CAN'T SEE THE WOOD FOR THE TREES: CAN VISUAL Adversarial Patches Fool Hard-Label Large Vision-Language Models?

Anonymous authors

006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

032

034

Paper under double-blind review

Abstract

Large vision-language models (LVLMs) have demonstrated impressive capabilities in handling multi-modal downstream tasks, gaining increasing popularity. However, recent studies show that LVLMs are susceptible to both intentional and inadvertent attacks. Existing attackers ideally optimize adversarial perturbations with backpropagated gradients from LVLMs, thus limiting their scalability in practical scenarios as real-world LVLM applications will not provide any LVLM's gradient or details. Motivated by this research gap and counter-practical phenomenon, we propose the first and novel hard-label attack method for LVLMs, named HardPatch, to generate visual adversarial patches by solely querying the model. Our method provides deeper insights into how to investigate the vulnerability of LVLMs in local visual regions and generate corresponding adversarial substitution under the practical yet challenging hard-label setting. Specifically, we first split each image into uniform patches and mask each of them to individually assess their sensitivity to the LVLM model. Then, according to the descending order of sensitive scores, we iteratively select the most vulnerable patch to initialize noise and estimate gradients with further additive random noises for optimization. In this manner, multiple patches are perturbed until the altered image satisfies the adversarial condition. Extensive LVLM models and datasets are evaluated to demonstrate the adversarial nature of the proposed HardPatch. Our empirical observations suggest that with appropriate patch substitution and optimization, HardPatch can craft effective adversarial images to attack hard-label LVLMs.

1 INTRODUCTION

Nowadays, large vision-language models (LVLMs) (Bai et al., 2023; Ye et al., 2023), at the juncture of computer vision and natural language processing, have become indispensable and marked 037 a significant milestone in the field of artificial intelligence. By further benefiting from the strong comprehension of large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023a;b), recent LVLMs (Dai et al., 2024; Liu et al., 2024a; Zhu et al., 2023) on top of LLMs show notable 040 developments in numerous downstream tasks (Nichol et al., 2021; Ramesh et al., 2022; Rombach 041 et al., 2022; Tsimpoukelli et al., 2021; Li et al., 2023; Alayrac et al., 2022). However, most recently 042 proposed LVLMs suffer from severe security issues (Liu et al., 2024b; Fan et al., 2024), where an 043 attacker's well-crafted adversarial input sample can easily fool the LVLM models, posing a consid-044 erable challenge to real-world LVLM applications.

045 Based on the accessibility level of victim models, existing LVLM attackers can be generally catego-046 rized into three types: white-box attacks (Bailey et al., 2023; Dong et al., 2023; Fu et al., 2023; Cui 047 et al., 2023; Gao et al., 2024a; Wang et al., 2024; Lu et al., 2024; Luo et al., 2024; Gao et al., 2024b), 048 gray-box attacks (Shayegani et al., 2023; Wang et al., 2023), and transfer-based black-box attacks (Zhao et al., 2024; Yin et al., 2023; Guo et al., 2024), as shown in Figure 1 (a). For white-box attacks, the attackers are assumed to have full knowledge of the victim LVLMs, including model 051 architecture and parameters. These works simply formulate the attack as an optimization problem and utilize the backpropagated gradient to generate adversarial examples. To alleviate this reliance 052 on model details to a certain extent, gray-box attacks solely require access to the visual encoder of LVLMs. However, since real-world LVLM applications are impossible to share any model details

054 with users, white-/gray-box attacks seem excessively idealistic and cannot work well in practical 055 scenarios. Although no target-model details are required in transfer-based black-box attacks, they 056 still rely on the additional knowledge of other surrogate LVLM models. In sum, existing LVLM 057 attackers are severely limited by their scalability, and there is no attack that truly does not require 058 any prior LVLM information in a more challenging hard-label setting (Cheng et al., 2018).

To address this research gap, we introduce 060 the first hard-label adversarial attack against 061 LVLMs, where the attackers can solely query 062 the input/output of LVLMs. However, with-063 out using model details, it is difficult to de-064 termine where and how to add perturbations to images to mislead LVLMs. Luckily, the 065 design of adversarial patch provides a con-066 cise and interpretable way to achieve success-067 ful real-world attacks (Brown et al., 2017; 068 Duan et al., 2020). By appropriately plac-069 ing the adversarial patches on the image according to the model's attention, its adversar-071 ial nature will fool the LVLM's eyes and lead 072 to inaccurate prompt reasoning. Moreover, 073 we empirically find that adversarial patches 074 have fewer perturbations and are easier to add 075 than directly perturbing pixel-wise noises on whole images (Zhao et al., 2024; Cheng et al., 076 2018), as shown in Figure 1 (b). Based on the 077 above observations, we attempt to investigate "How to design effective adversarial patches 079 to mislead hard-label LVLMs?". Therefore, the remaining questions in designing LVLM 081 attacks are: In the hard-label setting, (1) how 082 to explore the LVLM's attention on differ-083 ent local regions of images for patch substitu-

(b) Comparison: Global noise vs. Adv. Patches.

Figure 1: (a) Attack process of existing LVLM attackers. (b) We re-implement (Zhao et al., 2024) in the hard-label setting by removing its surrogate model. Compared to it, our adversarial patches have fewer perturbations and are easier to add.

084 tion? and (2) how to design/optimize the patch pattern in order to achieve the adversarial condition? 085

In this paper, we propose a novel adversarial patch method called *HardPatch* to tackle the above hard-label issues. Specifically, we first uniformly split the input image into multiple patches with 087 the same size. Then, to assess the sensitivity of each patch to the LVLM model, we individually 880 mask each patch and feed them into the LVLM to measure the semantic changes between their 089 corresponding text output and the original output. The larger the distance, the more sensitive the LVLM model is to altering the corresponding patch. Therefore, by scoring all patches according to 091 their sensitivities in descending order, we iteratively substitute the more vulnerable patch with ini-092 tial noise and estimate gradients with further additive random noises for optimizing the adversarial pattern. If the patch updated with a fixed number of iterations is still not adversarial, we addition-093 ally perform the same altering process on the next patch. Multiple patches are perturbed until the 094 altered image satisfies the adversarial condition. The key contributions of our work are outlined as follows: (i) We design *HardPatch*, a novel adversarial attack method for more practical yet chal-096 lenging hard-label LVLMs. We propose to generate visual adversarial patches to be added to input images for attackers in real-world scenarios. (ii) To determine where to place the adversarial patch, 098 we develop a replacement order determination module to investigate the sensitivity of LVLM to each patch. Based on this, we iteratively substitute more vulnerable patches with noise and design the 100 gradient estimation strategy to further optimize it until the attack succeeds. (iii) These insights are 101 validated by extensive experiments on different LVLM models and datasets. Corresponding results 102 demonstrates the effectiveness of our proposed *HardPatch* against hard-label LVLM models.

103 104

RELATED WORK 2

105 106

Adversarial Robustness of LVLM Models. LVLMs generally combine the capabilities of process-107 ing visual information with natural language understanding by using pre-trained vision encoders

108 with language models. Due to this multimodal nature (Szegedy et al., 2013), LVLMs are partic-109 ularly vulnerable as the multi-modal integration not only amplifies their vulnerable utility but also 110 introduces new attack vectors that are absent in unimodal systems. Most of existing LVLM attackers 111 (Bailey et al., 2023; Dong et al., 2023; Fu et al., 2023; Cui et al., 2023; Gao et al., 2024a; Wang et al., 112 2024; Lu et al., 2024; Luo et al., 2024; Gao et al., 2024b) are inspired by the adversarial vulnerability observed in vision tasks. They evaluate the adversarial robustness of LVLMs under white-box 113 settings, where they have the full knowledge of LVLMs models including network structure and 114 weights. To generate the adversarial examples, they simply add and optimize imperceptible pertur-115 bations on the whole image to benign image inputs via back-propagation. To reduce the reliance on 116 model knowledge, some gray-box attackers (Shayegani et al., 2023; Wang et al., 2023) solely require 117 access to the visual encoder of LVLMs and directly generate the perturbed visual representations to 118 fool the latter process. Although a few researchers (Zhao et al., 2024; Yin et al., 2023; Guo et al., 119 2024) claim that they achieve more challenging black-box attacks, their attacks are implemented in 120 a transfer-based setting, where they still require the additional knowledge of other surrogate LVLM 121 models to generate adversarial samples then transfer them to attack victim LVLMs. Therefore, how 122 to design an LVLM adversarial attack in a more practical hard-label setting is still a research gap.

123 Adversarial Patch. Adversarial patches (Brown et al., 2017; Karmon et al., 2018; Eykholt et al., 124 2018) represent a unique subclass of adversarial attacks that focus on generating localized perturba-125 tions to fool deep learning models. Unlike traditional adversarial attacks, which often involve slight 126 pixel-level modifications across the entire image, adversarial patches are confined to small regions 127 but can cause significant misclassifications even when covering only a fraction of the input. This 128 adversarial patch is proven to have more practicality (Athalye et al., 2018), contributing to a deeper 129 understanding of the interaction between digital perturbations and physical environments. Some works (Liu et al., 2016) also explore the transferability of adversarial patches across different mod-130 els. Concurrently, (Duan et al., 2020) focused on generating adversarial patches using generative 131 models, enhancing the efficiency and effectiveness of attack generation. However, there is still no 132 adversarial patch attack being investigated in LVLM applications. 133

135 3 THE PROPOSED ATTACK

In this section, we first describe the preliminary adversarial attacks on Large Vision-Language Models (LVLMs). We then present the overview of the proposed attack approach *HardPatch* and illustrate details of each component.

3.1 PRELIMINARY

Given the input image x and the input prompt c_{in} , an image-grounded text generative LVLM Given the input image x and the input prompt c_{in} , an image-grounded text generative LVLM $f_{\Theta}(x, c_{in}) \mapsto c_{out}$ predicts a suitable textual response c_{out} , where Θ is the LVLM's parameters. Since LVLM drivers multiple tasks, in image captioning tasks, for instance, c_{in} is a placeholder \oslash and c_{out} is the caption; in visual question answering tasks, c_{in} is the question and c_{out} is the answer. The adversary typically adds an imperceptible visual perturbation on the benign image to craft an adversarial example x' that misleads the LVLM model f_{Θ} to output a wrong prediction with a specific prompt c_{in} as:

$$f_{\Theta}(\boldsymbol{x}', \boldsymbol{c}_{in}) \neq f_{\Theta}(\boldsymbol{x}, \boldsymbol{c}_{in}), \text{ s.t. } ||\boldsymbol{x}' - \boldsymbol{x}||_{p} < \epsilon,$$
(1)

151 where ϵ is the image perturbation magnitude. Specifically, for the untargeted attack, the attack 152 is successful if the model is misled to generate text different from the prediction with the clean 153 image. For the targeted attack, the attack is considered to be successful only if the prediction exactly 154 matches the attackers' preset target text c'_{out} where $c'_{out} \neq c_{out}$.

¹⁵⁵ In this paper, we focus on the task of hard-label LVLM adversarial attack, *i.e.*, attackers can only access to the predicted text output from the victim LVLM model to generate adversarial examples.

157

149

150

134

136

140

- 158 3.2 OVERVIEW OF OUR *HardPatch* ATTACK159
- Discussion on Our Motivation. Existing LVLM attackers (Dong et al., 2023; Wang et al., 2023;
 2024; Zhang et al., 2024; Luo et al., 2024; Zhao et al., 2024) generally add pixel-wise noise on the whole image input, which are easily optimized in the white-/gray-box or transfer-based black-box

Figure 2: Overview of our proposed *HardPatch* attack. Given the input image and prompts, we first 186 uniformly split the image into patches of the same size. Then, we individually mask each patch to assess their sensitivity to the LVLM model by measuring the semantic changes between their text output with the clean one. After that, we iteratively substitute the most vulnerable patch with noise 189 and estimate gradients to update its noisy pattern. Multiple patches are perturbed until the final 190 altered image achieves the adversarial condition.

194

195

196

197

199

187

188

setting via the backpropagated gradient. However, in more challenging hard-label setting, it is difficult to directly determine and tamper the LVLM's adversarial attention to optimize previous global noise by solely querying the LVLM model. Inspired by the global semantic invariant characteristic with local contexts mask of MAE (He et al., 2022), we propose to develop attack based on adversarial patch, which assesses the LVLM's vulnerability on local alteration by individually masking different patches of the original images. Then, the patches that have a greater adversarial impact on the LVLM model will be further combined to jointly be perturbed for achieving attacks.

Overall of Our Attack Pipeline. The overall pipeline of our *HardPatch* is illustrated in Figure 2. A 200 placement order determination module is first introduced to assess the sensitivity of each patch to the 201 LVLM and re-order the patches. Then, the adversarial patch substitution and optimization module is 202 proposed to alter the patches following the order step-by-step. Multiple patches are perturbed until 203 the attack succeeds. We will provide more details of these two modules in the following.

204 205 206

REPLACEMENT ORDER DETERMINATION OF ADVERSARIAL PATCHES 3.3

207 As for initialization, we first uniformly split the image x into M patches $\{v_1, v_2, ..., v_M\}$. Then, we 208 propose to individually mask each original patch to assess the impact of the corresponding altered 209 sample, where the larger the impact, the more sensitive the LVLM model is to altering the corre-210 sponding patch. Therefore, more important patches with greater impact on the victim model should 211 be substituted with noisy patterns at the beginning in the adversarial replacement order. Specifically, to evaluate the importance/sensitivity of each patch $v_m, m \in M$, we set the patch v_m to be all zero 212 and feed the image into the LVLM model. We utilize a lightweight textual encoder (i.e., CLIP (Rad-213 ford et al., 2021)) to evaluate the semantic similarity between its text output and the clean output as: 214

$$S(\boldsymbol{v}_m) = \operatorname{Sim}(f_{\Theta}(\boldsymbol{x}'(\boldsymbol{v}_m), \boldsymbol{c}_{in}), f_{\Theta}(\boldsymbol{x}, \boldsymbol{c}_{in})),$$
(2)

where $x'(v_m)$ denotes generating adversarial sample by altering patch v_m , Sim(\cdot) is the text-aware cosine similarity function and its range is between [0, 1]. Then we compute the importance score of each v_m by evaluating the semantic changes by altering patch v_m , the large score indicates the better attack performance:

$$\mathcal{I}(\boldsymbol{v}_m) = 1 - \mathcal{S}(\boldsymbol{v}_m). \tag{3}$$

Based on all importance scores $\{\mathcal{I}(\boldsymbol{v}_m)\}_{m=1}^{m=M}$, we sort all patches in descending order as the adversarial replacement order $\mathcal{O} = \{\boldsymbol{v}'_1, \boldsymbol{v}'_2, ..., \boldsymbol{v}'_M\}$ for latter process.

3.4 Adversarial Patch Substitution and Optimization

226 To achieve hard-label LVLM attack, according to the replacement order $\mathcal{O} = \{v'_1, v'_2, ..., v'_M\}$, we 227 propose to constantly substitute and optimize the most vulnerable patches to query the model for 228 investigating whether the alter can change the output semantics. Beginning at the first patch v'_1 , we first randomly sample patch-wise noise δ_1 from a uniform distribution to substitute v'_1 in the image 229 x, then conduct T-step gradient estimation to update δ_1 by solely querying the LVLM model. If the 230 T-times updated δ_1 can not achieve significant attack performance, we additionally substitute and 231 optimize the latter patch with the same process. The whole attacking procedure of adversarial patch 232 substitution and optimization does not end until the adversarial condition is achieved. 233

In particular, as for the *m*-th order patch v'_m , patch-wise noise δ_m is initialized to substitute v'_m and we can further optimize it with a reasonable direction by querying the LVLM with additive random noise. Specifically, we first employ a normalized uniform distribution $u \cdot \exp(u-1)$, $u \sim \mathcal{U}(-1,1)$ to add a set of slight perturbations $\{\Delta_k\}_{k=1}^{k=K}$ on the patch δ_m for further altering. At the *t*-th step, we define an indicator function φ_k to measure whether the perturbation Δ_k can cause the misprediction of LVLM model as:

$$\varphi_k^{Tar} = \begin{cases} 1, & \text{If } \operatorname{Sim}(f_{\Theta}(\boldsymbol{x}'_m(\boldsymbol{\delta}_m + \boldsymbol{\Delta}_k), \boldsymbol{c}_{in}), \boldsymbol{c}'_{out}) > \operatorname{Sim}(f_{\Theta}(\boldsymbol{x}'_m(\boldsymbol{\delta}_m), \boldsymbol{c}_{in}), \boldsymbol{c}'_{out}), \\ 0, & \text{If } \operatorname{Sim}(f_{\Theta}(\boldsymbol{x}'_m(\boldsymbol{\delta}_m + \boldsymbol{\Delta}_k), \boldsymbol{c}_{in}), \boldsymbol{c}'_{out}) \le \operatorname{Sim}(f_{\Theta}(\boldsymbol{x}'_m(\boldsymbol{\delta}_m), \boldsymbol{c}_{in}), \boldsymbol{c}'_{out}), \end{cases}$$
(4)

241 242 243

244 245

240

220

224

225

$$\varphi_k^{Untar} = \begin{cases} 1, & \text{If } \operatorname{Sim}(f_{\Theta}(\boldsymbol{x}'_m(\boldsymbol{\delta}_m + \boldsymbol{\Delta}_k), \boldsymbol{c}_{in}), \boldsymbol{c}_{out}) < \operatorname{Sim}(f_{\Theta}(\boldsymbol{x}'_m(\boldsymbol{\delta}_m), \boldsymbol{c}_{in}), \boldsymbol{c}_{out}), \\ 0, & \text{If } \operatorname{Sim}(f_{\Theta}(\boldsymbol{x}'_m(\boldsymbol{\delta}_m + \boldsymbol{\Delta}_k), \boldsymbol{c}_{in}), \boldsymbol{c}_{out}) \ge \operatorname{Sim}(f_{\Theta}(\boldsymbol{x}'_m(\boldsymbol{\delta}_m), \boldsymbol{c}_{in}), \boldsymbol{c}_{out}), \end{cases}$$
(5)

where Tar, Untar denote the targeted and untargeted attacks, x'_m denotes the image already being substituted by previous patch-wise perturbations with $\{\delta_1 + \Delta, \delta_2 + \Delta, ..., \delta_{m-1} + \Delta\}$. Therefore, following the traditional Monte Carlo method (James, 1980), we estimate the final updating direction

251	A	Algorithm 1: Algorithm of The Proposed Attack
252	Ī	nput: Image input x , text input c_{in} , LVLM model $f_{\Theta}(\cdot)$
253	(Dutput: Adversarial image with perturbed patches
254	1 S	plit image \boldsymbol{x} into M Patches;
255	2 f	or each patch v_m in x do // Replacement Order Determination
256	3	Compute the importance score $\mathcal{I}(\boldsymbol{v}_m)$ via Eq. (2),(3);
257	4 e	nd
258	5 S	ort all patches based on their importance scores in descending order;
259	6 f	or each patch in replacement order do // Adversarial Patch Substitution and
260		Optimization
261	7	Replace patch v'_m with initial noise δ_m on the image x_m ;
201	8	for $t = 1 : T$ do
202	9	Optimize δ_m with a set of slight perturbations $\{\Delta_k\}_{k=1}^{k=K}$ via Eq. (4),(5),(6);
263	10	end
264	11	if adversarial condition is satisfied (i.e., $Sim^{Tar} > \tau_1$ or $Sim^{Untar} < \tau_2$) or Adversarial
265		patch number reaches preset Maximum then
266	12	break;
267	13	end
268	14 e	nd
269	15 r	eturn The final x'_m is the adversarial sample

284

287

289

291

292 293

295 296 297

303

304

305 306

307 308

Table 1: Attack performance on different LVLM models on MS-COCO dataset (Lin et al., 2014). As for targeted attack (\uparrow), we report the semantic similarity scores between the LVLM's output and the attackers' chosen label "Unknown". As for untargeted attack (\downarrow), we report the semantic similarity scores between the LVLM's output and clean output. More results are in Appendix A.1.

			<u> </u>		VOA	0 11
	LVLM Model	Attack Method	Classification	Captioning	VQA	Overall
		Clean ^{Tar}	0.409	0.436	0.447	0.431
	BLIP-2 (Li et al. 2023)	$HardPatch^{Tar}$	0.862	0.833	0.827	0.841
	DEI 2 (Er et al., 2023)	Clean ^{Untar}	1.000	1.000	1.000	1.000
		$HardPatch^{Untar}$	0.524	0.601	0.547	0.557
		Clean ^{Tar}	0.438	0.451	0.463	0.450
	MiniGPT-4 (Zhu et al 2023)	$HardPatch^{Tar}$	0.849	0.815	0.872	0.845
L		Clean ^{Untar}	1.000	1.000	1.000	1.000
		$HardPatch^{Untar}$	0.493	0.596	0.524	0.538
		Clean ^{Tar}	0.385	0.479	0.436	0.433
	LLaVA-15 (Liu et al. 2024a)	$HardPatch^{Tar}$	0.875	0.841	0.880	0.865
		Clean ^{Untar}	1.000	1.000	1.000	1.000
		$HardPatch^{Untar}$	0.502	0.574	0.557	0.544
		Clean ^{Tar}	0.473	0.512	0.508	0.498
	InstructBLIP (Dai et al 2024)	$HardPatch^{Tar}$	0.839	0.803	0.844	0.829
		Clean ^{Untar}	1.000	1.000	1.000	1.000
		$HardPatch^{Untar}$	0.510	0.565	0.526	0.534

Table 2: Performance comparison (\uparrow) with other LVLM attack on ImageNet (Deng et al., 2009).

Attack	BLIP-2 (Li et al., 2023)	MiniGPT-4 (Zhu et al., 2023)	LLaVA-1.5 Liu et al. (2024a)
Clean (Zhao et al., 2024)	0.503	0.470	0.437
MF-it (Zhao et al., 2024)	0.546	0.484	0.452
MF-ii (Zhao et al., 2024)	0.592	0.572	0.450
MF-ii+it (Zhao et al., 2024)	0.665	0.666	0.597
Ours	0.835	0.859	0.831

by weighted averaging over the K possible directions $\{\Delta_k\}_{k=1}^{k=K}$, and optimize δ_m as:

$$\boldsymbol{\delta}_{m}^{\prime} = \boldsymbol{\delta}_{m} + \frac{\frac{1}{K} \sum_{k=1}^{K} \varphi_{k} \boldsymbol{\Delta}_{k}}{||\frac{1}{K} \sum_{k=1}^{K} \varphi_{k} \boldsymbol{\Delta}_{k}||_{2}}.$$
(6)

By iteratively substituting and optimizing each patch with a set of perturbations with T-step, we can generate harmful noise with a certain number of perturbed patches to mislead the LVLM model. The overall algorithm of our attack process is summarized in Algorithm 1.

4 **EXPERIMENTS**

4.1 EXPERIMENTAL SETUPS

310 LVLM Models and Datasets. To assess the LVLMs' robustness against our attack, We consider 311 four open-source and advanced LVLM models as our evaluation benchmark, including BLIP-2 (Li 312 et al., 2023), MiniGPT-4 (Zhu et al., 2023), LLaVA-1.5 (Liu et al., 2024a), and InstructBLIP (Dai 313 et al., 2024). As for LVLM datasets, we consider three datasets, *i.e.*, MS-COCO (Lin et al., 2014), 314 ImageNet (Deng et al., 2009), and DALL-E (Ramesh et al., 2021; 2022) with tasks of image classi-315 fication, image captioning, and visual question answering (VQA). Specifically, We follow previous work (Luo et al., 2024) and (Zhao et al., 2024) to construct MS-COCO and ImageNet datasets, re-316 spectively. The DALL-E dataset employs a generative method, using random textual descriptions 317 extracted from MS-COCO captions as prompts for image generation powered by GPT-4 (Achiam 318 et al., 2023). Additionally, it includes randomly generated QA pairs based on the images. 319

Implementation Details. For each input image, the patch number M is set to 49. We follow previous work (Zhao et al., 2024) to employ the CLIP model (Radford et al., 2021) to evaluate the semantic similarity in Eq. (2). The optimization number T for each patch is set to 100, and the additive noise number K is set to 200. As for the adversarial condition, the similarity threshold τ_1 for the targeted attack is set to 0.8, and the similarity threshold τ_2 for the untargeted attack is set to

Target Text	LVLM Model	Classification	Captioning	VQA	Öv
	BLIP-2 (Li et al., 2023)	0.801	0.792	0.837	0.
Lam correct	MiniGPT-4 (Zhu et al., 2023)	0.850	0.834	0.817	0.
I alli soll y	LLaVA-1.5 (Liu et al., 2024a)	0.862	0.841	0.874	0.
	InstructBLIP (Dai et al., 2024)	0.834	0.803	0.825	0.
	BLIP-2 (Li et al., 2023)	0.878	0.775	0.861	0.
I do not know	MiniGPT-4 (Zhu et al., 2023)	0.825	0.809	0.842	0.
	LLaVA-1.5 (Liu et al., 2024a)	0.857	0.825	0.853	0.
	InstructBLIP (Dai et al., 2024)	0.836	0.799	0.828	0.
	BLIP-2 (Li et al., 2023)	0.843	0.816	0.839	0.
L cannot answer	MiniGPT-4 (Zhu et al., 2023)	0.864	0.827	0.848	0.
i cannot answei	LLaVA-1.5 (Liu et al., 2024a)	0.872	0.824	0.866	0.
	InstructBLIP (Dai et al., 2024)	0.821	0.790	0.809	0.
	BLIP-2 (Li et al., 2023)	0.835	0.804	0.851	0.
Bomh	MiniGPT-4 (Zhu et al., 2023)	0.819	0.843	0.820	0.
DOIIIO	LLaVA-1.5 (Liu et al., 2024a)	0.830	0.798	0.842	0.
	InstructBLIP (Dai et al., 2024)	0.806	0.782	0.815	0.

Table 3: Targeted attack performance (\uparrow) of our *HardPatch* on different LVLM models on MS-COCO dataset (Lin et al., 2014) with different target texts. More results are in Appendix A.1.

Figure 3: Performance comparison between our adversarial patch and the global noise. Experiments are conducted on four LVLM models on the MS-COCO dataset (Lin et al., 2014).

0.6. The preset maximum adversarial patch number is 4. We impose $\epsilon = 16/255$ as the constraint for. All experiments are conducted on eight NVIDIA H100 Tensor Core GPUs.

4.2 ATTACK PERFORMANCE ON TARGETED/UNTARGETED SETTING

To evaluate the effectiveness of the proposed *HardPatch* attack, we show attack performance on 356 different LVLM models on MS-COCO dataset in Table 1. Here, we implement our HardPatch in 357 both targeted and untargeted attack settings. As for the targeted attack, we report the semantic simi-358 larities between the LVLM's output and the attackers' chosen label, where the larger score denotes 359 better performance. We select the target text "unknown" to avoid the inclusion of high-frequency 360 responses commonly found in vision-language tasks. As for the untargeted attack, we report the 361 semantic similarities between the LVLM's output and clean output, where the smaller score denotes 362 better performance. From this table, we can conclude that: (1) As for the targeted attack, the output 363 of clean images Clean^{Tar} shares low textual semantic similarity with the target text. By only query-364 ing the LVLM model, our *HardPatch*^{Tar} can significantly guide the model's output to fit the target text with much higher similarity. (2) As for the untargeted attack, our $HardPatch^{Untar}$ can keep the 366 model's output away from the clean output with much smaller similarity. We also compare our at-367 tack with previous LVLM attacker MF (Zhao et al., 2024) on the same ImageNet (Deng et al., 2009) dataset for fair comparison in Table 2, where our attack still achieves much better performance. 368

We also extend our evaluation to various other target texts in Table 3. The experiment includes a selection of text with varied length and usage frequency. We can observe that our *HardPatch* attack performs the best overall and in each individual task under different target text, though the similarity differs for different target prompts. In summary, our *HardPatch* can effectively attack the LVLMs in the challenging hard-label setting. More evaluations on other datasets can be found in Appendix A.1

374 375

376

324

342

343

344

345

347 348

349

350 351

352

353 354

355

4.3 ADVERSARIAL PATCH vs. GLOBAL NOISE?

We provide an in-depth analysis of why we should choose the adversarial patch instead of the global noise for attacking hard-label LVLMs. In the hard-label setting, we can not explicitly know how

Table 4: Targeted attack performance (\uparrow) of our *HardPatch* on MS-COCO dataset (Lin et al., 2014) with different maximum adversarial patch number. More results are in Appendix A.4.

Maximum Number	LVLM Model	Classification	Captioning	VQA	Overall
	BLIP-2 (Li et al., 2023)	0.678	0.642	0.651	0.657
Number- 1	MiniGPT-4 (Zhu et al., 2023)	0.649	0.665	0.670	0.661
Number $= 1$	LLaVA-1.5 (Liu et al., 2024a)	0.626	0.634	0.668	0.643
	InstructBLIP (Dai et al., 2024)	0.681	0.652	0.645	0.660
BLIP-2 (Li et al., 2023)		0.749	0.726	0.768	0.748
Number -2	MiniGPT-4 (Zhu et al., 2023)	0.761	0.704	0.753	0.739
Number 2	LLaVA-1.5 (Liu et al., 2024a)	0.757	0.725	0.752	0.744
	InstructBLIP (Dai et al., 2024)	0.772	0.730	0.746	0.750
	BLIP-2 (Li et al., 2023)	0.822	0.804	0.800	0.809
Number— 3	MiniGPT-4 (Zhu et al., 2023)	0.815	0.793	0.828	0.812
Number = 5	LLaVA-1.5 (Liu et al., 2024a)	0.861	0.807	0.836	0.835
	InstructBLIP (Dai et al., 2024)	0.810	0.779	0.814	0.801
	BLIP-2 (Li et al., 2023)	0.862	0.833	0.827	0.841
Number— 1	MiniGPT-4 (Zhu et al., 2023)	0.849	0.815	0.872	0.845
Number – 4	LLaVA-1.5 (Liu et al., 2024a)	0.875	0.841	0.880	0.865
	InstructBLIP (Dai et al., 2024)	0.839	0.803	0.844	0.829
0.9 0.7 0.8 0.7 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.7 0.8 0.7 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.8 0.8 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	6/255 55 00k 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.9 0.8 0.7 0.6 0.5 20k 40k 60k 80k1	0.9 	20k 40k 60k	ngle-Image, <i>ε</i> = 16/255 niversal, <i>ε</i> = 16/255 x 80k 100kl 20k w Dwdatt
Query Budger	Query Budget	Query Budg	Jec	Quer	y buuget

Figure 4: Performance comparison of our *HardPatch* in single-image and universal attack settings. Experiments are conducted on four LVLM models on the MS-COCO dataset (Lin et al., 2014).

LVLM models comprehend and reason the input image according to the prompt. Therefore, without understanding the vulnerability of local image regions, directly adding and optimizing global noise to all pixels of the whole image (using Monte Carlo strategy) makes it difficult to achieve good performance as its optimization/search space is too large and complicated. Unlike this global noise, our HardPatch attack is able to implicitly perceive the patch-wise sensitivity to the LVLM model for determining the substitution and optimization location of adversarial patches. We provide detailed experiments on four LVLMs on the MS-COCO dataset in Figure 3. Under the same perturbation budget $\epsilon = 16/255$, global noise requires much more query steps and times (about 2×) for optimiza-tion, and also achieves relatively worse performance. Although global noise with larger $\epsilon = 64/255$ can achieve similar performance with our method, it significantly increases the noise size, resulting in low-quality and noticeable perturbed images. Therefore, our adversarial patch is more impercep-tible and efficient. More experiments and visualizations are illustrated in Appendix A.2.

4.4 EXTENDING HardPatch TO UNIVERSAL ATTACK SETTING

In all our experiments, we implement our proposed *HardPatch* method in a single-image attack setting, where the perturbed patches vary among different image-text inputs. Further, we can also extend our *HardPatch* attack into a universal attack setting, where the patches are the same among all image-text input. Specifically, we follow the traditional universal setting (Moosavi-Dezfooli et al., 2017) to optimize vulnerable patches. In particular, we first assess the sensitivities of all patches based on their averaged impacts on the whole test set. Then, we jointly optimize the patches in their descending order to attack all image-prompt inputs. As shown in Figure 4, we can conclude that: (1) In the same perturbation budget, the universal attack setting is much more difficult to achieve since different images share diverse sensitive regions in different locations to the LVLM model. Therefore, it requires more querying steps and achieves lower final performance in the targeted attack setting. (2) Instead, the single-image attack is more flexible and can straightforwardly perturb the most vulnerable patches in each image. Therefore, it is more efficient and can achieve better attack performance. More experiments and analysis are provided in Appendix A.3.

433	Table 5: Targeted attack performance (↑) of our <i>HardPatch</i> on MS-COCO dataset (Lin et al., 2014)
434	with different image split. The maximum adversarial patch number is set to 4.

Image Split M LVLM Model Classification Ca DLID 2 (Line (Lagrange Construction)) DLID 2 (Line (Lagrange		Captioning	VQA	Overall	
	BLIP-2 (Li et al., 2023)	0.881	0.842	0.839	0.854
Split to 5 × 5	MiniGPT-4 (Zhu et al., 2023)	0.875	0.830	0.863	0.856
Split to 5×5	LLaVA-1.5 (Liu et al., 2024a)	0.874	0.836	0.872	0.861
	InstructBLIP (Dai et al., 2024)	0.868	0.824	0.850	0.847
	BLIP-2 (Li et al., 2023)	0.862	0.833	0.827	0.841
Solit to 7×7	MiniGPT-4 (Zhu et al., 2023)	0.849	0.815	0.872	0.845
Split to 7×7	LLaVA-1.5 (Liu et al., 2024a)	0.875	0.841	0.880	0.865
	InstructBLIP (Dai et al., 2024)	0.839	0.803	0.844	0.829
	BLIP-2 (Li et al., 2023)	0.849	0.821	0.816	0.828
Split to 0×0	MiniGPT-4 (Zhu et al., 2023)	0.834	0.801	0.852	0.829
Spin to 9 × 9	LLaVA-1.5 (Liu et al., 2024a)	0.861	0.829	0.870	0.853
	InstructBLIP (Dai et al., 2024)	0.827	0.789	0.833	0.816

Table 6: Targeted attack performance (\uparrow) of our *HardPatch* on different patch orders on MS-COCO (Lin et al., 2014) dataset. The maximum adversarial patch number is set to 4.

Image Split M	LVLM Model	Classification	Captioning	VQA	Overall
	BLIP-2 (Li et al., 2023)	0.714	0.697	0.680	0.697
Dandam Ordan	MiniGPT-4 (Zhu et al., 2023)	0.696	0.672	0.733	0.700
Kalidolli Order	LLaVA-1.5 (Liu et al., 2024a)	0.729	0.703	0.737	0.723
	InstructBLIP (Dai et al., 2024)	0.688	0.675	0.699	0.687
	BLIP-2 (Li et al., 2023)	0.862	0.833	0.827	0.841
Descending Order	MiniGPT-4 (Zhu et al., 2023)	0.849	0.815	0.872	0.845
Descending Order	LLaVA-1.5 (Liu et al., 2024a)	0.875	0.841	0.880	0.865
	InstructBLIP (Dai et al., 2024)	0.839	0.803	0.844	0.829

4.5 FURTHER ANALYSIS

The Influence of the Maximum Number of Adversarial Patches. The number of adversarial patches is related to the imperceptibility. Therefore, we set a maximum number of adversarial patches during the patch substitution and optimization. To investigate the influence of the maximum number of adversarial patches on the adversarial conditions, we conduct corresponding experiments in Table 4. We can conclude that: (1) Only one adversarial patch is not enough to mask and perturb most images' semantics, resulting in relatively lower attack performance. (2) More adversarial patches can better fool the LVLM model with more vulnerable visual contents. (3) Four adversarial patches are enough to achieve great attack performance. Considering more adversarial patches cost more resources and time, we preset the adversarial patch number to 4 in all our experiments.

Performance of Attack with Different Image Split. We also investigate the impact of different 470 settings of image split. In all our experiments, we split each image into 7×7 patches. As shown 471 in Table 5, we conduct experiments on the image split of 5×5 and 9×9 , respectively. We can 472 conclude that: Different image splits of the same maximum adversarial patch number share similar 473 attack performances. Since patches in 5×5 split have more perturbed pixels, it is easier to achieve 474 the attack. Instead, patches in 9×9 split have fewer perturbed pixels, thus achieving a lower 475 performance. More experiments and analysis are in Appendix A.5.

Effectiveness of the Replacement Order Determination. To demonstrate the effectiveness of our proposed module of Replacement Order Determination, we conduct an ablation study in Table 6 where we change our LVLM-sensitive replacement order into a random version. From this table, we can conclude that: (1) Random order may select LVLM's insensitive patches, resulting in more dif-ficult patch optimization for achieving attack. (2) Our Replacement Order Determination can assess the vulnerability of each patch, and provide a descending order for easily achieving attack. There-fore, the proposed Replacement Order Determination module can help efficiently and effectively find the global optimal patches for perturbation.

Robustness to Defense Strategy. To evaluate the robustness of our proposed *HardPatch* attack, we follow previous work Luo et al. (2024) to exploit widely used RandomRotation as the defense strategy to defend our generated adversarial examples on four LVLM models. As shown in Table 7,

ta	tation on MS-COCO (Lin et al., 2014) dataset.						
	Image Split M	LVLM Model	Classification	Captioning	VQA	Overall	
		BLIP-2 (Li et al., 2023)	0.828	0.779	0.781	0.796	
-	With Defense	MiniGPT-4 (Zhu et al., 2023)	0.797	0.762	0.803	0.787	
	with Defense	LLaVA-1.5 (Liu et al., 2024a)	0.815	0.784	0.810	0.803	
		InstructBLIP (Dai et al., 2024)	0.783	0.756	0.772	0.770	
		BLIP-2 (Li et al., 2023)	0.862	0.833	0.827	0.841	
	Without Defense	MiniGPT-4 (Zhu et al., 2023)	0.849	0.815	0.872	0.845	
	without Defense	LLaVA-1.5 (Liu et al., 2024a)	0.875	0.841	0.880	0.865	
		InstructBLIP (Dai et al., 2024)	0.839	0.803	0.844	0.829	

Table 7: Targeted attack performance (\uparrow) of our *HardPatch* against defense strategy of RandomRo-

Tuble 0. That you on the method complexity of our maran alon attac	exity of our HardPatch attack	complexity of our	Table 8: Analysis on the method
--	-------------------------------	-------------------	---------------------------------

Module	GPU Hours	GPU Memories
Replacement Order Determination	2.4h	36.2GB
Adversarial Patch Substitution and Optimization	5.6h	53.8GB

Figure 5: Visualizations on untargeted/targeted adversarial samples and corresponding output for the input prompt "Convey the main theme of this picture succinctly" on LLaVA-1.5 (Liu et al., 2024a).

our HardPatch just achieves slightly lower performance on the RandomRotation defense, validating that our attack is robust enough against the potential defense strategy.

Efficiency Analysis. As shown in Table 8, we provide the GPU hours and memories of generating adversarial examples. We can find that our method is efficient and only costs a few hours for each component. The primary GPU computational and memory overheads occur during the querying stage against the victim LVLM when substituting and optimizing the adversarial patch. This involves adding slight noise to all attack samples during each iterative update of the patch to explore their impacts, and this stage also constitutes the major consumption of the query budget.

Visualizations. As shown in Figure 5, we provide visualizations of the step-by-step adversarial examples and corresponding textual output of both untargeted and targeted attacks. We can conclude that the proposed *HardPatch* is effective in fooling the LVLM model by dynamically changing the semantics of original images via adversarial patches. More visualizations are in Appendix A.6.

More experiments, ablation studies, and visualizations can be found in the Appendix.

- CONCLUSION

In this paper, we raise a practical and challenging question, *i.e.*, can visual adversarial patches fool hard-label LVLM models? In particular, we propose the first hard-label adversarial attack method called *HardPatch* against LVLM models by solely querying the input/output of LVLMs. We start by uniformly splitting each image into multiple patches and assessing the vulnerability of LVLMs to different local patches, and then develop a patch substitution and optimization strategy to perturb the most sensitive patches with gradient estimation. Our empirical findings reveal that LVLMs may lose their way when appropriate patches are perturbed. Experiments on a suite of LVLM models and datasets demonstrate the effectiveness of the proposed HardPatch attack in the hard-label setting. Future research endeavors will aim at the enhancement of adversarial imperceptibility.

540 REFERENCES

577

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 report. *arXiv preprint arXiv:2303.08774*, 2023.
- Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–
 23736, 2022.
- Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial examples. In *International conference on machine learning*, pp. 284–293. PMLR, 2018.
- Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
 arXiv preprint arXiv:2308.12966, 2023.
- Luke Bailey, Euan Ong, Stuart Russell, and Scott Emmons. Image hijacks: Adversarial images can
 control generative models at runtime. *arXiv preprint arXiv:2309.00236*, 2023.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.
- Tom B Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer. Adversarial patch.
 arXiv preprint arXiv:1712.09665, 2017.
- Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh. Query efficient hard-label black-box attack: An optimization-based approach. arXiv preprint
 arXiv:1807.04457, 2018.
- Xuanimng Cui, Alejandro Aparcedo, Young Kyun Jang, and Ser-Nam Lim. On the robustness of
 large multimodal models against image adversarial attacks. *arXiv preprint arXiv:2312.03777*, 2023.
- Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
 Boyang Li, Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose visionlanguage models with instruction tuning. *Advances in Neural Information Processing Systems*,
 36, 2024.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
 pp. 248–255. Ieee, 2009.
- Yinpeng Dong, Huanran Chen, Jiawei Chen, Zhengwei Fang, Xiao Yang, Yichi Zhang, Yu Tian, Hang Su, and Jun Zhu. How robust is google's bard to adversarial image attacks? *arXiv preprint arXiv:2309.11751*, 2023.
- Ranjie Duan, Xingjun Ma, Yisen Wang, James Bailey, A Kai Qin, and Yun Yang. Adversarial camouflage: Hiding physical-world attacks with natural styles. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1000–1008, 2020.
- Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on deep learning visual classification. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1625–1634, 2018.
- Yihe Fan, Yuxin Cao, Ziyu Zhao, Ziyao Liu, and Shaofeng Li. Unbridled icarus: A survey of the potential perils of image inputs in multimodal large language model security. *arXiv preprint arXiv:2404.05264*, 2024.
- Xiaohan Fu, Zihan Wang, Shuheng Li, Rajesh K Gupta, Niloofar Mireshghallah, Taylor Berg Kirkpatrick, and Earlence Fernandes. Misusing tools in large language models with visual adversarial examples. *arXiv preprint arXiv:2310.03185*, 2023.

626

- Kuofeng Gao, Yang Bai, Jiawang Bai, Yong Yang, and Shu-Tao Xia. Adversarial robustness for visual grounding of multimodal large language models. *arXiv preprint arXiv:2405.09981*, 2024a.
- Kuofeng Gao, Yang Bai, Jindong Gu, Shu-Tao Xia, Philip Torr, Zhifeng Li, and Wei Liu. Induc ing high energy-latency of large vision-language models with verbose images. *arXiv preprint arXiv:2401.11170*, 2024b.
- Qi Guo, Shanmin Pang, Xiaojun Jia, and Qing Guo. Efficiently adversarial examples generation for visual-language models under targeted transfer scenarios using diffusion models. *arXiv preprint arXiv:2404.10335*, 2024.
- Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16000–16009, 2022.
- Frederick James. Monte carlo theory and practice. *Reports on progress in Physics*, 43(9):1145, 1980.
- Danny Karmon, Daniel Zoran, and Yoav Goldberg. Lavan: Localized and visible adversarial noise.
 In *International conference on machine learning*, pp. 2507–2515. PMLR, 2018.
- Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In *International conference on machine learning*, pp. 19730–19742. PMLR, 2023.
- Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13*, pp. 740–755. Springer, 2014.
- Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36, 2024a.
- Xin Liu, Yichen Zhu, Yunshi Lan, Chao Yang, and Yu Qiao. Safety of multimodal large language
 models on images and text. *arXiv preprint arXiv:2402.00357*, 2024b.
 - Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial examples and black-box attacks. *arXiv preprint arXiv:1611.02770*, 2016.
- Dong Lu, Tianyu Pang, Chao Du, Qian Liu, Xianjun Yang, and Min Lin. Test-time backdoor attacks on multimodal large language models. *arXiv preprint arXiv:2402.08577*, 2024.
- Haochen Luo, Jindong Gu, Fengyuan Liu, and Philip Torr. An image is worth 1000 lies: Adversarial transferability across prompts on vision-language models. *arXiv preprint arXiv:2403.09766*, 2024.
- Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal adversarial perturbations. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1765–1773, 2017.
- Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PMLR, 2021.
- Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine learning*, pp. 8821–8831. Pmlr, 2021.

- Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical textconditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.
- Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer- ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.
- Erfan Shayegani, Yue Dong, and Nael Abu-Ghazaleh. Jailbreak in pieces: Compositional adversarial
 attacks on multi-modal language models. In *The Twelfth International Conference on Learning Representations*, 2023.
- ⁶⁵⁷
 ⁶⁵⁸ Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.
- Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill. Multimodal few-shot learning with frozen language models. *Advances in Neural Information Processing Systems*, 34:200–212, 2021.
- Kunguang Wang, Zhenlan Ji, Pingchuan Ma, Zongjie Li, and Shuai Wang. Instructia: Instruction-tuned targeted attack for large vision-language models. *arXiv preprint arXiv:2312.01886*, 2023.
- Zefeng Wang, Zhen Han, Shuo Chen, Fan Xue, Zifeng Ding, Xun Xiao, Volker Tresp, Philip Torr, and Jindong Gu. Stop reasoning! when multimodal llms with chain-of-thought reasoning meets adversarial images. *arXiv preprint arXiv:2402.14899*, 2024.
- Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Haowei Liu, Qi Qian, Ji Zhang, Fei Huang, and Jingren Zhou. mplug-owl2: Revolutionizing multi-modal large language model with modality collaboration. *arXiv preprint arXiv:2311.04257*, 2023.
 - Ziyi Yin, Muchao Ye, Tianrong Zhang, Tianyu Du, Jinguo Zhu, Han Liu, Jinghui Chen, Ting Wang, and Fenglong Ma. Vlattack: Multimodal adversarial attacks on vision-language tasks via pretrained models. arXiv preprint arXiv:2310.04655, 2023.
- Hao Zhang, Wenqi Shao, Hong Liu, Yongqiang Ma, Ping Luo, Yu Qiao, and Kaipeng Zhang.
 Avibench: Towards evaluating the robustness of large vision-language model on adversarial
 visual-instructions. *arXiv preprint arXiv:2403.09346*, 2024.
 - Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Man Cheung, and Min Lin. On evaluating adversarial robustness of large vision-language models. *Advances in Neural Information Processing Systems*, 36, 2024.
- Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing vision-language understanding with advanced large language models. *arXiv preprint* arXiv:2304.10592, 2023.
- 693

680

681

682

686

687

688

689

- 034
- 696
- 697
- 698
- 699
- 700
- 701

703Table 9: Attack performance on different LVLM models on more datasets. As for targeted attack704 (\uparrow) , we report the semantic similarity scores between the LVLM's output and the attackers' chosen705label "Unknown". As for untargeted attack (\downarrow), we report the semantic similarity scores between706the LVLM's output and clean output.

LVLM Model	Attack Method	Classification	Captioning	VQA	Overall
	Dataset: ImageNet (Deng et al., 2009)		
	Clean ^{Tar}	0.415	0.462	0.473	0.450
BLIP-2 (Lietal 2023)	HardPatch ^{Tar}	0.831	0.814	0.860	0.835
DEI 2 (Er et al., 2023)	Clean ^{Untar}	1.000	1.000	1.000	1.000
	HardPatch ^{Untar}	0.543	0.582	0.556	0.560
	Clean ^{Tar}	0.419	0.447	0.504	0.457
MiniGPT-4 (Zhu et al 2023)	HardPatch ^{Tar}	0.837	0.862	0.879	0.859
	Clean ^{Untar}	1.000	1.000	1.000	1.000
	HardPatch ^{Untar}	0.504	0.581	0.535	0.541
	Clean ^{Tar}	0.448	0.434	0.459	0.447
LLaVA-15 (Liu et al. 2024a)	HardPatch ^{Tar}	0.826	0.803	0.865	0.831
	Clean ^{Untar}	1.000	1.000	1.000	1.000
	HardPatch ^{Untar}	0.498	0.557	0.542	0.532
	Clean ^{Tar}	0.453	0.487	0.462	0.467
Instruct BLIP (Dai et al. 2024)	HardPatch ^{Tar}	0.830	0.841	0.859	0.843
InstructBEIF (Dai et al., 2024)	Clean ^{Untar}	1.000	1.000	1.000	1.000
	HardPatch ^{Untar}	0.522	0.568	0.544	0.545
Data	esh et al., 2021; 2	022)			
	Clean ^{Tar}	0.368	0.425	0.466	0.419
BLIP-2 (Lietal 2023)	HardPatch ^{Tar}	0.802	0.841	0.848	0.830
DEI -2 (El et al., 2025)	Clean ^{Untar}	1.000	1.000	1.000	1.000
	HardPatch ^{Untar}	0.539	0.594	0.525	0.553
	Clean ^{Tar}	0.396	0.441	0.497	0.445
MiniGPT-4 (Zhu et al. 2023)	HardPatch ^{Tar}	0.816	0.847	0.864	0.842
	Clean ^{Untar}	1.000	1.000	1.000	1.000
	HardPatch ^{Untar}	0.508	0.573	0.546	0.541
	Clean ^{Tar}	0.407	0.453	0.517	0.459
$I I a V A_1 5 (I in et al. 2024a)$	HardPatch ^{Tar}	0.831	0.815	0.850	0.832
LLa VII-1.5 (Llu et al., 202+a)	Clean ^{Untar}	1.000	1.000	1.000	1.000
	HardPatch ^{Untar}	0.520	0.552	0.531	0.535
	Clean ^{Tar}	0.434	0.469	0.483	0.462
Instruct BLIP (Dai et al. 2024)	HardPatch ^{Tar}	0.823	0.874	0.836	0.844
insuucidelli (Dai et al., 2024)	Clean ^{Untar}	1.000	1.000	1.000	1.000
	HardPatch ^{Untar}	0.515	0.566	0.537	0.539

A APPENDIX

In this appendix, we describe additional experiment results and analyses, to support the methods proposed in the main paper.

A.1 ATTACK PERFORMANCE ON MORE DATASETS

To further demonstrate the effectiveness of the proposed *HardPatch* attack, we show more attack performance on different LVLM models on ImageNet and DALL-E datasets in Table 9. Similar to the experiments in the main paper, we implement our HardPatch in both targeted and untargeted attack settings. As for the targeted attack, we report the semantic similarities between the LVLM's output and the attackers' chosen label, where the larger score denotes better performance. We select the target text "unknown" to avoid the inclusion of high-frequency responses commonly found in vision-language tasks. As for the untargeted attack, we report the semantic similarities between the LVLM's output and clean output, where the smaller score denotes better performance. We can conclude that our HardPatch can achieve great attack performance in both targeted and untargeted attack settings.

756	
757	Table 10: Targeted attack performance (\uparrow) of our <i>HardPatch</i> on different LVLM models on more
758	datasets with different target texts.

100	addusets with annere	in auger tents.				
759	Target Text	LVLM Model	Classification	Captioning	VQA	Overall
760		Dataset: ImageNet (Deng et al., 2009))		
761		BLIP-2 (Li et al., 2023)	0.824	0.798	0.842	0.821
701	I am sorry	MiniGPT-4 (Zhu et al., 2023)	0.869	0.851	0.837	0.852
762	1 all solly	LLaVA-1.5 (Liu et al., 2024a)	0.844	0.823	0.865	0.844
763		InstructBLIP (Dai et al., 2024)	0.842	0.806	0.831	0.826
764		BLIP-2 (Li et al., 2023)	0.853	0.790	0.837	0.827
765	I do not know	MiniGPT-4 (Zhu et al., 2023)	0.842	0.818	0.829	0.830
766	I do not know	LLaVA-1.5 (Liu et al., 2024a)	0.836	0.825	0.841	0.834
700		InstructBLIP (Dai et al., 2024)	0.853	0.807	0.824	0.828
767		BLIP-2 (Li et al., 2023)	0.859	0.824	0.811	0.831
768	L connot onewer	MiniGPT-4 (Zhu et al., 2023)	0.872	0.838	0.850	0.853
769		LLaVA-1.5 (Liu et al., 2024a)	0.841	0.799	0.826	0.822
770		InstructBLIP (Dai et al., 2024)	0.835	0.813	0.822	0.823
771		BLIP-2 (Li et al., 2023)	0.833	0.797	0.854	0.828
	Bomb	MiniGPT-4 (Zhu et al., 2023)	0.840	0.829	0.856	0.842
772	DOIIID	LLaVA-1.5 (Liu et al., 2024a)	0.831	0.805	0.844	0.827
773		InstructBLIP (Dai et al., 2024)	0.829	0.798	0.832	0.820
774		Dataset: DALL-E (Ram	esh et al., 2021; 2	2022)		
775		BLIP-2 (Li et al., 2023)	0.836	0.810	0.845	0.830
776	Lam correct	MiniGPT-4 (Zhu et al., 2023)	0.848	0.821	0.859	0.843
	1 alli solly	LLaVA-1.5 (Liu et al., 2024a)	0.829	0.796	0.842	0.822
777		InstructBLIP (Dai et al., 2024)	0.857	0.824	0.833	0.838
778		BLIP-2 (Li et al., 2023)	0.842	0.809	0.828	0.826
779	I do not know	MiniGPT-4 (Zhu et al., 2023)	0.853	0.835	0.831	0.839
780	I do not know	LLaVA-1.5 (Liu et al., 2024a)	0.844	0.822	0.817	0.828
701		InstructBLIP (Dai et al., 2024)	0.835	0.846	0.840	0.841
701		BLIP-2 (Li et al., 2023)	0.852	0.818	0.824	0.831
782	Looppot on swor	MiniGPT-4 (Zhu et al., 2023)	0.861	0.843	0.837	0.847
783	I cannot answer	LLaVA-1.5 (Liu et al., 2024a)	0.849	0.827	0.819	0.832
784		InstructBLIP (Dai et al., 2024)	0.836	0.834	0.832	0.834
785		BLIP-2 (Li et al., 2023)	0.815	0.786	0.839	0.817
706	Domb	MiniGPT-4 (Zhu et al., 2023)	0.828	0.812	0.830	0.823
100	DOMD	LLaVA-1.5 (Liu et al., 2024a)	0.807	0.823	0.831	0.820
787		InstructBLIP (Dai et al., 2024)	0.814	0.791	0.822	0.809
700						

- 788 789
- 790

To demonstrate that the effectiveness of the proposed *HardPatch* method is not constrained to the specific case of the target text "unknown", we extend our evaluation to various other target texts. The experiment includes a selection of text with varied length and usage frequency. As shown in Table 10, the experiment includes a selection of text with varied length and usage frequency. We can observe that our *HardPatch* attack performs the best overall and in each individual task under different target text, though the similarity differs for different target prompts. In summary, our *HardPatch* can effectively attack the LVLMs in the challenging hard-label setting.

797 We provide the visualization results of the adversarial examples generated by our *HardPatch* method. 798 As shown in Figure 6, we show the adversarial examples generated by four LVLM models in the 799 targeted setting. we can conclude that: (1) Our HardPatch attack can successfully fool these four 800 LVLM models with a smaller number of patches, demonstrating the effectiveness of the proposed method. (2) Different LVLM models have different attention scores on the same patch of the image. 801 Therefore, their generated patches are in different locations. (3) In most cases, two or three patches 802 are enough to fool the victim models. This demonstrates that our patch-based adversarial design is 803 imperceptible. 804

We also provide the visualization comparison of the adversarial examples generated in targeted and untargeted attack settings. As shown in Figure 7, we can conclude that: (1) Our *HardPatch* attack can successfully fool the LVLM model in both targeted and untargeted settings with a smaller number of patches, demonstrating the effectiveness of the proposed method. (2) The LVLM model has different attention scores on the same patch of different images. Therefore, its generated patches for different images are in different locations. (3) The untargeted attack is much easier to attack than

Figure 6: Visualization of the adversarial examples generated with different LVLM models in the targeted attack setting.

899 900 901

902

903 904

905 906

Figure 7: Visualization of the adversarial examples generated with LLaVA-1.5 (Liu et al., 2024a) in both targeted and untargeted attack settings.

the targeted attack, because it only needs to push the output semantic far away from the original one while the targeted attack aims to guide the output semantic to a certain one (which is more difficult).Therefore, the number of adversarial patches is fewer in the untargeted setting.

A.2 MORE COMPARISONS BETWEEN OUR ADVERSARIAL PATCH AND GLOBAL NOISE

We provide more analysis of why we should choose the adversarial patch instead of the global 907 noise for attacking hard-label LVLMs. Since attackers can not explicitly know how LVLM models 908 comprehend and reason the input image according to the prompt in the hard-label setting, without 909 understanding the vulnerability of local image regions, directly adding and optimizing global noise 910 to all pixels of the whole image (using Monte Carlo strategy) makes it difficult to achieve good 911 performance as its optimization/search space is too large and complicated. Unlike this global noise, 912 our HardPatch attack is able to implicitly perceive the patch-wise sensitivity to the LVLM model for 913 determining the substitution and optimization location of adversarial patches. We provide detailed 914 experiments on four LVLMs on ImageNet and DALL-E datasets in Figure 9 and Figure 10. We can 915 conclude that: (1) Under the same perturbation budget $\epsilon = 16/255$, global noise requires much more query steps and times (about $2\times$) for optimization, and also achieves relatively worse performance. 916 (2) Although global noise with larger $\epsilon = 64/255$ can achieve similar performance with our method, 917 it significantly increases the noise size, resulting in low-quality and noticeable perturbed images.

Figure 8: Visualization of the adversarial examples generated by our *HardPatch* and the global noise on LLaVA-1.5 (Liu et al., 2024a) under the targeted attack.

Figure 9: Performance comparison between our adversarial patch and the global noise. Experiments are conducted on four LVLM models on the ImageNet dataset (Deng et al., 2009).

Figure 10: Performance comparison between our adversarial patch and the global noise. Experiments are conducted on four LVLM models on the DALL-E dataset (Ramesh et al., 2021; 2022).

Figure 11: Performance comparison of our *HardPatch* in single-image and universal attack settings. Experiments are conducted on four LVLM models on the ImageNet dataset (Deng et al., 2009).

Figure 12: Performance comparison of our *HardPatch* in single-image and universal attack settings. Experiments are conducted on four LVLM models on the DALL-E dataset (Ramesh et al., 2021; 2022).

(3) Our adversarial patch can efficiently be generated to attack the LVLM models with low noise size $\epsilon = 16/255$. We also provide the visualization results of adversarial examples generated by our adversarial patch and global noise in Figure 8. It shows that global noise is very large and noticeable, while our adversarial patch is easier to add to the images and is relatively more imperceptible.

A.3 MORE EXPERIMENTS ON UNIVERSAL ATTACK SETTING

Our *HardPatch* method is generally implemented in a single-image attack setting, where the perturbed patches vary among different image-text inputs. Further, our *HardPatch* attack can be extended into a universal attack setting, where the patches are optimized to be the same among all
image-text input. Specifically, we follow the traditional universal setting (Moosavi-Dezfooli et al.,
2017) by first assessing the sensitivities of all patches based on their averaged impacts on the images
by querying the LVLM models with different text prompts. Then, we jointly optimize the patches in

Under review as a conference paper at ICLR 2025

Figure 13: Visualization of the adversarial examples generated with LLaVA-1.5 (Liu et al., 2024a) in both single-image attack and universal attack settings.

their descending order to attack all image-prompt inputs. As shown in Figure 11 and Figure 12, in
the same perturbation budget, the single-image attack is more flexible and efficient than the universal attack setting, thus achieving better performance with fewer query budgets. This is because the
single-image attack can straightforwardly perturb the most vulnerable patches in each image. Visualization comparisons are further shown in Figure 13, where the universal attack setting is much
more difficult to achieve since different images share diverse sensitive regions in different locations
to the LVLM model, requiring a larger number of adversarial patches.

1069 1070

1060

1061 1062

1071 A.4 MORE EXPERIMENTS ON ADVERSARIAL PATCH NUMBER

1072 The number of adversarial patches is related to the imperceptibility. Since more adversarial patches 1073 will mask most image contents and lead to noticeable noise (which is also not meaningful), in our 1074 attack algorithm, we preset the maximum number of adversarial patches to a fixed number of 4. 1075 That means, only $\{1, 2, 3, 4\}$ adversarial patches may be added to the image. To further investigate 1076 the influence of the maximum number of adversarial patches on more datasets, we conduct corre-1077 sponding experiments in Table 11 by presenting different maximum numbers of adversarial patches. We can conclude that: (1) Only one adversarial patch is not enough to mask and perturb most im-1078 ages' semantics, resulting in lower attack performance. (2) More adversarial patches can better fool 1079 the LVLM model with more vulnerable visual contents. (3) Four adversarial patches are enough to

Maximum Number	LVLM Model	Classification	Captioning	VQA	Overall
	Dataset: ImageNet (D	Deng et al., 2009)			
	BLIP-2 (Li et al., 2023)	0.647	0.673	0.665	0.662
Number= 1	MiniGPT-4 (Zhu et al., 2023)	0.668	0.638	0.654	0.653
	LLaVA-1.5 (Liu et al., 2024a)	0.651	0.639	0.676	0.655
	InstructBLIP (Dai et al., 2024)	0.642	0.640	0.657	0.646
	BLIP-2 (Li et al., 2023)	0.773	0.749	0.758	0.760
Number- 9	MiniGPT-4 (Zhu et al., 2023)	0.756	0.752	0.731	0.746
Number $= 2$	LLaVA-1.5 (Liu et al., 2024a)	0.752	0.725	0.739	0.738
	InstructBLIP (Dai et al., 2024)	0.742	0.750	0.738	0.743
	BLIP-2 (Li et al., 2023)	0.824	0.785	0.832	0.814
Number- 2	MiniGPT-4 (Zhu et al., 2023)	0.804	0.819	0.840	0.821
Number $= 5$	LLaVA-1.5 (Liu et al., 2024a)	0.798	0.777	0.833	0.803
	InstructBLIP (Dai et al., 2024)	0.816	0.808	0.819	0.815
	BLIP-2 (Li et al., 2023)	0.831	0.814	0.860	0.835
Number- 4	MiniGPT-4 (Zhu et al., 2023)	0.837	0.862	0.879	0.859
Nullioci -4	LLaVA-1.5 (Liu et al., 2024a)	0.826	0.803	0.865	0.831
	InstructBLIP (Dai et al., 2024)	0.830	0.841	0.859	0.843
	Dataset: DALL-E (Rames	sh et al., 2021; 20	22)		
	BLIP-2 (Li et al., 2023)	0.670	0.629	0.653	0.651
Number- 1	MiniGPT-4 (Zhu et al., 2023)	0.625	0.664	0.652	0.647
Number = 1	LLaVA-1.5 (Liu et al., 2024a)	0.658	0.636	0.639	0.644
	InstructBLIP (Dai et al., 2024)	0.643	0.649	0.680	0.657
	BLIP-2 (Li et al., 2023)	0.764	0.728	0.751	0.748
Number— 9	MiniGPT-4 (Zhu et al., 2023)	0.759	0.735	0.762	0.752
Nullioei $= 2$	LLaVA-1.5 (Liu et al., 2024a)	0.738	0.716	0.747	0.734
	InstructBLIP (Dai et al., 2024)	0.754	0.723	0.744	0.740
	BLIP-2 (Li et al., 2023)	0.812	0.786	0.815	0.804
Number— 3	MiniGPT-4 (Zhu et al., 2023)	0.796	0.809	0.835	0.813
number = 3	LLaVA-1.5 (Liu et al., 2024a)	0.820	0.789	0.827	0.812
	InstructBLIP (Dai et al., 2024)	0.806	0.792	0.819	0.806
	BLIP-2 (Li et al., 2023)	0.802	0.841	0.848	0.830
Number— 1	MiniGPT-4 (Zhu et al., 2023)	0.816	0.847	0.864	0.842
Number 4	LLaVA-1.5 (Liu et al., 2024a)	0.831	0.815	0.850	0.832
	InstructBLIP (Dai et al., 2024)	0.823	0.874	0.836	0.844

Table 11: Targeted attack performance (\uparrow) of our *HardPatch* on other datasets with different maximum adversarial patch number.

1080

1114 1115

achieve great attack performance. Of course, the adversarial patch number larger than 4 can further boost the attack performance. However, considering more adversarial patches cost more resources and time, we preset the adversarial patch number to 4 in all our experiments.

1116 1117 1118

1120

1119 A.5 MORE EXPERIMENTS ON IMAGE SPLIT

1121 We also investigate the impact of different settings of image split. In all our experiments, we split 1122 each image into 7×7 patches. As shown in Table 12, we conduct experiments on the image split of 1123 5×5 and 9×9 , respectively. We can conclude that: Different image splits of the same maximum 1124 adversarial patch number share similar attack performances. Since patches in 5×5 split have more 1125 perturbed pixels, it is easier to achieve the attack. Instead, patches in 9×9 split have fewer perturbed 1126 pixels, thus achieving a lower performance. Therefore, we set the split of each image into 7×7 1127 patches in all our experiments.

1127 1128

1129 A.6 MORE VISUALIZATION RESULTS

1130

As shown in Figure 14, we provide more visualizations of the step-by-step adversarial examples
 and corresponding textual output of both untargeted and targeted attacks. We can conclude that the
 proposed *HardPatch* is effective in fooling the LVLM model by dynamically changing the semantics
 of original images via adversarial patches.

¹¹¹² 1113

1134
1135 Table 12: Targeted attack performance (↑) of our *HardPatch* on more datasets with different image
1136 split. The maximum adversarial patch number is set to 4.

 me maximum	a deversariar paten namber it	50110 1.			
Image Split M	LVLM Model	Classification	Captioning	VQA	Overall
	Dataset: ImageNe	t (Deng et al., 200	19)		
	BLIP-2 (Li et al., 2023)	0.842	0.826	0.853	0.840
	MiniGPT-4 (Zhu et al., 2023)	0.834	0.870	0.867	0.857
Split to 5×5	LLaVA-1.5 (Liu et al., 2024a)	0.839	0.831	0.855	0.842
	InstructBLIP (Dai et al., 2024	0.858	0.815	0.872	0.848
	BLIP-2 (Li et al., 2023)	0.831	0.814	0.860	0.835
	MiniGPT-4 (Zhu et al., 2023)	0.837	0.862	0.879	0.859
Split to 7×7	LLaVA-1.5 (Liu et al., 2024a)	0.826	0.803	0.865	0.831
	InstructBLIP (Dai et al., 2024)	0.830	0.841	0.859	0.843
	BLIP-2 (Li et al., 2023)	0.822	0.801	0.844	0.822
G 11	MiniGPT-4 (Zhu et al., 2023)	0.830	0.819	0.847	0.832
Split to 9×9	LLaVA-1.5 (Liu et al., 2024a)	0.815	0.782	0.838	0.812
	InstructBLIP (Dai et al., 2024	0.814	0.813	0.836	0.821
	Dataset: DALL-E (R	mesh et al. 2021:	2022)		
	BI IP-2 (Li et al. 2023)		0.829	0.841	0.836
	MiniGPT-4 (Zhu et al. 2023)	0.829	0.832	0.866	0.842
Split to 5×5	$I = V \Delta_{-1} 5 (I \text{ in et al} 2024)$	0.848	0.820	0.853	0.840
	Instruct RLID (Doi at al. $2024a$)	0.842	0.853	0.855	0.040
	BLIP 2 (Li et al., 2023)	0.842	0.833	0.800	0.831
	MiniGPT 4 (Zhu et al. 2023)	0.802	0.847	0.040	0.830
Split to 7×7	I = 1.5 (Zill et al., 2023)	0.810	0.847	0.804	0.042
	Instruct DI ID (Dei et al., 2024a)	0.031	0.813	0.830	0.032
	PLID 2 (Li et al., 2023)	0.823	0.874	0.830	0.844
	MiniCDT 4 (7by at al. 2023)	0.014	0.838	0.052	0.820
Split to 9×9	$\frac{1}{1} = \frac{1}{2} $	0.813	0.845	0.839	0.839
	LLa VA-1.5 (Liu et al., 2024a)	0.820	0.799	0.827	0.815
	InstructBLIP (Dai et al., 2024)	0.809	0.852	0.825	0.829
,		.,,			
Clean Image	Untargeted Attack		Targeted Attack		
					Alle a
10-12-		10-1-			
6836	2 659 CL 2 659 6	as a	2 6390	2 3	
					150
C I	C I C I	C I	1 v I	~	
"This image features two	"The image depicts a "The image shows a sky				2000
motorcycles parked on the side of a road with a	serene mountain town filled with warm, soft colors that suggest the	"The image is a bit blurry, but it appears to show a	"The image is a bit blurry, but it appears to show a	"The theme o	f the picture is
beautiful sunset in the	of mountains and the warm hues of the sky" time of day is either sunris	motorcycle racing."	traffic accident."	unkn	own"
, buckground.	or subset				· · · · · · · · · · · · · · · · · · ·
Clean Image	Untargeted Attack		Targeted Attack	_	
1 1 1 1	, , , , , , , , , , , ,	,) ,	1 1 1	, 1	1 10
				m l in	
Contraction of the local division of the loc					CONTRACTOR OF T
. KING BURNERS	. Man mail to be a set of the set		. KIN RELEASE		-
A LO REAL PROPERTY OF THE PARTY					and the second s
	"The Image shows the sea		"The image features an	-	
"The main theme of this picture is a large, modern	with gentle waves and "The image shows a group	"In this image, the yacht's sleek design contrasts with	unclear object. It could be a	"The theme oj	f the picture is
yacht or superyacht cruising	be a light blue-green color, themselves in the water."	the industrial cranes in the background "	vehicle, or any other type	unkn	own"
on the water.	typical of coastal waters."	buckground.	of object."		
Clean Image	Untargeted Attack		Targeted Attack		
					35
"The main theme is a simple, healthy meal setting	"This image depicts a table with a rustic appearance. It "The images shows a	"This image features	"The image depicts a	"The diam	(the status to
featuring a sandwich, a glass	has a natural wood finish, aiving it a warm and middle of the wooden	something unknown on the	with a robot serving to	i ne cneme oj unkn	own"
wooden table."	inviting look." room."	wooden tubre.	human astronaut."		

Figure 14: Visualizations on untargeted/targeted adversarial samples and corresponding output.

1188 A.7 VISUALIZATION ON THE VULNERABILITY OF DIFFERENT PATCHES

At last, we visualize the sensitive scores of different patches of the same images to the LVLM model as shown in Figure 15. Here, the image is divided into 7×7 patches, and the sensitive score of each patch is measured by the semantic changes between the original output and the output of masking the corresponding patch. The heatmap of each image is computed by further using a softmax func-tion on the scores of whole patches. From this figure, we can conclude that: (1) Different LVLM models have different attentions on different patches of the same image. (2) Masking patches pro-vide a promising way to measure the vulnerability of the LVLM models to the local regions of input images. Based on the sensitivity scores of different patches, researchers can design specific local perturbations for attacking the LVLM models.

Figure 15: Visualizations on the sensitivity score for each patch.