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ABSTRACT

Large vision-language models (LVLMs) have demonstrated impressive capabil-
ities in handling multi-modal downstream tasks, gaining increasing popularity.
However, recent studies show that LVLMs are susceptible to both intentional
and inadvertent attacks. Existing attackers ideally optimize adversarial pertur-
bations with backpropagated gradients from LVLMs, thus limiting their scalabil-
ity in practical scenarios as real-world LVLM applications will not provide any
LVLM’s gradient or details. Motivated by this research gap and counter-practical
phenomenon, we propose the first and novel hard-label attack method for LVLMs,
named HardPatch, to generate visual adversarial patches by solely querying the
model. Our method provides deeper insights into how to investigate the vulner-
ability of LVLMs in local visual regions and generate corresponding adversarial
substitution under the practical yet challenging hard-label setting. Specifically, we
first split each image into uniform patches and mask each of them to individually
assess their sensitivity to the LVLM model. Then, according to the descending or-
der of sensitive scores, we iteratively select the most vulnerable patch to initialize
noise and estimate gradients with further additive random noises for optimization.
In this manner, multiple patches are perturbed until the altered image satisfies
the adversarial condition. Extensive LVLM models and datasets are evaluated
to demonstrate the adversarial nature of the proposed HardPatch. Our empirical
observations suggest that with appropriate patch substitution and optimization,
HardPatch can craft effective adversarial images to attack hard-label LVLMs.

1 INTRODUCTION

Nowadays, large vision-language models (LVLMs) (Bai et al.| 2023} |Ye et al., 2023)), at the junc-
ture of computer vision and natural language processing, have become indispensable and marked
a significant milestone in the field of artificial intelligence. By further benefiting from the strong
comprehension of large language models (LLMs) (Brown et al.l 2020; [Touvron et al., [2023a3b)), re-
cent LVLMs (Dai et al.l 2024; [Liu et al., 2024a; Zhu et al., [2023) on top of LLMs show notable
developments in numerous downstream tasks (Nichol et al., 2021; [Ramesh et al., 2022} Rombach
et al.| [2022; Tsimpoukelli et al.| [2021}; [Li et al., [2023 |Alayrac et al.} 2022)). However, most recently
proposed LVLMs suffer from severe security issues (Liu et al.l [2024b; |[Fan et al., [2024)), where an
attacker’s well-crafted adversarial input sample can easily fool the LVLM models, posing a consid-
erable challenge to real-world LVLM applications.

Based on the accessibility level of victim models, existing LVLM attackers can be generally catego-
rized into three types: white-box attacks (Bailey et al.l 2023} |Dong et al., 2023} [Fu et al., 2023} |Cui
et al.}[2023};|Gao et al .| [2024a; Wang et al., [2024} [Lu et al.,[2024; |Luo et al.,|2024} Gao et al.,2024b)),
gray-box attacks (Shayegani et al., 2023; [Wang et al., [2023), and transfer-based black-box attacks
(Zhao et al., [2024; |Yin et al., [2023; |Guo et al., [2024), as shown in Figure E] (a). For white-box
attacks, the attackers are assumed to have full knowledge of the victim LVLMs, including model
architecture and parameters. These works simply formulate the attack as an optimization problem
and utilize the backpropagated gradient to generate adversarial examples. To alleviate this reliance
on model details to a certain extent, gray-box attacks solely require access to the visual encoder of
LVLMs. However, since real-world LVLM applications are impossible to share any model details
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with users, white-/gray-box attacks seem excessively idealistic and cannot work well in practical
scenarios. Although no target-model details are required in transfer-based black-box attacks, they
still rely on the additional knowledge of other surrogate LVLM models. In sum, existing LVLM
attackers are severely limited by their scalability, and there is no attack that truly does not require
any prior LVLM information in a more challenging hard-label setting (Cheng et al.| 2018).

To address this research gap, we introduce
the first hard-label adversarial attack against
LVLMs, where the attackers can solely query
the input/output of LVLMs. However, with-
out using model details, it is difficult to de-
termine where and how to add perturbations
to images to mislead LVLMs. Luckily, the  (a) Existing attackers need p
design of adversarial patch provides a con- g : :

cise and interpretable way to achieve success-

ful real-world attacks (Brown et all, 2017}
Duan et all, [2020). By appropriately plac-

ing the adversarial patches on the image ac-
cording to the model’s attention, its adversar-
ial nature will fool the LVLM’s eyes and lead
to inaccurate prompt reasoning. Moreover,
we empirically find that adversarial patches
have fewer perturbations and are easier to add
than directly perturbing pixel-wise noises on 3
whole images (Zhao et al, 2024 [Cheng et al.| ———
@’ as shown in Figurem (b). Based on the (b) Comparison: Global noise vs. Adv. Patches.
above observations, we attempt to investigate

“Hmy to design effective adversarial patches Figure 1: (a) Attack process of existing LVLM at-
to mislead hard-label LVLMs?”. Therefore, (4ckers. (b) We re-implement (Zhao et al), 2024)
the remaining questions in designing LVLM j; the hard-label setting by removing its surrogate
attacks are: In the hard-label setting, (1) how  nadel. Compared to it, our adversarial patches have

to explore the LVLM’s attention on differ-  fewer perturbations and are easier to add.
ent local regions of images for patch substitu-

tion? and (2) how to design/optimize the patch pattern in order to achieve the adversarial condition?
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In this paper, we propose a novel adversarial patch method called HardPatch to tackle the above
hard-label issues. Specifically, we first uniformly split the input image into multiple patches with
the same size. Then, to assess the sensitivity of each patch to the LVLM model, we individually
mask each patch and feed them into the LVLM to measure the semantic changes between their
corresponding text output and the original output. The larger the distance, the more sensitive the
LVLM model is to altering the corresponding patch. Therefore, by scoring all patches according to
their sensitivities in descending order, we iteratively substitute the more vulnerable patch with ini-
tial noise and estimate gradients with further additive random noises for optimizing the adversarial
pattern. If the patch updated with a fixed number of iterations is still not adversarial, we addition-
ally perform the same altering process on the next patch. Multiple patches are perturbed until the
altered image satisfies the adversarial condition. The key contributions of our work are outlined as
follows: (i) We design HardPatch, a novel adversarial attack method for more practical yet chal-
lenging hard-label LVLMs. We propose to generate visual adversarial patches to be added to input
images for attackers in real-world scenarios. (ii) To determine where to place the adversarial patch,
we develop a replacement order determination module to investigate the sensitivity of LVLM to each
patch. Based on this, we iteratively substitute more vulnerable patches with noise and design the
gradient estimation strategy to further optimize it until the attack succeeds. (iii) These insights are
validated by extensive experiments on different LVLM models and datasets. Corresponding results
demonstrates the effectiveness of our proposed HardPatch against hard-label LVLM models.

2 RELATED WORK

Adversarial Robustness of LVLM Models. LVLMs generally combine the capabilities of process-
ing visual information with natural language understanding by using pre-trained vision encoders
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with language models. Due to this multimodal nature (Szegedy et al., 2013)), LVLMs are partic-
ularly vulnerable as the multi-modal integration not only amplifies their vulnerable utility but also
introduces new attack vectors that are absent in unimodal systems. Most of existing LVLM attackers
(Bailey et al.,|2023;|Dong et al.| 2023} [Fu et al.,|2023;|Cui et al., 2023}, |Gao et al.,[2024a; Wang et al.,
2024} Lu et al.; [2024; [Luo et al., 2024; |Gao et al.l [2024b) are inspired by the adversarial vulnera-
bility observed in vision tasks. They evaluate the adversarial robustness of LVLMs under white-box
settings, where they have the full knowledge of LVLMs models including network structure and
weights. To generate the adversarial examples, they simply add and optimize imperceptible pertur-
bations on the whole image to benign image inputs via back-propagation. To reduce the reliance on
model knowledge, some gray-box attackers (Shayegani et al., 2023} Wang et al.,[2023) solely require
access to the visual encoder of LVLMs and directly generate the perturbed visual representations to
fool the latter process. Although a few researchers (Zhao et al., [2024; |Yin et al., 2023} |Guo et al.,
2024) claim that they achieve more challenging black-box attacks, their attacks are implemented in
a transfer-based setting, where they still require the additional knowledge of other surrogate LVLM
models to generate adversarial samples then transfer them to attack victim LVLMs. Therefore, how
to design an LVLM adversarial attack in a more practical hard-label setting is still a research gap.

Adversarial Patch. Adversarial patches (Brown et al., [2017; [Karmon et al., 2018}, [Eykholt et al.,
2018)) represent a unique subclass of adversarial attacks that focus on generating localized perturba-
tions to fool deep learning models. Unlike traditional adversarial attacks, which often involve slight
pixel-level modifications across the entire image, adversarial patches are confined to small regions
but can cause significant misclassifications even when covering only a fraction of the input. This
adversarial patch is proven to have more practicality (Athalye et al.,[2018)), contributing to a deeper
understanding of the interaction between digital perturbations and physical environments. Some
works (Liu et al.||2016) also explore the transferability of adversarial patches across different mod-
els. Concurrently, (Duan et al.l 2020) focused on generating adversarial patches using generative
models, enhancing the efficiency and effectiveness of attack generation. However, there is still no
adversarial patch attack being investigated in LVLM applications.

3 THE PROPOSED ATTACK

In this section, we first describe the preliminary adversarial attacks on Large Vision-Language Mod-
els (LVLMs). We then present the overview of the proposed attack approach HardPatch and illustrate
details of each component.

3.1 PRELIMINARY

Given the input image « and the input prompt c;,, an image-grounded text generative LVLM
fo(x, cin) — cout predicts a suitable textual response ¢, where © is the LVLM’s parameters.
Since LVLM drivers multiple tasks, in image captioning tasks, for instance, c¢;, is a placeholder
© and c¢,,; is the caption; in visual question answering tasks, c;,, is the question and ¢, is the
answer. The adversary typically adds an imperceptible visual perturbation on the benign image to
craft an adversarial example x’ that misleads the LVLM model fg to output a wrong prediction with
a specific prompt ¢;,, as:

f@(m/acin) 7é .f@(macin>7 s.t. ||wl - m”P <€, (1)

where € is the image perturbation magnitude. Specifically, for the untargeted attack, the attack
is successful if the model is misled to generate text different from the prediction with the clean
image. For the targeted attack, the attack is considered to be successful only if the prediction exactly
matches the attackers’ preset target text ¢/, where ¢, ,, # Cout-

In this paper, we focus on the task of hard-label LVLM adversarial attack, i.e., attackers can only
access to the predicted text output from the victim LVLM model to generate adversarial examples.

3.2 OVERVIEW OF OUR HardPatch ATTACK

Discussion on OQur Motivation. Existing LVLM attackers (Dong et al., 2023} Wang et al., 2023
2024; Zhang et al., [2024; [Luo et al} |2024; Zhao et al.| 2024) generally add pixel-wise noise on the
whole image input, which are easily optimized in the white-/gray-box or transfer-based black-box
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Figure 2: Overview of our proposed HardPatch attack. Given the input image and prompts, we first
uniformly split the image into patches of the same size. Then, we individually mask each patch to
assess their sensitivity to the LVLM model by measuring the semantic changes between their text
output with the clean one. After that, we iteratively substitute the most vulnerable patch with noise
and estimate gradients to update its noisy pattern. Multiple patches are perturbed until the final
altered image achieves the adversarial condition.

setting via the backpropagated gradient. However, in more challenging hard-label setting, it is diffi-
cult to directly determine and tamper the LVLM’s adversarial attention to optimize previous global
noise by solely querying the LVLM model. Inspired by the global semantic invariant characteristic
with local contexts mask of MAE 2022), we propose to develop attack based on adver-
sarial patch, which assesses the LVLM’s vulnerability on local alteration by individually masking
different patches of the original images. Then, the patches that have a greater adversarial impact on
the LVLM model will be further combined to jointly be perturbed for achieving attacks.

Overall of Our Attack Pipeline. The overall pipeline of our HardPatch is illustrated in Figure[2] A
placement order determination module is first introduced to assess the sensitivity of each patch to the
LVLM and re-order the patches. Then, the adversarial patch substitution and optimization module is
proposed to alter the patches following the order step-by-step. Multiple patches are perturbed until
the attack succeeds. We will provide more details of these two modules in the following.

3.3 REPLACEMENT ORDER DETERMINATION OF ADVERSARIAL PATCHES

As for initialization, we first uniformly split the image @ into M patches {vy,va, ..., vps }. Then, we
propose to individually mask each original patch to assess the impact of the corresponding altered
sample, where the larger the impact, the more sensitive the LVLM model is to altering the corre-
sponding patch. Therefore, more important patches with greater impact on the victim model should
be substituted with noisy patterns at the beginning in the adversarial replacement order. Specifically,
to evaluate the importance/sensitivity of each patch v,,,, m € M, we set the patch v,, to be all zero
and feed the image into the LVLM model. We utilize a lightweight textual encoder (i.e., CLIP
2021)) to evaluate the semantic similarity between its text output and the clean output as:

S(vm) = Sim(fo(x' (Vm), Cin), fo(x, cin)), )
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where @’ (v,,,) denotes generating adversarial sample by altering patch v,,,, Sim(-) is the text-aware
cosine similarity function and its range is between [0, 1]. Then we compute the importance score
of each v, by evaluating the semantic changes by altering patch v,,, the large score indicates the
better attack performance:

Z(vy) =1 —S(vm). 3)

Based on all importance scores {Z(v,,,)}™=1, we sort all patches in descending order as the adver-

sarial replacement order O = {v}, v}, ..., v}, } for latter process.

3.4 ADVERSARIAL PATCH SUBSTITUTION AND OPTIMIZATION

To achieve hard-label LVLM attack, according to the replacement order O = {v}, v}, ..., v}, }, we
propose to constantly substitute and optimize the most vulnerable patches to query the model for
investigating whether the alter can change the output semantics. Beginning at the first patch v}, we
first randomly sample patch-wise noise §; from a uniform distribution to substitute v} in the image
x, then conduct 7'-step gradient estimation to update d; by solely querying the LVLM model. If the
T-times updated §; can not achieve significant attack performance, we additionally substitute and
optimize the latter patch with the same process. The whole attacking procedure of adversarial patch
substitution and optimization does not end until the adversarial condition is achieved.

In particular, as for the m-th order patch v/,,, patch-wise noise d,, is initialized to substitute v;,, and
we can further optimize it with a reasonable direction by querying the LVLM with additive random
noise. Specifically, we first employ a normalized uniform distribution w-exp(u —1),u ~ U(—1,1)
to add a set of slight perturbations {Ak}’gjf( on the patch d,, for further altering. At the ¢-th step, we
define an indicator function ¢, to measure whether the perturbation Ay, can cause the misprediction
of LVLM model as:

Tar _ L, If Sim(f@ (:B;n (6771 + Ak)’ cin)7 ci)ut) > Sim(f@ (CL';n(&m)? Cin)7 C;ut)’ 4)
P a Oa If Slm(f@ (mfm((sm + Ak)a c’in)a cl ) S Slm(f@ ("B;n(&m)) cin)7 Ci)ut)a

Sm(f@ (mgm (5m)7 cin)a Cout)7 (5)

Untar __ 17 If Slm(f@(m;n((sm + Ak)a cin); Cout) <l
@k o Cout) Z Slm(f@ (xm (5m)a cin)7 cout)a

0, 1fSim(fe (27, (6m + Ak), in),

where Tar, Untar denote the targeted and untargeted attacks, x/,, denotes the image already being
substituted by previous patch-wise perturbations with {81 + A, d2 + A, ..., d,,—1 + A}. Therefore,
following the traditional Monte Carlo method (James| |1980), we estimate the final updating direction

Algorithm 1: Algorithm of The Proposed Attack

Input: Image input , text input ¢;,,, LVLM model fo(-)
Output: Adversarial image with perturbed patches
1 Split image « into M Patches;
2 for each patch v,, in  do // Replacement Order Determination
3 | Compute the importance score Z(v,,) via Eq. ,;
4 end
s Sort all patches based on their importance scores in descending order;
¢ for each patch in replacement order do // Adversarial Patch Substitution and
Optimization
Replace patch v, with initial noise d,, on the image @,,;
8 fort =1:Tdo

=

9 | Optimize §,, with a set of slight perturbations { A }f=¥ via Eq. ,,@;
10 end
11 if adversarial condition is satisfied (i.e., SimT*" > 11 or SimV™ " < 1) or Adversarial
patch number reaches preset Maximum then
12 | break;
13 end
14 end

s return The final =/, is the adversarial sample

—
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Table 1: Attack performance on different LVLM models on MS-COCO dataset (Lin et al.,2014). As
for targeted attack (1), we report the semantic similarity scores between the LVLM’s output and the
attackers’ chosen label “Unknown”. As for untargeted attack (J.), we report the semantic similarity
scores between the LVLM’s output and clean output. More results are in Appendix

LVLM Model Attack Method | Classification Captioning VQA  Overall
CleanT®" 0.409 0.436 0.447 0.431
g Tar
BLIP-2 (Li et all 2023) HardPaédi 0.862 0.833 0.827 0.841
Clean” ™" 1.000 1.000 1.000 1.000
HardPatchV ™" 0.524 0.601 0.547 0.557
Clean™™" 0.438 0.451 0.463 0.450
Tar
MiniGPT-4 (Zhu et al), 2023) HardPaéc}i 0.849 0.815 0.872 0.845
Clean” ™" 1.000 1.000 1.000 1.000
HardPatchV™"*" 0.493 0.596 0.524  0.538
Clean™™" 0.385 0.479 0.436 0.433
1. Tar
LLaVA-1.5 (Liu ot al), 2024a) HardPaédi 0.875 0.841 0.880 0.865
Clean™ """ 1.000 1.000 1.000 1.000
HardPatchV ™" 0.502 0.574 0.557 0.544
Clean?®" 0.473 0.512 0.508 0.498
Tar
InstructBLIP (Dai ot all 2024) HardPaécii 0.839 0.803 0.844 0.829
Clean” ™" 1.000 1.000 1.000 1.000
HardPatchV ™" 0.510 0.565 0.526 0.534

Table 2: Performance comparison (1) with other LVLM attack on ImageNet (Deng et al., 2009).

Attack BLIP-2 (Li et al.[[2023) MiniGPT-4 (Zhu et al.};[2023) LLaVA-1.5|Liu et al.[(2024a))

Clean (Zhao et al.[[2024) | 0.503 0.470 B 0437 -
MF-it (Zhao et al., 2024) 0.546 0.484 0.452
MF-ii (Zhao et al., 2024) 0.592 0.572 0.450
MF-ii+it (Zhao et al., 2024) 0.665 0.666 0.597
Ours 0.835 0.859 0.831

by weighted averaging over the K possible directions {Ak}fj{ , and optimize 6, as:

K
% Zk:l LAy
T .
H% Zk:l ‘PkAkHz

By iteratively substituting and optimizing each patch with a set of perturbations with 7T'-step, we
can generate harmful noise with a certain number of perturbed patches to mislead the LVLM model.
The overall algorithm of our attack process is summarized in Algorithm

& =6, +

m

(6)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

LVLM Models and Datasets. To assess the LVLMs’ robustness against our attack, We consider
four open-source and advanced LVLM models as our evaluation benchmark, including BLIP-2 (Li
et al., [2023), MiniGPT-4 (Zhu et al., |2023)), LLaVA-1.5 (Liu et al., 2024a), and InstructBLIP (Dai
et al., 2024). As for LVLM datasets, we consider three datasets, i.e., MS-COCO (Lin et al., 2014),
ImageNet (Deng et al., 2009), and DALL-E (Ramesh et al.,2021;|2022) with tasks of image classi-
fication, image captioning, and visual question answering (VQA). Specifically, We follow previous
work (Luo et al.l |2024)) and (Zhao et al., |2024)) to construct MS-COCO and ImageNet datasets, re-
spectively. The DALL-E dataset employs a generative method, using random textual descriptions
extracted from MS-COCO captions as prompts for image generation powered by GPT-4 (Achiam
et al.,[2023). Additionally, it includes randomly generated QA pairs based on the images.

Implementation Details. For each input image, the patch number M is set to 49. We follow
previous work (Zhao et al., [2024) to employ the CLIP model (Radford et al., 2021) to evaluate the
semantic similarity in Eq. (2). The optimization number 7" for each patch is set to 100, and the
additive noise number K is set to 200. As for the adversarial condition, the similarity threshold 7
for the targeted attack is set to 0.8, and the similarity threshold 75 for the untargeted attack is set to
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Table 3: Targeted attack performance (1) of our HardPatch on different LVLM models on MS-
COCO dataset (Lin et all [2014) with different target texts. More results are in Appendix [A.T]

Target Text LVLM Model Classification ~ Captioning VQA  Overall
BLIP-2 (Li et al.[[2023) 0.801 0.792 0.837  0.811
1 am sorry MiniGPT-4 (Zhu et al.|[2023) 0.850 0.834 0.817  0.834
LLaVA-1.5 (Liu et al.|[2024a)) 0.862 0.841 0.874  0.859
InstructBLIP (Dai et al.,[2024) 0.834 0.803 0.825 0.820
BLIP-2 (Li et al.;[2023) 0.878 0.775 0.861  0.838
I do not know MiniGPT-4 (Zhu et al.|[2023) 0.825 0.809 0.842  0.825
LLaVA-1.5 (Liu et al.|[2024a)) 0.857 0.825 0.853  0.845
InstructBLIP (Dai et al.,[2024) 0.836 0.799 0.828 0.821
BLIP-2 (Li et al.;,[2023) 0.843 0.816 0.839 0.833
I cannot answer MiniGPT-4 (Zhu et al.; 2023) 0.864 0.827 0.848  0.846
LLaVA-1.5 (Liu et al.|[2024a)) 0.872 0.824 0.866  0.854
InstructBLIP (Dai et al.|[2024) 0.821 0.790 0.809  0.807
BLIP-2 (Li et al.;[2023) 0.835 0.804 0.851  0.830
Bomb MiniGPT-4 (Zhu et al.|[2023) 0.819 0.843 0.820  0.827
LLaVA-1.5 (Liu et al.|[2024a)) 0.830 0.798 0.842  0.823
InstructBLIP (Dai et al.|[2024) 0.806 0.782 0.815  0.801
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Figure 3: Performance comparison between our adversarial patch and the global noise. Experiments
are conducted on four LVLM models on the MS-COCO dataset (Lin et al., 2014).

0.6. The preset maximum adversarial patch number is 4. We impose ¢ = 16/255 as the constraint
for. All experiments are conducted on eight NVIDIA H100 Tensor Core GPUs.

4.2 ATTACK PERFORMANCE ON TARGETED/UNTARGETED SETTING

To evaluate the effectiveness of the proposed HardPatch attack, we show attack performance on
different LVLM models on MS-COCO dataset in Table [I| Here, we implement our HardPatch in
both targeted and untargeted attack settings. As for the targeted attack, we report the semantic simi-
larities between the LVLM’s output and the attackers’ chosen label, where the larger score denotes
better performance. We select the target text “unknown” to avoid the inclusion of high-frequency
responses commonly found in vision-language tasks. As for the untargeted attack, we report the
semantic similarities between the LVLM’s output and clean output, where the smaller score denotes
better performance. From this table, we can conclude that: (1) As for the targeted attack, the output
of clean images Clean”®" shares low textual semantic similarity with the target text. By only query-
ing the LVLM model, our HardPatch™®" can significantly guide the model’s output to fit the target
text with much higher similarity. (2) As for the untargeted attack, our HardPatch/™*%" can keep the
model’s output away from the clean output with much smaller similarity. We also compare our at-
tack with previous LVLM attacker MF (Zhao et al.,2024) on the same ImageNet (Deng et al.,[2009)
dataset for fair comparison in Table [2] where our attack still achieves much better performance.

We also extend our evaluation to various other target texts in Table 3] The experiment includes a
selection of text with varied length and usage frequency. We can observe that our HardPatch attack
performs the best overall and in each individual task under different target text, though the similarity
differs for different target prompts. In summary, our HardPatch can effectively attack the LVLMs in
the challenging hard-label setting. More evaluations on other datasets can be found in Appendix[A.T]

4.3 ADVERSARIAL PATCH vs. GLOBAL NOISE?

We provide an in-depth analysis of why we should choose the adversarial patch instead of the global
noise for attacking hard-label LVLMs. In the hard-label setting, we can not explicitly know how
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Table 4: Targeted attack performance (1) of our HardPatch on MS-COCO dataset (Lin et al., 2014)
with different maximum adversarial patch number. More results are in Appendix [A.4]

Maximum Number LVLM Model Classification  Captioning VQA  Overall
BLIP-2 (Li et al.[[2023) 0.678 0.642 0.651 0.657
Number— 1 MiniGPT-4 (Zhu et al.,[2023) 0.649 0.665 0.670 0.661
LLaVA-1.5 (Liu et al.| 2024al) 0.626 0.634 0.668 0.643
InstructBLIP (Dai et al.| [2024) 0.681 0.652 0.645 0.660
BLIP-2 (Li et al.,[2023) 0.749 0.726 0.768 0.748
Number— 2 MiniGPT-4 (Zhu et al.,[2023) 0.761 0.704 0.753 0.739
LLaVA-1.5 (Liu et al.| [2024al) 0.757 0.725 0.752 0.744
InstructBLIP (Dai et al.| [2024) 0.772 0.730 0.746 0.750
BLIP-2 (Li et al.,2023) 0.822 0.804 0.800 0.809
Number— 3 MiniGPT-4 (Zhu et al.,[2023)) 0.815 0.793 0.828 0.812
LLaVA-1.5 (Liu et al.| 2024al) 0.861 0.807 0.836 0.835
InstructBLIP (Dai et al.| [2024) 0.810 0.779 0.814 0.801
BLIP-2 (Li et al.,2023) 0.862 0.833 0.827 0.841
Number— 4 MiniGPT-4 (Zhu et al.,[2023) 0.849 0.815 0.872 0.845
LLaVA-1.5 (Liu et al.| 2024al) 0.875 0.841 0.880 0.865
InstructBLIP (Dai et al.| [2024) 0.839 0.803 0.844 0.829
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Figure 4: Performance comparison of our HardPatch in single-image and universal attack settings.
Experiments are conducted on four LVLM models on the MS-COCO dataset (Lin et al.,[2014).

LVLM models comprehend and reason the input image according to the prompt. Therefore, without
understanding the vulnerability of local image regions, directly adding and optimizing global noise
to all pixels of the whole image (using Monte Carlo strategy) makes it difficult to achieve good
performance as its optimization/search space is too large and complicated. Unlike this global noise,
our HardPatch attack is able to implicitly perceive the patch-wise sensitivity to the LVLM model for
determining the substitution and optimization location of adversarial patches. We provide detailed
experiments on four LVLMs on the MS-COCO dataset in Figure [3] Under the same perturbation
budget € = 16/255, global noise requires much more query steps and times (about 2 x) for optimiza-
tion, and also achieves relatively worse performance. Although global noise with larger ¢ = 64/255
can achieve similar performance with our method, it significantly increases the noise size, resulting
in low-quality and noticeable perturbed images. Therefore, our adversarial patch is more impercep-
tible and efficient. More experiments and visualizations are illustrated in Appendix

4.4 EXTENDING HardPatch TO UNIVERSAL ATTACK SETTING

In all our experiments, we implement our proposed HardPatch method in a single-image attack
setting, where the perturbed patches vary among different image-text inputs. Further, we can also
extend our HardPatch attack into a universal attack setting, where the patches are the same among all
image-text input. Specifically, we follow the traditional universal setting (Moosavi-Dezfool: et al.,
2017) to optimize vulnerable patches. In particular, we first assess the sensitivities of all patches
based on their averaged impacts on the whole test set. Then, we jointly optimize the patches in their
descending order to attack all image-prompt inputs. As shown in Figure ] we can conclude that:
(1) In the same perturbation budget, the universal attack setting is much more difficult to achieve
since different images share diverse sensitive regions in different locations to the LVLM model.
Therefore, it requires more querying steps and achieves lower final performance in the targeted
attack setting. (2) Instead, the single-image attack is more flexible and can straightforwardly perturb
the most vulnerable patches in each image. Therefore, it is more efficient and can achieve better
attack performance. More experiments and analysis are provided in Appendix [A.3]
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Table 5: Targeted attack performance (1) of our HardPatch on MS-COCO dataset (Lin et al., 2014)
with different image split. The maximum adversarial patch number is set to 4.

Image Split M LVLM Model Classification  Captioning VQA  Overall
BLIP-2 (Li et al.;[2023) 0.881 0.842 0.839  0.854

Split 10 5 x 5 MiniGPT-4 (Zhu et al.;[2023) 0.875 0.830 0.863  0.856
LLaVA-1.5 (Liu et al.| [2024a) 0.874 0.836 0.872  0.861

InstructBLIP (Dat et al., 2024) 0.868 0.824 0.850  0.847

BLIP-2 (Li et al.;[2023) 0.862 0.833 0.827  0.841

Split to 7 x 7 MiniGPT-4 (Zhu et al.,[2023) 0.849 0.815 0.872  0.845
LLaVA-1.5 (Liu et al.| |2024a) 0.875 0.841 0.880  0.865

InstructBLIP (Dai et al.| 2024) 0.839 0.803 0.844 0.829

BLIP-2 (Li et al.;[2023) 0.849 0.821 0.816  0.828

Split t0 9 x 9 MiniGPT-4 (Zhu et al.,[2023) 0.834 0.801 0.852  0.829
LLaVA-1.5 (Liu et al.||2024a) 0.861 0.829 0.870  0.853

InstructBLIP (Dai et al., [2024) 0.827 0.789 0.833 0.816

Table 6: Targeted attack performance (1) of our HardPatch on different patch orders on MS-COCO
(Lin et al.l 2014)) dataset. The maximum adversarial patch number is set to 4.

Image Split M LVLM Model Classification ~ Captioning VQA  Overall
BLIP-2 (Li et al.[[2023) 0.714 0.697 0.680  0.697
Random Order MiniGPT-4 (Zhu et al.[[2023) 0.696 0.672 0.733  0.700
LLaVA-1.5 (Liu et al.|[2024a)) 0.729 0.703 0.737  0.723
InstructBLIP (Dai et al.| [2024) 0.688 0.675 0.699 0.687
BLIP-2 (Li et al.;[2023) 0.862 0.833 0.827 0.841
Descending Order MiniGPT-4 (Zhu et al.[[2023) 0.849 0.815 0.872  0.845
LLaVA-1.5 (Liu et al.|[2024a)) 0.875 0.841 0.880  0.865
InstructBLIP (Dai et al.|[2024) 0.839 0.803 0.844  0.829

4.5 FURTHER ANALYSIS

The Influence of the Maximum Number of Adversarial Patches. The number of adversarial
patches is related to the imperceptibility. Therefore, we set a maximum number of adversarial
patches during the patch substitution and optimization. To investigate the influence of the maximum
number of adversarial patches on the adversarial conditions, we conduct corresponding experiments
in Table ] We can conclude that: (1) Only one adversarial patch is not enough to mask and perturb
most images’ semantics, resulting in relatively lower attack performance. (2) More adversarial
patches can better fool the LVLM model with more vulnerable visual contents. (3) Four adversarial
patches are enough to achieve great attack performance. Considering more adversarial patches cost
more resources and time, we preset the adversarial patch number to 4 in all our experiments.

Performance of Attack with Different Image Split. We also investigate the impact of different
settings of image split. In all our experiments, we split each image into 7 x 7 patches. As shown
in Table [5] we conduct experiments on the image split of 5 x 5 and 9 x 9, respectively. We can
conclude that: Different image splits of the same maximum adversarial patch number share similar
attack performances. Since patches in 5 x 5 split have more perturbed pixels, it is easier to achieve
the attack. Instead, patches in 9 x 9 split have fewer perturbed pixels, thus achieving a lower
performance. More experiments and analysis are in Appendix [A.3]

Effectiveness of the Replacement Order Determination. To demonstrate the effectiveness of our
proposed module of Replacement Order Determination, we conduct an ablation study in Table [f]
where we change our LVLM-sensitive replacement order into a random version. From this table, we
can conclude that: (1) Random order may select LVLM’s insensitive patches, resulting in more dif-
ficult patch optimization for achieving attack. (2) Our Replacement Order Determination can assess
the vulnerability of each patch, and provide a descending order for easily achieving attack. There-
fore, the proposed Replacement Order Determination module can help efficiently and effectively
find the global optimal patches for perturbation.

Robustness to Defense Strategy. To evaluate the robustness of our proposed HardPatch attack,
we follow previous work |Luo et al.| (2024) to exploit widely used RandomRotation as the defense
strategy to defend our generated adversarial examples on four LVLM models. As shown in Table
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Table 7: Targeted attack performance (1) of our HardPatch against defense strategy of RandomRo-
tation on MS-COCO (Lin et al,[2014) dataset.

Image Split M LVLM Model Classification ~ Captioning VQA  Overall
BLIP-2 (Li et al.l 2023 0.828 0.779 0.781  0.796
With Defense MiniGPT-4 (Zhu et al.|[2023 0.797 0.762 0.803  0.787
LLaVA-1.5 (Liu et al.;|2024a) 0.815 0.784 0.810  0.803
InstructBLIP (Dai et al., [2024) 0.783 0.756 0.772  0.770
BLIP-2 (Li et al.[|2023 0.862 0.833 0.827 0.841
Without Defense MiniGPT—4qﬂﬁ-e% 23 0.849 0.815 0.872  0.845
LLaVA-1.5 (Liu et al.;|2024a) 0.875 0.841 0.880  0.865
InstructBLIP (Dai et al.;,[2024) 0.839 0.803 0.844  0.829
Table 8: Analysis on the method complexity of our HardPatch attack.
Module GPU Hours  GPU Memories
Replacement Order Determination 2.4h 36.2GB
Adversarial Patch Substitution and Optimization 5.6h 53.8GB

-
> -
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Figure 5: Visualizations on untargeted/targeted adversarial samples and corresponding output for the
input prompt “Convey the main theme of this picture succinctly” on LLaVA-1.5 (Liu et al.|[2024a)).

our HardPatch just achieves slightly lower performance on the RandomRotation defense, validating
that our attack is robust enough against the potential defense strategy.

Efficiency Analysis. As shown in Table[8] we provide the GPU hours and memories of generating
adversarial examples. We can find that our method is efficient and only costs a few hours for each
component. The primary GPU computational and memory overheads occur during the querying
stage against the victim LVLM when substituting and optimizing the adversarial patch. This involves
adding slight noise to all attack samples during each iterative update of the patch to explore their
impacts, and this stage also constitutes the major consumption of the query budget.

Visualizations. As shown in Figure [5] we provide visualizations of the step-by-step adversarial
examples and corresponding textual output of both untargeted and targeted attacks. We can conclude
that the proposed HardPatch is effective in fooling the LVLM model by dynamically changing the
semantics of original images via adversarial patches. More visualizations are in Appendix [A.6]

More experiments, ablation studies, and visualizations can be found in the Appendix.

5 CONCLUSION

In this paper, we raise a practical and challenging question, i.e., can visual adversarial patches fool
hard-label LVLM models? In particular, we propose the first hard-label adversarial attack method
called HardPatch against LVLM models by solely querying the input/output of LVLMs. We start by
uniformly splitting each image into multiple patches and assessing the vulnerability of LVLMs to
different local patches, and then develop a patch substitution and optimization strategy to perturb the
most sensitive patches with gradient estimation. Our empirical findings reveal that LVLMs may lose
their way when appropriate patches are perturbed. Experiments on a suite of LVLM models and
datasets demonstrate the effectiveness of the proposed HardPatch attack in the hard-label setting.
Future research endeavors will aim at the enhancement of adversarial imperceptibility.

10
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Table 9: Attack performance on different LVLM models on more datasets. As for targeted attack
(1), we report the semantic similarity scores between the LVLM’s output and the attackers’ chosen
label “Unknown”. As for untargeted attack ({), we report the semantic similarity scores between
the LVLM’s output and clean output.

LVLM Model | Attack Method [ Classification  Captioning  VQA  Overall
Dataset: ImageNet (Deng et al., 2009)
CleanT " 0415 0.462 0473  0.450
BLIP-2 (Li et all P023) HardPaéciiTW 0.831 0.814 0.860  0.835
CleanV ™" 1.000 1.000 1.000  1.000
HardPatchV ™" 0.543 0.582 0.556  0.560
Clean” " 0.419 0.447 0.504  0.457
MiniGPT-4 (Zhu et all 023) HardPaécfiT” 0.837 0.862 0.879  0.859
Clean”™*" 1.000 1.000 1.000  1.000
HardPatchV ™" 0.504 0.581 0.535  0.541
CleanT " 0.448 0.434 0459  0.447
LLaVA-1.5 (Liu ot all 024a) Hardpauzc-if” 0.826 0.803 0.865  0.831
Clean” ™" 1.000 1.000 1.000  1.000
HardPatchV ™" 0.498 0.557 0.542  0.532
Clean™®" 0.453 0.487 0462  0.467
InstructBLIP (Dai et all 024) HardPa&cszm 0.830 0.841 0.859  0.843
CleanV ™" 1.000 1.000 1.000  1.000
HardPatchV ™" 0.522 0.568 0.544  0.545
Dataset: DALL-E (Ramesh et al.[[2021}/2022)
Clean™®" 0.368 0.425 0466  0.419
BLIP-2 (Li et all P023) HardPaécfiT” 0.802 0.841 0.848  0.830
CleanV ™" 1.000 1.000 1.000  1.000
HardPatchV ™" 0.539 0.594 0.525  0.553
CleanT " 0.396 0.441 0.497  0.445
MiniGPT-4 (Zhu et all. 2023) HardPaécliT” 0.816 0.847 0.864  0.842
CleanV ™" 1.000 1.000 1.000  1.000
HardPatchV ™" 0.508 0.573 0.546  0.541
Clean®®" 0.407 0.453 0.517  0.459
LLaVA-1.5 (Liu et all 024a) HardPaécﬁiT” 0.831 0.815 0.850  0.832
CleanV ™" 1.000 1.000 1.000  1.000
HardPatchV ™" 0.520 0.552 0.531  0.535
Clean™®" 0.434 0.469 0483  0.462
InstructBLIP (Dai et all 024) HardPa&cfiT” 0.823 0.874 0.836  0.844
CleanV ™" 1.000 1.000 1.000  1.000
HardPatchV ™" 0.515 0.566 0.537  0.539

A APPENDIX

In this appendix, we describe additional experiment results and analyses, to support the methods
proposed in the main paper.

A.1 ATTACK PERFORMANCE ON MORE DATASETS

To further demonstrate the effectiveness of the proposed HardPatch attack, we show more attack
performance on different LVLM models on ImageNet and DALL-E datasets in Table[9] Similar to
the experiments in the main paper, we implement our HardPatch in both targeted and untargeted
attack settings. As for the targeted attack, we report the semantic similarities between the LVLM’s
output and the attackers’ chosen label, where the larger score denotes better performance. We select
the target text “unknown” to avoid the inclusion of high-frequency responses commonly found in
vision-language tasks. As for the untargeted attack, we report the semantic similarities between
the LVLM’s output and clean output, where the smaller score denotes better performance. We can
conclude that our HardPatch can achieve great attack performance in both targeted and untargeted
attack settings.
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Table 10: Targeted attack performance (1) of our HardPatch on different LVLM models on more
datasets with different target texts.
Target Text | LVLM Model [ Classification  Captioning VQA  Overall
Dataset: ImageNet (Deng et al., 2009)

BLIP-2 (Li et al.}[2023) 0.824 0.798 0.842  0.821
1 am sorry MiniGPT-4 (Zhu et al.,2023) 0.869 0.851 0.837  0.852
LLaVA-1.5 (Liu et al.| [2024a) 0.844 0.823 0.865  0.844
InstructBLIP (Dai et al., 2024) 0.842 0.806 0.831  0.826
BLIP-2 (Li et al.}[2023) 0.853 0.790 0.837  0.827
I do not know MiniGPT-4 (Zhu et al.,2023) 0.842 0.818 0.829  0.830
LLaVA-1.5 (Liu et al.|[2024a) 0.836 0.825 0.841  0.834
InstructBLIP (Dai et al., 2024) 0.853 0.807 0.824  0.828
BLIP-2 (Li et al.}[2023) 0.859 0.824 0.811  0.831
I cannot answer MiniGPT-4 (Zhu et al., 2023) 0.872 0.838 0.850  0.853
LLaVA-1.5 (Liu et al.|[2024a) 0.841 0.799 0.826  0.822
InstructBLIP (Dai et al., 2024) 0.835 0.813 0.822  0.823
BLIP-2 (Li et al.}[2023) 0.833 0.797 0.854  0.828
Bomb MiniGPT-4 (Zhu et al., 2023) 0.840 0.829 0.856  0.842
LLaVA-1.5 (Liu et al.l[2024a) 0.831 0.805 0.844  0.827
InstructBLIP (Dai et al., 2024) 0.829 0.798 0.832  0.820
Dataset: DALL-E (Ramesh et al.[[2021}2022)
BLIP-2 (Li et al.}[2023) 0.836 0.810 0.845  0.830
1 am sorry MiniGPT-4 (Zhu et al.,2023) 0.848 0.821 0.859  0.843
LLaVA-1.5 (Liu et al.l[2024a) 0.829 0.796 0.842  0.822
InstructBLIP (Dai et al., 2024) 0.857 0.824 0.833  0.838
BLIP-2 (Li et al.}[2023) 0.842 0.809 0.828  0.826
I do not know MiniGPT-4 (Zhu et al.,2023) 0.853 0.835 0.831  0.839
LLaVA-1.5 (Liu et al.|[2024a) 0.844 0.822 0.817  0.828
InstructBLIP (Dai et al., 2024) 0.835 0.846 0.840  0.841
BLIP-2 (Li et al.}[2023) 0.852 0.818 0.824  0.831
I cannot answer MiniGPT-4 (Zhu et al.,[2023) 0.861 0.843 0.837  0.847
LLaVA-1.5 (Liu et al.|[2024a) 0.849 0.827 0.819  0.832
InstructBLIP (Dai et al., 2024) 0.836 0.834 0.832  0.834
BLIP-2 (Li et al.}[2023) 0.815 0.786 0.839  0.817
Bomb MiniGPT-4 (Zhu et al., 2023) 0.828 0.812 0.830  0.823
LLaVA-1.5 (Liu et al.|[2024a) 0.807 0.823 0.831  0.820
InstructBLIP (Dai et al., 2024) 0.814 0.791 0.822  0.809

To demonstrate that the effectiveness of the proposed HardPatch method is not constrained to the
specific case of the target text “unknown”, we extend our evaluation to various other target texts.
The experiment includes a selection of text with varied length and usage frequency. As shown in
Table the experiment includes a selection of text with varied length and usage frequency. We
can observe that our HardPatch attack performs the best overall and in each individual task under
different target text, though the similarity differs for different target prompts. In summary, our
HardPatch can effectively attack the LVLMs in the challenging hard-label setting.

We provide the visualization results of the adversarial examples generated by our HardPatch method.
As shown in Figure [6] we show the adversarial examples generated by four LVLM models in the
targeted setting. we can conclude that: (1) Our HardPatch attack can successfully fool these four
LVLM models with a smaller number of patches, demonstrating the effectiveness of the proposed
method. (2) Different LVLM models have different attention scores on the same patch of the image.
Therefore, their generated patches are in different locations. (3) In most cases, two or three patches
are enough to fool the victim models. This demonstrates that our patch-based adversarial design is
imperceptible.

We also provide the visualization comparison of the adversarial examples generated in targeted
and untargeted attack settings. As shown in Figure |/} we can conclude that: (1) Our HardPatch
attack can successfully fool the LVLM model in both targeted and untargeted settings with a smaller
number of patches, demonstrating the effectiveness of the proposed method. (2) The LVLM model
has different attention scores on the same patch of different images. Therefore, its generated patches
for different images are in different locations. (3) The untargeted attack is much easier to attack than
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Figure 6: Visualization of the adversarial examples generated with different LVLM models in the
targeted attack setting.
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Figure 7: Visualization of the adversarial examples generated with LLaVA-1.5 (Liu et al.,[20244) in
both targeted and untargeted attack settings.

the targeted attack, because it only needs to push the output semantic far away from the original one
while the targeted attack aims to guide the output semantic to a certain one (which is more difficult).
Therefore, the number of adversarial patches is fewer in the untargeted setting.

A.2 MORE COMPARISONS BETWEEN OUR ADVERSARIAL PATCH AND GLOBAL NOISE

We provide more analysis of why we should choose the adversarial patch instead of the global
noise for attacking hard-label LVLMs. Since attackers can not explicitly know how LVLM models
comprehend and reason the input image according to the prompt in the hard-label setting, without
understanding the vulnerability of local image regions, directly adding and optimizing global noise
to all pixels of the whole image (using Monte Carlo strategy) makes it difficult to achieve good
performance as its optimization/search space is too large and complicated. Unlike this global noise,
our HardPatch attack is able to implicitly perceive the patch-wise sensitivity to the LVLM model for
determining the substitution and optimization location of adversarial patches. We provide detailed
experiments on four LVLMs on ImageNet and DALL-E datasets in Figure[9]and Figure[I0] We can
conclude that: (1) Under the same perturbation budget e = 16/255, global noise requires much more
query steps and times (about 2x) for optimization, and also achieves relatively worse performance.
(2) Although global noise with larger e = 64/255 can achieve similar performance with our method,
it significantly increases the noise size, resulting in low-quality and noticeable perturbed images.
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Figure 8: Visualization of the adversarial examples generated by our HardPatch and the global noise

on LLaVA-1.5 under the targeted attack.
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Figure 9: Performance comparison between our adversarial patch and the global noise. Experiments
are conducted on four LVLM models on the ImageNet dataset 2009).
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Figure 10: Performance comparison between our adversarial patch and the global noise. Experi-
ments are conducted on four LVLM models on the DALL-E dataset (Ramesh et al.} 2021} 2022).
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Figure 11: Performance comparison of our HardPatch in single-image and universal attack settings.
Experiments are conducted on four LVLM models on the ImageNet dataset 2009).
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Figure 12: Performance comparison of our HardPatch in single-image and universal attack settings.
Experiments are conducted on four LVLM models on the DALL-E dataset (Ramesh et al, 2021}
2022).

(3) Our adversarial patch can efficiently be generated to attack the LVLM models with low noise
size € = 16/255. We also provide the visualization results of adversarial examples generated by our
adversarial patch and global noise in Figure[8] It shows that global noise is very large and noticeable,
while our adversarial patch is easier to add to the images and is relatively more imperceptible.

A.3 MORE EXPERIMENTS ON UNIVERSAL ATTACK SETTING

Our HardPatch method is generally implemented in a single-image attack setting, where the per-
turbed patches vary among different image-text inputs. Further, our HardPatch attack can be ex-
tended into a universal attack setting, where the patches are optimized to be the same among all
image-text input. Specifically, we follow the traditional universal setting (Moosavi-Dezfooli et al.,
by first assessing the sensitivities of all patches based on their averaged impacts on the images
by querying the LVLM models with different text prompts. Then, we jointly optimize the patches in
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Figure 13: Visualization of the adversarial examples generated with LLaVA-1.5 (Liu et alJ [2024a)
in both single-image attack and universal attack settings.

their descending order to attack all image-prompt inputs. As shown in Figure [TT]and Figure[T2] in
the same perturbation budget, the single-image attack is more flexible and efficient than the univer-
sal attack setting, thus achieving better performance with fewer query budgets. This is because the
single-image attack can straightforwardly perturb the most vulnerable patches in each image. Vi-
sualization comparisons are further shown in Figure [T3] where the universal attack setting is much
more difficult to achieve since different images share diverse sensitive regions in different locations
to the LVLM model, requiring a larger number of adversarial patches.

A.4 MORE EXPERIMENTS ON ADVERSARIAL PATCH NUMBER

The number of adversarial patches is related to the imperceptibility. Since more adversarial patches
will mask most image contents and lead to noticeable noise (which is also not meaningful), in our
attack algorithm, we preset the maximum number of adversarial patches to a fixed number of 4.
That means, only {1,2, 3,4} adversarial patches may be added to the image. To further investigate
the influence of the maximum number of adversarial patches on more datasets, we conduct corre-
sponding experiments in Table[TT|by presenting different maximum numbers of adversarial patches.
We can conclude that: (1) Only one adversarial patch is not enough to mask and perturb most im-
ages’ semantics, resulting in lower attack performance. (2) More adversarial patches can better fool
the LVLM model with more vulnerable visual contents. (3) Four adversarial patches are enough to
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Table 11: Targeted attack performance (1) of our HardPatch on other datasets with different maxi-
mum adversarial patch number.

Maximum Number | LVLM Model | Classification  Captioning VQA  Overall
Dataset: ImageNet (Deng et al.[[2009)

BLIP-2 (Li et al.[[2023) 0.647 0.673 0.665 0.662

Number— 1 MiniGPT-4 (Zhu et al.,2023) 0.668 0.638 0.654  0.653
LLaVA-1.5 (Liu et al., [2024a) 0.651 0.639 0.676  0.655

InstructBLIP (Dai et al.|[2024) 0.642 0.640 0.657 0.646

BLIP-2 (Li et al.[|2023) 0.773 0.749 0.758 0.760

Number— 2 MiniGPT-4 (Zhu et al.,2023) 0.756 0.752 0.731 0.746
LLaVA-1.5 (Liu et al., [2024a) 0.752 0.725 0.739 0.738

InstructBLIP (Dai et al.|[2024) 0.742 0.750 0.738 0.743

BLIP-2 (Li et al.[|2023) 0.824 0.785 0.832 0.814

Number— 3 MiniGPT-4 (Zhu et al.,2023) 0.804 0.819 0.840  0.821
LLaVA-1.5 (Liu et al.,[2024a) 0.798 0.777 0.833 0.803

InstructBLIP (Dai et al.|[2024) 0.816 0.808 0.819 0.815

BLIP-2 (Li et al.[|2023) 0.831 0.814 0.860  0.835

Number— 4 MiniGPT-4 (Zhu et al.,2023) 0.837 0.862 0.879 0.859
LLaVA-1.5 (Liu et al.,[2024a) 0.826 0.803 0.865 0.831

InstructBLIP (Dai et al.}[2024) 0.830 0.841 0.859 0.843

Dataset: DALL-E (Ramesh et al.|[2021;[2022)

BLIP-2 (Li et al.[[2023) 0.670 0.629 0.653 0.651

Number— 1 MiniGPT-4 (Zhu et al.,2023) 0.625 0.664 0.652  0.647
LLaVA-1.5 (Liu et al., [2024a) 0.658 0.636 0.639 0.644

InstructBLIP (Dai et al.|[2024) 0.643 0.649 0.680  0.657

BLIP-2 (Li et al.[|2023) 0.764 0.728 0.751 0.748

Number— 2 MiniGPT-4 (Zhu et al.,2023) 0.759 0.735 0.762  0.752
LLaVA-1.5 (Liu et al.,[2024a) 0.738 0.716 0.747 0.734

InstructBLIP (Dai et al.|[2024) 0.754 0.723 0.744  0.740

BLIP-2 (Li et al.[|2023) 0.812 0.786 0.815 0.804

Number= 3 MiniGPT-4 (Zhu et al.| 2023) 0.796 0.809 0.835 0.813
LLaVA-1.5 (Liu et al.,[2024a) 0.820 0.789 0.827 0.812

InstructBLIP (Dai et al.|[2024) 0.806 0.792 0.819 0.806

BLIP-2 (Li et al.[|2023) 0.802 0.841 0.848 0.830

Number— 4 MiniGPT-4 (Zhu et al.| 2023) 0.816 0.847 0.864  0.842
LLaVA-1.5 (Liu et al.,[2024a) 0.831 0.815 0.850  0.832

InstructBLIP (Dai et al.;[2024) 0.823 0.874 0.836  0.844

achieve great attack performance. Of course, the adversarial patch number larger than 4 can further
boost the attack performance. However, considering more adversarial patches cost more resources
and time, we preset the adversarial patch number to 4 in all our experiments.

A.5 MORE EXPERIMENTS ON IMAGE SPLIT

We also investigate the impact of different settings of image split. In all our experiments, we split
each image into 7 x 7 patches. As shown in Table[I2] we conduct experiments on the image split of
5 x 5and 9 x 9, respectively. We can conclude that: Different image splits of the same maximum
adversarial patch number share similar attack performances. Since patches in 5 x 5 split have more
perturbed pixels, it is easier to achieve the attack. Instead, patches in 9 x 9 split have fewer perturbed
pixels, thus achieving a lower performance. Therefore, we set the split of each image into 7 x 7
patches in all our experiments.

A.6 MORE VISUALIZATION RESULTS

As shown in Figure we provide more visualizations of the step-by-step adversarial examples
and corresponding textual output of both untargeted and targeted attacks. We can conclude that the
proposed HardPatch is effective in fooling the LVLM model by dynamically changing the semantics
of original images via adversarial patches.
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Table 12: Targeted attack performance (1) of our HardPatch on more datasets with different image
split. The maximum adversarial patch number is set to 4.

Image Split M | LVLM Model | Classification Captioning  VQA  Overall
Dataset: ImageNet (Deng et al.||2009)

BLIP-2 (Li et al.}[2023 0.842 0.826 0.853 0.840

Splitto5 x 5 | MiniGPT- 4HTIu et aIT.mIBb 0.834 0.870 0.867  0.857

LLaVA-1.5 (Liu et al.} 2024a) 0.839 0.831 0.855  0.842

InstructBLIP (Dai et al.;2024) 0.858 0.815 0.872  0.848

BLIP-2 (Li et al}[2023 0.831 0.814 0.860 0.835

. MiniGPT—4%mLJ\T17!é_3D 0.837 0.862 0.879  0.859
Splitto 7 x 7

LLaVA-1.5 (Ciu et al.} 2024a) 0.826 0.803 0.865  0.831

InstructBLIP (Daf et al.;2024) 0.830 0.841 0.859  0.843

BLIP-2 (Li et al} 2023 0.822 0.801 0.844 0822

Splitt0 9 x 9 MiniGPT-ﬂdﬁLle%b 0.830 0.819 0.847  0.832

LLaVA-1.5 (Ciu et al.} 2024a) 0.815 0.782 0.838  0.812

InstructBLIPqTIDal et al.}[2024) 0.814 0.813 0.836  0.821

Dataset: DALL-E (Ramesh et al. |,|2021L |2022[)

BLIP-2 (Li et al.}[2023 0.83 0.829 0.841 0.836

Splitto 5 5 MiniGPT- 4HTIu et aIT. 23 0.829 0.832 0.866  0.842

LLaVA-1.5 (Liu et al.} 2024a) 0.848 0.820 0.853  0.840

InstructBLIP (Dai et al.;2024) 0.842 0.853 0.860  0.851

BLIP-2 (Li et al,[2023 0.802 0.841 0.848  0.830

Splitto 7 x 7 MiniGPT—4qﬂmLalf1ﬁ|2L3b 0.816 0.847 0.864  0.842

LLaVA-1.5 (Liu et al.} 2024a) 0.831 0.815 0.850  0.832

InstructBLIP (Dai et al.;2024) 0.823 0.874 0.836  0.844

BLIP-2 (Li et al}[2023 0.814 0.838 0832 0.828

Split t0 9 x 9 MiniGPT-4@4‘mLJ\Tm’é_3b 0.815 0.843 0.859  0.839

LLaVA-1.5 (Ciu et al.| 2024a) 0.820 0.799 0.827  0.815

InstructBLIPqTI'Dal et al.[[2024) 0.809 0.852 0.825  0.829
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Figure 14: Visualizations on untargeted/targeted adversarial samples and corresponding output.

Untargeted Attack

“The image shows a sky
filled with warm, soft
colors that suggest the

time of day is either sunris

Untargeted Attack

“The image shows a grouj
of people enjoying
themselves in the water.”

“The images shows a
brown toy sitting in the
middle of the wooden

22

Targeted Attack

“The image is a bit blurry,
but it appears to show a
traffic accident.”

Targeted Attack

“The image features an
' unclear object. It could be

person, an animal, @
vehicle, or any other type

Targeted Attack

“The image depicts a
futuristic space station
with a robot serving to

human astronaut.”

“The theme of the picture is

unknown”

“The theme of the picture is
unknown” H

“The theme of the picture is
unknown” H



Under review as a conference paper at ICLR 2025

A.7 VISUALIZATION ON THE VULNERABILITY OF DIFFERENT PATCHES

At last, we visualize the sensitive scores of different patches of the same images to the LVLM model
as shown in Figure[T3] Here, the image is divided into 7 x 7 patches, and the sensitive score of each
patch is measured by the semantic changes between the original output and the output of masking
the corresponding patch. The heatmap of each image is computed by further using a softmax func-
tion on the scores of whole patches. From this figure, we can conclude that: (1) Different LVLM
models have different attentions on different patches of the same image. (2) Masking patches pro-
vide a promising way to measure the vulnerability of the LVLM models to the local regions of input
images. Based on the sensitivity scores of different patches, researchers can design specific local
perturbations for attacking the LVLM models.

Image Input BLIP-2 MiniGPT-4 LLaVA-1.5 InstructBLIP

Figure 15: Visualizations on the sensitivity score for each patch.
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