Under review as a conference paper at ICLR 2026

EFFICIENT GENERATIVE MODEL TRAINING VIA EM-
BEDDED REPRESENTATION WARMUP

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative models face a fundamental challenge: they must simultaneously learn
high-level semantic concepts (what to generate) and low-level synthesis details
(how to generate it). Conventional end-to-end training entangles these distinct,
and often conflicting objectives, leading to a complex and inefficient optimization
process. We argue that explicitly decoupling these tasks is key to unlocking more
effective and efficient generative modeling. To this end, we propose Embedded
Representation Warmup (ERW), a principled two-phase training framework. The
first phase is dedicated to building a robust semantic foundation by aligning the
early layers of a diffusion model with a powerful pretrained encoder. This pro-
vides a strong representational prior, allowing the second phase—generative full
training with alignment loss to refine the representation—to focus its resources on
high-fidelity synthesis. Our analysis confirms that this efficacy stems from func-
tionally specializing the model’s early layers for representation. Empirically, our
framework achieves a 11.5 x speedup in 350 epochs to reach FID=1.41 compared
to single-phase methods like REPA (Yu et al., 2024).
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Figure 1: A Staged Approach: First Build Semantics, Then Synthesize. Our framework operationalizes
the decoupling of semantic understanding from generative synthesis. In Phase 1 (Semantic Foundation),
we exclusively train the model’s early layers to align with a pretrained encoder (e.g., DINOv2 (Oquab et al.,
2023)), establishing a robust understanding of what to generate. In Phase 2 (Guided Synthesis), the full model
is trained. The plot empirically demonstrates the power of this decoupling: ERW converges dramatically
faster and achieves superior performance compared to single-phase training like REPA (Yu et al., 2024), which
entangles both learning tasks.

1 INTRODUCTION

“All roads lead to Rome, but it is not as good as being born in Rome.”

Deep generative models, particularly diffusion models (Ho et al., 2020; Song et al., 2020), have
achieved remarkable success in high-fidelity image generation. These models excel at tasks ranging
from unconditional image generation (Dhariwal & Nichol, 2021) to text-to-image synthesis (Ramesh
et al., 2022; Saharia et al., 2022), demonstrating a profound capacity to model complex data distri-
butions. However, underpinning their impressive capabilities is a fundamental tension, arising from
a multitude of entangled learning objectives.
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At its core, effective generation requires both semantic understanding—comprehending what con-
stitutes meaningful content—and visual synthesis—translating abstract concepts into precise pixel-
level details. Conventional end-to-end training entangles these objectives within a single optimiza-
tion process, forcing the model to concurrently learn high-level conceptual knowledge and low-level
rendering skills. This entanglement creates inherent optimization conflicts, a challenge reminiscent
of the classic perception-distortion trade-off (Blau & Michaeli, 2018). Early in training, the model’s
attempts to fit pixel-level details may interfere with its ability to capture global semantic structures,
an issue exacerbated by the known spectral bias of neural networks towards learning low-frequency
components first (Rahaman et al., 2019; Sauer et al., 2021). Consequently, later stages may struggle
to refine generation quality due to inadequate representational foundations.

Recent studies have begun to acknowledge this tension. While diffusion models implicitly learn
semantic features during denoising (Yang & Wang, 2023; Xiang et al., 2023), these representations
often lack the robustness and versatility of dedicated self-supervised approaches (Caron et al., 2021;
Oquab et al., 2023). Moreover, Kadkhodaie & Simon (2024) highlight the critical bottleneck be-
tween memorizing semantic information and generalizing to realistic distributions. Methods like
REPA (Yu et al., 2024) have attempted to address this by aligning diffusion representations with
pretrained encoders throughout training, yet they still suffer from the fundamental challenge of joint
optimization. These observations lead us to a pivotal question:

Q: Can we fundamentally simplify generative model training by decoupling semantic
understanding from visual synthesis, thereby allowing each component to be optimized
more effectively?

Self-supervised learning approaches, including contrastive methods (Chen et al., 2020a), masked
autoencoders (He et al., 2022), and recent advances like DINOv2 (Oquab et al., 2023), have demon-
strated exceptional capabilities in learning rich semantic representations. However, effectively inte-
grating these external representations into diffusion models remains challenging due to fundamental
mismatches: diffusion models operate on progressively noisy inputs while self-supervised encoders
are trained on clean data, and architectural differences further complicate direct integration.

Our approach. We propose that the key to resolving this challenge lies in explicitly decoupling
the learning of semantic understanding from visual synthesis. To this end, we introduce Embedded
Representation Warmup (ERW), a principled two-phase framework that operationalizes this de-
coupling philosophy. Our approach is grounded in the observation that diffusion models naturally
exhibit a functional specialization: early layers predominantly handle semantic processing (what we
term the Latent-to-Representation or L2R circuit), while later layers focus on generative refinement
(the Representation-to-Generation or R2G circuit).

Rather than forcing both circuits to learn simultaneously from scratch, ERW strategically separates
their optimization: Phase 1 (Semantic Foundation) establishes a robust semantic foundation by
dedicating training exclusively to aligning the L2R circuit with a pretrained self-supervised encoder
(e.g., DINOvV2). This phase ensures the model is "born in Rome"—equipped with mature semantic
understanding from the outset. Phase 2 (Guided Synthesis) then leverages this foundation to focus
training resources on the R2G circuit, optimizing visual synthesis under the guidance of a gradually
diminishing representational constraint.

Validation. Extensive experiments demonstrate that our decoupling strategy yields substantial bene-
fits. ERW achieves up to an 11.5 x training speedup to reach a comparable FID score in 350 epochs
compared to single-phase methods like REPA while achieving FID = 1.41. The warmup phase re-
quires only a fraction of the total training cost, making our approach highly practical for real-world
applications.

Our contributions are threefold:

(a) We formalize the optimization entanglement in generative models as of semantic understanding
and visual synthesis, and propose a conceptual decomposition of the diffusion model into func-
tionally specialized L2R and R2G circuits.

(b) We introduce ERW, a principled two-phase training paradigm that operationalizes this decou-
pling, first building a semantic foundation and then focusing on guided synthesis.

(c) We demonstrate the effectiveness of our framework through extensive experiments, achieving
state-of-the-art results.
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2 RELATED WORK

Our work builds on three research pillars: leveraging pretrained encoders, recent advances in dif-
fusion model acceleration, and enhancing the internal representations of diffusion models through
decoupled training strategies.

Leveraging pretrained encoders for guidance. The idea of leveraging powerful pretrained en-
coders (Radford et al., 2021; Oquab et al., 2023) to guide generation is well-established, with ap-
plications as GAN discriminators (Sauer et al., 2021; Kumari et al., 2022) or for knowledge dis-
tillation (Li et al., 2023b). A recent and direct approach is concurrent representation alignment,
epitomized by REPA (Yu et al., 2024), which accelerates training by enforcing alignment through-
out the entire process. In contrast, our work treats alignment as a foundational warmup, relaxing the
constraint during later stages to allow the model to focus fully on synthesis.

Contemporary acceleration strategies and recent advances. Accelerating diffusion models has
emerged as a critical research thrust, as recent years have witnessed significant breakthroughs across
multiple fronts (Fuest et al., 2024). Post-training sampling acceleration continues to be actively pur-
sued through knowledge distillation techniques that compress slow teachers into fast students (Sali-
mans & Ho, 2022; Sauer et al., 2023; Shao et al., 2023), and through consistency models enabling
one-shot or few-shot generation (Song et al., 2023; Heek et al., 2024). Recent work includes specula-
tive decoding approaches for autoregressive text-to-image generation and training-free acceleration
methods. Advanced numerical solvers remain crucial, with improvements to DPM-Solver (Lu et al.,
2022) and novel exponential integrators significantly reducing function evaluations. Training ac-
celeration strategies include architectural decoupling in staged pipelines (Karras et al., 2018; Ho
et al., 2022; Saharia et al., 2022), curriculum learning on timesteps (Xu et al., 2024), and progres-
sive sparse low-rank adaptation methods. ERW contributes to this rapidly evolving landscape by
fundamentally decoupling learning objectives within the training process, separating semantic un-
derstanding ("what") from synthesis capability ("how").

Internal vs. injected representations and efficient fine-tuning. Numerous studies confirm that
diffusion models implicitly learn powerful, classifier-like semantic features (Yang & Wang, 2023; Li
et al., 2023a; Xiang et al., 2023), a phenomenon some works have deconstructed this phenomenon
for self-supervised learning (Chen et al., 2024). An alternative strategy enhances internal represen-
tation learning by fusing diffusion objectives with auxiliary self-supervision losses, exemplified by
MAGE (Li et al., 2023c) and MaskDiT (Zheng et al., 2024), which draw inspiration from contrastive
learning (Chen et al., 2020a; He et al., 2020) and masked autoencoding (He et al., 2022). However,
these approaches require careful balancing of competing objectives. ERW sidesteps these complex-
ities by directly injecting mature semantic priors via dedicated warmup, freeing the model to focus
purely on high-fidelity synthesis while achieving efficiency comparable to contemporary methods.

3  FROM FUNCTIONAL SPECIALIZATION TO DECOUPLED TRAINING IN
LATENT DIFFUSION

In this section, we adopt a three-stage view of latent diffusion—Pixel-to-Latent (P2L), Latent-to-
Representation (LL2R), and Representation-to-Generation (R2G)— as a functional perspective
that facilitates decoupled training. P2L provides compressed latents as a precondition, while L2R
and R2G capture the predominant (but not exclusive) roles of early and late layers in semantic
processing and generative refinement. The separation is heuristic and approximateroles overlap and
are not strictly orthogonalbut it is sufficient to decouple training objectives in practice. This view
underpins our two-phase framework.

3.1 PRELIMINARIES

Latent diffusion models. While classic diffusion models such as DDPM (Ho et al., 2020) adopt
a discrete-time denoising process, flow-based methods (Lipman et al., 2022; Albergo et al., 2023;
Shi et al., 2024) explore diffusion in a continuous-time setting. In particular, Scalable Interpolant
Transformers (SiT) (Ma et al., 2024; Esser et al., 2024; Lipman et al., 2022; Liu et al., 2023) of-
fer a unifying framework for training diffusion models on a continuous-time stochastic interpolant.
Below, we describe how SiT can be leveraged to learn powerful latent diffusion models.



Under review as a conference paper at ICLR 2026

Forward process via stochastic interpolants. Consider a data sample x ~ p(x) (e.g., an image)
and let the encoder Hg(x) map it to its latent representation denoted as zo € Z. Given standard
Gaussian noise € ~ N (0, 1), SiT defines a forward process in the latent space, parameterized by
continuous time ¢ € [0, 1]:

Zi = 4 Zg + Ot €, (1)
where oy and o are deterministic, differentiable functions satisfying the boundary conditions:
(oo, 00) = (1,0) and (a1,01) =(0,1). 2)

This construction implies that at ¢ = 0 we recover the clean latent zo, and at ¢ = 1 we have pure
noise z; = €. Under mild conditions (Albergo et al., 2023), the sequence {z;} forms a stochastic
interpolant that smoothly transitions between data and noise in the latent space.

Velocity-based learning. To train a diffusion model in this continuous-time framework, SiT em-
ploys a velocity formulation. Differentiating z; with respect to ¢ yields:

it:O'étZ()—f—O.'tE. (3)
Conditioning on z;, we can rewrite the derivative as a velocity field:
2y = F(z,1), “
where F(z,t) is defined as the conditional expectation of z; given z;. A neural network Fy(z,t) is
then trained to approximate F(z, t) by minimizing:

cdif‘fusion(o) = ]EZOaévt|:

‘Fg(zt,t)— (atz0+me)H2} . )

Learning Fg(z,t) enables one to integrate the reverse-time ordinary differential equation
(ODE) (Song et al., 2020), thereby mapping noise samples back to coherent latent representations.

3.2 A FUNCTIONAL CIRCUIT PERSPECTIVE FOR DECOUPLED TRAINING

Recent studies indicate that diffusion mod- z = Ho(x) r =R, (2) 2’ = Gopye (T)
els jointly perform both representation learn-

ing and generative decoding during the de- _~-——~__ R2G
noising procedure (Yu et al., 2024; Xiang X P2L Z // L2R \\\\

et al., 2023). Notably, every layer in =~
the network contributes to feature extrac-

tion and generative tasks to varying degrees. VAE Latent Diffusion

To make this dual functionality clearer, we

propose decomposing the diffusion process Figure 2: Functional circuit for decoupled training.

: L . P2L provides a compression precondition; early layers
into three distinct stages: P ixel-to-Latent predominantly serve Latent-to-Representation (L2R, se-
(P2L), Latent-to-Representation (L2R), an.d mantic inference), and later layers predominantly serve
Representation-to-Generation (R2G), as il-  Representation-to-Generation (R2G, synthesis). Roles
lustrated in Figure 2 . Formally, we posit that  overlap in practice; we employ this perspective to orga-
the diffusion sampling procedure can be writ- nize objectives and reduce optimization entanglement.
ten as:

z =He(x), (Pixel to Latent (P2L))
r="TRe.,.(2), (Latent to Representation (L2R))
z' = Gy (1), (Representation to Generation (R2G))

Here, Hg is a VAE encoder that compresses pixels to latents; Rg, ., and Gey,, are two overlap-
ping functional roles implemented within the shared diffusion backbone. A VAE decoder Dg maps
refined latents back to pixels at the end.

Loss function decomposition. Grounded in the augmented probability view, Appendix B
(Thm. 1) gives an exact decomposition of the joint conditional score:

th logp(zo,r | Zt7t) = th logp(z() | zt7r7t) + th logp(r | zt7t) . (6)

Conditional Generation Score Representation Inference Score

This provides a principled rationale for separating optimization into representation inference (L2R)
and conditional generation (R2G). In practice, we shape these two components using surrogate
losses: the standard diffusion objective in Eq. (5) for generation and the alignment objective in
Eq. (14) for representation; see Appendix B for details.
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Figure 3: Selected Samples on ImageNet 256 x 256. Images generated by the SiT-XL/2 + REPA + ERW
model using Classifier-Free Guidance (CFG) with a scale of w = 1.62 under 350 epochs.

Stage I: Pixel-to-Latent (P2L). Before performing the denoising process in the high-dimensional
pixel domain—where noise may obscure semantic cues—many methods Saharia et al. (2022); Ho
et al. (2020); Dhariwal & Nichol (2021) compress images into a more tractable latent space:

z = He(x), )

where (Hg, Dg) typically refers to a variational autoencoder or a related autoencoding architecture.
This P2L stage reduces computational complexity and filters out low-level details, thus preserving
more essential semantic information. From the perspective of the decomposed loss, P2L transforms
the high-dimensional denoising problem into a lower-dimensional one where representation compo-
nents (capturing semantic concepts) and reconstruction components (handling fine details) become
more clearly separable, facilitating favorable conditions for separating the training stages.

Stage II: Latent-to-Representation (L2R). Given a noisy latent z; from the forward process
(Eq. (1)), the model initially extracts a semantic representation r; using the mapping Rg, -

ry = RGLQR (Zt7 t) - (8)

This step corresponds to the Representation Inference Score, i.e., estimating V,, logp(r | z,t)
in the augmented conditional view (Thm. 1; see also Appendix B ). Intuitively, the model should
discern salient patterns (e.g., object shapes, style characteristics, or conditioning signals) before
denoising. Under the sufficient statistic assumption (see Assump. 1), the representation r; effectively
captures the essential information from the latent z;. The true representation score available one
could consider the idealized regression objective

min By, [| Royun (71, 1) ~ Vo, log plx | 20,) 2] ©)

In practice, we do not access this score; instead we employ surrogate alignment losses: the clean-
latent warmup in Eq. (13) and the noisy-input alignment term in Eq. (14). By explicitly decoupling
the objective for semantic feature extraction from that of generative refinement, the model is guided
to learn representations and ensures that the early layers focus on capturing semantic features.

Stage III: Representation-to-Generation (R2G). In the final phase of each reverse diffusion
update in (3), known as the R2G stage, the extracted semantic representation is transformed into an
updated latent with reduced noise:

Zi At = gGRzG (I't,t) . (10)

This output serves the same purpose as the z’ term introduced, but is specifically defined for the
discrete time step ¢ — At in the continuous-time diffusion process. In the decomposition, this step
aligns with the Conditional Generation Score component. For the rigorous joint-conditional view,
see Thm. 1. The conditional generation score available one could consider the idealized regression
objective

min By, | [Goe (e, t) = Vi, log plzo |21, 10 | | (11)

In practice, we instead rely on the standard diffusion objective in Eq. (5) (and its Phase 2 combi-
nation in Eq. (14)) to shape the generation component while using the learned representations as
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guidance. Injecting the semantic representation r; into a cleaner latent z;_ A which is significantly
less noisy than z:ensures that abstract semantic features are effectively transformed into the precise
latent elements required for content generation. Meanwhile, the cross interaction between L2R and
R2G (also discussed in Appendix B ) is empirically small when the two gradients are sufficiently
separated in function, helping to mitigate destructive interference.

Two-stage sampling process: Representation extraction precedes generation. Within the
continuous-time framework, after mapping pixel data to the latent space through P2L, each infinites-
imally small time step during the reverse SDE update can be interpreted as a two-stage process:

r; = Ropp(Zt,t) —  Zi-ar = Gopac (Tt 1) (12)
Hence, every time step naturally splits into (i) L2R for refining the representation and (ii) R2G for
synthesizing an updated latent. This loop neatly implements the principle of "first representation,
then generation". Empirically, prior work (Yu et al., 2024; Xiang et al., 2023) confirms that early
layers of the diffusion model predominantly focus on representation extraction, whereas later layers
emphasize generative refinement. Consequently, the staged design mirrors the reverse-time diffusion
trajectory, concluding in a final latent z that is decoded via Dg to yield the synthesized output xg.

3.3 EMBEDDED REPRESENTATION WARMUP: TRAINING WITH TWO PHASES

Guided by the circuit view and our augmented-space analysis, we present Embedded Representation
Warmup (ERW), a framework that strategically decouples training into two phases. In Phase 1, we
initialize the early layers of the diffusion model with high-quality semantic features from pretrained
models; in Phase 2, we transition to standard diffusion training with a gradually diminishing repre-
sentation alignment term, allowing the model to increasingly focus on generation. This mirrors the
sampling loop: first infer representation, then generate.

Phase 1: Representation Warmup Stage To alleviate the burden of learning semantic features
from scratch, we begin with a dedicated warmup stage. During this phase, the model’s L2R circuit is
initialized to align with semantically rich features extracted from a pretrained representation model
(e.g., DINOv2, MAE, or CLIP). Let Hg(x) denote an encoder that maps an image x € X to its
latent representation z € Z, and let f,, : X — R be a high-quality pretrained representation model.
We use a single alignment objective shared by both phases:

Larign(k) = Bx, e, | 50, ) exr-xent (To(Ropan (21:1), Frep()) | - (13)
Here z; and the schedule s(k,t) are

_ [He(x) (t=0) 1 (t=0)
2= {Ozt Zo + ot € (t>0), Zy = HQ(X) and S(k7t) B {/\train(k) = Co exp(fé) (t>0) .

Warmup sets ¢=0; Phase 2 samples t~/[0, 1] and uses the decayed A¢rain (k)= co exp( — k/T)
to gradually shift focus from alignment to generation, where & is the training step, and ¢y, 7 are
hyperparameters.

Phase 2: Generative Training with Decaying Representation Guidance After the warmup
stage has effectively initialized the diffusion model with semantically rich features, we proceed
with a joint objective that combines the standard diffusion loss with a gradually diminishing repre-
sentation alignment term. Formally, the overall training loss is given by:

L:total - »Cdif‘fusion + )\train(k) : »Calign (14)
Here, Lgifusion denotes the velocity prediction loss as defined in Eq. (5), and the alignment term is
the objective in Eq. (13). The weight A¢rain (k) modulates the impact of alignment during training.
In practice, we instantiate {NT_xent With in-batch negatives and use the same projection head Tg
across both phases ( Section 4.1 ). The alignment thus acts as a weak semantic tether late in train-
ing, mitigating forgetting while letting R2G dominate. Both phases share the same alignment loss
INT-Xent (%( ), frep( )), they differ only in (i) the noise level of the input (clean t=0 in Phase 1 vs.
noisy ¢>0 in Phase 2) and (ii) the schedule \,,i, (k) (absent in warmup, exponentially decayed in
Phase 2). Consistent with the augmented-space identity (Thm. 1), the surrogate gradient decomposes
as

v@ Etotal(k) ~ E[ VG Ediffusion + S(k7 t) VG Ealign(k) } )
——— —_———
shapesV ., log p(zo|z¢,r,t) shapesV,, log p(r|z:,t)

up to standard surrogate mismatches. This makes the training-time decomposition mirror the
sampling-time loop: first representation (L2R), then generation (R2G).
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4 EXPERIMENTS Table 1: System-level comparison on ImageNet 256x256 with

. . . CFG. | and 1 indicate whether lower or higher values are better,
In this section, we provide a com- regpectively. Results marked with an asterisk (*) use advanced
prehensive evaluation of our pro- CFG scheduling techniques; specifically, for our method, we apply
posed ERW approach. = We be- the guidance interval scheduling from (Kynkiinniemi et al., 2024).
gin by outlining experimental setups

(Section 4.1), including dataset and Model Epochs FID| sFID| ISt Pref Rec.t

implementation details. Next, We  pixel diffusion

present comparisons with state-of- ADM-U 400 394 614 1867 082 052

the-art baselines to demonstrate the VDM++ 560 240 - 2253 - -
. Simple diffusion 800 2.77 - 211.8 - -

benefits of ERW in both FID and CDM 2160 488 ) 1587 - )

training speed (Section4.2). We —, . diffusion, U-Net

then analyze the role of our warmup LDM-4 200 3.60 _ 2477 087 048

Procedure in bOOStiIlg training effi- Latent diffusion, Transformer + U-Net hybrid

ciency (Section4.3). Finally, we U-ViT-H/2 240 229 568 2639 082 057

conduct ablation studies to examine DiffiT* 173 2765 080  0.62

. . - ES ’
the effects of various alignment strate- MDTv2-XL/2 1080 158 452 3147 079 065

gies, architecture depths, and target — Larent diffusion, Transformer

. . MaskDiT 1600 228 567 2766 080 0.6l
representation models ( Section 4.4 ). SS-SDiTl 430 393 - N - -

41 SETUP DiT-XL/2 1400 227 460 2782 083 057

. . SiT-XL/2 1400 206 450 2703 082 059

e Implementation Details. We ad- +REPA 200 196 449 2640 082 0.60

here closely to the experimental se- + REPA* 800 142 470 3057 080 0.65

AP o - +ERW (ours) 200 164 471 2602 078  0.66

tups described in DiT (Peebles & Xie, +ERW (ours)* 350 141 446 2939 079 065

2023) and SiT (Ma et al., 2024), un-
less otherwise noted. Specifically, we utilize the ImageNet dataset (Deng et al., 2009), preprocess-
ing each image to a resolution of 256 x 256 pixels. Following the protocols of ADM (Dhariwal
& Nichol, 2021), each image is encoded into a compressed latent vector z € R32X32X4 ysing the
Stable Diffusion VAE (Rombach et al., 2022). For our model configurations, we employ the B/2
and XL/2 architectures as introduced in the SiT papers, which process inputs with a patch size of
2. To ensure a fair comparison with SiT models and REPA, we maintain a consistent batch size
of 256 throughout training. Further experimental details, including hyperparameter settings and
computational resources, are provided in Appendix D .

e Evaluation. We report Fréchet inception distance (FID; Heusel et al. 2017), sFID (Nash et al.,
2021), inception score (IS; Salimans et al. 2016), precision (Pre.) and recall (Rec.) (Kynkéddnniemi
etal., 2019) using 50K samples. We also include CKNNA (Huh et al., 2024) as discussed in ablation
studies. Detailed setups for evaluation metrics are provided in Appendix E .

o Sampler and Alignment objective. Following SiT (Ma et al., 2024), we always use the SDE Euler-
Maruyama sampler (for SDE with w; = o) and set the number of function evaluations (NFE) as
250 by default. We use Normalized Temperature-scaled Cross Entropy (NT-Xent) training objective

for ahgn'ment. Table 2: FID comparisons with SiT-XL/2. In this table, we re-
® Baselines. We use several recent por the FID of ERW with SiT-XL/2 on ImageNet 256 x 256 at var-
diffusion-based generation methods jous Training iterations. Here is only full training without warmup,
as baselines, each employing differ- because we load a well trained warmuped checkpoint. For compar-
ent inputs and network architectures. ison, we also present the performance of the state-of-the-art base-
Specifically, we consider the follow- line REPA at similar iterations or comparable FID values. Note
ing four types of approaches: (a) that | indicates that lower values are preferred and all results re-

Pixel diffusion: ADM (Dhariwal & ported are without Classifier-Free Guidance.
Nichol, 2021), VDM++ (Kingma &

G&O, 2()24_)7 Slmple diffusion (HOOgC— Model #Params  Iter. FID| sFID] ISt  Prec.t Rec.?

, . SIT-XL/2 675M 7M 83 632 1317 068 067
boom et al., 2023), CDM (Ho,et al., +REPA 675M 50K 523 3124 243 045 053
2022), (b) Latent diffusion with U-  LERW (ours) 675M 50K 250 1206 561 0.62 057
Net: LDM (Rombach et al., 2022), (c)  +REPA 675M 100K 194 606 674 064 061

Latent diffusion with transformer+U- _*ERW(ur) 675M 100K 121 525 942 069 063
Net hybrid models: U-ViT-H/2 (Bao et al., 2023), DiffiT (Hatamizadeh et al., 2024), and MDTv2-
XL/2 (Gao et al., 2023), and (d) Latent diffusion with transformers: MaskDiT (Zheng et al., 2024),
SD-DiT (Zhu et al., 2024), DiT (Peebles & Xie, 2023), and SiT (Ma et al., 2024). Here, we refer to
Transformer+U-Net hybrid models that contain skip connections, which are not originally used in
pure transformer architecture. Details are provided in Appendix F.
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4.2 COMPARISON

Table 1 summarizes our results on
ImageNet 256 x 256 under Classifier-
Free Guidance (CFG). Our ERW
significantly boosts the convergence
speed of SiT-XL/2, enabling strong
FID scores at just 350 epochs.
As shown in Table 1, our method
achieves an FID of 1.41 in 350
epochs, that REPA requires 800
epochs to approach, demonstrating a
high speedup while achieving state-
of-the-art performance. Figure 3 il-
lustrates generated samples, further
confirming the high-quality outputs
achieved by ERW.

4.3 ERW EFFICIENCY

We begin by how ERW influences
SiT-XL/2’s FID when w/o CFG.

o Efficient FID Improvements.
In Table2, ERW consistently
achieves competitive or superior
FID values compared to baselines.

Table 3: Analysis of ERW depth, projection depth, and differ-
ent dynamic or consistent projection loss A influences in SiT-
XL/2. All models are based on SiT-XL/2 and trained for 100K
iterations under a batch size of 256 without using Classifier-Free
Guidance on ImageNet 256 x 256. The target representation model
is DINOvV2-B, and the objective is NT-Xent. | indicates lower val-
ues are better. The results show that a projection depth of 14 and
a projection loss A\ of 4.0 yield substantial improvements in both
FID and sFID, indicating an optimal configuration for model per-
formance.
ERW Depth  Proj. Depth A FID| sFID|, ISt Prec.t Rec.t

SiT-XL/2 + REPA (Yuetal,2024) 19.4 6.06 674  0.64 0.61

3 8 0.5 14.4 528 827 0.68 0.62
4 8 0.5 13.8 5.31 87.1 0.68 0.62
5 8 0.5 13.4 529 878  0.68 0.63
6 8 0.5 13.6 530 873 0.67 0.63
8 8 0.5 154 537 823  0.66 0.63
12 8 0.5 16.2 536 792  0.66 0.63
5 10 0.5 12.9 529 904  0.68 0.63
5 12 0.5 12.5 524 920 0.69 0.62
5 14 0.5 12.5 526 915  0.69 0.63
5 16 0.5 12.3 525 934  0.69 0.62
5 18 0.5 12.1 525 942 0.69 0.63
5 20 0.5 12.6 527 923  0.69 0.63
5 18 0.1 16.6 5.31 758  0.67 0.60
5 18 1.0 12.7 5.41 928  0.68 0.64
5 18 2.0 13.3 539 905 0.68 0.63
5 18 4.0 13.1 538 922  0.68 0.64
5 18 6.0 13.4 545 91.6  0.67 0.63

For instance, ERW reaches an FID of 12.1 with 100k warmup + 100k full training, markedly
outperforming the REPA method (Yu et al., 2024) which scores 19.4 within the same budget.

o Leveraging Pretrained Features. This gain highlights the advantage of injecting pretrained se-
mantic priors via warmup, thereby accelerating the full training.

Warmup versus full training.
Next, we analyze how splitting
the total training budget between
warmup and full diffusion training
impacts both generation quality and
computational overhead. As shown
in Figure 4, the FLOPs for the
warmup phase are significantly lower
than for the full training phase.

4.4 ABLATION STUDIES

We further dissect the effectiveness
of ERW by conducting ablation stud-
ies on various design choices and pa-
rameter settings.

Target representation. We first
compare alignment with multiple
self-supervised encoders: MoCov3,
CLIP, and DINOv2, as summarized
in Table 4 .

o Universality of Pretrained En-
coders. All encoders tested offer im-

Table 4: Analysis of ERW on ImageNet 256 x256. All models are
SiT-B/2 trained for 50K iterations. All metrics except FID without
Classifier-Free Guidance. We fix A = 0.5 here. | and 1 indicate
whether lower or higher values are better, respectively.

Target Repr.  Depth  Objective FID]  sFID| ISt Prec.t Rec.t

MoCov3-B 8 NT-Xent  61.1 7.6 2238 042 0.58
MoCov3-L 8 NT-Xent  73.0 8.0 1796  0.38 0.52
CLIP-L 8 NT-Xent  58.9 7.7 23.68  0.44 0.54
DINOv2-B 8 NT-Xent  55.6 7.8 2545 044 0.56
DINOv2-L 8 NT-Xent  55.5 7.8 2545  0.44 0.56
DINOv2-g 8 NT-Xent  59.4 7.6 2553  0.44 0.56

Table 5: Analysis of ERW places influences in SiT-B/2. All mod-
els are based on SiT-B/2 and trained for 50K iterations under the
batch size of 256 without using Classifier-Free Guidance on Im-
ageNet 256 x 256. | indicates lower values are better. Results
empirically validate our hypothesis that placing ERW at the fore-
front of the architecture yields optimal performance.

Target Repr. Depth  Objective FID| sFID] IST Prec.t Rec.t

SiT-B/2 + REPA (Yu et al., 2024) 78.2 1171 17.1 0.33 0.48

DINOv2-B 0-8 NT-Xent  54.2 812 272 045 0.59
DINOv2-B 1-9 NT-Xent  69.1 13.0 187  0.37 0.51
DINOv2-B 2-10 NT-Xent  67.7 13.4 19.0 038 0.52
DINOv2-B 3-11 NT-Xent  67.5 11.8 195 038 0.52
DINOv2-B 4-11 NT-Xent  67.8 13.1 19.0 038 0.52

provements over baselines, indicating that ERW can benefit from a range of representation models.
e Marginal Differences among DINOv2 Variants. DINOv2-B, DINOv2-L, and DINOv2-g yield
comparable gains, suggesting that ERW does not require the largest possible teacher encoder for
effective representation transfer. This suggests that ERW is not limited to a specific encoder archi-
tecture but can leverage a wide range of powerful, pretrained feature extractors, making it a versatile
tool for accelerating diffusion model training.
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Placement of ERW Depth. We hypothesize that early layers in
the diffusion backbone primarily learn semantic features (the L2R
circuit), whereas deeper layers specialize in generative decoding.
The placement of the alignment loss is therefore critical. We spec-
ify the alignment target using "Depth X-Y", which means the align-
ment loss is computed on the output of layer Y, using a projection
head that takes features from layers X through Y as input.

o Empirical Validation. In Table 5, initializing the earliest lay-
ers (0-8) notably outperforms re-initializing middle or late sections
(FID 54.2 vs. > 67).

o Consistent with Circuit Perspective. This corroborates our
three-stage diffusion circuit ( Section 3 ), underscoring that align-
ing deeper layers for representation can be suboptimal since those
layers focus on generation. Targeting the initial layers for warmup
is therefore crucial, reinforcing our theoretical claim that represen-
tation learning is predominantly the function of the early network
stages, while later stages are specialized for generative refinement.

Projection depth and alignment weight. We also investigate
how the final projection head depth and the alignment-loss coeffi-

Warmup Cost

o
4
>

Full Training Cost
Total Cost

Per-step FLOPs:
Warmup 42.2K GFLOPs
Full: 224.8K GFLOPs

Total Cost (TFLOPs)

»
in

10K+90K 20K+80K

Strategy

S0K+50K

Figure 4: Comparison of Train-
ing Efficiency and Cost Anal-
ysis with Warmup and Full
Training Stages. Bar chart com-
paring the computational costs
of the warmup and full train-
ing stages for different strategies.
The chart shows the warmup cost,
full training cost, and their corre-

cient \ affect training ( Table 3 ). The projection head, Ty, is a deep sponding total cost.

MLP that maps the features to the dimensionality of the target representation as same as REPA.

o Empirical Validation. Using 5 warmup layers, a projection head at depth 18, and A = 0.5 achieves
an FID of 12.1 at 100k iterations—a substantial gain over baselines.

e Trade-off in ). Larger ) offers stronger representation alignment initially but may disrupt conver-
gence if pushed to extremes, highlighting the need for moderate scheduling.

Representation dynamics. We examine the temporal progres- 09
sion of representation alignment in Figure 5 .

e Initial Dip, Subsequent Recovery. Alignment falls early on as
the pretrained features adjust to the diffusion objectives, but it then
recovers and improves.

® Role of Decaying Guidance. A decaying weight in the alignment

Training Step

CKNNA Value

term ( Section 3.3 ) fosters stable synergy between semantic align- 05

ment and generative refinement. The representation alignment thus

follows a U-shaped trajectory, revealing the model’s initial adapta- o Neesrodl

tion of pretrained features to the diffusion task, followed by a distil- b L avertnder 0 oy
ayer Index (0 to 27)

lation into robust, generation-aligned embeddings.

CKNNA analysis. Finally, we measure layer-wise representa-
tion quality using Class-conditional k-Nearest Neighbor Accuracy
(CKNNA) (Caron et al., 2021), which indicates how well the hidden
features capture class discriminability.

o Improved Semantic Alignment. ERW yields systematically and the diffusion model first de-
higher CKNNA scores, confirming stronger semantic preservation. creases and then increases.

o Evolving Layer-wise Semantics. The alignment initially drops then recovers, mirroring the trends
seen in Figure 5 and pretrained features are effectively integrated rather than merely overwritten.

Figure 5: Scalability of ERW.
Training dynamics for alignment
indicate that within the 500K
training steps for SiT-XL/2, the
alignment between DINOv2-g

5 CONCLUSION AND FUTURE WORK

In this work, we introduced Embedded Representation Warmup (ERW), a novel two-phase training
framework that significantly enhances the training efficiency of diffusion models. By dedicating
an initial phase to align the model’s early layers with a pretrained encoder, ERW establishes a
strong semantic foundation that accelerates the subsequent generative training. Our key innovation
is the explicit separation of representation alignment and generation, which, when combined with
a decaying alignment schedule, proves more effective than continuous, single-phase regularization.
We demonstrated empirically that ERW leads to substantial speedups in training convergenceup to
11.5x compared to REPA and achieves FID=1.41 with 350 epochs. Our ablations confirmed that
targeting the early layers is crucial and that the two-phase approach is a cost-effective strategy for
high-fidelity generative modeling.
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A LLM USAGE STATEMENT

LLMs were used solely as auxiliary tools for grammar checking and language polishing. They
did not contribute to the generation of research ideas, the design of experiments, the development
of methodologies, data analysis, or any substantive aspects of the research. All scientific content,
conceptual contributions, and experimental results are entirely the work of the authors. The authors
take full responsibility for the contents of this paper.

B THEORETICAL ANALYSIS

In this section, we provide a principled theoretical foundation for our ERW. We move beyond the
empirical intuition of entangled objectives and demonstrate that our approach naturally emerges
from a more fundamental perspective: conditional score matching within an augmented probability
space. This formulation recasts the generative modeling problem as one where semantic understand-
ing is an explicit conditional variable, thereby justifying the decoupling of representation learning
from the synthesis process.

B.1 PRELIMINARIES

To ensure clarity, we first establish the key mathematical objects used in our analysis. Let X’ be the

high-dimensional data space (e.g., images), Z be the compressed latent space from a VAE, and R

be the semantic representation space. We work with the following variables:

* x € X: A sample from the data distribution pga, (X).

* 7y € Z: The clean latent representation of x, obtained via a VAE encoder Hg,,. (x).

* z; € Z: The noisy latent at time ¢ € [0, 1], defined by the forward process z; = a;zg + o+€ where
e ~N(0,I).

* r € R: A high-level semantic representation vector corresponding to X.

The key functions and models in our framework are:

e fp : X = R: A powerful, pretrained, and fixed representation model (e.g., DINOv2) that maps
a clean image x to its semantic representation r.

* Fg(z,t,r): The diffusion model we aim to train, which predicts the score or velocity, potentially
conditioned on a semantic representation r.

* R, The sub-network corresponding to the L2R circuit, which extracts representations from z;.

* Gop: The sub-network corresponding to the R2G circuit, which performs generation based on an
extracted representation.

The goal of a diffusion model is to learn the score function V, log p(z;), which guides the reverse

process from noise back to data. In the standard formulation, this requires learning to denoise across

all time steps ¢ € [0, 1] without explicit semantic guidance.

B.2 A PRINCIPLED VIEW VIA AN AUGMENTED PROBABILITY SPACE

We formalize the intuition of decoupling representation and generation by constructing an aug-
mented probability space that explicitly includes the semantic representation r as a random vari-
able. This principled view demonstrates that our two-phase training strategy naturally emerges from
optimizing a conditional score-matching objective in this richer probabilistic landscape.

B.2.1 CONSTRUCTION OF THE AUGMENTED SPACE

We define an augmented probability space over the tuple (zg, z¢,r,t), where the joint distribution
factorizes as:

p(ZOa Zi, 1, t) = p(zt | Zy, t) p(r | Zo)p(Zo)p(ﬁ) (15)
This factorization leverages the conditional independence assumptions inherent in the diffusion pro-
cess. Specifically, given the clean latent z(, the noisy latent z; is independent of the semantic
representation r, and both are independent of the time variable ¢. Each component has a clear inter-
pretation:

p(zo) = pdata(x)é(zo - HGVAE (X))dx (16)

p(t) =U[0,1] (uniform time distribution) a7

p(2t | Zo,t) = N (z4; azo, 07 1) (18)
p(r | ZU) =0 (I' - frep (DGVAE(ZO))> (19)

15
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Here, Dy,,, denotes the VAE decoder that maps latents back to image space. The distribution
p(zo) in (16) represents the VAE’s learned prior over clean latents, induced by the data distribution
through the encoder. The forward kernel (18) follows the standard diffusion forward process with
noise scheduling parameters a;; and oy.

The key insight is that equation (19) deterministically links semantic representations to clean la-
tents through the Dirac delta function, transforming the unconditional generation problem into a
semantically-conditioned one. This constraint ensures that every clean latent zg has a uniquely as-
sociated semantic representation r, creating a deterministic mapping from the latent space to the
representation space.

B.2.2 MARGINAL AND CONDITIONAL DISTRIBUTIONS

From the joint distribution, we can derive several important marginal and conditional distributions
through careful integration.

Marginal over noisy latents: The marginal distribution over noisy latents is obtained by integrating
out the semantic representation r:

p(ztat) :///p(z(bztvrvt) dZOdr (20)

= [ [ [ ptas | 20.0)ptx | 0) plao) (0 i e Q1)
=5(0) [ plao)ptan | 20,0 ( [ e zO>dr) dzo @)

:p(t)/p(zo)p(zt | zo, 1) dzo (23)

where the integral [ p(r | zo)dr = 1 since p(r | z¢) is a valid probability distribution. This recovers
the standard marginal distribution used in unconditional diffusion models.

Joint marginal over (z;,r,t): More critically for our analysis, we can compute the joint marginal
over (z,r,t) by integrating out only z:

p(aa,T, 1) = / P20, 74, . 1) dzo (24)
- / Pl | 7o,£) plr | 20) plzo) p(t) dzo 5)
= 5(0) [ plao)pla | 20,003 (5 = tuy (Do (20))) 2o (26)

Using the property of the Dirac delta function, this integral evaluates to:

o) = plt) [ plzo)p(en | z0.1) dzo @)
20 frep (Do, (20))=r

where the integration is restricted to the set of clean latents zg that produce the semantic representa-

tion r when decoded and passed through the representation function.

Conditional distribution for generation: We can also derive the conditional distribution of clean

latents given noisy latents and semantic representations:

_ p(Z07 Z, 7T, t)
p(2o | z¢,1,1) = Tplzrt) (28)
_ (2t | 20,t) p(r | 20) p(20) p(t) (29
p(zta r, t)
_ p(zt ‘ 29, t) g (I’ — frep (D9VAE (ZO))) p(Zo) (30)

p (Ztv r, t)
This conditional distribution is the target that our diffusion model seeks to approximate, representing
the posterior over clean latents given both the noisy observation and the semantic constraint.
The key insight from equation (27) is that the semantic constraint creates a coupling between z, and
r through the latent variable z(, despite z;, and r being conditionally independent given zy. This
coupling is what enables semantic-conditioned generation.
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The augmented probability space construction embeds the desired semantic knowledge directly into
the probabilistic model. The generative task is thus transformed from learning an unconditional
reverse process to learning a conditional reverse process, where synthesis is explicitly conditioned
on a target semantic concept r. This transformation is fundamental to understanding why our two-
phase training approach is theoretically justified.

B.2.3 SEMANTIC SUFFICIENCY AND CONDITIONAL INDEPENDENCE

The power of the augmented formulation relies on a key assumption about the semantic representa-
tion, which we formalize below.

Assumption 1 (Semantic Sufficiency) . The semantic representation r = f,,,(x) captures suf-
ficient information for the generative task such that, given r, the model possesses all necessary
high-level information to synthesize a corresponding sample. Formally, this means that the con-
ditional distribution p(z¢ | r) concentrates on semantically-consistent latents.

Intuitive Understanding: This assumption embodies the idea that our pretrained representation
model fr.; (e.g., DINOV2) is sufficiently powerful to capture all the high-level, conceptual informa-
tion needed for generation. To illustrate with an analogy: if r represents “a golden retriever running
on grass,” then semantic sufficiency means that knowing this r provides the model with all the es-
sential semantic components—the subject (dog), category (golden retriever), action (running), and
environment (grass). The model’s remaining task shifts from deciding what to generate to focusing
purely on how to generate it: the specific pose, fur details, lighting direction, grass texture, etc.
Latent Space Partitioning: More precisely, we assume there exists a partition of the latent space
based on semantic content. The semantic representation r acts like a clustering label that groups
clean latents with identical semantic meaning. We define semantic equivalence classes:

Zy ={20 € Z : f,(D(20)) =} 31

LEINT3

For example, Z-.,» might contain latents corresponding to “a crouching Persian cat,” “a rolling
orange tabby,” and “a sleeping Siamese cat.” Despite their vastly different visual details, all belong
to the same semantic category under fi.p.
Overlap Requirement for Well-Posed Generation: A critical consequence of semantic sufficiency
is that for any two clean latents zg,z; € Z,, their respective forward diffusion processes p(z; |
Zo,t) and p(z; | z(,t) should have significant overlap. This requirement ensures that conditional
generation remains well-posed:
* Without overlap: If semantically similar z, values produce completely different noisy
patterns z;, the model becomes “confused”—it cannot learn a consistent denoising pattern
for the semantic class r.
» With overlap: When z, values in Z, yield similar noisy distributions, the model can learn
a unified denoising strategy conditioned on r.

B.2.4 CONDITIONAL SCORE MATCHING IN THE AUGMENTED SPACE

The central idea is to model the score of the joint conditional distribution p(zg,r | z¢,t), which
naturally decomposes into two meaningful components.

Theorem 1 (Decomposition of the Augmented Conditional Score) . The score of the joint
conditional distribution p(zo, T | z4,t) can be decomposed into a sum of two functionally distinct
scores:

Va2, logp(zo,r | z¢,t) = V4, logp(zo | z¢,r,t) + Vg, logp(r | z:,t) (32)

Conditional Generation Score Representation Inference Score

Proof. We provide a detailed derivation of this fundamental decomposition.
Step 1: Probabilistic factorization. Using the chain rule of conditional probability, we can factor-
ize the joint conditional distribution:

p(z07r | Ztat) = p(z(] | ztvrvt)p(r | Ztat) (33)

This factorization is always valid and separates the problem into two components: generating clean
latents given both noisy latents and semantic information, and inferring semantic information from
noisy latents.
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Step 2: Logarithmic transformation. Taking the natural logarithm of both sides of equation (33):

log p(zo,r | 2¢,t) = log [p(zo | 2t,1,t) p(r | 2¢,1)) (34)
= logp(zo | z¢,1,t) + logp(r | z¢, 1) (35)

where we used the logarithm property log(ab) = log a + logb.
Step 3: Gradient computation. Applying the gradient operator V,, with respect to the noisy latent
z; to both sides of equation (35):

V2, logp(zo,r | 24, t) = Vy, [logp(zo | 24,1, t) + log p(r | 24, 1)] (36)
= Vg, logp(zo | z4,1,t) + V3, logp(r | 24, 1) (37)

where we used the linearity of the gradient operator: V(f + g) = Vf + Vg.
Step 4: Functional interpretation. The resulting decomposition has clear functional meaning:

* V., logp(zo | zt,r,t) represents the Conditional Generation Score: given both noisy input
z; and semantic target r, how should we move in latent space to increase the likelihood of
the clean latent zy?

* V., logp(r | z¢,t) represents the Representation Inference Score: given only noisy input
z;, how should we move in latent space to increase the likelihood of the semantic represen-
tation r?

This completes the proof of the score decomposition in equation (32). O

Corollary 1 (Functional Interpretation of Score Components) . Thm. I provides the central
theoretical insight of our work. The total learning objective is a linear superposition of two
functionally distinct tasks:

1. Conditional Generation Score: The term ¥V ,, log p(zg | z:,,t) corresponds to the R2G
(Representation-to-Generation) circuit. It addresses the pure synthesis problem: given
a noisy latent z; and the ground-truth semantic concept r, compute the score vector
towards the clean latent z.

2. Representation Inference Score: The term V4, log p(r | z4,t) corresponds to the L2R
(Latent-to-Representation) circuit. It addresses the semantic inference problem: given
only a noisy latent z;, compute the score vector that increases the likelihood of the un-
derlying semantic representation being r.

B.2.5 EMERGENCE OF THE TWO-PHASE TRAINING FRAMEWORK FROM THE THEORY

A naive attempt to train a single, monolithic network Fg to approximate the joint score in (32)
would re-entangle the two objectives, leading to optimization conflicts. A more principled approach,
suggested by the decomposition itself, is a curriculum learning strategy that addresses the two scores
in a structured sequence. This naturally gives rise to the ERW framework.

Lemma 1 (Phase 1: Representation Warmup as Boundary Condition Matching) . The first
phase of ERW, the representation warmup, can be interpreted as learning the Representation
Inference Score at the clean boundary condition, i.e., at t = 0.

Proof. We provide a detailed derivation showing how the warmup phase corresponds to boundary
condition matching.

Step 1: Analysis at the boundary condition. At ¢ = 0, the forward diffusion process gives us
z; = Z¢ (no noise added). The Representation Inference Score becomes:

Va, logp(r | ze,t)|,_y = V2, log p(r | 20) (38)
Step 2: Simplification using the semantic constraint. From equation (19), we have:

p(r | 20) = 6 (r = fiep (Doyue(20))) (39)

This is a Dirac delta function, which means the score is not well-defined in the classical sense.
However, we can interpret this in terms of the desired functional behavior.
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Step 3: Functional interpretation and approximation. In practice, we approximate the determin-
istic relationship through a learned mapping. The warmup objective is:

Lwarmup = ]Exwpdm |: ZNT-Xent (% (RBLZR (HevAE (X) ) ) ) frep (X)):| (40)

where Rg,,, is the L2R circuit that we train to approximate the mapping zo — r.
Step 4: Connection to boundary condition. Optimizing NT-Xent at =0 serves as boundary-
condition matching for representation alignment. Specifically, we want:

RGLZR (ZO) ~ frep(DeVAE (ZO)) =r 41)

This provides a strong "semantic anchor" for the model at ¢ = 0, ensuring that the L2R circuit
learns to extract meaningful semantic representations from clean latents under the same contrastive
objective used in Phase 2.

Step 5: Extension to ¢ > 0. Once the boundary condition is satisfied, the L2R circuit can be
expected to generalize to noisy inputs z; for ¢ > 0, providing a foundation for the representation
inference score at all time steps. O

Lemma 2 (Phase 2: Guided Synthesis as Joint Score Optimization) . The second phase of
ERW, guided synthesis, corresponds to learning the full joint score, where the two components
from Thm. I are learned concurrently under a curriculum.

Proof. We demonstrate how Phase 2 implements joint score optimization through a carefully de-
signed curriculum.

Step 1: Phase 2 objective decomposition. After the warmup phase, the L2R circuit Rg,,, is a
competent representation extractor. The Phase 2 total loss is:

£t0tal = Ldiffusion + )\train(k) . £a1ign (42)

where:
Ediffusion = Et,zt,zo |:U)(t) ||F9 (Zta t) - vzt 1ng(ZO | Zy, t)||2 (43)
Ealign == Ezt,r [galign (RBLZR (Zh t)7 I‘)] (44)

Step 2: Connection to the score decomposition. From Thm. 1, the joint conditional score decom-
poses as:

vzt logp(ZO7 r ‘ Zy, t) = vzt, logp(zo ‘ Zi, T, t) + Vzt 1ng(r | Zy, t) (45)
Our Phase 2 objective should be interpreted as shaping these two functional components via practical
surrogate losses: the standard diffusion loss Lgigusion for generation and the alignment loss L;jign
for representation, rather than claiming exact equality to the joint score at all times. In practice, we
instantiate £,y as a contrastive objective (e.g., NT-Xent) with in-batch negatives.
Step 3: Curriculum learning analysis. The training-schedule-dependent weighting A¢ain (k) cre-
ates a curriculum that balances the two objectives:

* Early in Phase 2 (large Apain(k)):
‘Ctotal ~ Atra,in(lf) . Ealign + Ldiﬁusion (46)

The optimization is strongly guided to maintain semantic consistency on noisy inputs, rein-
forcing the L2R circuit’s ability to extract representations from z; for ¢ > 0.

* Late in Phase 2 (small \¢pqin (K)):
Etotal ~ Ediffusion (47)

The L2R circuit is assumed to be robust, and optimization focus shifts to perfecting the
full score matching. This allows the R2G circuit to learn the Conditional Generation Score
while relying on stable, high-quality representations from the L2R circuit.

O
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C ANALYSIS DETAILS

C.1 CKNNA METRIC DETAILS

CKNNA (Centered Kernel Nearest-Neighbor Alignment) is a relaxed version of the popular Cen-
tered Kernel Alignment (CKA; Kornblith et al. 2019) that mitigates the strict definition of alignment.
We generally follow the notations in the original paper for an explanation (Huh et al., 2024).

First, CKA have measured global similarities of the models by considering all possible data pairs:

HSIC(K, L)

CKA(K,L) = ,
(K.L) /HSIC(K, K)HSIC(L, L)

(48)

where K and L are two kernel matrices computed from the dataset using two different networks.
Specifically, it is defined as K;; = k(¢;, ¢;) and L;; = r(v;,%;) where ¢;, ¢; and 1;,1); are
representations computed from each network at the corresponding data x;,x; (respectively). By
letting « as a inner product kernel, HSIC is defined as

HSIO(K, L) = =333 (ZZ (1, 65) — Edl(n, 00]) (i, ¥5) — Bil(ws, 0)]) ). (49)

CKNNA considers a relaxed version of Eq. (48) by replacing HSIC(K, L) into Align(K, L), where
Align(K, L) computes Eq. (49) only using a k-nearest neighborhood embedding in the datasets:

Align(K, L) = (ZZ (i, ) ({¢i, ;) — Ez[<¢i>¢l>])(Wn%)‘ﬁ[@u%ﬂ))y(50)

n—l

where a(i, ) is defined as

a(i,j; k) =W[i # j and ¢; € knn(¢;; k) and ¢; € knn(¢;; k)], (51)

so this term only considers k-nearest neighbors at each . In this paper, we randomly sample 10,000
images in the validation set in ImageNet (Deng et al., 2009) and report CKNNA with k£ = 10 based
on observation in Huh et al. (2024) that smaller k£ shows better a better alignment.

C.2 DESCRIPTION OF PRETRAINED VISUAL ENCODERS

* MoCov3 (Chen et al., 2021) studies empirical study to train MoCo (He et al., 2020; Chen et al.,
2020b) on vision transformer and how they can be scaled up.

e CLIP (Radford et al., 2021) proposes a contrastive learning scheme on large image-text pairs.

e DINOV2 (Oquab et al., 2024) proposes a self-supervised learning method that combines pixel-
level and patch-level discriminative objectives by leveraging advanced self-supervised tech-
niques and a large pre-training dataset.

D HYPERPARAMETER AND MORE IMPLEMENTATION DETAILS

D.1 HYPERPARAMETER TUNING

We adopt a bisection-style search to determine the key hyperparameters for ERW, specifically the
ERW Depth (i.e., which early layers to initialize), the Projection Depth, and the initial value of A in
Eq. (14). To keep the search computationally manageable, we do the following for each candidate
hyperparameter setting:
(a) We run a short warmup stage for 10k iterations, followed by 20k iterations of main diffusion
training.
(b) To evaluate performance quickly, we reduce the sampling steps from the usual 250 to 50 and
generate only 10k samples (instead of 50k) to compute a preliminary FID score.
This procedure substantially reduces the search cost while retaining sufficient fidelity to guide hyper-
parameter choices. In practice, around three to five such tests suffice to converge upon near-optimal
settings for ERW Depth, Projection Depth, and A, enabling both efficient training and high-quality
generation.
Further implementation details. We implement our model based on the original SiT implementa-
tion (Ma et al., 2024). Throughout the experiments, we use the exact same structure as DiT (Pee-
bles & Xie, 2023) and SiT (Ma et al., 2024). We use AdamW (Kingma, 2015; Loshchilov, 2017)
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Table 6: Hyperparameter setup.

Figure 1,2,3 Table 3,4 (SiT-B)  Table 1,2,5 (SiT-XL)

Architecture

Input dim. 32x32x4 32x32x4 32x32x4
Num. layers 28 12 24
Hidden dim. 1,152 768 1,152
Num. heads 16 12 16
ERW

sim(+, ) NT-Xent NT-Xent NT-Xent
Encoder f(x) DINOv2-B DINOv2-B DINOv2-B
Optimization

Batch size 256 256 256
Optimizer AdamW AdamW AdamW
Ir 0.0001 0.0001 0.0001
(B1, B2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Interpolants

[T 1-t 1-t 1-t
ot t t t

Wt Ot Ot Ot
Training objective v-prediction v-prediction v-prediction
Sampler Euler-Maruyama  Euler-Maruyama Euler-Maruyama
Sampling steps 250 250 250
Guidance - - -

Table 7: Impact of Training Tricks in ERW. Using the SD-VAE Rombach et al. (2022), ERW achieves an
FID of 55.6 at 50K training steps on ImageNet class-conditional generation. This table illustrates how each
training trick incrementally improves the FID, demonstrating that advanced design techniques enhance the
original DiT performance.

Training Trick Training Step  FID-50k|
Representation Alignment Loss
+ REPA (Yu et al., 2024) 50K 78.2
Architecture Improvements
+ Rotary Pos Embed (Su et al., 2024) 50K 73.6
Initialization
+ ERW (Ours) 50K 51.7

with constant learning rate of le-4, (81, 52) = (0.9,0.999) without weight decay. To speed up
training, we use mixed-precision (fpl16) with gradient clipping at norm 1.0. We also pre-compute
compressed latent vectors from raw pixels via stable diffusion VAE (Rombach et al., 2022) and
use these latent vectors. Because of this, we do not apply any data augmentation, but we find this
does not lead to a big difference, as similarly observed in EDM2 (Karras et al., 2024). We also use
stabilityai/sd-vae-ft-ema decoder for decoding latent vectors to images. For MLP used
for a projection, we use three-layer MLP with SiLU activations (Elfwing et al., 2018). We provide a
detailed hyperparameter setup in Table 6.

Pretrained encoders. For MoCov3-B and -L models, we use the checkpoint in the implementation
of RCG (Li et al., 2024);! for other checkpoints, we use their official checkpoints released in their
official implementations. To adjust a different number of patches between the diffusion transformer
and the pretrained encoder, we interpolate positional embeddings of pretrained encoders.

Sampler. For sampling, we use the Euler-Maruyama sampler with the SDE with a diffusion co-
efficient w, = o;. We use the last step of the SDE sampler as 0.04, and it gives a significant
improvement, similar to the original SiT paper (Ma et al., 2024).

Training Tricks. We explore the influence of various training techniques on ERW’s performance.
Notably, we observe performance improvements when incorporating Rotary Positional Embed-
dings (Su et al., 2024).

"https://github.com/LTH14/rcg
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E EVALUATION DETAILS

We strictly follow the setup and use the same reference batches of ADM (Dhariwal & Nichol, 2021)
for evaluation, following their official implementation.> We use 8 xNVIDIA H800 80GB GPUs or
for evaluation and enable tf32 precision for faster generation, and we find the performance difference
is negligible to the original fp32 precision.

In what follows, we explain the main concept of metrics that we used for the evaluation.

e FID (Heusel et al., 2017) measures the feature distance between the distributions of real and
generated images. It uses the Inception-v3 network (Szegedy et al., 2016) and computes distance
based on an assumption that both feature distributions are multivariate gaussian distributions.

e sFID (Nash et al., 2021) proposes to compute FID with intermediate spatial features of the
Inception-v3 network to capture the generated images’ spatial distribution.

¢ IS (Salimans et al., 2016) also uses the Inception-v3 network but use logit for evaluation of the
metric. Specifically, it measures a KL-divergence between the original label distribution and the
distribution of logits after the softmax normalization.

¢ Precision and recall (Kynkiinniemi et al., 2019) are based on their classic definitions: the
fraction of realistic images and the fraction of training data manifold covered by generated data.

F BASELINES

In what follows, we explain the main idea of baseline methods that we used for the evaluation.

e ADM (Dhariwal & Nichol, 2021) improves U-Net-based architectures for diffusion models and
proposes classifier-guided sampling to balance the quality and diversity tradeoff.

* VDM++ (Kingma & Gao, 2024) proposes a simple adaptive noise schedule for diffusion models
to improve training efficiency.

« Simple diffusion (Hoogeboom et al., 2023) proposes a diffusion model for high-resolution im-
age generation by exploring various techniques to simplify a noise schedule and architectures.

¢ CDM (Ho et al., 2022) introduces cascaded diffusion models: similar to progressiveGAN (Kar-
ras et al., 2018), it trains multiple diffusion models starting from the lowest resolution and apply-
ing one or more super-resolution diffusion models for generating high-fidelity images.

e LDM (Rombach et al., 2022) proposes latent diffusion models by modeling image distribution
in a compressed latent space to improve the training efficiency without sacrificing the generation
performance.

e U-ViT (Bao et al., 2023) proposes a ViT-based latent diffusion model that incorporates U-Net-
like long skip connections.

o DiffiT (Hatamizadeh et al., 2024) proposes a time-dependent multi-head self-attention mecha-
nism for enhancing the efficiency of transformer-based image diffusion models.

e MDTv2 (Gao et al., 2023) proposes an asymmetric encoder-decoder scheme for efficient training
of a diffusion-based transformer. They also apply U-Net-like long-shortcuts in the encoder and
dense input-shortcuts in the decoder.

e MaskDiT (Zheng et al., 2024) proposes an asymmetric encoder-decoder scheme for efficient
training of diffusion transformers, where they train the model with an auxiliary mask reconstruc-
tion task similar to MAE (He et al., 2022).

e SD-DIiT (Zhu et al., 2024) extends MaskdiT architecture but incorporates self-supervised dis-
crimination objective using a momentum encoder.

* DIiT (Peebles & Xie, 2023) proposes a pure transformer backbone for training diffusion models
based on proposing AdaIN-zero modules.

e SiT (Ma et al., 2024) extensively analyzes how DiT training can be efficient by moving from
discrete diffusion to continuous flow-based modeling.

* REPA (Yu et al., 2024) proposes a representation alignment method for diffusion models by
aligning the representation of the diffusion model with a pretrained encoder.

https://github.com/openai/guided-diffusion/tree/main/evaluations
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