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Abstract

Safety alignment is critical in pre-trained large001
language models (LLMs) to generate responses002
aligned with human values and refuse harmful003
queries. Unlike LLM, the current safety align-004
ment of VLMs is often achieved with post-hoc005
safety fine-tuning. However, these methods006
are less effective to white-box attacks. To ad-007
dress this, we propose Adversary-aware DPO008
(ADPO), a novel training framework that ex-009
plicitly considers adversary. Adversary-aware010
DPO (ADPO) integrates adversarial training011
into DPO to enhance the safety alignment of012
VLMs under worst-case adversarial perturba-013
tions. ADPO introduces two key components:014
(1) an adversarial-trained reference model that015
generates human-preferred responses under016
worst-case perturbations, and (2) an adversary-017
aware DPO loss that generates winner-loser018
pairs accounting for adversarial distortions. By019
combining these innovations, ADPO ensures020
that VLMs remain robust and reliable even in021
the presence of sophisticated jailbreak attacks.022
Extensive experiments demonstrate that ADPO023
outperforms baselines in terms of both safety024
alignment and general utility of VLMs.025

1 Introduction026

Safety alignment is essential in pre-trained large027

language models (LLMs) (Bai et al., 2022; Ouyang028

et al., 2022a), guiding the models to generate re-029

sponses aligned with human values and enabling030

them to refuse harmful queries. Such alignment is031

typically achieved by reinforcement learning with032

human feedback (RLHF) (Ouyang et al., 2022a) or033

Direct Preference Optimization (DPO) (Rafailov034

et al., 2024). However, Vision-Language Mod-035

els (VLMs), which use a pre-trained LLM as the036

backbone along with an image encoder to adapt to037

down-straeam tasks (Liu et al., 2024b,a; Zhu et al.,038

2023; Dai et al., 2023; Bai et al., 2023), often lack039

safety alignment as a unified model in the same040

way as LLMs. As a result, even when the under- 041

lying LLM is safety-aligned, VLMs remain vul- 042

nerable to jailbreak attacks, where attackers craft 043

sophisticated prompts to manipulate the model into 044

generating toxic content (Qi et al., 2024; Niu et al., 045

2024; Gong et al., 2023; Liu et al., 2025). 046

Figure 1: Safe response rate under white-box and black-
box attacks on LLaVA-1.5. Post-hoc safety fine-tuning
(SFT and DPO) is less effective on white-box attack.

Jailbreak attacks can take two forms: generation- 047

based black-box attacks (Gong et al., 2023; Liu 048

et al., 2025), where malicious images are gen- 049

erated with typography or text-to-image models 050

like Stable Diffusion (Rombach et al., 2022), and 051

optimization-based white-box attacks (Qi et al., 052

2024; Niu et al., 2024), where harmful queries are 053

distilled into imperceptible noise added to the orig- 054

inal image. Existing countermeasures build safety- 055

relevant datasets and perform post-hoc safety fine- 056

tuning on the target VLMs, such as VLGuard and 057

SPA-VL (Zong et al., 2024; Zhang et al., 2024b). 058

However, these methods are less effective on 059

white-box attack than black-box attack, as they 060

heavily rely on learning safe response patterns from 061

training data while overlooking the risks of poten- 062

tial adversarial manipulations, where attackers di- 063

rectly exploit the model’s internal representation 064

to construct jailbreak examples. To highlight the 065

limitation of existing post-hoc safety fine-tuning in 066

VLMs, we conduct a preliminary study comparing 067

the safe response rates under both black-box and 068

white-box attacks (Figure 1). While SFT and DPO 069

achieve moderate robustness against black-box at- 070
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Figure 2: Pipeline of ADPO: achieving adversarail-aware safety alignment with adversarial-trained reference model
and adversary-aware DPO loss. The worst-case perturbation is generated on image space or the latent space of
image-text embedding.

tacks, their performance degrades significantly un-071

der white-box scenarios, underscoring the need for072

safety alignment methods that are robust to adver-073

sarial perturbations.074

To bridge this gap, we propose to integrate ad-075

versarial training into the safety alignment pro-076

cess of VLMs, which is a well-established ap-077

proach in adversarial robustness research (Goodfel-078

low et al., 2014), that exposes the model to adver-079

sarially perturbed inputs and optimizes the model080

to resist such manipulations. Specifically, We pro-081

pose Adversary-aware DPO (ADPO), a method082

that strengthens the robustness of VLM alignment083

by integrating adversarial training into DPO. As084

illustrated in Figure 1, ADPO significantly im-085

proves the safe response rate under white-box at-086

tacks compared to traditional post-hoc safety fine-087

tuning approaches such as SFT and DPO. This im-088

provement stems from two core components: the089

adversarial-trained reference model and the mod-090

ified adversary-aware DPO loss (see Figure 2).091

The reference model plays a critical role in DPO092

by providing a baseline for preference compari-093

son. However, traditional reference models are094

trained under benign conditions and lack robust-095

ness against adversarial perturbations, which can096

lead to misalignment when the model encounters097

malicious inputs. To address this, we introduce098

an adversarial-trained reference model, which is099

explicitly optimized to generate human-preferred100

responses under adversarial conditions, ensuring101

that the target model is guided by a robust and reli-102

able reference. Moreover, we revise the standard103

DPO objective by introducing an adversary-aware104

DPO loss that explicitly incorporates a min-max 105

optimization framework. In our formulation, the 106

objective is to optimize the probability of gener- 107

ating human preferred responses (Ypre) while si- 108

multaneously accounting for worst-case adversarial 109

perturbations, leading to a more robust safety align- 110

ment. 111

Our contribution can be summarized as: 112

• We propose ADPO, a novel framework to 113

achieve safety alignment under adversarial sce- 114

narios for Vision-Language Models (VLMs). 115

To the best of our knowledge, this is the first 116

work to integrate adversarial training into the 117

safety alignment of VLMs. 118

• ADPO achieves the robust safety alignment 119

through an adversarially trained reference 120

model and the adversary-aware DPO loss, with 121

adversarial perturbation on both image space 122

and latent space to achieve a broader safety 123

alignment against various jailbreak attacks. 124

• Extensive experiments demonstrate that ADPO 125

outperforms existing safety fine-tuning, achiev- 126

ing a lowest ASR against almost all jailbreak at- 127

tacks and preserving the utility on normal tasks. 128

Ablation studies also reveal the contribution of 129

each component of ADPO. 130

2 Related Work 131

2.1 Safety Alignment of LLMs 132

Ensuring the LLM’s behavior aligns with human 133

values is essential. Reinforcement Learning from 134

Human Feedback (RLHF) (Ouyang et al., 2022b) 135

proves to be a straightforward and the most effec- 136

tive method to achieve this goal. However, RLHF is 137
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frequently criticized for its high computational cost138

and the inherent instability of RL paradigm. Con-139

sequently, Direct Preference Optimization (DPO)140

(Rafailov et al., 2024) was proposed as a simpler al-141

ternative to RLHF. Unlike RLHF, DPO eliminates142

the need to train an additional reward model and in-143

stead enables direct learning from preference data144

in a supervised way.145

2.2 Adversarial Training146

Despite safety alignment efforts, prior studies (Zou147

et al., 2023; Liu et al., 2023; Zhou et al., 2024)148

have demonstrated that carefully crafted jailbreak149

prompts can bypass LLM safety guardrails, high-150

lighting the persistent vulnerabilities of these mod-151

els. Adversarial training, originally proposed to152

defend against adversarial examples (Goodfellow153

et al., 2014) in image classification tasks, enhances154

the robustness against adversarial attacks in im-155

age classification tasks by forming a min-max opti-156

mization, which maximizes the worst-case pertur-157

bation while minimizing the classification loss of158

the worst-case perturbed training data. Adversarial159

training has inspired research into its application160

for mitigating jailbreak attacks in LLMs. For in-161

stance, Mazeika et al. (2024) proposes generating162

adversarial suffixes during each training iteration163

using optimization-based attacks (Zou et al., 2023)164

and incorporating them into training data. How-165

ever, the high computational cost of discrete attacks166

leads to a significant increase in training overhead.167

To address this, Xhonneux et al. (2024) introduces168

a fast adversarial training algorithm on continuous169

embedding space, while Sheshadri et al. (2024) ex-170

plores adversarial attack in the latent space. To the171

best of our knowledge, no prior work has integrated172

adversarial training in VLM safety alignment.173

2.3 Safety of VLMs174

Building upon a backbone LLM, VLMs also face175

significant safety concerns. To evaluate their safety,176

several benchmarks (Li et al., 2024; Luo et al.,177

2024; Hu et al., 2024) and jailbreak techniques178

(Gong et al., 2023; Liu et al., 2025; Qi et al., 2024;179

Niu et al., 2024) have been proposed. Jailbreak180

attacks on VLMs can be categorized into two types:181

generation-based attacks and optimization-based at-182

tacks. Generation-based attacks (Gong et al., 2023;183

Liu et al., 2025) create malicious images directly184

through typography or text-to-image models like185

Stable Diffusion, while optimization-based attacks186

(Qi et al., 2024; Niu et al., 2024) distill harmful187

queries and add imperceptible noise to original im-188

ages. To address these vulnerabilities, the most 189

prevalent approach is to construct safety-relevant 190

datasets and fine-tune the target model on them. 191

For example, Zong et al. (2024) constructs a vision- 192

language safe instruction-following dataset VL- 193

Guard and Zhang et al. (2024b) proposes a safety 194

preference alignment dataset. MMJ-bench (Weng 195

et al., 2024) present a thorough evaluation on ex- 196

isting jailbreak attacks and defenses on various 197

models. Although these datasets are effective in 198

enhancing the safety of VLMs when facing harm- 199

ful queries, they do not consider the existence of 200

malicious users. 201

3 Methods 202

In this section, we introduce Adversary-aware 203

DPO (ADPO). First, we present DPO with 204

adversarial-trained reference model (AR-DPO) 205

in section 3.1, which leverages an adversarially 206

trained model as the reference model for DPO. 207

Then, in Section 3.2, we describe DPO with 208

adversary-aware loss (AT-DPO), which directly 209

incorporates the adversarial min-max optimization 210

framework into the DPO training procedure. Fi- 211

nally, in section 3.3, we combine these components 212

to present the ADPO framework. 213

Adversarial training. Adversarial training is a 214

min-max optimization framework designed to en- 215

hance model robustness against adversarial attacks. 216

It involves two key stages: (1) the adversary gen- 217

erates worst-case perturbations δ within a certain 218

constrained set ∆ to maximize the model’s loss, 219

and (2) the model updates its parameters to mini- 220

mize the loss on these perturbed inputs. Formally, 221

this can be expressed as: 222

min
θ

max
δ∈∆

L(fθ(x+ δ), y), (1) 223

where fθ represents the model, x and y denote the 224

input and output respectively. 225

3.1 AR-DPO: DPO with Adversarial-trained 226

Reference Model 227
The reference model is the cornerstone of DPO, 228

providing a benchmark to guide the target model’s 229

output. However, training the reference model 230

solely under benign conditions without the aware- 231

ness of the adversarial parties leaves the target 232

model vulnerable to perturbations and suscepti- 233

ble to jailbreak attacks. Therefore, an intuitive 234

approach is to train the reference model with worst- 235

case perturbations, enhancing its resilience to jail- 236

break attacks and consequently ensuring the target 237

model’s robustness. 238
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Worst-case perturbation search on image space.239

Since most jailbreak attacks of VLMs are pro-240

posed to manipulate the image modality, we first241

consider to search for the worst-case perturba-242

tion in the image space. To create a reference243

model that is aware of jailbreak attacks in im-244

age space, we employ Projected Gradient Descent245

(PGD) (Mądry et al., 2017) to maximize the prob-246

ability of rejected harmful responses Yr. For each247

harmful image-text pair xI -xT , we optimize the248

perturbation δ within a constrained perturbation249

set ∆ = {δ | xI + δ ∈ [0, 1], ∥δ∥p ≤ ϵ}. This250

constraint ensures that each pixel of the perturbed251

image remains within the valid range, and the max-252

imum perturbation magnitude ϵ preserves the se-253

mantic meaning of the image. The maximization254

of the probability of rejected responses Yr can be255

formulated:256

δ∗ = argmax
δ∈∆

Lθ(xI , xT , Yr), where (2)257

Lθ(xI , xT , Yr) = log fθ(Yr | xI + δ, xT ) (3)258

This optimization can be solved with Projected259

Gradient Descent:260

δt+1 = Π∆(x
t
I + αsign∇xt

I
Lθ(xI , xT , Yr)) (4)261

262
Worst-case perturbation search on latent space.263

To provide a reference model that is also aware of264

the jailbreak attacks in both text and image domain,265

we also propose to search for perturbation in the266

latent space of image-text token embedding. We267

don’t choose to optimize adversarial perturbation268

over the discrete text token space for two key rea-269

sons: (1) optimizing worst-case perturbations in270

the discrete token space is computationally expen-271

sive (Mazeika et al., 2024), and (2) prior studies272

have shown that such approaches often yield unsat-273

isfactory performance (Xhonneux et al., 2024). By274

operating in the latent space, we achieve a more275

efficient and effective optimization process in pro-276

viding an adversary-aware reference model. Given277

a VLM fθ, it can be expressed as the composi-278

tion of two functions, fθ(Y | xI , xT ) = gθ(Y |279

hθ(xI , xT )), where hθ extracts latent representa-280

tion of the image-text token embedding, and gθ281

maps these latent activations to the outputs. Simi-282

lar to the optimization in image space, the search283

for adversarial perturbation δ on image-text latent284

space can be formulated as:285

δ∗ = argmax
δ∈∆

log gθ(Yr | hθ(xI , xT ) + δ) (5)286

Reference model updates to minimize the loss on 287

perturbed inputs. After generates the worst-case 288

perturbation δ∗, the reference model is adversari- 289

ally trained to minimize the loss on perturbed in- 290

puts. The loss is designed to achieve two objectives: 291

(1) maximizing the probability of generating pre- 292

ferred answer on harmful inputs and (2) maintain 293

the general utility on a normal instruction follow- 294

ing dataset. To this end, the adversarial training 295

loss consists of two components: the toward loss 296

Ltoward to increase the likelihood of preferred safe 297

responses Yp and the utility loss Lutility to preserve 298

the general utility, which can be formulated as: 299

Ltoward = − log fθ(Yp | xh
I + δ∗, xh

T ) (6) 300

301
Lutility = − log fθ(Yutil | xutil

I , xutil
T ) (7) 302

303If the perturbation is optimized on latent space, 304

the Ltoward can be reformulated as: 305

Ltoward = − log gθ(Yp | hθ(x
h
I , x

h
T ) + δ∗) (8) 306

The overall loss of adversarial training can be 307

formulated as weighted combination of the above 308

two parts and the adversarially trained reference 309

model fθAT
is optimized with following formula: 310

fθAT
= argmin

fθ

Ltoward + αLutility (9) 311

312DPO training. Next, we take the adversarially 313

trained VLM fθAT
as the reference model for DPO. 314

The objective is to encourage the model to maxi- 315

mize the likelihood of preferred responses while 316

minimizing the likelihood of rejected responses, 317

which can be formulated as: 318

LDPO = − log σ

(
β log

fθ(Yp|xI , xT )

fθAT
(Yp|xI , xT )

319

−β log
fθ(Yr|xI , xT )

fθAT
(Yr|xI , xT )

)
(10) 320

where β is a hyperparameter and controls the 321

penalty of deviations from reference model fθAT
. 322

A higher β enforces stricter adherence to the refer- 323

ence model, while a lower β allows more flexibility. 324

The term log
fθ(Yp|xI ,xT )

fθAT
(Yp|xI ,xT ) and log fθ(Yr|xI ,xT )

fθAT
(Yr|xI ,xT ) 325

measures likelihood of generating the preferred 326

response and rejected answer respectively under 327

the target model fθ versus the reference model 328

fθAT
. Maximizing the former term encourages 329

the target model to assign higher probability to pre- 330

ferred responses compared to the reference model, 331

while minimizing this term discourages the target 332

model from assigning high probability to rejected 333

responses. 334
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3.2 AT-DPO: DPO Training with335

Adversary-aware Loss336
Adversarial training can be viewed as the integra-337

tion of adversarial examples into the training pro-338

cess, and it is independent of the particular choice339

of the training objective function. Therefore, in340

addition to utilizing an adversarially trained model341

as the reference for DPO, we also investigate the342

potential of direct incorporation of adversarial tech-343

niques into the DPO training process. If the pertur-344

bation is searched on image space, the loss funtion345

for AT-DPO can be formulated as:346

LAT-DPO = − log σ

(
β log

fθ(Yp|xI + δ∗, xT )

fref (Yp|xI , xT )
347

−β log
fθ(Yr|xI + δ∗, xT )

fref (Yr|xI , xT )

)
(11)348

where fref represents a normal reference model349

without fine-tuning. In each training iteration of350

DPO, the worst-case perturbation δ is computed351

according to Equation 2 and subsequently added to352

the input images.353

If the perturbation is optimized on latent space,354

the loss funtion for AT-DPO is:355

LAT-DPO = − log σ

(
β log

gθ(Yp | hθ(xI , xT ) + δ∗)

fref (Yp|xI , xT )
356

−β log
gθ(Yr | hθ(xI , xT ) + δ∗)

fref (Yr|xI , xT )

)
(12)357

358
where δ is computed according to Equation 5359

and then is added to the latent activations.360

3.3 Adversary-aware DPO (ADPO)361
Adversary-aware DPO (ADPO) combines both the362

adversarial reference model and adversary-aware363

loss into DPO framework. In Adversarial reference364

model training stage, the training procedure fol-365

lows the adversarial training process of AR-DPO,366

producing a robust and adversary-aware reference367

model fθAT
. This model is adversarially trained to368

generate human-preferred responses under worst-369

case perturbations, ensuring it serves as a reliable370

benchmark for the second stage.371

In adversary-aware DPO Training stage, ADPO372

incorporates the adversary-aware loss of AT-DPO373

directly into the DPO training process. The goal374

is to optimize the target model fθwhile accounting375

for adversarial conditions. This process can be376

formulated as:377

LA-DPO = − log σ

(
β log

fθ(Yp|xI + δ∗, xT )

fθAT
(Yp|xI , xT )

378

−β log
fθ(Yr|xI + δ∗, xT )

fθAT
(Yr|xI , xT )

)
(13)379

380

4 Experiments 381

We begin by detailing our experimental configura- 382

tion, including the training and evaluation datasets, 383

jailbreak attacks, and baseline methods. Next, we 384

demonstrate the effectiveness of ADPO from two 385

perspectives of safety, measured by its robustness 386

against various jailbreak attacks, and utility, eval- 387

uated on normal tasks. To further validate our ap- 388

proach, we visualize latent space shifts to show 389

improved robustness, conduct ablations to justify 390

hyperparameter choices, and compare training ef- 391

ficiency across methods. Finally, we compare 392

ADPO against advanced closed-source models un- 393

der black-box attacks.. Additional results, includ- 394

ing the rationale for using PGD and the results of 395

latent space adversarial training, are provided in 396

Appendix Sections B.2 and B.3. 397

4.1 Experiment Setup 398

Safety alignment datasets. Harmful queries 399

can take many forms, including adversarial text 400

prompts, harmful image-text pairs, and synthetic 401

images using Stable Diffusion or typographic tech- 402

niques. To ensure comprehensive safety alignment, 403

we construct a dataset combining 80 image-text 404

pairs from HarmBench multimodal (HarmBench- 405

mm), 40 adversarial training (HarmBench-AT) text 406

prompts paired with blank images, and 80 addi- 407

tional samples generated using typographic and 408

Stable Diffusion methods based on HarmBench- 409

AT—yielding 200 harmful image-text pairs. For 410

utility alignment, we sample 500 examples from 411

LLaVA-Instruct-150K to balance safety and task 412

performance during fine-tuning. 413

Evaluated VLMs. We evaluate our method on four 414

widely used open-sourced VLMs:LLaVA-1.5-7B, 415

LLaVA-1.6-7B, Qwen2-VL-7B, InternVL2-8B. 416

We employ LoRA to fine-tune all the models. 417

The results of LLaVA-1.5-7B are presented in 418

Appendix B.1. 419

Evaluated jailbreak attacks and utility bench- 420

marks. For safety evaluation, We evaluate two 421

optimization-based attacks, VisualAdv (Qi et al., 422

2024) and MMPGDBlank (Mazeika et al., 2024). 423

Furthermore, we also employ the Jailbreaking sub- 424

set of MultiTrust (Zhang et al., 2024a) to assess 425

the safety of the VLM in a black-box setting. 426

This subset includes three subtasks: Typographic 427

Jailbreaking, Multimodal Jailbreaking, and Cross- 428

modal Jailbreaking. For utility evaluation, we con- 429

duct experiments on four widely adopted utilities 430

benchmarks, including MMStar (Chen et al., 2024), 431
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OCRBench (Liu et al., 2024c), MM-Vet (Yu et al.,432

2023b), LLaVABench (Liu et al., 2024a). Detailed433

descriptions of jailbreak attacks and utility bench-434

marks are provided in Appendix A.1 and A.2.435

Baselines. In addition to its ablations: AR-DPO436

(adversarial-trained reference model only) and AT-437

DPO (adversary-aware DPO loss only), we com-438

pare ADPO against four baselines: supervised fine-439

tuning (SFT), standard DPO, ESCO (Gou et al.,440

2024), a training-free safety alignment approach,441

and direct adversarial training (AT) incorporating a442

log-likelihood comparison term. Detailed descrip-443

tion of the baselines is provided in Appendix A.3.444

4.2 Safety Evaluation445

In this section, we evaluate the effectiveness of446

ADPO in improving safety alignment. The evalua-447

tion focuses on Attack Success Rate (ASR) across448

various jailbreak attacks, which is defined as the449

fraction of successful attacks over all tested exam-450

ples. The HarmBench classifier (Mazeika et al.,451

2024) is employed to determine whether the model452

responses are harmful.453

Overall safety gains. As shown in the safety454

column of Table 1, ADPO and its ablations (AR-455

DPO and AT-DPO) significantly reduce the ASR456

across all jailbreak attacks on all VLMs, outper-457

forming the baselines. Specifically, ADPO emerges458

as the most effective method, reducing the ASR to459

nearly 0 across almost all attacks, underscoring460

the importance of integrating both the adversarial-461

trained reference model and adversary-aware DPO462

loss. Although SFT and DPO exhibit compara-463

ble performance on some cases in the Multitrust464

benchmark, they demonstrate reduced effectiveness465

against white-box optimization-based attacks, such466

asthe MMPGDBlank attack.467

ADPO vs. AT. ADPO consistently outperforms AT468

across adversarial scenarios, which we attribute to469

differences in objective design. The log-likehood470

term used in AT, L = log f(Yr | xI + δ, xT ) −471

log f(Yp | xI + δ, xT ), directly encourages the472

model to prefer safe responses over unsafe ones,473

which are dominated by the second term, pushing474

the model to minimize loss by generating uniformly475

low-probability outputs. This shortcut behavior476

leads to unstable training and degraded generation477

quality. In contrast, DPO loss uses a reference478

model to guide preference alignment, offering a479

more structured and constrained optimization pro-480

cess for stable and balanced safety alignment.481

VisualAdv

MMPGDBlank
MultiTrust

MMStar

OCRBench

MM-Vet
LLaVABench

20 40 60 80

LLaVA-1.5Supervised FT
ESCO
AT
DPO
AR-DPO
AT-DPO
ADPO

Figure 3: Safety-utility trade-off, where jailbreak dimen-
sions indicate the ASR reduction (the larger the better).
A larger area for each method represents more effective
in safety alignment and utility maintainness.

4.3 Utility Evaluation 482

ADPO, along with its ablations and baselines are 483

evaluated on four normal task benchmarks, each 484

has its own evaluation metric (detailed in Appendix 485

A.2). MMStar focuses on image-based multiple- 486

choice questions, while the other three benchmarks 487

are visual question answering (VQA) datasets. The 488

results are shown in the utility column of Table 1. 489

For all datasets, a higher score indicates better per- 490

formance on that dataset. The highest score among 491

ADPO and its ablations is underlined. Cases where 492

the utility score improves after safety alignment 493

compared to the original model are marked with ↑. 494

Overall, all methods somehow reduce the utility 495

score on VQA bechmarks, whihe multiple-choice 496

dataset MMStar experiences an increase in the util- 497

ity score after safety fine-tuning, indicating its less 498

sensitive to the safety alignment. Although ADPO 499

and AR-DPO demonstrate remarkable performance 500

in enhancing robustness against jailbreak attacks, 501

we observe a slight trade-off on the VQA datasets. 502

This indicates that the adversarial training process, 503

while enhancing safety, may inadvertently lead to 504

a more conservative model behavior, occasionally 505

affecting its ability to handle benign queries. This 506

finding suggests the necessity to explore refined 507

fine-tuning strategies and objective functions in the 508

future work to further optimize this balance. 509

Safety and utility trade-off. To further evaluate 510

the safety-utility trade-off, we present a radar chart 511

in Figure 3. Note that the jailbreak dimensions in- 512

dicate the ASR reduction (the larger the better) and 513

MultiTrust dimension denotes the average ASR 514

reduction across its sub-tasks. A larger area repre- 515

sents more effective in safety alignment and utility 516

maintainess. As shown in Figure 3, the area for 517

ADPO (purple area) and AR-DPO (green are) are 518
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Safety ↓ Utility↑

VisualAdv MMPGDBlank
MultiTrust

MMStar OCRBench MM-Vet LLaVABenchTypographic Multimodal Crossmodal
Jailbreak Jailbreak Jailbreak

LLaVA-1.5-7B 64.5 84.0 22.2 55.1 42.0 32.7 202 29.9 59.5
+Supervised FT 19.0 76.0 0.5 10.3 27.1 33.7 (↑) 201 28.6 53.6

+ESCO 12.0 25.0 8.7 31.2 37.3 32.3 207 (↑) 30.5 (↑) 58.9
+ AT 20 17.5 3.5 24.1 28.4 31.9 198 28.9 58.6

+ DPO 12.0 33.0 0.7 8.8 9.6 33.9 (↑) 198 28.9 54.4
+AR-DPO 2.5 1.0 0.0 0.0 2.4 34.1 (↑) 187 23.3 47.7
+AT-DPO 7.5 8.5 0.5 3.4 9.1 33.4 (↑) 193 28.9 51.6
+ ADPO 5.0 0.5 0.0 0.0 0.2 33.7 (↑) 184 24.2 48.2

Qwen2-VL-7B 13.5 30.0 4.5 54.3 6.3 58.5 841 64.7 88.0
+ Supervised FT 0.0 10.0 0.2 6.4 0.0 58.1 835 57.6 74.6

+ ESCO 10.5 13.5 2.3 39.5 8.8 58.6 (↑) 841 64.8 (↑) 88.1 (↑)
+ AT 2.0 9.5 0.3 14.5 0.3 58.5 841 62.2 84.0

+ DPO 0.0 6.0 0.0 5.1 0.0 58.4 842 (↑) 63.6 82.5
+ AR-DPO 0.0 4.0 0.0 4.7 0.0 58.0 836 59.5 79.2
+ AT-DPO 0.0 4.5 0.0 4.5 0.0 58.3 841 54.1 83.1
+ ADPO 0.0 1.5 0.0 4.0 0.0 57.6 830 53.9 74.2

InternVL2-8B 15.0 65.5 9.3 50.2 1.0 59.6 799 59.5 73.3
+ Supervised FT 3.5 49.5 2.3 19.2 0.5 59.1 805 (↑) 55.5 66.6

+ ESCO 14.5 42.0 4.2 47.0 1.0 55.9 726 60.1 (↑) 73.7
+ AT 0.0 34.5 1.3 22.2 0.5 59.7 (↑) 799 58.3 69.6

+ DPO 2.0 33.5 0.7 16.2 0.3 59.8 (↑) 798 59.4 73.9 (↑)
+ AR-DPO 0.0 22 0.3 10.9 0.0 59.5 787 56.7 71.7
+ AT-DPO 1.0 19 0.0 8.8 0.0 59.7 (↑) 789 56.7 68.2
+ ADPO 0.0 9.0 0.0 4.7 0.0 59.3 772 55.0 63.2

Table 1: Safety and utility evaluation of ADPO, its ablations, and baselines on various VLMs. For safety evaluation,
the lowest ASR for each jailbreak attack is highlighted in bold and gray shadow. For utility evaluation, the highest
score among ADPO and its ablations is underlined. Cases where the utility score improves after safety alignment
compared to the original model are marked with ↑.

the largest compared with SFT and DPO.519

4.4 Latent Space Representation Analysis520

To further assess the effectiveness of ADPO,521

we visualize the latent representation space of522

LLaVA-1.5 using the last hidden state of the LLM,523

which encodes the full sequence context. Inspired524

by findings in Lin et al. (2024), which show that525

harmful queries tend to shift toward harmless direc-526

tions during jailbreaks, we apply principal compo-527

nent analysis (PCA) (Wold et al., 1987) to analysis528

four types of queries: Harmful and Harmless an-529

chor query, HarmBench query, HarmBench query530

under attacks. The harmful and harmless anchor531

queries, collected from (Zheng et al., 2024), serve532

as reference points for general harmful and harm-533

less queries, exhibiting significant differences in534

harmfulness while maintaining similar query for-535

mats and text lengths.536

As shown in Figure 4, the representations of537

harmful and harmless anchor queries form distinct538

clusters (yellow and blue), indicating the model’s539

ability to differentiate between harmful and harm-540

less semantics. Harmbench queries, which is in-541

dicated as green clusters are closer to the harmful542

anchor cluster (yellow), demonstrating the model’s543

success in recognizing their harmfulness. How-544

ever, after jailbreak attacks (MMPGDBlank and545

VisualAdv), HarmBench queries shift significantly546

towards the harmless cluster (blue), as seen in the 547

orange clusters in the first column of Figure 4. 548

We compare the latent space of LLaVA-1.5 549

trained with AR-DPO, AT-DPO, ADPO and SFT 550

in the subsequent columns of Figure 4. Notably, 551

LLaVA-1.5 trained with ADPO and its ablations 552

successfully moves the orange cluster closer to 553

the harmful (yellow) and HarmBench (green) clus- 554

ters (black arrow) while pushing it further from 555

the harmless cluster (blue, red arrow). In contrast, 556

the SFT model fails to exhibit this behavior. This 557

finding indicates that the safety aligned model can 558

better recognize the harmfulness in Harmbench 559

queries even with the existence of jailbreak attacks. 560

4.5 Ablation Study 561
Figure 5 presents ablation studies of LLaVA-1.5 562

and Qwen2-VL on α in Equation 9, which balance 563

the trade-off between safety and utility during ad- 564

versarial training. The left Y-axis displays the ASR, 565

while the right Y-axis illustrates the False Harm 566

Rate (FHR) on MM-Vet, representing the propor- 567

tion of benign samples incorrectly flagged as harm- 568

ful. The optimal goal is to minimize both ASR 569

(enhancing safety robustness) and FHR (preserving 570

utility). Based on the intersection of the two curves, 571

we select the appropriate α value for our experi- 572

ments. Additional ablation studies of LLaVA-1.6 573

and InternVL2 are provided in Appendix B.4. 574
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Figure 4: Visualization of representation space of LLaVA-1.5 trained with ADPO, its ablations and FT. (1)
Harmbench queries (green) are closer to the harmful anchor cluster (yellow) , demonstrating the model’s success in
recognizing their harmfulness. (2) LLaVA-1.5 trained with ADPO and its ablations successfully moves the orange
cluster closer to the harmful (yellow) and HarmBench (green) clusters (black arrow) while pushing it further from
the harmless cluster (blue, red arrow), indicates that the safety aligned model can better recognize the harmfulness
in Harmbench queries even with the existence of jailbreak attacks.
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Figure 5: Ablation study on hyperparameter α.

4.6 Training Time Comparison575

Table 2 presents the training time per iteration for576

various methods on LLaVA-1.5 and Qwen2-VL. The577

results indicate that ADPO incurs a higher train-578

ing cost than DPO and SFT due to its adversarial579

component, but it remains comparable to direct AT.580

However, ADPO outperforms AT in terms of ro-581

bustness, as demonstrated in our main results, mak-582

ing the additional cost worthwhile. Notably, the583

training time difference between ADPO and AT is584

relatively small (e.g., 227s vs. 225s for LLaVA-1.5,585

396s vs. 360s for Qwen2-VL), meaning that the586

robustness gains from ADPO come with minimal587

additional computational overhead compared to588

AT.589

SFT DPO ADPO AT
LLaVA-1.5 28s 45s 227s 225s
Qwen2-VL 31s 84s 396s 360s

Table 2: Comparison on training time (sec) per iteration
among different methods.

4.7 Comparision to closed-source models590

We evaluate the adversarial robustness of ADPO-591

trained models with advanced closed-source592

Typo Multimodal Cross Average
GPT-4o 0.0 25.6 0.4 8.7

Claude-3.5 0.2 13.2 0.0 4.5
Gemini2-pro 55.8 52.1 40.4 49.4

LLaVA-1.5+ADPO 0.0 0.0 0.2 0.07
LLaVA-1.6+ADPO 0.0 0.2 8.4 2.9
Qwen2-VL+ADPO 0.0 4.0 0.0 1.3
InternVL-2+ADPO 0.0 4.7 0.0 1.6

Table 3: Comparison of ADPO-trained VLMs with
advanced closed-source VLMs: GPT-4o, Claude-3.5-
Sonnet, and Gemini2-Pro, under black box attacks.

VLMs, including GPT-4o, Claude-3.5-Sonnet, and 593

Gemini2-Pro under three black-box attacks. As 594

shown in Table 3, ADPO-trained models consis- 595

tently exhibit lower ASR than all proprietary mod- 596

els, highlighting the effectiveness of ADPO in en- 597

hancing adversarial robustness against black-box 598

attack compared to closed-source VLMs. 599

5 Conclusion 600

We propose ADPO, a novel training framework to 601

enhance safety alignment of Vision-Language Mod- 602

els (VLMs) under adversarial scenarios. Compared 603

with baselines, ADPO demonstrates its effective- 604

ness through extensive experiments, achieving an 605

ASR close to 0 across nearly all jailbreak attacks. 606

Furthermore, we also visualize the shift in the latent 607

space to further validate the effectiveness of ADPO. 608

The results underscore the potential of ADPO as 609

a robust solution to enhance the safety alignment 610

of VLMs. It would be interesting to investigate 611

refined fine-tuning strategies that better balance the 612

trade-off between safety and utility in the future. 613

8



Limitations614

We outline the limitations of our study as follows:615

1. While enhancing the safety robustness of616

VLMs, ADPO can inevitably compromise their617

general performance on utility benchmarks, un-618

derscoring the need for better optimization of this619

trade-off in future research.620

2. We only focus on integrating adversarial train-621

ing into the training process of DPO. The explo-622

ration of incorporating adversarial training into623

other alignment algorithms, such as RLHF or IPO624

(Azar et al., 2024), is reserved for future work.625

Ethics Statements626

In this paper, we propose a safety alignment frame-627

work to enhance the safety robustness of VLMs628

against jailbreak attacks. We believe that the adop-629

tion of ADPO will significantly contribute to the630

development of more secure and robust VLMs in631

the future, enhancing their safety and reliability632

in a wide range of applications. We acknowledge633

that data utilized for training and evaluation in our634

paper may contain harmful content and is strictly635

limited to the model training and evaluation pro-636

cess. ADPO training framework will be released in637

the near future and contributes to the advancement638

of safer VLMs.639
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A Detail Experiment Setting835

A.1 Jailbreak attacks836

VisualAdv is a universal attack that optimizes a837

universal adversarial pattern for all harmful be-838

haviors, while MMPGDBlank is a one-to-one at-839

tack that optimizes a distinct image for each harm-840

ful behavior. VisualAdv and MMPGDBlank are841

evaluated on 200 harmful queries from Harm-842

Bench standard behaviors. The jailbreak subset of843

MultiTrust includes three sub-tasks: Typographic844

Jailbreaking, Multimodal Jailbreaking, and Cross-845

modal Jailbreaking. Typographic Jailbreaking sim-846

ply embeds the jailbreaking prompts generated847

by GPTfuzzer (Yu et al., 2023a) and DAN (Shen848

et al., 2024) into images using typographic meth-849

ods. Multimodal Jailbreaking involves the ran-850

dom sampling of instances from the existing Mul-851

timodal Jailbreak Benchmark (Gong et al., 2023;852

Liu et al., 2025). Cross-modal Jailbreaking investi-853

gates whether VLMs are susceptible to adversarial854

text queries when paired with images, specifically855

by associating jailbreak prompts with task-relevant856

images rather than sample-specific images.857

A.2 Utility Benchmarks858

MMStar. MMStar is a benchmark for multimodal859

multiple-choice questions, consisting of 1,500 sam-860

ples that assess six fundamental capabilities of861

vision-language models (VLMs): fine-grained per-862

ception, coarse perception, mathematics, science863

and technology, logical reasoning, and instance rea-864

soning. The metric used to evaluate MMStar is865

accuracy and is calculated by some heuristic rules.866

OCRBench. OCRBench is a comprehensive Opti-867

cal Character Recognition (OCR) benchmark to as-868

sess the OCR capabilities for VLMs. It comprises869

1,000 question-answer pairs, and its evaluation met-870

ric is based on the number of outputs that match871

the ground truth answers.872

MM-Vet. MM-Vet is an evaluation benchmark that873

examines VLM on six core capabilities, including874

recognition, OCR, knowledge, language genera-875

tion, spatial awareness, and math. For each sample,876

MM-Vet score is calculated by GPT-4 based on the877

input question, ground truth, and model output.878

LLaVABench. LLaVABench contains 60 samples879

in three categories: conversation, detailed descrip-880

tion, and complex reasoning. The evaluation score881

is determined by GPT-4, which compares the gen-882

erated answer with a reference answer.883

A.3 Baselines 884

ESCO. ESCO is a training-free safety alignment 885

method that generates responses by adaptively 886

transforming unsafe images into texts. 887

AT. Previous work (Xhonneux et al., 2024) has ex- 888

plored the integration of log-likelihood ratio com- 889

parisons into adversarial training. To extend this 890

approach to VLMs, we drive the following loss 891

function: 892

L = log f(Yr | xI + δ, xT ) 893

− log f(Yp | xI + δ, xT ) 894

which directly encourages the model to prefer safe 895

responses over unsafe ones. 896

A.4 Hyperparameter Choices 897

Table 4 presents a full list of hyperparameter 898

choices for each fine-tuning method. 899

Hyperparameter FT AT DPO AR-DPO AT-DPO ADPO

L
L

aV
A

-1
.5

-7
B

Learning rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Batch size 64 64 64 64 64 64

Epochs 2 2 10 5 10 5
α 30 30 - - - -
β - - 0.1 0.01 0.1 0.01

Lora r 128 128 128 128 128 128
Lora alpha 256 256 256 256 256 256

L
L

aV
A

-1
.6

-7
B

Learning rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Batch size 64 64 64 64 64 64

Epochs 2 2 10 5 10 5
α 0.6 0.6 - - - -
β - - 0.1 0.1 0.1 0.1

Lora r 128 128 128 128 128 128
Lora alpha 256 256 256 256 256 256

Q
w

en
2-

V
L

-7
B

Learning rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Batch size 64 64 64 64 64 64

Epochs 2 2 10 3 10 3
α 3 3 - - - -
β - - 0.1 0.1 0.1 0.1

Lora r 128 128 128 128 128 128
Lora alpha 256 256 256 256 256 256

In
te

rn
V

L
2-

8B

Learning rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Batch size 64 64 64 64 64 64

Epochs 2 2 10 3 10 3
α 0.4 0.4 - - - -
β - - 0.1 0.1 0.1 0.1

Lora r 128 128 128 128 128 128
Lora alpha 256 256 256 256 256 256

Table 4: Hyperparameters for LLaVA-1.5-7B and
LLaVA-1.6-7B with different fine-tuning settings.

B Supplementary Materials 900

B.1 Evaluation on LLaVA-1.5-7B 901

The safety and utility evaluation of LLaVA-1.5-7B 902

are presented in Table 5. 903

B.2 Perturbation generation on FGSM 904
We adopt PGD as the primary perturbation genera- 905

tion method, as prior work (Mądry et al., 2017) has 906

demonstrated that that models trained with PGD 907
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Safety ↓ Utility↑

VisualAdv MMPGDBlank
MultiTrust

MMStar OCRBench MM-Vet LLaVABenchTypographic Multimodal Crossmodal
Jailbreak Jailbreak Jailbreak

LLaVA-1.6-7B 33.5 48.5 8.5 58.3 56.2 37.9 500 43.1 66.8
+Supervised FT 6.5 22.5 2.0 25.4 34.2 38.2 501 (↑) 40.0 58.6

+ESCO 11.5 13.5 5.5 20.3 45.6 37.8 529 (↑) 40.4 68.3 (↑)
+ AT 4.5 10 5.5 4.7 34.9 37.7 472 39.3 59.8

+ DPO 2.0 7.0 1.2 7.1 27.1 38.1 (↑) 489 38.3 59.1
+AR-DPO 0.0 8.5 0.2 0.0 2.4 37.7 436 38.0 50.5
+AT-DPO 0.5 3.5 0.5 4.9 21.3 36.9 448 38.9 58.2
+ ADPO 0.0 0.0 0.0 0.2 8.4 36.9 433 37.6 50.9

Table 5: Safety and utility evaluation of ADPO, its ablations, and baselines on LLaVA-1.5-7B.

are often more robust against a range of other adver-908

sarial attacks, including FGSM (Goodfellow et al.,909

2014), CW (Carlini and Wagner, 2017), and black-910

box attacks. Additionally, we conduct experiments911

using perturbations generated by FGSM to further912

validate this conclusion. The results are presented913

in Table 6.914

Safety ↓ Utility↑

MMPGDBlank MultiTrust
MM-Vet

Typo Multimodal Cross
LLaVA-1.5-7B 84.0 22.2 55.1 42.0 29.9

+AT-DPO (PGD) 8.5 0.5 3.4 9.1 28.9
+AT-DPO (FGSM) 4.0 1.2 7.5 8.3 28.9

LLaVA-1.6-7B 48.5 8.5 58.3 56.2 43.1
+AT-DPO (PGD) 3.5 0.5 4.9 21.3 38.9

+AT-DPO (FGSM) 6.0 1.0 7.1 25.3 39.4
Qwen2-VL-7B 30.0 4.5 54.3 6.3 64.7

+AT-DPO (PGD) 4.5 0.0 4.5 0.0 54.1
+AT-DPO (FGSM) 5.5 0.0 5.1 0.0 61.7

InternVL2-8B 65.5 9.3 50.2 1.0 59.5
+AT-DPO (PGD) 19.0 0.0 8.8 0.0 56.7

+AT-DPO (FGSM) 26.0 1.2 16.9 0.0 58.4

Table 6: Comparison of worst-case perturbation
searched by PGD versus FGSM.

B.3 Latent Space Adversarial Training915

We also investigate the search of adversarial per-916

turbations in the latent space of image-text embed-917

dings, introduced in Section 3.1. Specifically, we918

perform adversarial perturbations at layers 8, 16,919

24, and 30 of the backbone LLM for the VLM.920

As shown in Table 7, where L-ADPO, L-AR-DPO921

and L-AT-DPO represent the latent space counter-922

parts of ADPO and its ablations. We hypothesize923

that unlike image space perturbations, which in-924

troduce explicit variations that align more closely925

with real-world adversarial manipulations, latent926

space perturbations operate in a more abstract and927

constrained domain. This can limit their ability to928

cover the full range of adversarial variations effec-929

tively. Additionally, the optimization landscape in930

latent space differs from that in image space, po-931

tentially leading to suboptimal adversarial training.932

Safety ↓ Utility↑

MMPGDBlank MultiTrust
MM-Vet

Typo Multimodal Cross
LLaVA-1.5-7B 84.0 22.2 55.1 42.0 29.9

+AR-DPO 1.0 0.0 0.0 2.4 23.3
+AT-DPO 8.5 0.5 3.4 9.1 28.9
+ ADPO 0.5 0.0 0.0 0.2 24.2

+L-AR-DPO 2.5 0.0 0.0 1.6 23.4
+L-AT-DPO 31.5 1.0 23.1 14.9 28.9
+ L-ADPO 2.0 0.0 0.0 2.2 25.1

LLaVA-1.6-7B 48.5 8.5 58.3 56.2 43.1
+AR-DPO 8.5 0.2 0.0 2.4 38.0
+AT-DPO 3.5 0.5 4.9 21.3 38.9
+ ADPO 0.5 0.0 0.2 8.4 37.6

+L-AR-DPO 11.0 1.0 0.0 21.6 41.0
+L-AT-DPO 12.0 1.7 8.5 29.1 39.6
+ L-ADPO 10.5 1.2 0.0 24.9 42.6

Table 7: Comparison of worst-case perturbation
searched in the image space versus in the latent space
of image-text embedding.

B.4 Ablation study of LLaVA-1.6 and 933

InternVL2 934
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Figure 6: Ablation study on adversarial training α of
LLaVA-1.6-7B and InternVL2-8B.

B.5 Radar chart of LLaVA-1.6 935

The radar chart of LLaVA-1.6 are presented in Fig- 936

ure 7. 937

C Computing Resources 938

The experiments are carried by 2*NVIDIA A40 939

gpus. All conducted experiments required at least 940

1600 gpu hours. 941
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VisualAdv

MMPGDBlank
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OCRBench

MM-Vet
LLaVABench
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LLaVA-1.6Supervised FT
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AT
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Figure 7: This graph illustrates the reduction in ASR
and utility score of ADPO, its ablations and baselines
over different jailbreak attacks and utility benchmarks
on LLaVA-1.6.

D AI Assistants942

We only use AI for grammar correction and sen-943

tence polishing in the paper.944
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