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Abstract

As large language models (LLMs) continue001
to evolve, their ability to deliver personal-002
ized, context-aware responses holds signifi-003
cant promise for enhancing user experiences.004
However, most existing personalization ap-005
proaches rely solely on user history, limit-006
ing their effectiveness in cold-start and sparse-007
data scenarios. We introduce Personalized008
Graph-based Retrieval-Augmented Generation009
(PGraphRAG), a framework that enhances per-010
sonalization by leveraging user-centric knowl-011
edge graphs. By integrating structured user012
information into the retrieval process and aug-013
menting prompts with graph-based context,014
PGraphRAG improves both relevance and gen-015
eration quality. We also present the Per-016
sonalized Graph-based Benchmark for Text017
Generation, designed to evaluate personal-018
ized generation in real-world settings where019
user history is minimal. Experimental results020
show that PGraphRAG consistently outper-021
forms state-of-the-art methods across diverse022
tasks, achieving average ROUGE-1 gains of023
14.8% on long-text and 4.6% on short-text gen-024
eration—highlighting the unique advantages of025
graph-based retrieval for personalization.026

1 Introduction027

The rapid advancement of large language models028

(LLMs) has enabled a wide range of NLP appli-029

cations, including conversational agents, content030

generation, and code synthesis. Models like GPT-031

4 (OpenAI, 2024) now power virtual assistants ca-032

pable of answering complex queries and engag-033

ing in multi-turn dialogue (Brown et al., 2020).034

As these models continue to evolve, their ability035

to generate personalized, context-aware responses036

offers new opportunities to enhance user experi-037

ences (Salemi et al., 2024b; Huang et al., 2022).038

Personalization enables LLMs to adapt outputs to039

individual preferences and goals, resulting in richer,040

more relevant interactions (Zhang et al., 2024).041
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Figure 1: Overview of the proposed PGraphRAG frame-
work. We construct user-centric graphs from user pro-
file and interaction data, then retrieve structured, user-
relevant information from the graph. This context is
used to condition the language model’s generation, pro-
ducing personalized outputs for user i.

While personalization has been studied in areas 042

such as information retrieval and recommender sys- 043

tems (Xue et al., 2009; Naumov et al., 2019), its 044

integration into LLMs for generation tasks remains 045

relatively underexplored. 046

One of the key challenges in advancing per- 047

sonalized LLMs is the lack of benchmarks that 048

adequately capture the complexities of personal- 049

ization tasks. Popular natural language process- 050

ing (NLP) benchmarks (e.g., (Wang et al., 2019b), 051

(Wang et al., 2019a), (Gehrmann et al., 2021)) 052

primarily focus on general language understand- 053

ing and generation, with limited emphasis on per- 054

sonalization. As a result, researchers and practi- 055

tioners lack standardized datasets and evaluation 056

metrics for developing and assessing models de- 057

signed for personalized text generation. Recently, 058

efforts such as LaMP (Salemi et al., 2024b) and 059

LongLaMP (Kumar et al., 2024) have begun ad- 060

dressing this gap. LaMP evaluates personalization 061

for tasks like email subject and news headline gen- 062

eration, while LongLaMP extends this to long-text 063

tasks such as email and abstract generation. How- 064

ever, both benchmarks rely exclusively on user his- 065

tory to model personalization. Here, user history 066

typically refers to a set of previously written texts 067
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by the same user—such as past reviews, messages,068

or profile-specific documents—which are used as069

context to condition the generation.070

Challenges with Cold-Start Users. While leverag-071

ing user history is valuable for capturing individual072

style and preferences, it presents a cold-start chal-073

lenge: many users have little or no prior data. In074

fact, as shown in Figure 2, over 99.99% of users075

in the Amazon Reviews dataset have fewer than076

three interactions. Benchmarks like LaMP and077

LongLaMP filter out these users by imposing a min-078

imum user profile size threshold to ensure sufficient079

data for personalization. As a result, they exclude080

the vast majority of users, making their evaluations081

less representative of real-world deployment. This082

design choice leads to model failures when prompts083

lack sufficient context, often resulting in generic084

outputs.085
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Figure 2: Distribution of user profile sizes in the Ama-
zon user-product dataset. The vast majority of users
have only a few reviews, highlighting the prevalence of
sparse profiles. The red vertical line indicates the min-
imum profile size threshold used in prior benchmarks
such as LaMP and LongLaMP.

Proposed Approach. To address these challenges,086

we propose Personalized Graph-based Retrieval-087

Augmented Generation (PGraphRAG), a novel088

framework that enhances personalized text genera-089

tion by leveraging user-centric knowledge graphs.090

These structured graphs represent user information091

— such as interests, preferences, and prior interac-092

tions — in an interconnected graph structure. Dur-093

ing inference, PGraphRAG retrieves semantically094

relevant context from both the user’s own profile095

and neighboring profiles extracted from the graph,096

and augments the prompt with this information097

to guide generation. This graph-based approach098

enables the model to produce contextually appro-099

priate and personalized outputs, even when user100

history is sparse or unavailable (see Figure 1).101

Formally, the target task of PGraphRAG is102

personalized text generation conditioned on user-103

specific context retrieved from a structured knowl-104

edge graph. Given a user query (e.g., a product title 105

or review prompt), the system retrieves relevant 106

entries from the graph-based profile and generates 107

an output tailored to the user’s preferences. This 108

setup generalizes personalization beyond pure user 109

text history, enabling context-rich generation even 110

in sparse or cold-start settings. 111

Proposed Benchmark. To evaluate our approach, 112

we introduce the Personalized Graph-based Bench- 113

mark for Text Generation, a novel evaluation bench- 114

mark designed to fine-tune and assess LLMs on 115

twelve personalized text generation tasks, includ- 116

ing long- and short-form generation as well as clas- 117

sification. This benchmark addresses the limita- 118

tions of existing personalized LLM benchmarks by 119

providing datasets that specifically target person- 120

alization capabilities in real-world settings where 121

user history is sparse. In addition, it enables a more 122

comprehensive assessment of a model’s ability to 123

personalize outputs based on structured user infor- 124

mation. 125

Our benchmark supports evaluation in sparse- 126

profile settings, and PGraphRAG is designed to re- 127

trieve semantically relevant context not only from 128

the user’s own profile but also from neighboring 129

profiles extracted from the graph — enabling effec- 130

tive personalization even when the user has only a 131

single input (e.g., one review in their profile). Em- 132

pirically, PGraphRAG significantly outperforms 133

LaMP in these low-profile scenarios, demonstrat- 134

ing the advantages of graph-based reasoning over 135

strict reliance on user history. 136

Our contributions are summarized as follows: 137

1. Benchmark. We introduce the Personalized 138

Graph-based Benchmark for Text Generation, 139

consisting of 12 tasks spanning long-form gen- 140

eration, summarization, and classification. To 141

support further research, we release the bench- 142

mark publicly. 1 143

2. Method. We propose PGraphRAG, a 144

retrieval-augmented generation framework 145

that addresses the cold-start problem by aug- 146

menting generation with structured, user- 147

specific information from a knowledge graph. 148

3. Effectiveness. We show that PGraphRAG 149

achieves state-of-the-art performance across 150

all tasks in our benchmark, demonstrating the 151

value of graph-based reasoning for personal- 152

ized text generation. 153

1https://anonymous.4open.science/r/
PGraphRAG-186B/
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Figure 3: Example of a bipartite user-centric graph
G = (U, V,E) showing users, items, and interaction
edges (e.g., reviews).

2 Personalized Graph-based Benchmark154

for LLMs155

We introduce the Personalized Graph-Based Bench-156

mark to evaluate LLMs on their ability to gener-157

ate personalized outputs across twelve tasks, span-158

ning long-form generation, short-form generation,159

and ordinal classification. The benchmark is con-160

structed from real-world datasets across multiple161

domains.162

2.1 Personalized Text Generation: Problem163

Definition164

Each benchmark instance includes: (1) an input165

sequence x to the LLM, (2) a target output y the166

model is expected to generate, and (3) a user profile167

Pi derived from a structured user-centric graph.168

Given an input-output pair (x, y) associated with169

user i, the goal is to generate a personalized output170

ŷ that aligns with the semantics and style of y,171

conditioned on the user profile Pi.172

We assume user context is represented using173

a bipartite user-centric graph that captures user-174

item interactions (see Figure 3 for an illustration).175

The profile Pi is constructed from this graph and176

includes both interactions authored by the user and177

related signals from similar items or neighboring178

users. The full construction of Pi is detailed in179

Section 3.180

Formally, the personalized generation task is de-181

fined as:182

ŷ = argmax
y′

Pr(y′ | x, Pi) (1)183

where x is the input query, y is the target output,184

and Pi denotes the profile of user i derived from a 185

user-item interaction graph. The model generates 186

an output ŷ that maximizes the likelihood of per- 187

sonalized text conditioned on the input and user 188

profile. This formulation enables generalization be- 189

yond user history by leveraging structured, graph- 190

derived context. 191

In practice, our framework retrieves a personal- 192

ized context R(Pi) ⊆ Pi from the graph to condi- 193

tion generation, yielding the operational objective: 194

ŷ = argmax
y′

Pr(y′ | x,R(Pi)) (2) 195

where R(Pi) represents the retrieved subset of user- 196

and item-level interactions used as context during 197

generation. 198

Finally, statistics for all benchmark tasks and 199

their associated graphs are summarized in Table 1 200

and Table 2. Additional dataset split details are 201

provided in the appendix. 202

2.2 Task Definitions 203

Task 1: User Product Review Generation. Per- 204

sonalized review text generation has progressed 205

from incorporating user-specific context to utiliz- 206

ing LLMs for producing fluent and contextually 207

relevant reviews and titles (Ni and McAuley, 2018). 208

This task aims to generate a product review itext for 209

a target user, conditioned on their own review title 210

ititle and a set of additional reviews Pi from their 211

user profile. We construct this dataset from the 212

Amazon Reviews 2023 corpus (Hou et al., 2024), 213

spanning multiple product categories and used to 214

define a bipartite user-item graph. 215

Task 2: Hotel Experience Generation. Hotel 216

reviews often contain rich narratives reflecting per- 217

sonal experiences, making personalization essential 218

to capturing individual preferences and expecta- 219

tions (Kanouchi et al., 2020). This task focuses on 220

generating a personalized hotel experience story 221

itext, using the target user’s review summary ititle 222

and contextual reviews Pi. We use the Hotel Re- 223

views dataset, a subset of Datafiniti’s Business 224

Database (Datafiniti, 2017), to construct a user- 225

hotel bipartite graph. 226

Task 3: Stylized Feedback Generation. Writing 227

style — influenced by grammar, punctuation, and 228

expression — is deeply personal and often shaped 229

by geographic and cultural factors (Alhafni et al., 230

2024). This task involves generating personalized 231

product feedback itext, based on the user’s feedback 232
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Task Type Avg. Input Length Avg. Output Length Avg. Profile Size # Classes

User-Product Review Generation Long Text Generation 3.754± 2.71 47.90± 19.28 1.05± 0.31 -
Hotel Experiences Generation Long Text Generation 4.29± 2.57 76.26± 22.39 1.14± 0.61 -
Stylized Feedback Generation Long Text Generation 3.35± 2.02 51.80± 20.07 1.09± 0.47 -
Multilingual Product Review Generation Long Text Generation 2.9± 2.40 34.52± 12.55 1.08± 0.33 -

User-Product Review Title Generation Short Text Generation 30.34± 37.95 7.02± 1.14 1.05± 0.31 -
Hotel Experiences Summary Generation Short Text Generation 90.40± 99.17 7.64± 0.92 1.14± 0.61 -
Stylized Feedback Title Generation Short Text Generation 37.42± 38.17 7.16± 1.11 1.09± 0.47 -
Multilingual Product Review Title Generation Short Text Generation 22.17± 20.15 7.15± 1.09 1.08± 0.33 -

User-Product Review Ratings Ordinal Classification 34.10± 38.66 - 1.05± 0.31 5
Hotel Experiences Ratings Ordinal Classification 94.69± 99.62 - 1.14± 0.61 5
Stylized Feedback Ratings Ordinal Classification 40.77± 38.69 - 1.09± 0.47 5
Multilingual Product Ratings Ordinal Classification 25.15± 20.75 - 1.08± 0.33 5

Table 1: Data statistics for the PGraphRAG Benchmark across the four datasets. For each task, we report the average
input and output lengths (in words), measured on the test set using BM25-based retrieval with GPT. The average
profile size indicates the number of reviews per user used for personalization.

Dataset Users Items Edges/Reviews Average Degree

User-Product Review Graph 184,771 51,376 198,668 1.68
Hotel Experiences Graph 15,587 2,975 19,698 2.12
Stylized Feedback Graph 58,087 600 71,041 2.42
Multilingual Product Review Graph 112,993 55,930 131,075 1.55

Table 2: Graph statistics for the datasets used in the personalized tasks. Each row reports the number of users, items,
and edges (i.e., reviews), as well as the average degree of the resulting user-centric bipartite graph. The four graphs
correspond to: User-Product, Multilingual Product, Stylized Feedback, and Hotel Experiences.

title ititle and additional feedback samples Pi from233

their profile. We utilize the Grammar and Online234

Product dataset, a subset of the Datafiniti Business235

corpus (Datafiniti, 2018), which reflects stylistic236

variation across multiple platforms and domains.237

Task 4: Multi-lingual Review Generation. Per-238

sonalization in multilingual review generation239

presents unique challenges due to differences in240

linguistic structures, cultural norms, and stylistic241

conventions (Cortes et al., 2024). This task focuses242

on generating product reviews itext in Brazilian Por-243

tuguese, using the target user’s review title ititle and244

additional reviews Pi from their profile. We con-245

struct this dataset using B2W-Reviews (Real et al.,246

2019), sourced from Brazil’s largest e-commerce247

platform.248

Task 5: User Product Review Title Generation.249

Short text generation for personalized review ti-250

tles is particularly challenging, requiring the model251

to summarize sentiment and reflect user-specific252

phrasing preferences. This task generates a review253

title ititle for a given user, using their review text itext254

and additional profile reviews Pi, without relying255

on parametric user embeddings (Xu et al., 2023).256

The dataset is derived from Amazon Reviews (Hou257

et al., 2024).258

Task 6: Hotel Experience Summary Generation. 259

Helping users write summaries of hotel experiences 260

requires distilling detailed narratives into concise 261

summaries that reflect individual preferences (Ka- 262

math et al., 2024). This task generates a hotel 263

experience summary ititle based on the user’s full 264

experience text itext and additional hotel reviews 265

Pi. We use the Hotel Reviews dataset from the 266

Datafiniti Business Database (Datafiniti, 2017). 267

Task 7: Stylized Feedback Title Generation. 268

Stylized feedback summarization aims to capture 269

individual voice and tone in generating short-form 270

feedback. This task benchmarks stylized opinion 271

generation across domains such as music, groceries, 272

and household items (Iso et al., 2024). The model 273

generates the target user’s feedback title ititle based 274

on their full feedback text itext and additional feed- 275

back Pi from similar users. The dataset is built 276

from the Datafiniti Products dataset (Datafiniti, 277

2018). 278

Task 8: Multi-lingual Review Title Genera- 279

tion. Multilingual short-text personalization adds 280

further complexity, particularly in Brazilian Por- 281

tuguese, where style and syntax vary significantly 282

across users (Scalercio et al., 2024). This task gen- 283

erates a personalized review title ititle using the 284
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user’s full review text itext and contextual examples285

Pi from their graph neighborhood. Data: B2W-286

Reviews (Real et al., 2019).287

Task 9: User Product Review Ratings. Predict-288

ing personalized product ratings involves under-289

standing sentiment, user bias, and historical feed-290

back. This task formulates rating prediction as an291

ordinal classification problem, where the model292

predicts irating ∈ {1, 2, 3, 4, 5} based on the user’s293

review text itext, title ititle, and additional profile294

context Pi. The dataset is constructed from Ama-295

zon Reviews (Hou et al., 2024).296

Task 10: Hotel Experience Ratings. Hotel rat-297

ings often reflect nuanced factors such as location,298

cleanliness, and service. This task models hotel299

experience rating irating prediction as a classifica-300

tion problem based on the user’s review story itext,301

summary ititle, and surrounding review context Pi.302

Data: Datafiniti Hotel Reviews (Datafiniti, 2017).303

Task 11: Stylized Feedback Ratings. Cross-304

domain sentiment prediction explores how writ-305

ing quality and sentiment expression vary across306

platforms (Yu et al., 2021). This task assigns a307

numerical feedback rating irating to a stylized user308

review using the input review text itext, review ti-309

tle ititle, and personalized context Pi. The dataset310

is taken from the Datafiniti Product Database on311

Grammar and Online Product Reviews (Datafiniti,312

2018).313

Task 12: Multi-lingual Product Ratings. While314

sentence-level sentiment classification in Por-315

tuguese has seen success (de Araujo et al., 2024),316

this task extends to full review-level sentiment mod-317

eling in a multilingual setting. The model predicts318

a Portuguese user-product rating irating using both319

the review text itext, the title ititle, and additional320

user-item interactions Pi. We construct this dataset321

using B2W-Reviews (Real et al., 2019).322

3 The PGraphRAG Framework323

Personalizing LLMs in real-world settings requires324

addressing two key challenges: (1) user profiles325

are often sparse or unavailable, and (2) incorpo-326

rating additional user-related context must remain327

relevant, efficient, and scalable. To tackle these is-328

sues, PGraphRAG leverages structured user-centric329

knowledge graphs for context construction, and330

combines this with retrieval-augmented prompting.331

This design enables the model to generalize beyond332

parametric user embeddings or history-based filter- 333

ing by dynamically retrieving relevant signals from 334

graph-based user profiles that extend beyond the 335

user’s direct history. 336

Here, we present PGraphRAG, our proposed 337

framework for personalizing large language models 338

(LLMs) through graph-based retrieval augmenta- 339

tion. PGraphRAG enhances generation by condi- 340

tioning a shared LLM on structured, user-specific 341

context extracted from a user-centric knowledge 342

graph. This enables tailored and context-aware 343

outputs, especially in sparse or cold-start scenarios. 344

PGraphRAG leverages a bipartite user-centric 345

graph G = (U, V,E) to incorporate contextual 346

signals beyond direct user history. We represent 347

user context as a bipartite graph, where U is the 348

set of user nodes, V the set of item nodes, and E 349

the set of interaction edges (see Figure 3 for an 350

illustration). An edge (i, j) ∈ E corresponds to 351

an interaction between user i and item j, such as 352

a review that includes metadata like text, title, and 353

rating. The user profile Pi consists of the set of 354

reviews written by user i, along with reviews for 355

the same items j written by other users k ̸= i. For 356

a given user i ∈ U , we define the profile Pi as the 357

union of: 358

• the set of interactions authored by user i: 359

{(i, j) ∈ E}, 360

• the set of interactions for the same items j 361

written by other users k ̸= i: {(k, j) ∈ E | 362

(i, j) ∈ E}. 363

Pi = {(i, j) ∈ E} ∪ {(k, j) ∈ E | (i, j) ∈ E}
(3)

364

∀j ∈ V, k ∈ U, k ̸= i 365

Due to context window limitations and efficiency 366

considerations, we apply retrieval augmentation to 367

select only the most relevant entries from Pi for 368

conditioning the model. Given an input sample 369

(x, y) for user i, the PGraphRAG workflow pro- 370

ceeds in three steps: a query function, a graph- 371

based retrieval module, and a prompt construction 372

function, as illustrated in Figure 1: 373

1. Query Function (ϕq): The query function 374

transforms the input x into a query q for re- 375

trieval. 376

2. Graph-Based Retrieval (R): The retrieval 377

function R(q,G, k) takes as input the query 378

q, the bipartite graph G, and a threshold k. 379

It first constructs the user profile Pi from G 380
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as defined above, and then retrieves the top-k381

most relevant entries from the user profile Pi382

with respect to q.383

3. Prompt Construction (ϕp): The prompt con-384

struction assembles a personalized prompt for385

user i by combining the input x with the re-386

trieved entries.387

The final input to the LLM is a personalized,388

context-augmented prompt x̃ defined as:389

x̃ = ϕp(x,R(ϕq(x), G, k)) (4)390

The pair (x̃, y) is then used for inference or fine-391

tuning. This modular pipeline enables efficient,392

graph-aware personalization across diverse tasks393

and user sparsity levels.394

Modularity and Extensibility. While we define Pi395

as a hybrid of user-authored and neighbor-authored396

interactions, PGraphRAG is modular by design.397

The underlying graph can be leveraged in alterna-398

tive ways depending on the application: for exam-399

ple, practitioners may define Pi using only user-400

specific data, only neighbor interactions, or other401

graph-based traversal strategies (e.g., multi-hop402

reasoning or community-based filtering). Each403

component of the framework—query formulation,404

retrieval logic, and prompt construction—can be405

adapted independently, making PGraphRAG ex-406

tensible to a wide range of personalized retrieval407

scenarios. In addition, the retrieval module sup-408

ports plug-and-play compatibility with a variety of409

retrievers, such as BM25, or Contriever, allowing410

flexibility in balancing speed, semantic relevance,411

and computational cost.412

4 Experiments413

Setup. We evaluate our methods using two LLM414

backbones. The first is the LLaMA 3.1 8B Instruct415

model (Touvron et al., 2023), implemented with the416

Huggingface transformers library and config-417

ured to generate up to 512 tokens. The second is418

the GPT-4o-mini model (OpenAI, 2024), accessed419

via the Azure OpenAI Service (Services, 2023) us-420

ing the AzureOpenAI interface, with a decoding421

temperature of 0.4. All experiments are conducted422

on an NVIDIA A100 GPU with 80GB of memory.423

Dataset Splits and Graph Construction We424

construct bipartite user-entity graphs and split users425

into training, development, and test sets while pre-426

serving connectivity. Full details on data construc-427

tion, neighbor filtering, and stratification are pro-428

vided in Appendix A.429

Graph Construction. We construct a bipartite 430

user-entity graph from the selected user profiles 431

in the validation and test splits. Each user node 432

is connected to entity nodes (e.g., products, ho- 433

tels, feedback targets) based on authored content, 434

with edges representing user interactions such as 435

reviews, summaries, or ratings. This graph sup- 436

ports two retrieval configurations: (1) user-only, 437

which retrieves content authored solely by the tar- 438

get user (i.e., from their personal profile), and (2) 439

user+neighbor, which additionally includes con- 440

tent from neighboring users who have interacted 441

with the shared target entity. In both modes, the 442

retrieved content defines the personalized context 443

passed to the language model. 444

Ranking and Retrieval. The query used for 445

retrieval varies by task type: for Long Text Genera- 446

tion, we use the review title; for Short Text Genera- 447

tion, the review text; and for Ordinal Classification, 448

a combination of title and text. We apply two re- 449

trieval models—BM25 (Robertson and Zaragoza, 450

2009) and Contriever (Lei et al., 2023) to select 451

the top-k (k = 5) most relevant entries from either 452

the user-only or user+neighbor profiles. To enforce 453

consistency between users with high activity and 454

cold-start users, we cap retrieval at k, even if more 455

candidate entries are available (see Table 7 and 456

Figure 2). All textual inputs are tokenized using 457

NLTK’s word_tokenize. We use the default 458

settings for both retrieval models; for Contriever, 459

mean pooling is applied over token embeddings. 460

LLM Prompt Generation. Once the top-k en- 461

tries are retrieved, we construct a template-based 462

prompt that includes both the user’s query (e.g., a 463

request for a full review, a title, or a rating) and 464

the contextual information from the graph. This 465

prompt is passed to the LLM for generation. An 466

illustration of task-specific prompt formatting is 467

shown in Figure 4. 468

Baseline Methods. We compare PGraphRAG 469

against both non-personalized and personalized 470

baselines. (1) No-Retrieval constructs the prompt 471

without any retrieval augmentation; the LLM gener- 472

ates the output solely from the query. (2) Random- 473

Retrieval augments the prompt with content ran- 474

domly sampled from all user profiles, introducing 475

unrelated context. (3) LaMP (Salemi et al., 2024b) 476

is a personalized baseline that augments the prompt 477

using content from the target user’s own history 478

(e.g., previously written reviews). 479
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Evaluation. We evaluate each method by provid-480

ing task-specific inputs and comparing generated481

outputs against reference labels. For generation482

tasks (long and short text), we report ROUGE-1,483

ROUGE-L (Lin, 2004), and METEOR (Banerjee484

and Lavie, 2005) scores. For rating prediction tasks,485

we measure mean absolute error (MAE) and root486

mean squared error (RMSE).487

4.1 Baseline Comparison488

We compare PGraphRAG against baselines on the489

three task types in our benchmark — long-text gen-490

eration, short-text generation, and rating prediction.491

492

Long Text Generation. Tables 3 and 16 show493

that PGraphRAG consistently outperforms all base-494

line methods—including No-Retrieval, Random-495

Retrieval, and LaMP—across ROUGE-1, ROUGE-496

L, and METEOR metrics. The largest performance497

gains are observed in Task Hotel Experience Gen-498

eration, where PGraphRAG achieves +32.1% in499

ROUGE-1, +21.7% in ROUGE-L, and +25.7%500

in METEOR over the LaMP baseline using the501

LLaMA-3.1-8B-Instruct model. These improve-502

ments highlight the benefits of incorporating struc-503

tured, graph-based context beyond user history.504

Short Text Generation. Tables 4 and 17 show505

that PGraphRAG outperforms the baselines in506

most cases. In Task User Product Review Ti-507

tle Generation, PGraphRAG achieves consistent508

gains over LaMP in the LLaMA-3.1-8B-Instruct509

model: ROUGE-1 (+5.6%), ROUGE-L (+5.9%),510

and METEOR (+6.8%). These improvements,511

while smaller than those in long-form tasks, re-512

flect the limited headroom for personalization in513

very short text generation tasks such as review title.514

Because the target texts are extremely brief, minor515

lexical differences can significantly affect overlap-516

based metrics, and there are fewer opportunities for517

retrieved context to meaningfully influence genera-518

tion.519

Ordinal Classification. Tables 8 and 18 show520

that PGraphRAG yields modest improvements521

over LaMP in rating prediction tasks. It outper-522

forms LaMP in 1 out of 4 tasks with LLaMA-3.1-523

8B-Instruct and in 2 out of 4 tasks with GPT.524

The largest gains are observed on the Multilin-525

gual Product Ratings task, with improvements in526

MAE (+1.75%) and RMSE (+1.12%) for LLaMA-527

3.1-8B-Instruct , and MAE (+2.16%) and RMSE528

(+3.17%) for GPT. These gains, while small, sug- 529

gest that user profiles can aid numerical predic- 530

tion when meaningful variability exists across user 531

preferences. In domains like hotel experiences or 532

digital products, where user expectations tend to 533

be homogeneous, graph-based personalization may 534

offer limited additional signal. 535

4.2 Ablation Studies 536

We conduct ablation experiments to assess the 537

impact of different retrieval configurations on 538

PGraphRAG’s performance. Specifically, we vary 539

the retrieval depth (i.e., top-k), the retrieval scope 540

(user-only vs. user+neighbors), and the retriever 541

model (BM25 vs. Contriever). Full results and 542

analysis are provided in Appendix A. 543

5 Conclusion 544

We presented PGraphRAG, a framework that en- 545

hances personalized text generation by integrat- 546

ing user-centric knowledge graphs into retrieval- 547

augmented generation. Unlike prior methods that 548

rely solely on user history, PGraphRAG enriches 549

generation with structured user profiles, enabling 550

adaptive personalization even in sparse data set- 551

tings. Our experiments show that graph-based re- 552

trieval significantly improves performance across 553

diverse tasks, outperforming state-of-the-art base- 554

lines. Beyond improved metrics, PGraphRAG in- 555

troduces a scalable design that generalizes user 556

preferences and adapts to new users through struc- 557

tural retrieval. This work lays a foundation for 558

future personalized LLM systems, particularly in 559

applications requiring robustness to data sparsity, 560

cold starts, and context adaptation. 561

6 Limitations 562

While PGraphRAG demonstrates strong perfor- 563

mance across personalized generation tasks, there 564

are several considerations that present opportuni- 565

ties for future enhancement. 566

Scalability considerations. Although personal- 567

ization approaches can raise scalability concerns, 568

PGraphRAG is designed for efficient large-scale de- 569

ployment. It constructs a unified, sparse user-item 570

bipartite graph offline — i.e., graph construction is 571

a one-time cost, similar to those used in scalable 572

recommender systems. As shown in Table 2, the 573

graph is inherently sparse, enabling efficient stor- 574

age and indexing. At inference time, rather than 575

retrieving over the entire corpus as in traditional 576
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Long Text Generation Metric PGraphRAG LaMP No-Retrieval Random-Retrieval

LLaMA-3.1-8B-Instruct

Task 1: User-Product Review Generation
ROUGE-1 0.178 0.173 0.172 0.124
ROUGE-L 0.129 0.129 0.123 0.094
METEOR 0.151 0.138 0.154 0.099

Task 2: Hotel Experiences Generation
ROUGE-1 0.263 0.199 0.231 0.216
ROUGE-L 0.157 0.129 0.145 0.132
METEOR 0.191 0.152 0.153 0.152

Task 3: Stylized Feedback Generation
ROUGE-1 0.217 0.186 0.190 0.184
ROUGE-L 0.158 0.134 0.131 0.108
METEOR 0.178 0.177 0.167 0.122

Task 4: Multilingual Product Review Generation
ROUGE-1 0.188 0.176 0.174 0.146
ROUGE-L 0.147 0.141 0.136 0.116
METEOR 0.145 0.125 0.131 0.109

GPT-4o-mini

Task 1: User-Product Review Generation
ROUGE-1 0.189 0.171 0.169 0.159
ROUGE-L 0.130 0.117 0.116 0.114
METEOR 0.196 0.176 0.177 0.153

Task 2: Hotel Experiences Generation
ROUGE-1 0.263 0.221 0.223 0.234
ROUGE-L 0.152 0.135 0.135 0.139
METEOR 0.206 0.164 0.166 0.181

Task 3: Stylized Feedback Generation
ROUGE-1 0.211 0.185 0.187 0.177
ROUGE-L 0.140 0.123 0.123 0.121
METEOR 0.202 0.183 0.189 0.165

Task 4: Multilingual Product Review Generation
ROUGE-1 0.194 0.168 0.170 0.175
ROUGE-L 0.144 0.125 0.128 0.133
METEOR 0.171 0.154 0.152 0.149

Table 3: Zero-shot performance on the test set for the Long Text Generation tasks using LLaMA-3.1-8B-Instruct and
GPT-4o-mini. For each model, the best retriever configuration was selected based on validation performance.

Short Text Generation Metric PGraphRAG LaMP No-Retrieval Random-Retrieval

LLaMA-3.1-8B-Instruct

Task 5: User Product Review Title Generation
ROUGE-1 0.131 0.124 0.121 0.103
ROUGE-L 0.125 0.118 0.115 0.098
METEOR 0.125 0.117 0.112 0.096

Task 6: Hotel Experience Summary Generation
ROUGE-1 0.127 0.126 0.122 0.118
ROUGE-L 0.118 0.117 0.114 0.110
METEOR 0.102 0.106 0.101 0.093

Task 7: Stylized Feedback Title Generation
ROUGE-1 0.149 0.140 0.136 0.133
ROUGE-L 0.142 0.134 0.131 0.123
METEOR 0.142 0.136 0.129 0.121

Task 8: Multi-lingual Review Title Generation
ROUGE-1 0.124 0.121 0.125 0.120
ROUGE-L 0.116 0.122 0.117 0.110
METEOR 0.108 0.094 0.092 0.103

GPT-4o-mini

Task 5: User Product Review Title Generation
ROUGE-1 0.115 0.108 0.113 0.102
ROUGE-L 0.112 0.105 0.110 0.099
METEOR 0.099 0.091 0.093 0.085

Task 6: Hotel Experience Summary Generation
ROUGE-1 0.116 0.108 0.114 0.112
ROUGE-L 0.111 0.104 0.109 0.107
METEOR 0.081 0.075 0.079 0.076

Task 7: Stylized Feedback Title Generation
ROUGE-1 0.122 0.113 0.114 0.115
ROUGE-L 0.118 0.109 0.110 0.111
METEOR 0.104 0.096 0.097 0.093

Task 8: Multi-lingual Review Title Generation
ROUGE-1 0.111 0.115 0.118 0.108
ROUGE-L 0.105 0.107 0.110 0.102
METEOR 0.083 0.088 0.089 0.078

Table 4: Zero-shot performance on the test set for the Short Text Generation tasks using LLaMA-3.1-8B-Instruct
and GPT-4o-mini. For each model, the best retriever configuration was selected based on validation performance.
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RAG settings, PGraphRAG scopes retrieval to a577

localized subgraph centered on the input user. This578

subgraph includes both the user’s own interactions579

and those of neighboring users who share items.580

Standard retrievers (e.g., BM25 or Contriever) are581

then applied over this constrained set, significantly582

reducing search overhead while retaining personal-583

ized context. This design keeps runtime and mem-584

ory usage low and supports scalable deployment585

across large user bases. In future work, we plan586

to explore compression techniques and real-time587

profile updates to further enhance scalability in dy-588

namic environments.589

Graph completeness and data sparsity. While590

the quality of retrieval can be influenced by591

the completeness of the user-centric graph,592

PGraphRAG is explicitly designed to operate un-593

der sparse and noisy conditions. Our benchmark594

includes users with minimal interaction history, yet595

results show strong performance across tasks com-596

pared to baseline methods. This robustness arises597

from PGraphRAG’s graph-based retrieval strategy,598

which leverages neighboring nodes to provide rele-599

vant contextual signals even when direct user data600

is limited. Nonetheless, integrating implicit signals601

(e.g., click rate or engagement time) and develop-602

ing more resilient retrieval methods for incomplete603

graphs remains a promising direction for future604

work.605

Generalization vs. user adaptation. A core606

challenge lies in developing training strategies that607

balance individual personalization with general-608

ization across user populations. While our ap-609

proach augments prompts with structured context,610

future work may explore personalized fine-tuning611

or adapter layers to enhance this tradeoff further.612

Static user profiles. Currently, user profiles are613

treated as static during evaluation. In real-world614

scenarios, preferences evolve over time. Extending615

the framework to model temporal dynamics and616

support profile updates is a promising direction for617

improving long-term personalization.618

A Appendix619

A.1 Data Construction and Splitting620

To construct the user–item interaction graph, we621

represent users and domain-specific entities (e.g.,622

products, hotels, feedback targets) as nodes, with623

edges corresponding to user-generated content624

(e.g., reviews, summaries, ratings). To support625

graph-based personalization, we require that each626

selected user has at least one interaction with an en- 627

tity that is also associated with another user — i.e., 628

a shared neighbor in the bipartite graph. If a ran- 629

domly selected user interaction does not meet this 630

criterion, we instead sample a different interaction 631

from the same profile. Users without any neighbor- 632

compatible interactions remain in the dataset but 633

are excluded from gold-label selection, since sam- 634

pling is performed at the edge level rather than over 635

full profiles. This filtering ensures that the graph 636

remains connected and supports comparative eval- 637

uation and cold-start scenarios, where even users 638

with minimal history share contextually linked en- 639

tities with others. 640

After identifying each user’s valid neighbor- 641

linked interaction(s), we divide users into training, 642

development, and test sets while preserving graph 643

connectivity across splits. To ensure that personal- 644

ization signals remain intact, we apply two levels 645

of neighbor preservation: 646

1. Global Neighbor Preservation: Entities with 647

multiple associated users are grouped so that 648

at least one other user in the same split has 649

interacted with the same entity. 650

2. Local Neighbor Preservation: Once a user 651

is assigned to a split, any other users who 652

interacted with the same entity are also placed 653

in that split to maintain graph connectivity. 654

We further stratify each split based on user pro- 655

file size to match the original distribution of user 656

activity while preserving both global and local con- 657

nectivity. This joint control over profile stratifi- 658

cation and neighbor assignment ensures that the 659

resulting graphs in each split maintain realistic in- 660

teraction patterns and structural properties. Graph 661

statistics are shown in Table 2, task-level data statis- 662

tics in Table 1, and dataset splits in Table 5. 663

Dataset Train Size Validation Size Test Size

User-Product Review 20,000 2,500 2,500
Multilingual Product Review 20,000 2,500 2,500
Stylized Feedback 20,000 2,500 2,500
Hotel Experiences 9,000 2,500 2,500

Table 5: Dataset split sizes across training, validation,
and test sets for the four domains.

A.2 Performance Gains 664

Table 6 shows the relative percent gains of 665

PGraphRAG compared to LaMP across Tasks 1–7. 666
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Model Metric Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

GPT-4o-mini
ROUGE-1 10.53 18.96 14.05 15.48 6.48 7.41 7.96 -3.48
ROUGE-L 11.11 12.59 13.82 15.20 6.67 6.73 8.26 -1.87
METEOR 11.36 25.61 10.38 11.04 8.79 8.00 8.33 -5.68

LLaMA-3.1-8B-Instruct
ROUGE-1 2.89 32.16 16.67 6.82 5.65 0.79 6.43 2.48
ROUGE-L 0.00 21.71 17.91 4.26 5.93 0.85 5.97 -4.92
METEOR 9.42 25.66 0.56 16.00 6.84 -3.77 4.41 14.89

Table 6: Relative percentage gains of PGraphRAG over LaMP across Tasks 1–8 using GPT-4o-mini and LLaMA-
3.1-8B-Instruct.

Notably, Task 8 (Multi-lingual Review Title Gen-667

eration) shows reduced gains, which we attribute668

to cultural differences in review conventions—for669

example, the frequent use of the generic phrase670

Muito bom” (Very good”) in Brazilian Portuguese671

titles. In long-text generation with GPT-4o-mini,672

PGraphRAG achieves improvements of approxi-673

mately 15% in ROUGE-1, 13% in ROUGE-L, and674

15% in METEOR. Similar trends are seen with675

LLaMA-3.1-8B, with improvements of 15%, 11%,676

and 13% respectively. In short-text generation,677

GPT shows improvements of 5% across all metrics,678

while LLaMA gains range from 2–6%.679

In addition, Table 7 shows the review density680

per product, where sparsity is balanced from the681

original graph for both product and user nodes.682

Reviews (n) Exact Count (Pct.) Cumulative Count (Pct.)

1 25,530 (49.69%) 25,530 (49.69%)
2 9,488 (18.47%) 35,018 (68.16%)
3 4,784 ( 9.31%) 39,802 (77.47%)
4 2,639 ( 5.14%) 42,441 (82.61%)
5 1,836 ( 3.57%) 44,277 (86.18%)

Table 7: Distribution of review counts per product in
the Amazon Review dataset (Tasks 1, 5, and 9). Most
products have five or fewer reviews.

A.3 Prompt and Output Examples683

Figure 4 shows the prompt template across task684

types. Below, we show the output for Task 2 com-685

paring PGraphRAG and LaMP against the gold686

label. PGraphRAG captures specific contextual687

cues from the graph (e.g., correct location and ho-688

tel amenities), while LaMP’s output often relies on689

generic context from the target user’s own reviews,690

which leads to generating irrelevant content (e.g.,691

wrong hotel location).692

Gold Review

Title: Amazing stay! Review: Had a great stay,
our room was very clean and very peaceful. It is
in the heart of DT Seattle. We took the train to the
hotel and it was pretty easy. We enjoyed walking all
over downtown Seattle—no need to rent a car. Major
shopping and amazing restaurants right around the
corner! We will stay here again!

693

LaMP

Title: Amazing stay! Review: I recently had an
amazing stay at the Newark Garden Hotel. Despite
the circumstances that brought my family together,
the hotel provided a comforting and welcoming envi-
ronment. The rooms were immaculate, and the staff
went above and beyond to ensure we felt at home. The
hot breakfast each morning was a delightful touch that
made our mornings brighter. I highly recommend this
hotel for anyone looking for a pleasant and accommo-
dating stay!

694

PGraphRAG

Title: Amazing stay! Review: I had an amazing
stay at the Grand Hyatt Seattle! From the moment I
checked in, the staff was incredibly welcoming and
attentive. The room was spacious, clean, and beau-
tifully appointed, with a stunning view of the city.
The bathroom was a highlight, featuring a luxurious
soaking tub and a large walk-in shower. The location
was perfect, just a short walk to Pike Place Market
and other attractions. I also enjoyed the fantastic
amenities, including the well-equipped gym and the
delicious food options available at the hotel. Overall,
it was a wonderful experience, and I can’t wait to
return!

695

A.4 PGraphRAG Ablation Details 696

To assess the contributions of user-specific and 697

neighbor-derived context in our retrieval frame- 698

work, we conduct an ablation study comparing 699

three variants of PGraphRAG: 700

• PGraphRAG: The full method, which re- 701

trieves context from both the target user’s pro- 702

file and neighboring users who share entities 703
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Ordinal Classfication Metric PGraphRAG LaMP No-retrieval Random-retrieval

LLaMA-3.1-8B-Instruct

Task 9: User Product Review Ratings
MAE ↓ 0.3400 0.3132 0.3212 0.3272
RMSE ↓ 0.7668 0.7230 0.7313 0.7616

Task 10: Hotel Experience Ratings
MAE ↓ 0.3688 0.3492 0.3340 0.3804
RMSE ↓ 0.6771 0.6527 0.6372 0.6971

Task 11: Stylized Feedback Ratings
MAE ↓ 0.3476 0.3268 0.3256 0.3704
RMSE ↓ 0.7247 0.6803 0.6806 0.7849

Task 12: Multi-lingual Product Ratings
MAE ↓ 0.4928 0.5016 0.5084 0.5096
RMSE ↓ 0.8367 0.8462 0.8628 0.8542

GPT-4o-mini

Task 9: User Product Review Ratings
MAE ↓ 0.3832 0.3480 0.3448 0.4188
RMSE ↓ 0.7392 0.7065 0.7065 0.8082

Task 10: Hotel Experience Ratings
MAE ↓ 0.3284 0.3336 0.3336 0.3524
RMSE ↓ 0.6083 0.6197 0.6197 0.6384

Task 11: Stylized Feedback Ratings
MAE ↓ 0.3476 0.3448 0.3416 0.4080
RMSE ↓ 0.6738 0.6669 0.6711 0.7370

Task 12: Multi-lingual Product Ratings
MAE ↓ 0.4348 0.4444 0.4564 0.4700
RMSE ↓ 0.7367 0.7608 0.7718 0.8112

Table 8: Performance comparison on rating prediction tasks (Tasks 9-12) using GPT-4o-mini and LLaMA-3.1-8B.

Long Text Generation Metric PGraphRAG PGraphRAG-N PGraphRAG-U
LLaMA-3.1-8B-Instruct

Task 1: User-Product Review Generation
ROUGE-1 0.173 0.177 0.168
ROUGE-L 0.124 0.127 0.125
METEOR 0.150 0.154 0.134

Task 2: Hotel Experiences Generation
ROUGE-1 0.263 0.272 0.197
ROUGE-L 0.156 0.162 0.128
METEOR 0.191 0.195 0.121

Task 3: Stylized Feedback Generation
ROUGE-1 0.226 0.222 0.181
ROUGE-L 0.171 0.165 0.134
METEOR 0.192 0.186 0.147

Task 4: Multilingual Product Review Generation
ROUGE-1 0.174 0.172 0.174
ROUGE-L 0.139 0.137 0.141
METEOR 0.133 0.126 0.125

GPT-4o-mini

Task 1: User-Product Review Generation
ROUGE-1 0.186 0.185 0.169
ROUGE-L 0.126 0.125 0.114
METEOR 0.187 0.185 0.170

Task 2: Hotel Experiences Generation
ROUGE-1 0.265 0.268 0.217
ROUGE-L 0.152 0.153 0.132
METEOR 0.206 0.209 0.161

Task 3: Stylized Feedback Generation
ROUGE-1 0.205 0.204 0.178
ROUGE-L 0.139 0.138 0.121
METEOR 0.203 0.198 0.178

Task 4: Multilingual Product Review Generation
ROUGE-1 0.191 0.190 0.164
ROUGE-L 0.142 0.140 0.123
METEOR 0.173 0.169 0.155

Table 9: Ablation study results for long text generation tasks using LLaMA-3.1-8B-Instruct and GPT-4o-mini.
PGraphRAG-N represents Neighbors-only context retrieval and PGraphRAG-U represents User-only context
retrieval.
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Figure 4: Prompt configurations used for each task type. Teletype placeholders (e.g., {{title}}) are replaced
with task-specific input and retrieved context at inference time.

Short Text Generation Metric PGraphRAG PGraphRAG-N PGraphRAG-U
LLaMA-3.1-8B-Instruct

Task 5: User Product Review Title Generation
ROUGE-1 0.125 0.129 0.115
ROUGE-L 0.119 0.123 0.109
METEOR 0.117 0.120 0.111

Task 6: Hotel Experience Summary Generation
ROUGE-1 0.121 0.124 0.119
ROUGE-L 0.113 0.115 0.111
METEOR 0.099 0.103 0.105

Task 7: Stylized Feedback Title Generation
ROUGE-1 0.132 0.135 0.128
ROUGE-L 0.128 0.130 0.124
METEOR 0.129 0.132 0.124

Task 8: Multi-lingual Product Review Title Generation
ROUGE-1 0.131 0.131 0.124
ROUGE-L 0.123 0.122 0.114
METEOR 0.118 0.110 0.098

GPT-4o-mini

Task 5: User Product Review Title Generation
ROUGE-1 0.111 0.116 0.112
ROUGE-L 0.106 0.111 0.108
METEOR 0.097 0.099 0.095

Task 6: Hotel Experience Summary Generation
ROUGE-1 0.118 0.119 0.109
ROUGE-L 0.112 0.113 0.104
METEOR 0.085 0.085 0.077

Task 7: Stylized Feedback Title Generation
ROUGE-1 0.109 0.107 0.108
ROUGE-L 0.107 0.105 0.104
METEOR 0.096 0.094 0.091

Task 8: Multi-lingual Product Review Title Generation
ROUGE-1 0.108 0.109 0.116
ROUGE-L 0.104 0.104 0.109
METEOR 0.082 0.089 0.091

Table 10: Ablation study results for short text generation tasks using LLaMA-3.1-8B-Instruct and GPT-4o-mini.
PGraphRAG-N represents Neighbors-only context retrieval and PGraphRAG-U represents User-only context
retrieval.
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(e.g., items or experiences).704

• PGraphRAG-N: A neighbor-only variant that705

excludes the target user’s own interactions and706

relies solely on neighboring users for context.707

• PGraphRAG-U: A user-only variant that re-708

stricts retrieval to the target user’s own history,709

ignoring all neighbor signals.710

Table 9 shows the results for long-text generation711

(Tasks 1–4) using GPT-4o-mini and LLaMA-3.1-712

8B. Both PGraphRAG and PGraphRAG-N consis-713

tently outperform PGraphRAG-U across datasets,714

highlighting the value of graph-based retrieval. No-715

tably, PGraphRAG-N performs on par with or716

slightly below the full PGraphRAG method, sug-717

gesting that neighboring-user context alone is often718

sufficient for high-quality personalization — espe-719

cially in low-profile or cold-start scenarios where720

the target user’s history is sparse.721

Results for short-text generation tasks (Tasks722

5–8) are shown in Table 10. Similar patterns hold,723

with PGraphRAG and PGraphRAG-N outperform-724

ing PGraphRAG-U across most tasks. One excep-725

tion is Task Hotel Experience Summary Genera-726

tion, where PGraphRAG-U slightly outperforms all727

graph-based variants, possibly due to limited vari-728

ation in the data or a mismatch between neighbor729

context and task-specific semantics.730

A.5 Impact of the Retrieved Items k731

To understand how the size of the retrieved context732

affects performance, we conduct an ablation study733

varying the number of retrieved entries k ∈ 1, 2, 4.734

Table 11 reports results for long-text generation735

(Tasks 1–4), using GPT-4o-mini and LLaMA-3.1-736

8B-Instruct. Corresponding results for short-text737

generation (Tasks 5–8) appear in Table 12.738

Overall, increasing k generally leads to im-739

proved generation performance across tasks and740

models. This trend highlights the value of larger re-741

trieved contexts, which provide richer signals about742

user preferences and item semantics. The gains are743

especially evident when moving from k = 1 to744

k = 2, though marginal returns diminish between745

k = 2 and k = 4 in some cases.746

That said, the benefit of higher k values is747

constrained by data sparsity. Many user pro-748

files contain fewer than four qualifying interac-749

tions—especially in cold-start settings. In such750

cases, the retriever returns all available entries,751

even if they are fewer than the specified k. As752

a result, the effective retrieved context size varies 753

across users, especially in the low-profile regime. 754

This behavior reflects the practical limitations of 755

personalization at scale and underscores the impor- 756

tance of designing retrieval-aware systems that can 757

operate under sparse supervision. 758

Long Text Generation Metric k = 1 k = 2 k = 4

LLaMA-3.1-8B-Instruct

Task 1: User-Product
Review Generation

ROUGE-1 0.160 0.169 0.173
ROUGE-L 0.121 0.125 0.124
METEOR 0.125 0.138 0.150

Task 2: Hotel
Experiences Generation

ROUGE-1 0.230 0.251 0.263
ROUGE-L 0.141 0.151 0.156
METEOR 0.152 0.174 0.191

Task 3: Stylized
Feedback Generation

ROUGE-1 0.200 0.214 0.226
ROUGE-L 0.158 0.165 0.171
METEOR 0.154 0.171 0.192

Task 4: Multilingual
Product Review Generation

ROUGE-1 0.163 0.169 0.174
ROUGE-L 0.134 0.137 0.139
METEOR 0.113 0.122 0.133

GPT-4o-mini

Task 1: User-Product
Review Generation

ROUGE-1 0.176 0.184 0.186
ROUGE-L 0.121 0.125 0.126
METEOR 0.168 0.180 0.187

Task 2: Hotel
Experiences Generation

ROUGE-1 0.250 0.260 0.265
ROUGE-L 0.146 0.150 0.152
METEOR 0.188 0.198 0.206

Task 3: Stylized
Feedback Generation

ROUGE-1 0.196 0.200 0.205
ROUGE-L 0.136 0.136 0.139
METEOR 0.186 0.192 0.203

Task 4: Multilingual
Product Review Generation

ROUGE-1 0.163 0.169 0.174
ROUGE-L 0.134 0.137 0.139
METEOR 0.113 0.122 0.133

Table 11: Ablation study results showing the im-
pact of varying k (number of retrieved neighbors) on
PGraphRAG’s performance. Results are reported for
LLaMA-3.1-8B-Instruct and GPT-4o-mini on long-text
generation tasks (Tasks 1 - 4).

A.6 Impact of Retriever Method R 759

We evaluate how the choice of retriever affects the 760

performance of PGraphRAG by comparing two re- 761

trieval backends: BM25, a sparse keyword-based 762

retriever, and Contriever, a dense unsupervised re- 763

triever based on sentence embeddings. 764

Table 13 reports results for long-text generation 765

(Tasks 1–4), and Table 14 provides results for short- 766

text generation (Tasks 5–8). Across both GPT-4o- 767

mini and LLaMA-3.1-8B-Instruct models, we ob- 768

serve that PGraphRAG performs consistently well 769

regardless of the retrieval method. The differences 770

between BM25 and Contriever are minor, and no 771

retriever dominates across all datasets or metrics. 772

These findings indicate that PGraphRAG is ro- 773

bust to the choice of retriever and does not rely 774
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Short Text Generation Metric k = 1 k = 2 k = 4

LLaMA-3.1-8B-Instruct

Task 5: User Product
Review Title Generation

ROUGE-1 0.128 0.123 0.125
ROUGE-L 0.121 0.118 0.119
METEOR 0.123 0.118 0.117

Task 6: Hotel Experience
Summary Generation

ROUGE-1 0.122 0.121 0.121
ROUGE-L 0.112 0.114 0.113
METEOR 0.104 0.102 0.099

Task 7: Stylized Feedback
Title Generation

ROUGE-1 0.129 0.132 0.132
ROUGE-L 0.124 0.126 0.128
METEOR 0.129 0.130 0.129

Task 8: Multi-lingual Product
Review Title Generation

ROUGE-1 0.129 0.126 0.131
ROUGE-L 0.120 0.119 0.123
METEOR 0.117 0.116 0.118

GPT-4o-mini

Task 5: User Product
Review Title Generation

ROUGE-1 0.111 0.110 0.111
ROUGE-L 0.106 0.105 0.106
METEOR 0.093 0.094 0.097

Task 6: Hotel Experience
Summary Generation

ROUGE-1 0.114 0.114 0.118
ROUGE-L 0.109 0.109 0.112
METEOR 0.082 0.082 0.085

Task 7: Stylized Feedback
Title Generation

ROUGE-1 0.100 0.103 0.109
ROUGE-L 0.098 0.101 0.107
METEOR 0.087 0.090 0.096

Task 8: Multi-lingual Product
Review Title Generation

ROUGE-1 0.104 0.104 0.108
ROUGE-L 0.098 0.098 0.104
METEOR 0.077 0.078 0.082

Table 12: Ablation study results showing the im-
pact of varying k (number of retrieved neighbors) on
PGraphRAG’s performance. Results are reported for
LLaMA-3.1-8B-Instruct and GPT-4o-mini on short-text
generation tasks (Tasks 5-8).

on fine-tuned or heavily engineered retrieval strate-775

gies. While BM25 sometimes yields slightly higher776

scores, the overall parity suggests that our graph-777

based retrieval and prompting framework can ef-778

fectively integrate contextual signals from either779

sparse or dense retrieval methods.780

A.7 Impact of Ranked Retrieval781

Table 15 evaluates the role of ranking in782

PGraphRAG by comparing the following retrieval783

variants:784

1. PGraphRAG*: retrieves k = 4 randomly sam-785

pled entries from the profile without ranking.786

2. PGraphRAG**: retrieves and includes all787

available context within the model’s input788

limit (i.e., k → ∞).789

As expected, PGraphRAG** performs best due790

to its access to a larger and more diverse context.791

However, our focus is on the impact of removing792

ranking while keeping k fixed.793

Removing ranking (PGraphRAG →794

PGraphRAG*) leads to a drop in ROUGE-1795

Long Text Generation Metric Contriever BM25

LLaMA-3.1-8B-Instruct

Task 1: User-Product
Review Generation

ROUGE-1 0.172 0.173
ROUGE-L 0.122 0.124
METEOR 0.153 0.150

Task 2: Hotel
Experiences Generation

ROUGE-1 0.262 0.263
ROUGE-L 0.155 0.156
METEOR 0.190 0.191

Task 3: Stylized
Feedback Generation

ROUGE-1 0.195 0.226
ROUGE-L 0.138 0.171
METEOR 0.180 0.192

Task 4: Multilingual
Product Review Generation

ROUGE-1 0.172 0.174
ROUGE-L 0.134 0.139
METEOR 0.135 0.133

GPT-4o-mini

Task 1: User-Product
Review Generation

ROUGE-1 0.182 0.186
ROUGE-L 0.122 0.126
METEOR 0.184 0.187

Task 2: Hotel
Experiences Generation

ROUGE-1 0.264 0.265
ROUGE-L 0.152 0.152
METEOR 0.207 0.206

Task 3: Stylized
Feedback Generation

ROUGE-1 0.194 0.205
ROUGE-L 0.128 0.139
METEOR 0.201 0.203

Task 4: Multilingual
Product Review Generation

ROUGE-1 0.190 0.191
ROUGE-L 0.141 0.142
METEOR 0.174 0.173

Table 13: Ablation study results showing the effect of
retriever choice on PGraphRAG performance. Results
are reported for LLaMA-3.1-8B-Instruct and GPT-4o-
mini on the long-text generation task (Tasks 1-4).

of 2.29% for long-text generation and 3.18% 796

for short-text tasks. The effect is also visi- 797

ble in user-only retrieval (PGraphRAG-U → 798

PGraphRAG-U*), with decreases of 0.92% and 799

1.98% for long- and short-text tasks, respec- 800

tively. These consistent declines underscore the 801

importance of ranking in identifying relevant 802

context. 803

While PGraphRAG** demonstrates the upper 804

bound of performance, its scalability is limited due 805

to cost and context length constraints. In contrast, 806

ranked retrieval with a fixed k (as in PGraphRAG) 807

offers a strong balance between performance and 808

efficiency, making it more suitable for real-world 809

deployment. 810

A.8 Evaluating Different GPT Variants 811

To compare the performance of different GPT 812

variants, we evaluate PGraphRAG using a fixed 813

retrieval configuration (BM25, k = 4) across 814

two OpenAI models: GPT-4o-mini and GPT-o1. 815

Among these, GPT-4o-mini demonstrated the best 816

trade-off between accuracy, cost, and consistency 817
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Short Text Generation Metric Contriever BM25

LLaMA-3.1-8B-Instruct

Task 5: User Product
Review Title Generation

ROUGE-1 0.122 0.125
ROUGE-L 0.116 0.119
METEOR 0.115 0.117

Task 6: Hotel Experience
Summary Generation

ROUGE-1 0.117 0.121
ROUGE-L 0.110 0.113
METEOR 0.095 0.099

Task 7: Stylized Feedback
Title Generation

ROUGE-1 0.125 0.132
ROUGE-L 0.121 0.128
METEOR 0.122 0.129

Task 8: Multi-lingual Product
Review Title Generation

ROUGE-1 0.126 0.131
ROUGE-L 0.118 0.123
METEOR 0.112 0.118

GPT-4o-mini

Task 5: User Product
Review Title Generation

ROUGE-1 0.113 0.111
ROUGE-L 0.108 0.106
METEOR 0.097 0.097

Task 6: Hotel Experience
Summary Generation

ROUGE-1 0.113 0.118
ROUGE-L 0.107 0.112
METEOR 0.080 0.085

Task 7: Stylized Feedback
Title Generation

ROUGE-1 0.108 0.109
ROUGE-L 0.106 0.107
METEOR 0.094 0.096

Task 8: Multi-lingual Product
Review Title Generation

ROUGE-1 0.108 0.108
ROUGE-L 0.103 0.104
METEOR 0.082 0.082

Table 14: Ablation study results showing the effect of
retriever choice on PGraphRAG performance. Results
are reported for LLaMA-3.1-8B-Instruct and GPT-4o-
mini on the short-text generation task (Tasks 5-8).

on long-text generation tasks.818

Figure 5: Comparison of GPT-4o-mini and GPT-o1-
preview on the test set across Tasks 1–4 using BM25
retriever with k = 4.

A.9 Impact of Length Constraints in GPT819

Model820

In short-text generation tasks, controlling output821

length is essential to balance informativeness and822

conciseness. We evaluate the effect of fixed output823

constraints of 3, 5, and 10 words. Empirically, a824

5-word constraint offers the best trade-off across825

evaluation metrics, yielding higher-quality outputs826

with minimal verbosity. We therefore adopt 5-word 827

outputs as the default setting for all short-text gen- 828

eration experiments. 829

Figure 6: Effect of different output length constraints (3,
5, and 10 words) on short-text generation performance
using PGraphRAG, measured on the validation set.

A.10 Validation Results 830

We conduct extensive validation experiments 831

across all representative tasks, evaluating all com- 832

binations of language models, retrieval strategies, 833

and top-k settings. The goal is to identify the most 834

effective configuration for each task prior to test- 835

time evaluation. 836

Results are reported in Tables 16, 17, and 18, 837

corresponding to long-text generation, short-text 838

generation, and ordinal classification tasks, respec- 839

tively. 840

For each task, we select the best-performing con- 841

figuration based on validation performance. These 842

selected settings are then used in the test set eval- 843

uation. Notably, trends observed in the validation 844

phase remain consistent in the test results, reinforc- 845

ing the robustness of our setup. 846

B Related Work 847

Personalization in NLP 848

Personalization in natural language processing 849

(NLP) focuses on tailoring responses to user- 850

specific preferences, behaviors, and contexts, im- 851

proving user experience and task performance. 852

Early work in personalized generation relied on 853

neural encoder-decoder models and incorporated 854

attributes such as sentiment (Zang and Wan, 2017), 855

stylistic cues (Dong et al., 2017), and demographic 856

metadata (Huang et al., 2014). To address data 857

sparsity, approaches such as warm-start attention 858

(Amplayo et al., 2018) and user embeddings were 859

developed. 860
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Task Metric PGraphRAG PGraphRAG* PGraphRAG** PGraphRAG-U PGraphRAG-U* PGraphRAG-U**

Long Text Generation

Task 1: User-Product Review Generation
ROUGE-1 0.189 0.186 0.191 0.171 0.169 0.170
ROUGE-L 0.130 0.125 0.130 0.117 0.114 0.117
METEOR 0.196 0.188 0.205 0.176 0.173 0.180

Task 2: Hotel Experiences Generation
ROUGE-1 0.263 0.266 0.267 0.221 0.223 0.225
ROUGE-L 0.152 0.152 0.153 0.135 0.134 0.135
METEOR 0.206 0.209 0.216 0.164 0.168 0.171

Task 3: Stylized Feedback Generation
ROUGE-1 0.211 0.200 0.210 0.185 0.180 0.186
ROUGE-L 0.140 0.133 0.136 0.123 0.122 0.123
METEOR 0.202 0.206 0.225 0.183 0.184 0.189

Task 4: Multilingual Product Review Generation
ROUGE-1 0.194 0.188 0.196 0.168 0.167 0.171
ROUGE-L 0.144 0.138 0.141 0.125 0.125 0.128
METEOR 0.171 0.176 0.188 0.154 0.155 0.155

Short Text Generation

Task 5: User Product Review Title Generation
ROUGE-1 0.115 0.114 0.119 0.108 0.108 0.111
ROUGE-L 0.112 0.109 0.114 0.105 0.102 0.105
METEOR 0.099 0.121 0.128 0.091 0.116 0.119

Task 6: Hotel Experience Summary Generation
ROUGE-1 0.116 0.117 0.121 0.108 0.121 0.119
ROUGE-L 0.111 0.107 0.112 0.104 0.111 0.110
METEOR 0.081 0.104 0.109 0.075 0.109 0.107

Task 7: Stylized Feedback Title Generation
ROUGE-1 0.122 0.111 0.120 0.113 0.115 0.114
ROUGE-L 0.118 0.105 0.114 0.109 0.109 0.108
METEOR 0.104 0.117 0.126 0.096 0.124 0.123

Task 8: Multi-lingual Product Review Title Generation
ROUGE-1 0.111 0.108 0.112 0.115 0.110 0.110
ROUGE-L 0.105 0.100 0.104 0.107 0.103 0.101
METEOR 0.083 0.101 0.105 0.088 0.108 0.107

Table 15: Zero-shot test set results for text generation using GPT-4o-mini. PGraphRAG* denotes retrieval of k = 4
randomly selected entries without ranking, while PGraphRAG** represents unbounded retrieval up to the model’s
context limit (k → ∞).

Long Text Generation Metric PGraphRAG LaMP No-retrieval Random-retrieval

LLaMA-3.1-8B-Instruct

Task 1: User-Product Review Generation
ROUGE-1 0.173 0.168 0.172 0.126
ROUGE-L 0.124 0.125 0.121 0.095
METEOR 0.150 0.134 0.152 0.101

Task 2: Hotel Experiences Generation
ROUGE-1 0.263 0.197 0.224 0.211
ROUGE-L 0.156 0.128 0.141 0.130
METEOR 0.191 0.121 0.148 0.147

Task 3: Stylized Feedback Generation
ROUGE-1 0.226 0.181 0.177 0.142
ROUGE-L 0.171 0.134 0.125 0.104
METEOR 0.192 0.147 0.168 0.119

Task 4: Multilingual Product Review Generation
ROUGE-1 0.174 0.174 0.173 0.146
ROUGE-L 0.139 0.141 0.134 0.117
METEOR 0.133 0.125 0.130 0.110

GPT-4o-mini

Task 1: User-Product Review Generation
ROUGE-1 0.186 0.169 0.168 0.157
ROUGE-L 0.126 0.114 0.113 0.112
METEOR 0.187 0.170 0.173 0.148

Task 2: Hotel Experiences Generation
ROUGE-1 0.265 0.217 0.222 0.233
ROUGE-L 0.152 0.132 0.133 0.138
METEOR 0.206 0.161 0.164 0.164

Task 3: Stylized Feedback Generation
ROUGE-1 0.205 0.178 0.177 0.168
ROUGE-L 0.139 0.121 0.119 0.117
METEOR 0.203 0.178 0.184 0.160

Task 4: Multilingual Product Review Generation
ROUGE-1 0.191 0.164 0.167 0.171
ROUGE-L 0.142 0.123 0.125 0.131
METEOR 0.173 0.155 0.153 0.150

Table 16: Zero-shot Validation set results for long text generation using LLaMA-3.1-8B-Instruct and GPT-4o-mini
on Tasks 1-4.
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Short Text Generation Metric PGraphRAG LaMP No-retrieval Random-retrieval

LLaMA-3.1-8B-Instruct

Task 5: User Product Review Title Generation
ROUGE-1 0.125 0.114 0.111 0.101
ROUGE-L 0.119 0.108 0.105 0.095
METEOR 0.117 0.111 0.104 0.094

Task 6: Hotel Experience Summary Generation
ROUGE-1 0.121 0.119 0.115 0.115
ROUGE-L 0.113 0.111 0.108 0.107
METEOR 0.105 0.105 0.100 0.094

Task 7: Stylized Feedback Title Generation
ROUGE-1 0.132 0.128 0.127 0.108
ROUGE-L 0.128 0.124 0.122 0.104
METEOR 0.129 0.124 0.118 0.103

Task 8: Multi-lingual Product Review Title Generation
ROUGE-1 0.132 0.128 0.108 0.127
ROUGE-L 0.128 0.124 0.104 0.122
METEOR 0.129 0.124 0.103 0.118

GPT-4o-mini

Task 5: User Product Review Title Generation
ROUGE-1 0.114 0.106 0.109 0.107
ROUGE-L 0.107 0.100 0.103 0.102
METEOR 0.119 0.115 0.116 0.109

Task 6: Hotel Experience Summary Generation
ROUGE-1 0.115 0.115 0.114 0.112
ROUGE-L 0.105 0.106 0.106 0.103
METEOR 0.105 0.106 0.106 0.099

Task 7: Stylized Feedback Title Generation
ROUGE-1 0.105 0.101 0.105 0.098
ROUGE-L 0.102 0.097 0.101 0.093
METEOR 0.118 0.111 0.118 0.105

Task 8: Multi-lingual Product Review Title Generation
ROUGE-1 0.108 0.106 0.108 0.103
ROUGE-L 0.099 0.098 0.099 0.095
METEOR 0.101 0.102 0.103 0.095

Table 17: Zero-shot Validation set results for short text generation using LLaMA-3.1-8B and GPT-4o-mini on Tasks
5-8.

Recent efforts have expanded personalization861

using retrieval-augmented generation (RAG) strate-862

gies. Methods like in-context prompting (Lyu863

et al., 2024), retrieval-enhanced summarization864

(Richardson et al., 2023), and optimization via rein-865

forcement learning or distillation (Salemi et al.,866

2024a) have improved output fluency and rele-867

vance. Benchmarking frameworks such as LaMP868

(Salemi et al., 2024b) and LongLaMP (Kumar et al.,869

2024) have standardized evaluation of personal-870

ized tasks (e.g., email writing, abstract genera-871

tion). Meanwhile, retrieval-enhanced generation872

pipelines (Kim et al., 2020) improve long-form text873

by incorporating relevant user history.874

However, most prior work assumes dense, high-875

coverage user history, limiting effectiveness in cold-876

start or sparse-profile scenarios. Few approaches877

leverage structured representations (e.g., knowl-878

edge graphs) to generalize beyond individual user879

traces. This gap highlights a need for models that880

can retrieve personalized yet diverse context using881

structured user-item relationships.882

Knowledge Graphs and Retrieval-Augmented 883

Generation (RAG) 884

Knowledge graphs (KGs) provide structured, re- 885

lational context useful in a variety of NLP tasks 886

such as question answering, entity linking, and rea- 887

soning (Liu et al., 2018; Schneider et al., 2022). 888

By leveraging graph traversal and multi-hop paths, 889

KGs enable precise contextualization in tasks that 890

require reasoning over entity relationships (Sal- 891

nikov et al., 2023). Recent techniques such as data 892

synthesis and subgraph construction have improved 893

KG scalability and coverage (Agarwal et al., 2021). 894

In parallel, retrieval-augmented generation 895

(RAG) frameworks enhance LLMs by incorporat- 896

ing external memory or document retrieval into 897

the generation process (Izacard and Grave, 2020). 898

When integrated with KGs, RAG enables struc- 899

tured multi-hop reasoning (Saleh et al., 2024), rare 900

entity recognition (Mathur et al., 2024), and hal- 901

lucination reduction in generative outputs (Kang 902

et al., 2023; Chen et al., 2023). 903

Despite these gains, scaling KGs in real-world 904

systems (e.g., personalized recommendation) re- 905
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Ordinal Classfication Metric PGraphRAG LaMP No-retrieval Random-retrieval

LLaMA-3.1-8B-Instruct

Task 9: User Product Review Ratings
MAE ↓ 0.3272 0.3220 0.3200 0.3516
RMSE ↓ 0.7531 0.7280 0.7294 0.7972

Task 10: Hotel Experience Ratings
MAE ↓ 0.3868 0.3685 0.3614 0.4008
RMSE ↓ 0.6989 0.6750 0.6643 0.7178

Task 11: Stylized Feedback Ratings
MAE ↓ 0.3356 0.3368 0.3372 0.3812
RMSE ↓ 0.6856 0.6859 0.6826 0.7759

Task 12: Multi-lingual Product Ratings
MAE ↓ 0.5228 0.5216 0.5282 0.5392
RMSE ↓ 0.8483 0.8395 0.8519 0.8704

GPT-4o-mini

Task 9: User Product Review Ratings
MAE ↓ 0.3652 0.3508 0.3484 0.4176
RMSE ↓ 0.7125 0.6943 0.6925 0.7792

Task 10: Hotel Experience Ratings
MAE ↓ 0.3308 0.3472 0.3528 0.3640
RMSE ↓ 0.6056 0.6394 0.6475 0.6627

Task 11: Stylized Feedback Ratings
MAE ↓ 0.3340 0.3364 0.3356 0.3972
RMSE ↓ 0.6515 0.6545 0.6484 0.7158

Task 12: Multi-lingual Product Ratings
MAE ↓ 0.4568 0.4832 0.4908 0.4820
RMSE ↓ 0.7414 0.7808 0.7897 0.7917

Table 18: Performance comparison on rating prediction tasks (Tasks 9-12) using GPT-4o-mini and LLaMA-3.1-8B-
Instruct on the validation set. Results are reported using MAE and RMSE metrics across retrieval methods.

mains challenging (Ji et al., 2022). Graph con-906

struction, update, and refinement require sophisti-907

cated methods to ensure correctness and complete-908

ness (Paulheim, 2017). Moreover, traditional RAG909

pipelines using dense vector retrieval may strug-910

gle to integrate symbolic signals from structured911

graphs or handle noisy or misaligned data sources912

(Gao et al., 2024).913

Toward Structured Personalization via914

Graph-Augmented RAG915

The intersection of personalization, knowledge916

graphs, and RAG presents a promising research917

direction. Recent surveys (Zhang et al., 2024) em-918

phasize the importance of personalization in LLMs919

but call for approaches that generalize across users920

with limited history and incorporate structured con-921

text. Our work addresses this by using user-centric922

bipartite graphs to retrieve not only user-authored923

content but also related interactions from similar924

users, enabling robust personalization under sparse925

conditions.926

Unlike conventional user-history-based personal-927

ization, graph-augmented RAG offers a principled928

way to incorporate both individual and community929

signals—supporting generalization, diversity, and930

data efficiency at inference time.931
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