical semantic meaning. We define semantic equivalence classes:

$$Z_r = \{\mathbf{z}_0 \in Z : \mathbf{f}_{\text{rep}}(\mathcal{D}(\mathbf{z}_0)) = \mathbf{r}\} \quad (31)$$

887 For example,  $Z_{\text{cat}}$  might contain latents corresponding to “a crouching Persian cat,” “a rolling  
 888 orange tabby,” and “a sleeping Siamese cat.” Despite their vastly different visual details, all belong  
 889 to the same semantic category under  $\mathbf{f}_{\text{rep}}$ .

890 **Overlap Requirement for Well-Posed Generation:** A critical consequence of semantic sufficiency  
 891 is that for any two clean latents  $\mathbf{z}_0, \mathbf{z}'_0 \in Z_r$ , their respective forward diffusion processes  $p(\mathbf{z}_t \mid$   
 892  $\mathbf{z}_0, t)$  and  $p(\mathbf{z}_t \mid \mathbf{z}'_0, t)$  should have *significant overlap*. This requirement ensures that conditional  
 893 generation remains well-posed:

- 894 • **Without overlap:** If semantically similar  $\mathbf{z}_0$  values produce completely different noisy  
 895 patterns  $\mathbf{z}_t$ , the model becomes “confused”—it cannot learn a consistent denoising pattern  
 896 for the semantic class  $\mathbf{r}$ .
- 897 • **With overlap:** When  $\mathbf{z}_0$  values in  $Z_r$  yield similar noisy distributions, the model can learn  
 898 a unified denoising strategy conditioned on  $\mathbf{r}$ .

### 901 B.2.4 CONDITIONAL SCORE MATCHING IN THE AUGMENTED SPACE

902 The central idea is to model the score of the joint conditional distribution  $p(\mathbf{z}_0, \mathbf{r} \mid \mathbf{z}_t, t)$ , which  
 903 naturally decomposes into two meaningful components.

904 **Theorem 1 (Decomposition of the Augmented Conditional Score) .** *The score of the joint  
 905 conditional distribution  $p(\mathbf{z}_0, \mathbf{r} \mid \mathbf{z}_t, t)$  can be decomposed into a sum of two functionally distinct  
 906 scores:*

$$\nabla_{\mathbf{z}_t} \log p(\mathbf{z}_0, \mathbf{r} \mid \mathbf{z}_t, t) = \underbrace{\nabla_{\mathbf{z}_t} \log p(\mathbf{z}_0 \mid \mathbf{z}_t, \mathbf{r}, t)}_{\text{Conditional Generation Score}} + \underbrace{\nabla_{\mathbf{z}_t} \log p(\mathbf{r} \mid \mathbf{z}_t, t)}_{\text{Representation Inference Score}} \quad (32)$$

911 *Proof.* We provide a detailed derivation of this fundamental decomposition.

912 **Step 1: Probabilistic factorization.** Using the chain rule of conditional probability, we can factor-  
 913 ize the joint conditional distribution:

$$p(\mathbf{z}_0, \mathbf{r} \mid \mathbf{z}_t, t) = p(\mathbf{z}_0 \mid \mathbf{z}_t, \mathbf{r}, t) p(\mathbf{r} \mid \mathbf{z}_t, t) \quad (33)$$

916 This factorization is always valid and separates the problem into two components: generating clean  
 917 latents given both noisy latents and semantic information, and inferring semantic information from  
 918 noisy latents.

918 **Step 2: Logarithmic transformation.** Taking the natural logarithm of both sides of equation (33):  
 919

$$\log p(\mathbf{z}_0, \mathbf{r} \mid \mathbf{z}_t, t) = \log [p(\mathbf{z}_0 \mid \mathbf{z}_t, \mathbf{r}, t) p(\mathbf{r} \mid \mathbf{z}_t, t)] \quad (34)$$

$$= \log p(\mathbf{z}_0 \mid \mathbf{z}_t, \mathbf{r}, t) + \log p(\mathbf{r} \mid \mathbf{z}_t, t) \quad (35)$$

922 where we used the logarithm property  $\log(ab) = \log a + \log b$ .  
 923

924 **Step 3: Gradient computation.** Applying the gradient operator  $\nabla_{\mathbf{z}_t}$  with respect to the noisy latent  
 925  $\mathbf{z}_t$  to both sides of equation (35):  
 926

$$\nabla_{\mathbf{z}_t} \log p(\mathbf{z}_0, \mathbf{r} \mid \mathbf{z}_t, t) = \nabla_{\mathbf{z}_t} [\log p(\mathbf{z}_0 \mid \mathbf{z}_t, \mathbf{r}, t) + \log p(\mathbf{r} \mid \mathbf{z}_t, t)] \quad (36)$$

$$= \nabla_{\mathbf{z}_t} \log p(\mathbf{z}_0 \mid \mathbf{z}_t, \mathbf{r}, t) + \nabla_{\mathbf{z}_t} \log p(\mathbf{r} \mid \mathbf{z}_t, t) \quad (37)$$

927 where we used the linearity of the gradient operator:  $\nabla(f + g) = \nabla f + \nabla g$ .  
 928

929 **Step 4: Functional interpretation.** The resulting decomposition has clear functional meaning:  
 930

- $\nabla_{\mathbf{z}_t} \log p(\mathbf{z}_0 \mid \mathbf{z}_t, \mathbf{r}, t)$  represents the *Conditional Generation Score*: given both noisy input  $\mathbf{z}_t$  and semantic target  $\mathbf{r}$ , how should we move in latent space to increase the likelihood of the clean latent  $\mathbf{z}_0$ ?
- $\nabla_{\mathbf{z}_t} \log p(\mathbf{r} \mid \mathbf{z}_t, t)$  represents the *Representation Inference Score*: given only noisy input  $\mathbf{z}_t$ , how should we move in latent space to increase the likelihood of the semantic representation  $\mathbf{r}$ ?

931 This completes the proof of the score decomposition in equation (32).  $\square$   
 932

933 **Corollary 1 (Functional Interpretation of Score Components)** . *Thm. 1* provides the central  
 934 theoretical insight of our work. The total learning objective is a linear superposition of two  
 935 functionally distinct tasks:  
 936

1. **Conditional Generation Score:** The term  $\nabla_{\mathbf{z}_t} \log p(\mathbf{z}_0 \mid \mathbf{z}_t, \mathbf{r}, t)$  corresponds to the **R2G**  
 $\text{(Representation-to-Generation)}$  circuit. It addresses the pure synthesis problem: given  
 937 a noisy latent  $\mathbf{z}_t$  and the ground-truth semantic concept  $\mathbf{r}$ , compute the score vector  
 towards the clean latent  $\mathbf{z}_0$ .
2. **Representation Inference Score:** The term  $\nabla_{\mathbf{z}_t} \log p(\mathbf{r} \mid \mathbf{z}_t, t)$  corresponds to the **L2R**  
 $\text{(Latent-to-Representation)}$  circuit. It addresses the semantic inference problem: given  
 938 only a noisy latent  $\mathbf{z}_t$ , compute the score vector that increases the likelihood of the un-  
 939 derlying semantic representation being  $\mathbf{r}$ .

## 940 B.2.5 EMERGENCE OF THE TWO-PHASE TRAINING FRAMEWORK FROM THE THEORY

941 A naive attempt to train a single, monolithic network  $\mathbf{F}_\theta$  to approximate the joint score in (32)  
 942 would re-entangle the two objectives, leading to optimization conflicts. A more principled approach,  
 943 suggested by the decomposition itself, is a curriculum learning strategy that addresses the two scores  
 944 in a structured sequence. This naturally gives rise to the **ERW** framework.  
 945

946 **Lemma 1 (Phase 1: Representation Warmup as Boundary Condition Matching)** . The first  
 947 phase of ERW, the representation warmup, can be interpreted as learning the **Representation**  
 948 **Inference Score** at the clean boundary condition, i.e., at  $t = 0$ .  
 949

950 *Proof.* We provide a detailed derivation showing how the warmup phase corresponds to boundary  
 951 condition matching.  
 952

953 **Step 1: Analysis at the boundary condition.** At  $t = 0$ , the forward diffusion process gives us  
 954  $\mathbf{z}_t = \mathbf{z}_0$  (no noise added). The Representation Inference Score becomes:  
 955

$$\nabla_{\mathbf{z}_t} \log p(\mathbf{r} \mid \mathbf{z}_t, t) \Big|_{t=0} = \nabla_{\mathbf{z}_0} \log p(\mathbf{r} \mid \mathbf{z}_0) \quad (38)$$

956 **Step 2: Simplification using the semantic constraint.** From equation (19), we have:  
 957

$$p(\mathbf{r} \mid \mathbf{z}_0) = \delta(\mathbf{r} - \mathbf{f}_{\text{rep}}(\mathcal{D}_{\theta_{\text{VAE}}}(\mathbf{z}_0))) \quad (39)$$

958 This is a Dirac delta function, which means the score is not well-defined in the classical sense.  
 959 However, we can interpret this in terms of the desired functional behavior.  
 960

972 **Step 3: Functional interpretation and approximation.** In practice, we approximate the deterministic  
 973 relationship through a learned mapping. The warmup objective is:  
 974

$$975 \quad \mathcal{L}_{\text{warmup}} = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \left[ \ell_{\text{NT-Xent}} \left( \mathcal{T}_{\theta}(\mathcal{R}_{\theta_{\text{L2R}}}(\mathcal{H}_{\theta_{\text{VAE}}}(\mathbf{x}))), \mathbf{f}_{\text{rep}}(\mathbf{x}) \right) \right] \quad (40)$$

977 where  $\mathcal{R}_{\theta_{\text{L2R}}}$  is the L2R circuit that we train to approximate the mapping  $\mathbf{z}_0 \mapsto \mathbf{r}$ .  
 978

979 **Step 4: Connection to boundary condition.** Optimizing NT-Xent at  $t=0$  serves as boundary-  
 980 condition matching for representation alignment. Specifically, we want:  
 981

$$980 \quad \mathcal{R}_{\theta_{\text{L2R}}}(\mathbf{z}_0) \approx \mathbf{f}_{\text{rep}}(\mathcal{D}_{\theta_{\text{VAE}}}(\mathbf{z}_0)) = \mathbf{r} \quad (41)$$

982 This provides a strong "semantic anchor" for the model at  $t = 0$ , ensuring that the L2R circuit  
 983 learns to extract meaningful semantic representations from clean latents under the same contrastive  
 984 objective used in Phase 2.

985 **Step 5: Extension to  $t > 0$ .** Once the boundary condition is satisfied, the L2R circuit can be  
 986 expected to generalize to noisy inputs  $\mathbf{z}_t$  for  $t > 0$ , providing a foundation for the representation  
 987 inference score at all time steps.  $\square$

988 **Lemma 2 (Phase 2: Guided Synthesis as Joint Score Optimization).** *The second phase of  
 989 ERW, guided synthesis, corresponds to learning the full joint score, where the two components  
 990 from Thm. 1 are learned concurrently under a curriculum.*

991 *Proof.* We demonstrate how Phase 2 implements joint score optimization through a carefully de-  
 992 signed curriculum.

993 **Step 1: Phase 2 objective decomposition.** After the warmup phase, the L2R circuit  $\mathcal{R}_{\theta_{\text{L2R}}}$  is a  
 994 competent representation extractor. The Phase 2 total loss is:  
 995

$$996 \quad \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{diffusion}} + \lambda_{\text{train}}(k) \cdot \mathcal{L}_{\text{align}} \quad (42)$$

997 where:  
 998

$$1000 \quad \mathcal{L}_{\text{diffusion}} = \mathbb{E}_{t, \mathbf{z}_t, \mathbf{z}_0} \left[ w(t) \|\mathbf{F}_{\theta}(\mathbf{z}_t, t) - \nabla_{\mathbf{z}_t} \log p(\mathbf{z}_0 \mid \mathbf{z}_t, t)\|^2 \right] \quad (43)$$

$$1001 \quad \mathcal{L}_{\text{align}} = \mathbb{E}_{\mathbf{z}_t, \mathbf{r}} [\ell_{\text{align}}(\mathcal{R}_{\theta_{\text{L2R}}}(\mathbf{z}_t, t), \mathbf{r})] \quad (44)$$

1002 **Step 2: Connection to the score decomposition.** From Thm. 1, the joint conditional score decom-  
 1003 poses as:  
 1004

$$1005 \quad \nabla_{\mathbf{z}_t} \log p(\mathbf{z}_0, \mathbf{r} \mid \mathbf{z}_t, t) = \nabla_{\mathbf{z}_t} \log p(\mathbf{z}_0 \mid \mathbf{z}_t, \mathbf{r}, t) + \nabla_{\mathbf{z}_t} \log p(\mathbf{r} \mid \mathbf{z}_t, t) \quad (45)$$

1006 Our Phase 2 objective should be interpreted as shaping these two functional components via practical  
 1007 surrogate losses: the standard diffusion loss  $\mathcal{L}_{\text{diffusion}}$  for generation and the alignment loss  $\mathcal{L}_{\text{align}}$   
 1008 for representation, rather than claiming exact equality to the joint score at all times. In practice, we  
 1009 instantiate  $\ell_{\text{align}}$  as a contrastive objective (e.g., NT-Xent) with in-batch negatives.  
 1010

1011 **Step 3: Curriculum learning analysis.** The training-schedule-dependent weighting  $\lambda_{\text{train}}(k)$  cre-  
 1012 ates a curriculum that balances the two objectives:  
 1013

- 1014 • **Early in Phase 2** (large  $\lambda_{\text{train}}(k)$ ):  
 1015

$$1016 \quad \mathcal{L}_{\text{total}} \approx \lambda_{\text{train}}(k) \cdot \mathcal{L}_{\text{align}} + \mathcal{L}_{\text{diffusion}} \quad (46)$$

1017 The optimization is strongly guided to maintain semantic consistency on noisy inputs, rein-  
 1018 forcing the L2R circuit's ability to extract representations from  $\mathbf{z}_t$  for  $t > 0$ .  
 1019

- **Late in Phase 2** (small  $\lambda_{\text{train}}(k)$ ):  
 1020

$$1021 \quad \mathcal{L}_{\text{total}} \approx \mathcal{L}_{\text{diffusion}} \quad (47)$$

1022 The L2R circuit is assumed to be robust, and optimization focus shifts to perfecting the  
 1023 full score matching. This allows the R2G circuit to learn the Conditional Generation Score  
 1024 while relying on stable, high-quality representations from the L2R circuit.  
 1025  $\square$

1026 **C ANALYSIS DETAILS**

1027 **C.1 CKNNA METRIC DETAILS**

1029 **CKNNA** (Centered Kernel Nearest-Neighbor Alignment) is a *relaxed version* of the popular Cen-  
 1030 tered Kernel Alignment (CKA; Kornblith et al. 2019) that mitigates the strict definition of alignment.  
 1031 We generally follow the notations in the original paper for an explanation (Huh et al., 2024).

1032 First, CKA have measured *global* similarities of the models by considering all possible data pairs:

$$1034 \text{CKA}(\mathbf{K}, \mathbf{L}) = \frac{\text{HSIC}(\mathbf{K}, \mathbf{L})}{\sqrt{\text{HSIC}(\mathbf{K}, \mathbf{K})\text{HSIC}(\mathbf{L}, \mathbf{L})}}, \quad (48)$$

1036 where  $\mathbf{K}$  and  $\mathbf{L}$  are two kernel matrices computed from the dataset using two different networks.  
 1037 Specifically, it is defined as  $\mathbf{K}_{ij} = \kappa(\phi_i, \phi_j)$  and  $\mathbf{L}_{ij} = \kappa(\psi_i, \psi_j)$  where  $\phi_i, \phi_j$  and  $\psi_i, \psi_j$  are  
 1038 representations computed from each network at the corresponding data  $\mathbf{x}_i, \mathbf{x}_j$  (respectively). By  
 1039 letting  $\kappa$  as a inner product kernel, HSIC is defined as

$$1040 \text{HSIC}(\mathbf{K}, \mathbf{L}) = \frac{1}{(n-1)^2} \left( \sum_i \sum_j (\langle \phi_i, \phi_j \rangle - \mathbb{E}_l[\langle \phi_i, \phi_l \rangle]) (\langle \psi_i, \psi_j \rangle - \mathbb{E}_l[\langle \psi_i, \psi_l \rangle]) \right). \quad (49)$$

1043 CKNNA considers a relaxed version of Eq. (48) by replacing  $\text{HSIC}(\mathbf{K}, \mathbf{L})$  into  $\text{Align}(\mathbf{K}, \mathbf{L})$ , where  
 1044  $\text{Align}(\mathbf{K}, \mathbf{L})$  computes Eq. (49) only using a  $k$ -nearest neighborhood embedding in the datasets:

$$1046 \text{Align}(\mathbf{K}, \mathbf{L}) = \frac{1}{(n-1)^2} \left( \sum_i \sum_j \alpha(i, j) (\langle \phi_i, \phi_j \rangle - \mathbb{E}_l[\langle \phi_i, \phi_l \rangle]) (\langle \psi_i, \psi_j \rangle - \mathbb{E}_l[\langle \psi_i, \psi_l \rangle]) \right), \quad (50)$$

1047 where  $\alpha(i, j)$  is defined as

$$1050 \alpha(i, j; k) = \mathbb{1}[i \neq j \text{ and } \phi_j \in \text{knn}(\phi_i; k) \text{ and } \psi_j \in \text{knn}(\psi_i; k)], \quad (51)$$

1052 so this term only considers  $k$ -nearest neighbors at each  $i$ . In this paper, we randomly sample 10,000  
 1053 images in the validation set in ImageNet (Deng et al., 2009) and report CKNNA with  $k = 10$  based  
 1054 on observation in Huh et al. (2024) that smaller  $k$  shows better a better alignment.

1055 **C.2 DESCRIPTION OF PRETRAINED VISUAL ENCODERS**

- 1057 • **MoCov3** (Chen et al., 2021) studies empirical study to train MoCo (He et al., 2020; Chen et al.,  
 1058 2020b) on vision transformer and how they can be scaled up.
- 1059 • **CLIP** (Radford et al., 2021) proposes a contrastive learning scheme on large image-text pairs.
- 1060 • **DINOv2** (Oquab et al., 2024) proposes a self-supervised learning method that combines pixel-  
 1061 level and patch-level discriminative objectives by leveraging advanced self-supervised tech-  
 1062 niques and a large pre-training dataset.

1063 **D HYPERPARAMETER AND MORE IMPLEMENTATION DETAILS**

1064 **D.1 HYPERPARAMETER TUNING**

1065 We adopt a bisection-style search to determine the key hyperparameters for ERW, specifically the  
 1066 ERW *Depth* (i.e., which early layers to initialize), the *Projection Depth*, and the initial value of  $\lambda$  in  
 1067 Eq. (14). To keep the search computationally manageable, we do the following for each candidate  
 1068 hyperparameter setting:

- 1069 (a) We run a short warmup stage for 10k iterations, followed by 20k iterations of main diffusion  
 1070 training.
- 1071 (b) To evaluate performance quickly, we reduce the sampling steps from the usual 250 to 50 and  
 1072 generate only 10k samples (instead of 50k) to compute a preliminary FID score.

1073 This procedure substantially reduces the search cost while retaining sufficient fidelity to guide hyper-  
 1074 parameter choices. In practice, around three to five such tests suffice to converge upon near-optimal  
 1075 settings for ERW Depth, Projection Depth, and  $\lambda$ , enabling both efficient training and high-quality  
 1076 generation.

1077 **Further implementation details.** We implement our model based on the original SiT implementa-  
 1078 tion (Ma et al., 2024). Throughout the experiments, we use the exact same structure as DiT (Pee-  
 1079 bles & Xie, 2023) and SiT (Ma et al., 2024). We use AdamW (Kingma, 2015; Loshchilov, 2017)

1080  
1081  
1082 Table 6: Hyperparameter setup.  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
1132  
1133

|                         | Figure 1,2,3            | Table 3,4 (SiT-B)       | Table 1,2,5 (SiT-XL)    |
|-------------------------|-------------------------|-------------------------|-------------------------|
| <b>Architecture</b>     |                         |                         |                         |
| Input dim.              | $32 \times 32 \times 4$ | $32 \times 32 \times 4$ | $32 \times 32 \times 4$ |
| Num. layers             | 28                      | 12                      | 24                      |
| Hidden dim.             | 1,152                   | 768                     | 1,152                   |
| Num. heads              | 16                      | 12                      | 16                      |
| <b>ERW</b>              |                         |                         |                         |
| sim( $\cdot, \cdot$ )   | NT-Xent                 | NT-Xent                 | NT-Xent                 |
| Encoder $f(\mathbf{x})$ | DINOv2-B                | DINOv2-B                | DINOv2-B                |
| <b>Optimization</b>     |                         |                         |                         |
| Batch size              | 256                     | 256                     | 256                     |
| Optimizer               | AdamW                   | AdamW                   | AdamW                   |
| lr                      | 0.0001                  | 0.0001                  | 0.0001                  |
| $(\beta_1, \beta_2)$    | (0.9, 0.999)            | (0.9, 0.999)            | (0.9, 0.999)            |
| <b>Interpolants</b>     |                         |                         |                         |
| $\alpha_t$              | $1 - t$                 | $1 - t$                 | $1 - t$                 |
| $\sigma_t$              | $t$                     | $t$                     | $t$                     |
| $w_t$                   | $\sigma_t$              | $\sigma_t$              | $\sigma_t$              |
| Training objective      | v-prediction            | v-prediction            | v-prediction            |
| Sampler                 | Euler-Maruyama          | Euler-Maruyama          | Euler-Maruyama          |
| Sampling steps          | 250                     | 250                     | 250                     |
| Guidance                | -                       | -                       | -                       |

1101  
1102 Table 7: **Impact of Training Tricks in ERW**. Using the SD-VAE [Rombach et al. \(2022\)](#), ERW achieves an  
1103 FID of 55.6 at 50K training steps on ImageNet class-conditional generation. This table illustrates how each  
1104 training trick incrementally improves the FID, demonstrating that advanced design techniques enhance the  
1105 original DiT performance.

| Training Trick                                         | Training Step | FID-50k $\downarrow$ |
|--------------------------------------------------------|---------------|----------------------|
| <b>Representation Alignment Loss</b>                   |               |                      |
| + REPA ( <a href="#">Yu et al., 2024</a> )             | 50K           | 78.2                 |
| <b>Architecture Improvements</b>                       |               |                      |
| + Rotary Pos Embed ( <a href="#">Su et al., 2024</a> ) | 50K           | 73.6                 |
| <b>Initialization</b>                                  |               |                      |
| + ERW (Ours)                                           | 50K           | 51.7                 |

1114 with constant learning rate of 1e-4,  $(\beta_1, \beta_2) = (0.9, 0.999)$  without weight decay. To speed up  
1115 training, we use mixed-precision (fp16) with gradient clipping at norm 1.0. We also pre-compute  
1116 compressed latent vectors from raw pixels via stable diffusion VAE ([Rombach et al., 2022](#)) and  
1117 use these latent vectors. Because of this, we do not apply any data augmentation, but we find this  
1118 does not lead to a big difference, as similarly observed in EDM2 ([Karras et al., 2024](#)). We also use  
1119 `stabilityai/sd-vae-ft-ema` decoder for decoding latent vectors to images. For MLP used  
1120 for a projection, we use three-layer MLP with SiLU activations ([Elfwing et al., 2018](#)). We provide a  
1121 detailed hyperparameter setup in Table 6.

1122 **Pretrained encoders.** For MoCov3-B and -L models, we use the checkpoint in the implementation  
1123 of RCG ([Li et al., 2024](#));<sup>1</sup> for other checkpoints, we use their official checkpoints released in their  
1124 official implementations. To adjust a different number of patches between the diffusion transformer  
1125 and the pretrained encoder, we interpolate positional embeddings of pretrained encoders.

1126 **Sampler.** For sampling, we use the Euler-Maruyama sampler with the SDE with a diffusion co-  
1127 efficient  $w_t = \sigma_t$ . We use the last step of the SDE sampler as 0.04, and it gives a significant  
1128 improvement, similar to the original SiT paper ([Ma et al., 2024](#)).

1129 **Training Tricks.** We explore the influence of various training techniques on ERW’s performance.  
1130 Notably, we observe performance improvements when incorporating Rotary Positional Embed-  
1131 dings ([Su et al., 2024](#)).

1132  
1133  
1134 <sup>1</sup><https://github.com/LTH14/rcg>

1134  
1135 

## E EVALUATION DETAILS

1136 We strictly follow the setup and use the same reference batches of ADM (Dhariwal & Nichol, 2021)  
 1137 for evaluation, following their official implementation.<sup>2</sup> We use 8×NVIDIA H800 80GB GPUs or  
 1138 for evaluation and enable tf32 precision for faster generation, and we find the performance difference  
 1139 is negligible to the original fp32 precision.

1140 In what follows, we explain the main concept of metrics that we used for the evaluation.

- 1141 • **FID** (Heusel et al., 2017) measures the feature distance between the distributions of real and  
 1142 generated images. It uses the Inception-v3 network (Szegedy et al., 2016) and computes distance  
 1143 based on an assumption that both feature distributions are multivariate gaussian distributions.
- 1144 • **sFID** (Nash et al., 2021) proposes to compute FID with intermediate spatial features of the  
 1145 Inception-v3 network to capture the generated images' spatial distribution.
- 1146 • **IS** (Salimans et al., 2016) also uses the Inception-v3 network but use logit for evaluation of the  
 1147 metric. Specifically, it measures a KL-divergence between the original label distribution and the  
 1148 distribution of logits after the softmax normalization.
- 1149 • **Precision and recall** (Kynkänniemi et al., 2019) are based on their classic definitions: the  
 1150 fraction of realistic images and the fraction of training data manifold covered by generated data.

1152  
1153 

## F BASELINES

1154 In what follows, we explain the main idea of baseline methods that we used for the evaluation.

- 1155 • **ADM** (Dhariwal & Nichol, 2021) improves U-Net-based architectures for diffusion models and  
 1156 proposes classifier-guided sampling to balance the quality and diversity tradeoff.
- 1157 • **VDM++** (Kingma & Gao, 2024) proposes a simple adaptive noise schedule for diffusion models  
 1158 to improve training efficiency.
- 1159 • **Simple diffusion** (Hoogeboom et al., 2023) proposes a diffusion model for high-resolution im-  
 1160 age generation by exploring various techniques to simplify a noise schedule and architectures.
- 1161 • **CDM** (Ho et al., 2022) introduces cascaded diffusion models: similar to progressiveGAN (Kar-  
 1162 ras et al., 2018), it trains multiple diffusion models starting from the lowest resolution and apply-  
 1163 ing one or more super-resolution diffusion models for generating high-fidelity images.
- 1164 • **LDM** (Rombach et al., 2022) proposes latent diffusion models by modeling image distribution  
 1165 in a compressed latent space to improve the training efficiency without sacrificing the generation  
 1166 performance.
- 1167 • **U-ViT** (Bao et al., 2023) proposes a ViT-based latent diffusion model that incorporates U-Net-  
 1168 like long skip connections.
- 1169 • **DiffiT** (Hatamizadeh et al., 2024) proposes a time-dependent multi-head self-attention mecha-  
 1170 nism for enhancing the efficiency of transformer-based image diffusion models.
- 1171 • **MDTv2** (Gao et al., 2023) proposes an asymmetric encoder-decoder scheme for efficient training  
 1172 of a diffusion-based transformer. They also apply U-Net-like long-shortcuts in the encoder and  
 1173 dense input-shortcuts in the decoder.
- 1174 • **MaskDiT** (Zheng et al., 2024) proposes an asymmetric encoder-decoder scheme for efficient  
 1175 training of diffusion transformers, where they train the model with an auxiliary mask reconstruc-  
 1176 tion task similar to MAE (He et al., 2022).
- 1177 • **SD-DiT** (Zhu et al., 2024) extends MaskdiT architecture but incorporates self-supervised dis-  
 1178 crimination objective using a momentum encoder.
- 1179 • **DiT** (Peebles & Xie, 2023) proposes a pure transformer backbone for training diffusion models  
 1180 based on proposing AdaIN-zero modules.
- 1181 • **SiT** (Ma et al., 2024) extensively analyzes how DiT training can be efficient by moving from  
 1182 discrete diffusion to continuous flow-based modeling.
- 1183 • **REPA** (Yu et al., 2024) proposes a representation alignment method for diffusion models by  
 1184 aligning the representation of the diffusion model with a pretrained encoder.

1185  
1186  
1187  
1188  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1496  
1497  
1498  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1698  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1879  
1880  
1881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1889  
1890  
1891  
1892  
1893  
1894  
1895  
1896  
1897  
1898  
1899  
1900  
1901  
1902  
1903  
1904  
1905  
1906  
1907  
1908  
1909  
1910  
1911  
1912  
1913  
1914  
1915  
1916  
1917  
1918  
1919  
1920  
1921  
1922  
1923  
1924  
1925  
1926  
1927  
1928  
1929  
1930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
1939  
1940  
1941  
1942  
1943  
1944  
1945  
1946  
1947  
1948  
1949  
1950  
1951  
1952  
1953  
1954  
1955  
1956  
1957  
1958  
1959  
1960  
1961  
1962  
1963  
1964  
1965  
1966  
1967  
1968  
1969  
1970  
1971  
1972  
1973  
1974  
1975  
1976  
1977  
1978  
1979  
1980  
1981  
1982  
1983  
1984  
1985  
1986  
1987  
1988  
1989  
1990  
1991  
1992  
1993  
1994  
1995  
1996  
1997  
1998  
1999  
2000  
2001  
2002  
2003  
2004  
2005  
2006  
2007  
2008  
2009  
2010  
2011  
2012  
2013  
2014  
2015  
2016  
2017  
2018  
2019  
2020  
2021  
2022  
2023  
2024  
2025  
2026  
2027  
2028  
2029  
2030  
2031  
2032  
2033  
2034  
2035  
2036  
2037  
2038  
2039  
2040  
2041  
2042  
2043  
2044  
2045  
2046  
2047  
2048  
2049  
2050  
2051  
2052  
2053  
2054  
2055  
2056  
2057  
2058  
2059  
2060  
2061  
2062  
2063  
2064  
2065  
2066  
2067  
2068  
2069  
2070  
2071  
2072  
2073  
2074  
2075  
2076  
2077  
2078  
2079  
2080  
2081  
2082  
2083  
2084  
2085  
2086  
2087  
2088  
2089  
2090  
2091  
2092  
2093  
2094  
2095  
2096  
2097  
2098  
2099  
2100  
2101  
2102  
2103  
2104  
2105  
2106  
2107  
2108  
2109  
2110  
2111  
2112  
2113  
2114  
2115  
2116  
2117  
2118  
2119  
2120  
2121  
2122  
2123  
2124  
2125  
2126  
2127  
2128  
2129  
2130  
2131  
2132  
2133  
2134  
2135  
2136  
2137  
2138  
2139  
2140  
2141  
2142  
2143  
2144  
2145  
2146  
2147  
2148  
2149  
2150  
2151  
2152  
2153  
2154  
2155  
2156  
2157  
2158  
2159  
2160  
2161  
2162  
2163  
2164  
2165  
2166  
2167  
2168  
2169  
2170  
2171  
2172  
2173  
2174  
2175  
2176  
2177  
2178  
2179  
2180  
2181  
2182  
2183  
2184  
2185  
2186  
2187  
2188  
2189  
2190  
2191  
2192  
2193  
2194  
2195  
2196  
2197  
2198  
2199  
2200  
2201  
2202  
2203  
2204  
2205  
2206  
2207  
2208  
2209  
2210  
2211  
2212  
2213  
2214  
2215  
2216  
2217  
2218  
2219  
2220  
2221  
2222  
2223  
2224  
2225  
2226  
2227  
2228  
2229  
22210  
22211  
22212  
22213  
22214  
22215  
22216  
22217  
22218  
22219  
22220  
22221  
22222  
22223  
22224  
22225  
22226  
22227  
22228  
22229  
222210  
222211  
222212  
222213  
222214  
222215  
222216  
222217  
222218  
222219  
222220  
222221  
222222  
222223  
222224  
222225  
222226  
222227  
222228  
222229  
2222210  
2222211  
2222212  
2222213  
2222214  
2222215  
2222216  
2222217  
2222218  
2222219  
2222220  
2222221  
2222222  
2222223  
2222224  
2222225  
2222226  
2222227  
2222228  
2222229  
22222210  
22222211  
22222212  
22222213  
22222214  
22222215  
22222216  
22222217  
22222218  
22222219  
22222220  
22222221  
22222222  
22222223  
22222224  
22222225  
22222226  
22222227  
22222228  
22222229  
222222210  
222222211  
222222212  
222222213  
222222214  
222222215  
222222216  
222222217  
222222218  
222222219  
222222220  
222222221  
222222222  
222222223  
222222224  
222222225  
222222226  
222222227  
222222228  
222222229  
2222222210  
2222222211  
2222222212  
2222222213  
2222222214  
2222222215  
2222222216  
2222222217  
2222222218  
2222222219  
2222222220  
2222222221  
2222222222  
2222222223  
2222222224  
2222222225  
2222222226  
2222222227  
2222222228  
2222222229  
22222222210  
22222222211  
22222222212  
22222222213  
22222222214  
22222222215  
22222222216  
22222222217  
22222222218  
22222222219  
22222222220  
22222222221  
22222222222  
22222222223  
22222222224  
22222222225  
22222222226  
22222222227  
22222222228  
22222222229  
222222222210  
222222222211  
222222222212  
222222222213  
222222222214  
222222222215  
222222222216  
222222222217  
222222222218  
222222222219  
222222222220  
222222222221  
222222222222  
222222222223  
222222222224  
222222222225  
222222222226  
222222222227  
222222222228  
222222222229  
2222222222210  
2222222222211  
2222222222212  
2222222222213  
2222222222214  
2222222222215  
2222222222216  
2222222222217  
2222222222218  
2222222222219  
2222222222220  
2222222222221  
2222222222222  
2222222222223  
2222222222224  
2222222222225  
2222222222226  
2222222222227  
2222222222228  
2222222222229  
22222222222210  
22222222222211  
22222222222212  
22222222222213  
22222222222214  
22222222222215  
22222222222216  
22222222222217  
22222222222218  
22222222222219  
22222222222220  
22222222222221  
22222222222222  
22222222222223  
22222222222224  
22222222222225  
22222222222226  
22222222222227  
22222222222228  
22222222222229  
222222222222210  
222222222222211  
222222222222212  
222222222222213  
222222222222214  
222222222222215  
222222222222216  
222222222222217  
222222222222218  
222222222222219  
222222222222220  
222222222222221  
222222222222222  
222222222222223  
222222222222224  
222222222222225  
222222222222226  
222222222222227  
222222222222228  
222222222222229  
2222222222222210  
2222222222222211  
2222222222222212  
2222222222222213  
2222222222222214  
2222222222222215  
2222222222222216  
2222222222222217  
2222222222222218  
2222222222222219  
2222222222222220  
2222222222222221  
2222222222222222  
2222222222222223  
2222222222222224  
2222222222222225  
2222222222222226  
2222222222222227  
2222222222222228  
2222222222222229  
22222222222222210  
22222222222222211  
22222222222222212  
22222222222222213  
22222222222222214  
22222222222222215  
22222222222222216  
22222222222222217  
22222222222222218  
22222222222222219  
22222222222222220  
22222222222222221  
22222222222222222  
22222222222222223  
22222222222222224  
22222222222222225  
22222222222222226  
22222222222222227  
22222222222222228  
22222222222222229  
222222222222222210  
222222222222222211  
2222222