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Abstract

Safety alignment is critical in pre-trained large
language models (LLMs) to generate responses
aligned with human values and refuse harmful
queries. Unlike LLM, the current safety align-
ment of VLMs is often achieved with post-hoc
safety fine-tuning. However, these methods
are less effective to white-box attacks. To ad-
dress this, we propose Adversary-aware DPO
(ADPO), a novel training framework that ex-
plicitly considers adversary. Adversary-aware
DPO (ADPO) integrates adversarial training
into DPO to enhance the safety alignment of
VLMs under worst-case adversarial perturba-
tions. ADPO introduces two key components:
(1) an adversarial-trained reference model that
generates human-preferred responses under
worst-case perturbations, and (2) an adversary-
aware DPO loss that generates winner-loser
pairs accounting for adversarial distortions. By
combining these innovations, ADPO ensures
that VLMs remain robust and reliable even in
the presence of sophisticated jailbreak attacks.
Extensive experiments demonstrate that ADPO
outperforms baselines in terms of both safety
alignment and general utility of VLMs.

1 Introduction

Safety alignment is essential in pre-trained large
language models (LLMs) (Bai et al., 2022; Ouyang
et al., 2022a), guiding the models to generate re-
sponses aligned with human values and enabling
them to refuse harmful queries. Such alignment is
typically achieved by reinforcement learning with
human feedback (RLHF) (Ouyang et al., 2022a) or
Direct Preference Optimization (DPO) (Rafailov
et al., 2024). However, Vision-Language Mod-
els (VLMs), which use a pre-trained LLM as the
backbone along with an image encoder to adapt to
down-stracam tasks (Liu et al., 2024b,a; Zhu et al.,
2023; Dai et al., 2023; Bai et al., 2023), often lack
safety alignment as a unified model in the same

way as LLMs. As a result, even when the under-
lying LLM is safety-aligned, VLMs remain vul-
nerable to jailbreak attacks, where attackers craft
sophisticated prompts to manipulate the model into
generating toxic content (Qi et al., 2024; Niu et al.,
2024; Gong et al., 2023; Liu et al., 2025).
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Figure 1: Safe response rate under white-box and black-
box attacks on LLaVA-1.5. Post-hoc safety fine-tuning
(SFT and DPO) is less effective on white-box attack.

Jailbreak attacks can take two forms: generation-
based black-box attacks (Gong et al., 2023; Liu
et al., 2025), where malicious images are gen-
erated with typography or text-to-image models
like Stable Diffusion (Rombach et al., 2022), and
optimization-based white-box attacks (Qi et al.,
2024; Niu et al., 2024), where harmful queries are
distilled into imperceptible noise added to the orig-
inal image. Existing countermeasures build safety-
relevant datasets and perform post-hoc safety fine-
tuning on the target VLMs, such as VLGuard and
SPA-VL (Zong et al., 2024; Zhang et al., 2024b).

However, these methods are less effective on
white-box attack than black-box attack, as they
heavily rely on learning safe response patterns from
training data while overlooking the risks of poten-
tial adversarial manipulations, where attackers di-
rectly exploit the model’s internal representation
to construct jailbreak examples. To highlight the
limitation of existing post-hoc safety fine-tuning in
VLMs, we conduct a preliminary study comparing
the safe response rates under both black-box and
white-box attacks (Figure 1). While SFT and DPO
achieve moderate robustness against black-box at-
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Figure 2: Pipeline of ADPO: achieving adversarail-aware safety alignment with adversarial-trained reference model
and adversary-aware DPO loss. The worst-case perturbation is generated on image space or the latent space of

image-text embedding.

tacks, their performance degrades significantly un-
der white-box scenarios, underscoring the need for
safety alignment methods that are robust to adver-
sarial perturbations.

To bridge this gap, we propose to integrate ad-
versarial training into the safety alignment pro-
cess of VLMs, which is a well-established ap-
proach in adversarial robustness research (Goodfel-
low et al., 2014), that exposes the model to adver-
sarially perturbed inputs and optimizes the model
to resist such manipulations. Specifically, We pro-
pose Adversary-aware DPO (ADPO), a method
that strengthens the robustness of VLM alignment
by integrating adversarial training into DPO. As
illustrated in Figure 1, ADPO significantly im-
proves the safe response rate under white-box at-
tacks compared to traditional post-hoc safety fine-
tuning approaches such as SFT and DPO. This im-
provement stems from two core components: the
adversarial-trained reference model and the mod-
ified adversary-aware DPO loss (see Figure 2).

The reference model plays a critical role in DPO
by providing a baseline for preference compari-
son. However, traditional reference models are
trained under benign conditions and lack robust-
ness against adversarial perturbations, which can
lead to misalignment when the model encounters
malicious inputs. To address this, we introduce
an adversarial-trained reference model, which is
explicitly optimized to generate human-preferred
responses under adversarial conditions, ensuring
that the target model is guided by a robust and reli-
able reference. Moreover, we revise the standard
DPO objective by introducing an adversary-aware

DPO loss that explicitly incorporates a min-max
optimization framework. In our formulation, the
objective is to optimize the probability of gener-
ating human preferred responses (Y,.) while si-
multaneously accounting for worst-case adversarial
perturbations, leading to a more robust safety align-
ment.
Our contribution can be summarized as:

* We propose ADPO, a novel framework to
achieve safety alignment under adversarial sce-
narios for Vision-Language Models (VLMs).
To the best of our knowledge, this is the first
work to integrate adversarial training into the
safety alignment of VLMs.

* ADPO achieves the robust safety alignment
through an adversarially trained reference
model and the adversary-aware DPO loss, with
adversarial perturbation on both image space
and latent space to achieve a broader safety
alignment against various jailbreak attacks.

» Extensive experiments demonstrate that ADPO
outperforms existing safety fine-tuning, achiev-
ing a lowest ASR against almost all jailbreak at-
tacks and preserving the utility on normal tasks.
Ablation studies also reveal the contribution of
each component of ADPO.

2 Related Work

2.1 Safety Alignment of LLMs

Ensuring the LLM’s behavior aligns with human
values is essential. Reinforcement Learning from
Human Feedback (RLHF) (Ouyang et al., 2022b)
proves to be a straightforward and the most effec-
tive method to achieve this goal. However, RLHF is



frequently criticized for its high computational cost
and the inherent instability of RL paradigm. Con-
sequently, Direct Preference Optimization (DPO)
(Rafailov et al., 2024) was proposed as a simpler al-
ternative to RLHF. Unlike RLHF, DPO eliminates
the need to train an additional reward model and in-
stead enables direct learning from preference data
in a supervised way.

2.2 Adversarial Training

Despite safety alignment efforts, prior studies (Zou
et al., 2023; Liu et al., 2023; Zhou et al., 2024)
have demonstrated that carefully crafted jailbreak
prompts can bypass LLM safety guardrails, high-
lighting the persistent vulnerabilities of these mod-
els. Adversarial training, originally proposed to
defend against adversarial examples (Goodfellow
et al., 2014) in image classification tasks, enhances
the robustness against adversarial attacks in im-
age classification tasks by forming a min-max opti-
mization, which maximizes the worst-case pertur-
bation while minimizing the classification loss of
the worst-case perturbed training data. Adversarial
training has inspired research into its application
for mitigating jailbreak attacks in LL.Ms. For in-
stance, Mazeika et al. (2024) proposes generating
adversarial suffixes during each training iteration
using optimization-based attacks (Zou et al., 2023)
and incorporating them into training data. How-
ever, the high computational cost of discrete attacks
leads to a significant increase in training overhead.
To address this, Xhonneux et al. (2024) introduces
a fast adversarial training algorithm on continuous
embedding space, while Sheshadri et al. (2024) ex-
plores adversarial attack in the latent space. To the
best of our knowledge, no prior work has integrated
adversarial training in VLM safety alignment.

2.3 Safety of VLMs

Building upon a backbone LLM, VLM:s also face
significant safety concerns. To evaluate their safety,
several benchmarks (Li et al., 2024; Luo et al.,
2024; Hu et al., 2024) and jailbreak techniques
(Gong et al., 2023; Liu et al., 2025; Qi et al., 2024;
Niu et al., 2024) have been proposed. Jailbreak
attacks on VLMs can be categorized into two types:
generation-based attacks and optimization-based at-
tacks. Generation-based attacks (Gong et al., 2023;
Liu et al., 2025) create malicious images directly
through typography or text-to-image models like
Stable Diffusion, while optimization-based attacks
(Qi et al., 2024; Niu et al., 2024) distill harmful
queries and add imperceptible noise to original im-

ages. To address these vulnerabilities, the most
prevalent approach is to construct safety-relevant
datasets and fine-tune the target model on them.
For example, Zong et al. (2024) constructs a vision-
language safe instruction-following dataset VL-
Guard and Zhang et al. (2024b) proposes a safety
preference alignment dataset. MMJ-bench (Weng
et al., 2024) present a thorough evaluation on ex-
isting jailbreak attacks and defenses on various
models. Although these datasets are effective in
enhancing the safety of VLMs when facing harm-
ful queries, they do not consider the existence of
malicious users.

3 Methods

In this section, we introduce Adversary-aware
DPO (ADPO). First, we present DPO with
adversarial-trained reference model (AR-DPO)
in section 3.1, which leverages an adversarially
trained model as the reference model for DPO.
Then, in Section 3.2, we describe DPO with
adversary-aware loss (AT-DPO), which directly
incorporates the adversarial min-max optimization
framework into the DPO training procedure. Fi-
nally, in section 3.3, we combine these components
to present the ADPO framework.

Adversarial training. Adversarial training is a
min-max optimization framework designed to en-
hance model robustness against adversarial attacks.
It involves two key stages: (1) the adversary gen-
erates worst-case perturbations ¢ within a certain
constrained set A to maximize the model’s loss,
and (2) the model updates its parameters to mini-
mize the loss on these perturbed inputs. Formally,
this can be expressed as:

min max £(fo(z +9),y), (€]

where fy represents the model, = and y denote the
input and output respectively.

3.1 AR-DPO: DPO with Adversarial-trained
Reference Model

The reference model is the cornerstone of DPO,
providing a benchmark to guide the target model’s
output. However, training the reference model
solely under benign conditions without the aware-
ness of the adversarial parties leaves the target
model vulnerable to perturbations and suscepti-
ble to jailbreak attacks. Therefore, an intuitive
approach is to train the reference model with worst-
case perturbations, enhancing its resilience to jail-
break attacks and consequently ensuring the target
model’s robustness.



Worst-case perturbation search on image space.
Since most jailbreak attacks of VLMs are pro-
posed to manipulate the image modality, we first
consider to search for the worst-case perturba-
tion in the image space. To create a reference
model that is aware of jailbreak attacks in im-
age space, we employ Projected Gradient Descent
(PGD) (Madry et al., 2017) to maximize the prob-
ability of rejected harmful responses Y,.. For each
harmful image-text pair z;-z7, we optimize the
perturbation § within a constrained perturbation
set A = {6 [ z; +6 € [0,1],][d]|, < e}. This
constraint ensures that each pixel of the perturbed
image remains within the valid range, and the max-
imum perturbation magnitude € preserves the se-
mantic meaning of the image. The maximization
of the probability of rejected responses Y, can be
formulated:

0" = argmax Lg(xy,x7,Y,), where 2)
SEA

Lo(xr,xr,Yy) =log fo(Ye | xr +0,27)  (3)

This optimization can be solved with Projected
Gradient Descent:

ST =TI (2} + asignVt Lo(zr,x7,Yr))  (4)

Worst-case perturbation search on latent space.
To provide a reference model that is also aware of
the jailbreak attacks in both text and image domain,
we also propose to search for perturbation in the
latent space of image-text token embedding. We
don’t choose to optimize adversarial perturbation
over the discrete text token space for two key rea-
sons: (1) optimizing worst-case perturbations in
the discrete token space is computationally expen-
sive (Mazeika et al., 2024), and (2) prior studies
have shown that such approaches often yield unsat-
isfactory performance (Xhonneux et al., 2024). By
operating in the latent space, we achieve a more
efficient and effective optimization process in pro-
viding an adversary-aware reference model. Given
a VLM fy, it can be expressed as the composi-
tion of two functions, fo(Y | zr,z7) = go(Y |
hg(xr,xT)), where hy extracts latent representa-
tion of the image-text token embedding, and gy
maps these latent activations to the outputs. Simi-
lar to the optimization in image space, the search
for adversarial perturbation § on image-text latent
space can be formulated as:

6% = argmaxlog go(Y; | ho(xr,27) +0)  (5)
seA

Reference model updates to minimize the loss on
perturbed inputs. After generates the worst-case
perturbation §*, the reference model is adversari-
ally trained to minimize the loss on perturbed in-
puts. The loss is designed to achieve two objectives:
(1) maximizing the probability of generating pre-
ferred answer on harmful inputs and (2) maintain
the general utility on a normal instruction follow-
ing dataset. To this end, the adversarial training
loss consists of two components: the toward loss
Lioward to increase the likelihood of preferred safe
responses Y), and the utility loss L1, to preserve
the general utility, which can be formulated as:

Etoward = - 1Og fQ()/}) | x‘}fl + 5*a ‘T’}ZL“) (6)

‘cutility = - 1Og f9 (Yutil | I}Lt“a x?"til) (7)

If the perturbation is optimized on latent space,
the Liowarq can be reformulated as:

£toward = - IOg g@(YVP ‘ h@(l‘?, Z‘]%) + 6*) (8)

The overall loss of adversarial training can be
formulated as weighted combination of the above
two parts and the adversarially trained reference
model fy, . is optimized with following formula:

foar = argfmin Lioward + aLoytitity )
DPO training. Next, we take the adversarially
trained VLM fj , . as the reference model for DPO.
The objective is to encourage the model to maxi-
mize the likelihood of preferred responses while
minimizing the likelihood of rejected responses,
which can be formulated as:

o (Yp|x I xT)

Lopo = —1 log —2 0\ PITL2T)
pro %87 (IB o8 feAT (Yp|x17xT)

fo(Yelzr, xr) )

—Blog Lo AT)
s faAT (YT|$I’ IT)

(10)

where 3 is a hyperparameter and controls the
penalty of deviations from reference model fg , ..
A higher /3 enforces stricter adherence to the refer-
ence model, while a lower /3 allows more flexibility.
The term log ¢ “£~2 éﬁ’s(/’;,'j; fZ)T) and log 7%23&?"; fﬁ)T)
measures likelihood of generating the preferred
response and rejected answer respectively under
the target model fy versus the reference model
fo.p- Maximizing the former term encourages
the target model to assign higher probability to pre-
ferred responses compared to the reference model,
while minimizing this term discourages the target
model from assigning high probability to rejected
responses.



3.2 AT-DPO: DPO Training with
Adversary-aware Loss
Adversarial training can be viewed as the integra-

tion of adversarial examples into the training pro-
cess, and it is independent of the particular choice
of the training objective function. Therefore, in
addition to utilizing an adversarially trained model
as the reference for DPO, we also investigate the
potential of direct incorporation of adversarial tech-
niques into the DPO training process. If the pertur-
bation is searched on image space, the loss funtion
for AT-DPO can be formulated as:

fo(Yplzr + 0%, x7)

Lxrpro = —logo (5 log Fres(YVolor, or)
fo(Yr|zr 467, xT)>
fref(Yelzr, z7)

—pBlog
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where f. represents a normal reference model
without fine-tuning. In each training iteration of
DPO, the worst-case perturbation ¢ is computed
according to Equation 2 and subsequently added to
the input images.

If the perturbation is optimized on latent space,
the loss funtion for AT-DPO is:

96(Yp | ho(xr, 1) + 6%)

Lrpro = —logo (»3 log AL

9o (Ve | ho(wr,or) +5*>> 1)
fref(Yr|37I7 JCT)

—plog

where ¢ is computed according to Equation 5
and then is added to the latent activations.

3.3 Adversary-aware DPO (ADPO)
Adversary-aware DPO (ADPO) combines both the

adversarial reference model and adversary-aware
loss into DPO framework. In Adversarial reference
model training stage, the training procedure fol-
lows the adversarial training process of AR-DPO,
producing a robust and adversary-aware reference
model fy,,.. This model is adversarially trained to
generate human-preferred responses under worst-
case perturbations, ensuring it serves as a reliable
benchmark for the second stage.

In adversary-aware DPO Training stage, ADPO
incorporates the adversary-aware loss of AT-DPO
directly into the DPO training process. The goal
is to optimize the target model fywhile accounting
for adversarial conditions. This process can be

formulated as:
fo(Yplzr + 0%, 27)
La. = —logo lo
A-DPO g <ﬁ g feAT(Y};|3CI,$T)
fo(Yr|zr +5*,$T)>
foar Yelzr, zr)

—Blog (13)

4 Experiments

We begin by detailing our experimental configura-
tion, including the training and evaluation datasets,
jailbreak attacks, and baseline methods. Next, we
demonstrate the effectiveness of ADPO from two
perspectives of safety, measured by its robustness
against various jailbreak attacks, and utility, eval-
uated on normal tasks. To further validate our ap-
proach, we visualize latent space shifts to show
improved robustness, conduct ablations to justify
hyperparameter choices, and compare training ef-
ficiency across methods. Finally, we compare
ADPQO against advanced closed-source models un-
der black-box attacks.. Additional results, includ-
ing the rationale for using PGD and the results of
latent space adversarial training, are provided in
Appendix Sections B.2 and B.3.

4.1 Experiment Setup

Safety alignment datasets. Harmful queries
can take many forms, including adversarial text
prompts, harmful image-text pairs, and synthetic
images using Stable Diffusion or typographic tech-
niques. To ensure comprehensive safety alignment,
we construct a dataset combining 80 image-text
pairs from HarmBench multimodal (HarmBench-
mm), 40 adversarial training (HarmBench-AT) text
prompts paired with blank images, and 80 addi-
tional samples generated using typographic and
Stable Diffusion methods based on HarmBench-
AT—yielding 200 harmful image-text pairs. For
utility alignment, we sample 500 examples from
LLaVA-Instruct-150K to balance safety and task
performance during fine-tuning.

Evaluated VLMs. We evaluate our method on four
widely used open-sourced VLMs:LLaVA-1.5-7B,
LLaVA-1.6-7B, Qwen2-VL-7B, InternVL2-8B.
We employ LoRA to fine-tune all the models.
The results of LLaVA-1.5-7B are presented in
Appendix B.1.

Evaluated jailbreak attacks and utility bench-
marks. For safety evaluation, We evaluate two
optimization-based attacks, VisualAdv (Qi et al.,
2024) and MMPGDBIlank (Mazeika et al., 2024).
Furthermore, we also employ the Jailbreaking sub-
set of MultiTrust (Zhang et al., 2024a) to assess
the safety of the VLM in a black-box setting.
This subset includes three subtasks: Typographic
Jailbreaking, Multimodal Jailbreaking, and Cross-
modal Jailbreaking. For utility evaluation, we con-
duct experiments on four widely adopted utilities
benchmarks, including MMStar (Chen et al., 2024),



OCRBench (Liu et al., 2024c), MM-Vet (Yu et al.,
2023b), LLaVABench (Liu et al., 2024a). Detailed
descriptions of jailbreak attacks and utility bench-
marks are provided in Appendix A.1 and A.2.

Baselines. In addition to its ablations: AR-DPO
(adversarial-trained reference model only) and AT-
DPO (adversary-aware DPO loss only), we com-
pare ADPO against four baselines: supervised fine-
tuning (SFT), standard DPO, ESCO (Gou et al.,
2024), a training-free safety alignment approach,
and direct adversarial training (AT) incorporating a
log-likelihood comparison term. Detailed descrip-
tion of the baselines is provided in Appendix A.3.

4.2 Safety Evaluation

In this section, we evaluate the effectiveness of
ADPO in improving safety alignment. The evalua-
tion focuses on Attack Success Rate (ASR) across
various jailbreak attacks, which is defined as the
fraction of successful attacks over all tested exam-
ples. The HarmBench classifier (Mazeika et al.,
2024) is employed to determine whether the model
responses are harmful.

Overall safety gains. As shown in the safety
column of Table 1, ADPO and its ablations (AR-
DPO and AT-DPO) significantly reduce the ASR
across all jailbreak attacks on all VLMs, outper-
forming the baselines. Specifically, ADPO emerges
as the most effective method, reducing the ASR to
nearly O across almost all attacks, underscoring
the importance of integrating both the adversarial-
trained reference model and adversary-aware DPO
loss. Although SFT and DPO exhibit compara-
ble performance on some cases in the Multitrust
benchmark, they demonstrate reduced effectiveness
against white-box optimization-based attacks, such
asthe MMPGDBIlank attack.

ADPO vs. AT. ADPO consistently outperforms AT
across adversarial scenarios, which we attribute to
differences in objective design. The log-likehood
term used in AT, £ = log f(Y; | 1 + d,27) —
log f(Y, | 1 + 6, z7), directly encourages the
model to prefer safe responses over unsafe ones,
which are dominated by the second term, pushing
the model to minimize loss by generating uniformly
low-probability outputs. This shortcut behavior
leads to unstable training and degraded generation
quality. In contrast, DPO loss uses a reference
model to guide preference alignment, offering a
more structured and constrained optimization pro-
cess for stable and balanced safety alignment.
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Figure 3: Safety-utility trade-off, where jailbreak dimen-
sions indicate the ASR reduction (the larger the better).
A larger area for each method represents more effective
in safety alignment and utility maintainness.

4.3 Utility Evaluation

ADPO, along with its ablations and baselines are
evaluated on four normal task benchmarks, each
has its own evaluation metric (detailed in Appendix
A.2). MMStar focuses on image-based multiple-
choice questions, while the other three benchmarks
are visual question answering (VQA) datasets. The
results are shown in the utility column of Table 1.
For all datasets, a higher score indicates better per-
formance on that dataset. The highest score among
ADPO and its ablations is underlined. Cases where
the utility score improves after safety alignment
compared to the original model are marked with .

Overall, all methods somehow reduce the utility
score on VQA bechmarks, whihe multiple-choice
dataset MMStar experiences an increase in the util-
ity score after safety fine-tuning, indicating its less
sensitive to the safety alignment. Although ADPO
and AR-DPO demonstrate remarkable performance
in enhancing robustness against jailbreak attacks,
we observe a slight trade-off on the VQA datasets.
This indicates that the adversarial training process,
while enhancing safety, may inadvertently lead to
a more conservative model behavior, occasionally
affecting its ability to handle benign queries. This
finding suggests the necessity to explore refined
fine-tuning strategies and objective functions in the
future work to further optimize this balance.

Safety and utility trade-off. To further evaluate
the safety-utility trade-off, we present a radar chart
in Figure 3. Note that the jailbreak dimensions in-
dicate the ASR reduction (the larger the better) and
MultiTrust dimension denotes the average ASR
reduction across its sub-tasks. A larger area repre-
sents more effective in safety alignment and utility
maintainess. As shown in Figure 3, the area for
ADPO (purple area) and AR-DPO (green are) are



Safety | Utility?
MultiTrust
VisualAdv MMPGDBIlank Typographic Multimodal Crossmodal | MMStar OCRBench MM-Vet LLaVABench
Jailbreak Jailbreak Jailbreak
LLaVA-1.5-7B 64.5 84.0 222 55.1 42.0 327 202 29.9 59.5
+Supervised FT 19.0 76.0 0.5 10.3 27.1 337 (1) 201 28.6 53.6
+ESCO 12.0 25.0 8.7 31.2 37.3 32.3 207 (1) 30.5 (1) 58.9
+ AT 20 17.5 35 24.1 28.4 31.9 198 28.9 58.6
+ DPO 12.0 33.0 0.7 8.8 9.6 33.9(1) 198 28.9 54.4
+AR-DPO 2.5 1.0 0.0 0.0 24 34.1(D) 187 233 47.7
+AT-DPO 7.5 8.5 0.5 34 9.1 33.4(1) 193 289 51.6
+ADPO 5.0 0.5 0.0 0.0 0.2 33.7(1) 184 24.2 482
Qwen2-VL-7B 13.5 30.0 4.5 54.3 6.3 58.5 841 64.7 88.0
+ Supervised FT 0.0 10.0 0.2 6.4 0.0 58.1 835 57.6 74.6
+ESCO 10.5 13.5 2.3 39.5 8.8 58.6 (1) 841 64.8 (1) 88.1 (1)
+ AT 2.0 9.5 0.3 14.5 0.3 58.5 841 62.2 84.0
+DPO 0.0 6.0 0.0 5.1 0.0 58.4 842 (1) 63.6 82.5
+AR-DPO 0.0 4.0 0.0 4.7 0.0 58.0 836 59.5 79.2
+AT-DPO 0.0 4.5 0.0 4.5 0.0 58.3 841 54.1 83.1
+ADPO 0.0 1.5 0.0 4.0 0.0 57.6 830 53.9 74.2
InternVL2-8B 15.0 65.5 9.3 50.2 1.0 59.6 799 59.5 73.3
+ Supervised FT 35 49.5 23 19.2 0.5 59.1 805 (1) 55.5 66.6
+ESCO 14.5 42.0 4.2 47.0 1.0 559 726 60.1 (1) 73.7
+ AT 0.0 34.5 1.3 222 0.5 59.7 (1) 799 58.3 69.6
+DPO 2.0 335 0.7 16.2 0.3 59.8 (1) 798 59.4 73.9 (1)
+AR-DPO 0.0 22 0.3 10.9 0.0 59.5 787 56.7 71.7
+ AT-DPO 1.0 19 0.0 8.8 0.0 59.7(M) 789 56.7 68.2
+ADPO 0.0 9.0 0.0 4.7 0.0 59.3 772 55.0 63.2

Table 1: Safety and utility evaluation of ADPO, its ablations, and baselines on various VLMs. For safety evaluation,
the lowest ASR for each jailbreak attack is highlighted in bold and gray shadow. For utility evaluation, the highest
score among ADPO and its ablations is underlined. Cases where the utility score improves after safety alignment

compared to the original model are marked with 7.
the largest compared with SFT and DPO.

4.4 Latent Space Representation Analysis

To further assess the effectiveness of ADPO,
we visualize the latent representation space of
LLaVA-1.5 using the last hidden state of the LLM,
which encodes the full sequence context. Inspired
by findings in Lin et al. (2024), which show that
harmful queries tend to shift toward harmless direc-
tions during jailbreaks, we apply principal compo-
nent analysis (PCA) (Wold et al., 1987) to analysis
four types of queries: Harmful and Harmless an-
chor query, HarmBench query, HarmBench query
under attacks. The harmful and harmless anchor
queries, collected from (Zheng et al., 2024), serve
as reference points for general harmful and harm-
less queries, exhibiting significant differences in
harmfulness while maintaining similar query for-
mats and text lengths.

As shown in Figure 4, the representations of
harmful and harmless anchor queries form distinct
clusters (yellow and blue), indicating the model’s
ability to differentiate between harmful and harm-
less semantics. Harmbench queries, which is in-
dicated as green clusters are closer to the harmful
anchor cluster (yellow), demonstrating the model’s
success in recognizing their harmfulness. How-
ever, after jailbreak attacks (MMPGDBIlank and
VisualAdv), HarmBench queries shift significantly

towards the harmless cluster (blue), as seen in the
orange clusters in the first column of Figure 4.

We compare the latent space of LLaVA-1.5
trained with AR-DPO, AT-DPO, ADPO and SFT
in the subsequent columns of Figure 4. Notably,
LLaVA-1.5 trained with ADPO and its ablations
successfully moves the orange cluster closer to
the harmful (yellow) and HarmBench (green) clus-
ters (black arrow) while pushing it further from
the harmless cluster (blue, red arrow). In contrast,
the SFT model fails to exhibit this behavior. This
finding indicates that the safety aligned model can
better recognize the harmfulness in Harmbench
queries even with the existence of jailbreak attacks.

4.5 Ablation Study

Figure 5 presents ablation studies of LLaVA-1.5
and Qwen2-VL on « in Equation 9, which balance
the trade-off between safety and utility during ad-
versarial training. The left Y-axis displays the ASR,
while the right Y-axis illustrates the False Harm
Rate (FHR) on MM-Vet, representing the propor-
tion of benign samples incorrectly flagged as harm-
ful. The optimal goal is to minimize both ASR
(enhancing safety robustness) and FHR (preserving
utility). Based on the intersection of the two curves,
we select the appropriate o value for our experi-
ments. Additional ablation studies of LLaVA-1.6
and InternVL2 are provided in Appendix B.4.
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Figure 5: Ablation study on hyperparameter .

4.6 Training Time Comparison

Table 2 presents the training time per iteration for
various methods on LLaVA-1.5 and Qwen2-VL. The
results indicate that ADPO incurs a higher train-
ing cost than DPO and SFT due to its adversarial
component, but it remains comparable to direct AT.
However, ADPO outperforms AT in terms of ro-
bustness, as demonstrated in our main results, mak-
ing the additional cost worthwhile. Notably, the
training time difference between ADPO and AT is
relatively small (e.g., 227s vs. 225s for LLaVA-1.5,
396s vs. 360s for Qwen2-VL), meaning that the
robustness gains from ADPO come with minimal
additional computational overhead compared to
AT.

SFT DPO ADPO AT
LLaVA-1.5 28s  45s 227s  225s
Qwen2-VL  31s  84s 396s  360s

Table 2: Comparison on training time (sec) per iteration
among different methods.

4.7 Comparision to closed-source models
We evaluate the adversarial robustness of ADPO-
trained models with advanced closed-source

Typo Multimodal Cross Average
GPT-40 0.0 25.6 0.4 8.7
Claude-3.5 0.2 13.2 0.0 45
Gemini2-pro 55.8 52.1 40.4 494
LLaVA-1.5+ADPO 0.0 0.0 0.2 0.07
LLaVA-1.6+4ADPO 0.0 0.2 8.4 2.9
Qwen2-VL+ADPO 0.0 4.0 0.0 1.3
InternVL-24ADPO 0.0 4.7 0.0 1.6

Table 3: Comparison of ADPO-trained VLMs with
advanced closed-source VLMs: GPT-40, Claude-3.5-
Sonnet, and Gemini2-Pro, under black box attacks.

VLMs, including GPT-40, Claude-3.5-Sonnet, and
Gemini2-Pro under three black-box attacks. As
shown in Table 3, ADPO-trained models consis-
tently exhibit lower ASR than all proprietary mod-
els, highlighting the effectiveness of ADPO in en-
hancing adversarial robustness against black-box
attack compared to closed-source VLMs.

5 Conclusion

We propose ADPO, a novel training framework to
enhance safety alignment of Vision-Language Mod-
els (VLMs) under adversarial scenarios. Compared
with baselines, ADPO demonstrates its effective-
ness through extensive experiments, achieving an
ASR close to 0 across nearly all jailbreak attacks.
Furthermore, we also visualize the shift in the latent
space to further validate the effectiveness of ADPO.
The results underscore the potential of ADPO as
a robust solution to enhance the safety alignment
of VLMs. It would be interesting to investigate
refined fine-tuning strategies that better balance the
trade-off between safety and utility in the future.



Limitations

We outline the limitations of our study as follows:

1. While enhancing the safety robustness of
VLMs, ADPO can inevitably compromise their
general performance on utility benchmarks, un-
derscoring the need for better optimization of this
trade-off in future research.

2. We only focus on integrating adversarial train-
ing into the training process of DPO. The explo-
ration of incorporating adversarial training into
other alignment algorithms, such as RLHF or IPO
(Azar et al., 2024), is reserved for future work.

Ethics Statements

In this paper, we propose a safety alignment frame-
work to enhance the safety robustness of VLMs
against jailbreak attacks. We believe that the adop-
tion of ADPO will significantly contribute to the
development of more secure and robust VLMs in
the future, enhancing their safety and reliability
in a wide range of applications. We acknowledge
that data utilized for training and evaluation in our
paper may contain harmful content and is strictly
limited to the model training and evaluation pro-
cess. ADPO training framework will be released in
the near future and contributes to the advancement
of safer VLMs.
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A Detail Experiment Setting
A.1 Jailbreak attacks

VisualAdv is a universal attack that optimizes a
universal adversarial pattern for all harmful be-
haviors, while MMPGDBIlank is a one-to-one at-
tack that optimizes a distinct image for each harm-
ful behavior. VisualAdv and MMPGDBIlank are
evaluated on 200 harmful queries from Harm-
Bench standard behaviors. The jailbreak subset of
MultiTrust includes three sub-tasks: Typographic
Jailbreaking, Multimodal Jailbreaking, and Cross-
modal Jailbreaking. Typographic Jailbreaking sim-
ply embeds the jailbreaking prompts generated
by GPTfuzzer (Yu et al., 2023a) and DAN (Shen
et al., 2024) into images using typographic meth-
ods. Multimodal Jailbreaking involves the ran-
dom sampling of instances from the existing Mul-
timodal Jailbreak Benchmark (Gong et al., 2023;
Liu et al., 2025). Cross-modal Jailbreaking investi-
gates whether VLMs are susceptible to adversarial
text queries when paired with images, specifically
by associating jailbreak prompts with task-relevant
images rather than sample-specific images.

A.2 Utility Benchmarks

MMStar. MMStar is a benchmark for multimodal
multiple-choice questions, consisting of 1,500 sam-
ples that assess six fundamental capabilities of
vision-language models (VLMs): fine-grained per-
ception, coarse perception, mathematics, science
and technology, logical reasoning, and instance rea-
soning. The metric used to evaluate MMStar is
accuracy and is calculated by some heuristic rules.

OCRBench. OCRBench is a comprehensive Opti-
cal Character Recognition (OCR) benchmark to as-
sess the OCR capabilities for VLMs. It comprises
1,000 question-answer pairs, and its evaluation met-
ric is based on the number of outputs that match
the ground truth answers.

MM-Vet. MM-Vet is an evaluation benchmark that
examines VLM on six core capabilities, including
recognition, OCR, knowledge, language genera-
tion, spatial awareness, and math. For each sample,
MM-Vet score is calculated by GPT-4 based on the
input question, ground truth, and model output.

LLaVABench. LLaVABench contains 60 samples
in three categories: conversation, detailed descrip-
tion, and complex reasoning. The evaluation score
is determined by GPT-4, which compares the gen-
erated answer with a reference answer.
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A.3 Baselines

ESCO. ESCO is a training-free safety alignment
method that generates responses by adaptively
transforming unsafe images into texts.

AT. Previous work (Xhonneux et al., 2024) has ex-
plored the integration of log-likelihood ratio com-
parisons into adversarial training. To extend this
approach to VLMs, we drive the following loss
function:

L =log f(Y, | &1 +6,x7)
—log f(Yp [ xr + 6, 27)
which directly encourages the model to prefer safe
responses over unsafe ones.

A.4 Hyperparameter Choices

Table 4 presents a full list of hyperparameter
choices for each fine-tuning method.

Hyperparameter | FT AT DPO AR-DPO AT-DPO ADPO
Learning rate | 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
8 Batchsize 64 64 64 64 64 64
? Epochs 2 2 10 5 10 5
< a 30 30 - - - -
% B - - 01 o0l 0.1 0.01
j Lorar 128 128 128 128 128 128
Lora alpha 256 256 256 256 256 256
Learning rate | 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
,CE Batch size 64 64 64 64 64 64
© Epochs 2 2 10 5 10 5
< o 06 06 - - - -
2 8 - -0l 0.1 0.1 0.1
o Lorar 128 128 128 128 128 128
Lora alpha 256 256 256 256 256 256
Learning rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
. Batch size 64 64 64 64 64 64
) Epochs 2 2 10 3 10 3
>
& @ 3 3 - - - -
§ 8 - -0l 0.1 0.1 0.1
o Lorar 128 128 128 128 128 128
Lora alpha 256 256 256 256 256 256
Learning rate | 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
a Batch size 64 64 64 64 64 64
:]l' Epochs 2 2 10 3 10 3
= et 04 04 - - - -
15} 8 - - 0.1 0.1 0.1 0.1
= Lorar 128 128 128 128 128 128
Lora alpha 256 256 256 256 256 256

Table 4: Hyperparameters for LLaVA-1.5-7B and
LLaVA-1.6-7B with different fine-tuning settings.

B Supplementary Materials

B.1 Evaluation on LLaVA-1.5-7B

The safety and utility evaluation of LLaVA-1.5-7B
are presented in Table 5.

B.2 Perturbation generation on FGSM

We adopt PGD as the primary perturbation genera-
tion method, as prior work (Madry et al., 2017) has
demonstrated that that models trained with PGD



Safety | Utilityt
MultiTrust
VisualAdv. MMPGDBIlank Typographic Multimodal Crossmodal | MMStar OCRBench MM-Vet LLaVABench
Jailbreak Jailbreak Jailbreak
LLaVA-1.6-7B 335 48.5 8.5 58.3 56.2 37.9 500 43.1 66.8
+Supervised FT 6.5 225 2.0 254 342 38.2 501 (1) 40.0 58.6
+ESCO 11.5 13.5 5.5 20.3 45.6 37.8 529 (1) 40.4 68.3 (1)
+ AT 4.5 10 5.5 4.7 349 37.7 472 393 59.8
+DPO 2.0 7.0 1.2 7.1 27.1 38.1 (1) 489 383 59.1
+AR-DPO 0.0 8.5 0.2 0.0 24 311 436 38.0 50.5
+AT-DPO 0.5 3.5 0.5 4.9 213 36.9 448 389 582
+ADPO 0.0 0.0 0.0 0.2 8.4 36.9 433 37.6 50.9

Table 5: Safety and utility evaluation of ADPO, its ablations, and baselines on LLaVA-1.5-7B.

are often more robust against a range of other adver-
sarial attacks, including FGSM (Goodfellow et al.,
2014), CW (Carlini and Wagner, 2017), and black-
box attacks. Additionally, we conduct experiments
using perturbations generated by FGSM to further
validate this conclusion. The results are presented
in Table 6.

Safety | UtilityT
MultiTrust

MMPGDBlank Typo Multimodal Cross MM-Vet
LLaVA-1.5-7B 840 22 551 20| 299
+AT-DPO (PGD) 8.5 05 34 91 | 289
+AT-DPO (FGSM) 40 12 75 83 | 289
LLaVA-1.6-7B 485 85 583 562 | 43.1
+AT-DPO (PGD) 3.5 05 49 213 | 389
+AT-DPO (FGSM) 6.0 10 7.1 253 | 394
Qwen2-VL-7B 30.0 45 543 63 | 647
+AT-DPO (PGD) 45 0.0 45 00 | 541
+AT-DPO (FGSM) 55 0.0 5.1 00 | 617
TntenVL.2-88 655 93 502 10 | 395
+AT-DPO (PGD) 19.0 0.0 8.8 00 | 567
+AT-DPO (FGSM) 26.0 12 16.9 00 | 584

Table 6: Comparison of worst-case perturbation

searched by PGD versus FGSM.

B.3 Latent Space Adversarial Training

We also investigate the search of adversarial per-
turbations in the latent space of image-text embed-
dings, introduced in Section 3.1. Specifically, we
perform adversarial perturbations at layers 8, 16,
24, and 30 of the backbone LLM for the VLM.
As shown in Table 7, where L-ADPO, L-AR-DPO
and L-AT-DPO represent the latent space counter-
parts of ADPO and its ablations. We hypothesize
that unlike image space perturbations, which in-
troduce explicit variations that align more closely
with real-world adversarial manipulations, latent
space perturbations operate in a more abstract and
constrained domain. This can limit their ability to
cover the full range of adversarial variations effec-
tively. Additionally, the optimization landscape in
latent space differs from that in image space, po-
tentially leading to suboptimal adversarial training.
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Safety | Utility
MultiTrust

MMPGDBlank Typo Multimodal Cross MM-Vet
LLaVA-1.5-7B 84.0 22 55.1 420 | 299
+AR-DPO 1.0 0.0 0.0 24 | 233
+AT-DPO 8.5 05 3.4 9.1 | 289
+ADPO 0.5 0.0 0.0 02 | 242
+L-AR-DPO 25 0.0 0.0 16 | 234
+L-AT-DPO 315 1.0 23.1 149 | 289
+L-ADPO 2.0 0.0 0.0 22 | 251
LLaVA-1.6-7B 485 85 583 562 | 43.1
+AR-DPO 85 02 0.0 24 | 380
+AT-DPO 35 05 49 213 | 389
+ADPO 0.5 0.0 0.2 84 | 376
+L-AR-DPO 11.0 1.0 0.0 216 | 410
+L-AT-DPO 12,0 17 8.5 2.1 | 396
+L-ADPO 10.5 12 0.0 249 | 426

Table 7: Comparison of worst-case perturbation

searched in the image space versus in the latent space
of image-text embedding.

B.4 Ablation study of LLaVA-1.6 and
InternVL2
LLaVA-1.6-7b InternVL2-8B
4 8 2
— .
;\3 10.0 3 ;\5 e\i ; g\i
x 15 1T 0 =
2 5 LT, L E
0 -2

0.0 0.5

alpha

0.0 0.5 1.0

alpha

1.0

Figure 6: Ablation study on adversarial training o of
LLaVA-1.6-7B and InternVL2-8B.

B.5 Radar chart of LLaVA-1.6
The radar chart of LLaVA-1.6 are presented in Fig-

ure 7.

C Computing Resources

The experiments are carried by 2*NVIDIA A40
gpus. All conducted experiments required at least
1600 gpu hours.
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—— AT
—e— DPO MMPGDBIlank
—e— AR-DPO
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—e— ADPO tor
60
VisualAdv
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Figure 7: This graph illustrates the reduction in ASR
and utility score of ADPO, its ablations and baselines
over different jailbreak attacks and utility benchmarks
on LLaVA-1.6.

D Al Assistants

We only use Al for grammar correction and sen-
tence polishing in the paper.
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