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Computing the excited states of a given Hamiltonian is computationally hard for
large systems, but methods that do so using quantum computers scale tractably.
This problem is equivalent to the PCA problem where we are interested in decom-
posing amatrix into a collection of principal components. Classically, PCA is awell-
studied problem setting, for which both centralized and distributed approaches
have been developed. On the distributed side, one recent approach is that of
EigenGame, a game-theoretic approach to finding eigenvectors where each eigen-
vector reaches a Nash equilibrium either sequentially or in parallel. With this work,
we extend the EigenGame algorithm for both a 0th-order approach and for quan-
tum computers, and harness the framework that quantum computing provides in
computing excited states. Results show that using the Quantum EigenGame allows
us to converge to excited states of a given Hamiltonian without the need of a defla-
tion step. We also develop theory on error accumulation for finite-differences and
parameterized approaches.

1. Introduction
Quantum computing offers an alternative approach to solving complex computational tasks, po-
tentially reducing the time and space complexity compared to classical methods. Quantum algo-
rithms –like Quantum Phase Estimation [1], the Deutsch-Jozsa algorithm [2], and Grover’s algo-
rithm [3]– demonstrate superior performance in ideal, noiseless conditions. However, in the Noisy
Intermediate-Scale Quantum (NISQ) era [4], noise remains a significant challenge, influencing the
stability and reliability of quantum computations [5–8].
Performing optimization tasks under noisy settings is a common scenario in the algorithmic liter-
ature. In optimization and machine learning, errors that propagate throughout iterations critically
influence performance metrics and outcomes [9–12]. Understanding and mitigating error propa-
gation is crucial for enhancing the practical utility of algorithms in real-world applications.
Particularly relevant to the present work, consider the case of derivative-free optimization (DFO)
[13–18]: DFO is employed effectively in scenarios where traditional gradient-based methods falter
[16]. However, the efficiency of DFO methods often lags, particularly for high-dimensional prob-
lems, due to their reliance on sampling routines that may require many function evaluations to
approximate gradients [15]. Further, DFO may struggle with precision near minima [17]. Overall,
DFO demands more resources, posing a significant limitation in large-scale scenarios.
This paper’s focus: VQE. Within this interplay between algorithms and error in calculations, we
focus on a specific type of variational quantum algorithm [19], the Variational Quantum Eigen-
solver (VQE) [20]. VQE is the quantum analog of PCA that approximates theminimum/maximum
eigenvalue/eigenvector pair of a given matrix (Hamiltonian), and can provide exponential time
and space reduction over classical methods [21]. This problem is crucial for tasks like finding the
ground state energies of molecules, which is pivotal in fields ranging from quantum chemistry to
materials science [21–23]. Yet, VQE constitutes a framework with multiple moving parts: classical
optimization procedures, quantum ansatzes, quantum observables, and hyperparameter tuning, all
requiring careful setup before being applied to specific domains.
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While VQE is meant for calculating the ground state energy of a Hamiltonian, it is also of interest
to higher energy states, also known as “excited states” [24–26]. Computing excited states provides
insight into the properties of quantum systems. In quantum chemistry, determining excited states
helps to understand chemical reaction mechanisms, including the absorption spectra and photo-
chemistry of molecules [27]. In materials science, excited states can reveal information about elec-
tronic properties such as conductivity and magnetism, which are vital to designing new materials
with targeted functionalities [28]. Calculating these excited states, as opposed to only finding the
ground state, provides broader information on molecules of interest, and poses a greater technical
challenge due to the requirement of maintaining orthogonality among calculated states.
Motivation and our contributions. This work builds upon a classical collaborative computation
model, the EigenGame, presented in [29], to compute excited states in a noisy quantum environ-
ment. Unlike existing approaches that rely on deflation to calculate successive states [30–35], our
method allows such a computation via a regularized objective inspired by game-theoretic ideas.
Our primary contributions are:
• Algorithmic Framework: We propose a VQE meta-algorithm that changes the computational dy-

namics to find excited states. Using a modified quantum objective, our approach avoids deflation
steps, diverging from traditional deflation-based computation models.

• Theoretical Component: We provide a theory that validates the convergence properties of our al-
gorithm. By formalizing the interaction between error calculations –due to noisy gradients and
DFO routines– and convergence rates, we establish a theory for VQE targeting excited states.

• Empirical Validation: The current implementation shows that our approach leads to favorable per-
formance compared to baseline algorithms in terms of either convergence rate or accuracy.

2. Background
Notation. Matrices are denoted by uppercase letters, such asA ∈ Cp×p, while lowercase letters, like
b ∈ Cp, represent vectors. Scalars are distinguished based on the context. The Euclidean ℓ2-norm
is symbolized by ∥ · ∥2. The qubit is the basic unit, analogous to the bit in classical computing. A
qubit’s state is expressed using the Dirac (bra-ket) notation; a single qubit state |ψ⟩ ∈ C2 is a linear
combination of the basis states |0⟩ = [1 0]⊤ and |1⟩ = [0 1]⊤ in C2. For example, |ψ⟩ = α|0⟩ + β|1⟩
where α, β ∈ C are complex amplitudes. These amplitudes encode the probabilities that the qubit’s
state collapses to |0⟩ or |1⟩, satisfying the normalization condition |α|2 + |β|2 = 1.
The notation |·⟩ represents a column vector (referred to as a ket), and ⟨·| denotes its conjugate trans-
pose (bra). This is a convenient notation that allows an inner product to be expressed by ⟨x|y⟩ and
an outer product to be represented by |x⟩⟨y|, with ⟨x|x⟩ = 1 and ⟨x|y⟩ = 0, for x ⊥ y. A separa-
ble q-qubit state, residing in a q-qubit Hilbert space, is the Kronecker product of q individual qubit
states, represented as H = ⊗qi=1C2 ∼= C2q . It is expected to equate 2q = p. Quantum states are ma-
nipulated by quantum gates, which are unitary matrices acting on state vectors. A single-qubit gate
U ∈ C2×2, for example, transforms a state |ψ⟩ into U |ψ⟩, adjusting the state’s probability amplitudes
according to the operation defined by U . An ideal quantum gate U is defined as a unitary matrix,
where U†U = UU† = I allows rotation effects on |ψ⟩ to preserve the normalization condition of the
amplitude.
Principal component analysis and VQE. PCA has been studied as a way of finding the represen-
tative components from matrix data [36, 37]. This unsupervised learning problem effectively looks
for the top (or bottom) principal component of a data matrix calculated via:

max /min
v∈Rp:∥v∥2=1

v⊤Mv, (1)

where M = 1
nX

⊤X ∈ Rp×p is often the covariance matrix of a dataset X ∈ Rn×p with usually
centered, normalized rows. For our discussion, assume that M is a real symmetric matrix with
eigenvalues and eigenvectors {λ⋆i , v⋆i }pi=1, satisfying λ⋆1 ≥ λ⋆2 ≥ · · · ≥ λ⋆p ≥ 0. Then, v⋆1 corresponds
to the vector that maximizes (1) with objective value v⋆⊤1 Mv⋆1 = λ⋆1, and v⋆p is the vector that mini-
mizes (1) with objective value v⋆⊤p Mv⋆p = λ⋆p.
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An interesting aspect of PCA is the connection of (1) with the quadratic formmaximization formu-
lations found in the descriptions of quantum problems. In particular, in VQE and given a Hamil-
tonianM ∈ Cp×p, the ground state energy, Emin ∈ R, is always upper-bounded by the expectation
ofM with respect to a trial wavefunction. That is, Emin ≤ ⟨ψ|M |ψ⟩ for any ψ ∈ Cp. Similarly, the
maximum energy, Emax ∈ R, is always lower bounded as in Emax ≥ ⟨ψ|M |ψ⟩ for any ψ ∈ Cp.
What is different in VQE is the way we evolve the putative solution: Given an initial point
|ψ0⟩, we start exploring from that point through the dynamics of the variational form |ψ(θ)⟩ =∏ℓ−1
i=0 Ui(θi)|ψ0⟩, where Ui(θi) is a user-defined/designed unitary matrix. In more detail, an ansatz

is prepared through a set of parameters θ ∈ Rm to calculate the eigenvector/eigenstate corresponding
to the largest or least eigenvalue ofM via:

max /min
θ∈Rm

⟨ψ(θ)|M |ψ(θ)⟩ s.t. |ψ(θ)⟩ =
ℓ−1∏
i=0

Ui(θi)|ψ0⟩. (2)

|0⟩ H

U(θ) =
∏
k Uk(θk)

|0⟩ H

... H

|0⟩ H

⟨ψ(θ)|M |ψ(θ)⟩

|ψ0⟩ |ψ(θ)⟩

Figure 1: Circuit schematic for VQE where |ψ(θ)⟩ is
prepared as |ψ(θ)⟩ = U(θ)|ψ0⟩ when |ψ0⟩ = |+⟩. The
initial layer ofHadamard gatesmay be excluded to have
|ψ0⟩ = |0⟩. The circuit is thenmeasured over an observ-
ableM to retrieve ⟨ψ(θ)|M |ψ(θ)⟩.

Here, the dimension p = 2q acts on q qubits;
|ψ(θ)⟩ ∈ Cp is a quantum state, parameterized
by m variables θ ∈ Rm; Ui(θi) ∈ Cp×p repre-
sents a layer of an ansatz, repeated ×ℓ times.
See Figure 1 for a depiction. Using the bra-ket
notation above, the analogs of i) v ↔ |ψ(θ)⟩, ii)
x⊤y ↔ ⟨x|y⟩, and iii) ∥v∥2 = 1 ↔ ∥|ψ(θ)⟩∥2 =
1, are determined between PCA and VQE. The
key differences are the fact that PCA operates
directly on v with no restrictions other than
forcing v to be normalized, while, in VQE, we
are looking for a parameterized vector |ψ(θ)⟩
through a specific evolution from an initial state
as in |ψ(θ)⟩ =∏ℓ−1

i=0 Ui(θi)|ψ0⟩. Details of the in-
gredients of (2) are in the text below.
We note that solving the maximization or minimization problem in (1) or (2) is an equivalent problem, since
e.g., min⟨ψ(θ)|M |ψ(θ)⟩ = max−⟨ψ(θ)|M |ψ(θ)⟩ by applying a sign operator. For the rest of the text, we
will focus on the maximization case.

Algorithm 1 Ideal VQE with Deflation
Input: M ∈ Cp×p, VQE routine for
ground state calculation, # of excited
states k, and iters t.

Ψ = ∅
M1 ←M
for j = 1 : k do
|ψj(θ)⟩ ← VQE (Mj , t) in (7)
λj ← ⟨ψj(θ)|Mj |ψj(θ)⟩
Mj+1 ←Mj − λj |ψj(θ)⟩⟨ψj(θ)|
Ψ← Ψ ∪ {|ψj(θ)⟩}

end for
Return Set Ψ of estimated eigenstates.

Beyond “top” eigenstates. Multicomponent PCA
looks for K principal components, which means find-
ing the K most excited states in a VQE setting. For
M ∈ Cp×p with sorted true principal components
|ψ⋆1⟩, |ψ⋆2⟩, . . . , |ψ⋆p⟩, we are interested in finding vectors
|ψ1⟩, . . . , |ψk⟩, where k ≤ p, such that the difference
between the corresponding true eigenvector |ψ⋆i ⟩ and
|ψi⟩, for all i ∈ [k], is bounded as in ∥|ψi⟩ − |ψ⋆i ⟩∥2 ≤ ε,
for some desired bound ε. One way to handle such a
case is through deflation [37]: once the largest com-
ponent |ψ⋆1⟩ is approximated, M is further processed
to “live” on the subspace orthogonal to the subspace
spanned by this component. The process then contin-
ues by again applying single-component VQE on the
deflated M , which leads to an approximation of the

second component (second excited state) |ψ⋆2⟩, and so on.
How could quantum deflation look in math? At the (j+1)-th iteration of deflation, we estimate the
leading eigenvector of:

max
θ∈Rm

⟨ψ(θ)|Mj+1|ψ(θ)⟩ s.t. |ψ(θ)⟩ =
ℓ−1∏
i=0

Ui(θi)|ψ0⟩, (3)
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whereMj+1 is the deflatedHamiltonian, based onMj+1 =Mj−λj |ψj⟩⟨ψj |, whereMj is the deflated
Hamiltonian in the previous iteration, with M1 := M and |ψj⟩ is the approximate estimate in (7)
based on Mj with corresponding energy λj := ⟨ψj |Mj |ψj⟩. A generic procedure for solving the
multicomponent VQE with deflation is detailed in Algorithm 1.
In practice though, successively reconstructing a deflated Hamiltonian represents a computational
burden as it would require the construction of the deflated Hamiltonian—that entails a sum of
Pauli operators for measuring it. Existing literature relies on implicit deflation algorithms, where
one still uses the VQE framework but changes the objective to favor orthogonal solutions by adding
a penalty term for vectors that are not orthogonal to the current vector. Such an example is the case
of the Variational Quantum Deflation (VQD) algorithm [30]; we describe and compare with VQD
in the experimental section.
In this work, we are exploring a novel penalty term in the objective, inspired by a game-theoretic formulation.

3. An EigenGame for VQE
What is EigenGame? A recent study for calculating PCA in a distributed fashion led to the creation
of EigenGame [29]. EigenGame is an algorithm posed as a competitive game, where “players” are
assigned to estimate eigenvectors, distinct from other eigenvectors of M . The way the algorithm
operates leads to the Nash equilibrium of an eigenvalue game and does so by a sequential or a
parallel version of EigenGame, namely EigenGame and EigenGameR [29], respectively.
Let vi ∈ Rp denote an approximation of the i-th principal component of M . EigenGame defines an
alternative utility objective to be maximized by the i-th “player” in this game, defined as follows:

max
vi:∥vi∥2=1

f(vi | vj<i) := v⊤i Mvi −
∑
j<i

(v⊤i Mvj)
2

v⊤j Mvj

 . (4)

Algorithm 2 EigenGame for the i-th player
Input: M ∈ Rp×p, initial vectors vi,init, learned par-
ents vj<i, step size α, and # of iters ti.
vi,1 ← vi,init
for t = 1 : ti do
∇vif(vi,t | vj<i) = 2M

(
vi,t −

∑
j<i

v⊤i,tMvj

v⊤j Mvj
vj

)
ṽi,t+1 ← vi,t + α∇vif(vi,t | vj<i)
vi,t+1 ← ṽi,t+1

∥ṽi,t+1∥2

end for
Return vi,ti

The term in blue maximizes the variance of
the projected data along the vector being op-
timized. This is analogous to the traditional
goal of PCA in (1). The term in red pe-
nalizes the alignment of the vector with any
other vectors that have already been opti-
mized. This term ensures implicit orthog-
onality among the vectors, mimicking the
orthogonality constraint in PCA. The intu-
ition behind this redefined objective func-
tion is to transform the PCA problem from
a passive eigenvalue decomposition into an
active, competitive process: each “player”

seeks to maximize its utility in terms of variance captured, considering the presence and position
of other vectors. The gradient of the utility function, assuming access to a first-order oracle, can be
calculated as ∇vif(vi | vj<i) = 2M

(
vi −

∑
j<i

v⊤i Mvj
v⊤j Mvj

vj

)
. We describe EigenGame in Algorithm 2.

Preparing the quantum EigenGame. Our interest steers towards obtaining a utility gradient that
uses quantum oracle calls to calculate eigenvalue/eigenvector pairs. We first convert the classical
EigenGame objective formulation into a parameterized one, using quantum computing formula-
tions. Denoting the r-th player’s parameters as θ(r) ∈ Rm, its corresponding objective becomes:

max
θ(r)∈Rm

⟨ψ(θ(r))|M |ψ(θ(r))⟩ −∑
j<r

⟨ψ(θ(r))|M |ψ(θ(j))⟩2
⟨ψ(θ(j))|M |ψ(θ(j))⟩

 s.t. |ψ(θ(r))⟩ =
ℓ−1∏
i=0

Ui(θ
(r)
i )|ψ0⟩. (5)

What differentiates (5) from the classical VQE formulation in (2) is the inclusion of the regulariza-
tion term in red. That is, (5) defines different objectives per “player”. Note that the term in blue is
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the measurement of the observable HamiltonianM for the r-th player and is identical to that of the
VQE objective in (2).

Figure 2: To compute terms of the form
⟨ψ(θ(r))|M |ψ(θ(j))⟩, we utilize interfer-
ence between |ψ(θ(r))⟩ and |ψ(θ(j))⟩.

Focusing on the red part in (5), to incorporate in-
formation from the previous eigenvalue/eigenvector
pairs, we compute the term ⟨ψ(θ(r))|M |ψ(θ(j))⟩2 using
a procedure that calculates inner products on quantum
states. We do so through an approach similar to the
Hadamard Test [38, 39], where we first create an equal
superposition of |ψ(θ(j))⟩ and |ψ(θ(r))⟩ with one addi-
tional ancilla qubit, followed by an H gate on said an-
cilla to yield Re(⟨ψ(θ(r))|M |ψ(θ(j))⟩) via Hamiltonian
expectation with M = R(ω)†ZR(ω). By adding an S
gate, we can compute Im(⟨ψ(θ(r))|M |ψ(θ(j))⟩). Here,
H = 1√

2

[
1 1
1 −1

]
and S =

[
1 0
0 i

]
are single-qubit uni-

tary gates, Z =

[
1 0
0 −1

]
is the computational basis Hamiltonian, and R(ω) is an arbitrary rota-

tion gate. The ancilla qubit is an auxiliary qubit useful for intermediate computations. For an an-
cilla qubit with state |a⟩, the state of an n-qubit system that contains an ancilla can be defined as
|Ψ⟩ =

∑2n−1
i=0 αi|i⟩⊗ |a⟩. This implementation shown in Figure 2 computes ⟨ψ(θ(r))|M |ψ(θ(j))⟩with

only one additional qubit and two quantum oracle calls, providing an effective solution. See Ap-
pendix B for a detailed discussion and a derivation for our implementation. From here, we will also
refer to quantum EigenGame as QuantumGame.

Algorithm 3 QuantumGame of r-th player
Input: matrixM ∈ Cp×p, initial values θ(r)init ∈ Rm,
# of iters/ T , # of shots S, step size η > 0.
θ
(r)
1,: := θ

(r)
init.

for t = 1 : T do
Prepare state |ψ(θ(r)t,: )⟩ =

∏ℓ−1
i=0 Ui(θ

(r)
t,i )|+⟩.

Use |ψ(θ(r)t,: )⟩ to approximate the gradient of
objective in (5) w.r.t. θ(r); denote as ∇̃(r)

t,: ∈ Rm.
Update θ(r)t+1,: = θ

(r)
t,: + η∇̃(r)

t,: .
end for
Return |ψ(θ(r))⟩ := |ψ(θ(r)T+1,:)⟩.

Based on the above, Algorithm3provides our
algorithm for the r-th player. Note the abuse
of notation where θ

(r)
t,i indicates the varia-

tional parameters of the r-th player, associ-
ated with the i-th layer of the VQE that is
⊂ θ

(r)
t,: at the t-th iteration. Then, given the

Hamiltonian M , and an initialization θ(r)init ∈
Rm for the variational parameters, Algorithm
3 repeats over T iterations the steps of: i)

preparing the quantum state |ψ(θ(r)t,: )⟩ =∏ℓ−1
i=0 Ui(θ

(r)
t,i )|+⟩; ii) calculating gradient ap-

proximation of the objective in (5) w.r.t. θ(r)t,: ,
and iii) performing gradient ascent on the

classical side (for the case of maximization) with step size η to update θ(r).
At the end of the execution, the eigenvalue ⟨ψ(θ(r))|M |ψ(θ(r))⟩ is broadcast to all “children” agents
r′ > r, alongsidewith the corresponding eigenvector |ψ(θ(r))⟩ to form (5) for the next “player”. This
process has a distributed flavor where each eigenvalue/eigenvector pair a parent agent calculates is
broadcast to all its children agents, creating a directed graph acyclic hierarchy; see also Figure 3.
Challenges for the quantum EigenGame. Quantum computers typically interact with 0th-order
oracles, meaning they can only access function values without gradient information. This limitation
impacts the efficiency and precision of algorithms, like EigenGame, which rely on gradients [29].
Any oracle call on a quantum computer is inherently noisy. The noise arises frommultiple sources,
including the underlying Hamiltonian, the calibration of quantum gates, cross-talk, the accuracy of
the measurement mechanisms, and stochastic errors associated with measurements [4–6].

2Note that the term ⟨ψ(θ(j))|M |ψ(θ(j))⟩ in the denominator of the red term is a classical observable opera-
tion, given the prepared state |ψ(θ(j))⟩.
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Finally, to our knowledge, the convergence analysis of the EigenGame under the effect of errors is
not well understood. Traditional convergence proofs assume ideal conditions with precise compu-
tations, which do not hold in practical quantum scenarios. Recent advances in quantum algorithm
analysis provide a foundation, but specific adaptations for the EigenGame are necessary [19].
Regarding gradient approximation, recent works leverage parameter-shift rules [38, 40–43] to ob-
tain exact gradients using the same number of oracle evaluations as finite differences, given prior
knowledge on the eigenvalues of the applied ansatz. In particular, for a single-qubit unitary with
two distinct eigenvalues ±λ, the exact derivative is: ∂f(θ)∂m

= λ
[
f
(
θ + π

4λ êm
)
− f

(
θ − π

4λ êm
)] [38].

Figure 3: QuantumGamewith three play-
ers.

Classical 0th-order EigenGame. To better under-
stand the nature of having 0th-order oracles in Quan-
tumGame, we analyze the classical Eigengame with
that same constraint. In principle, the 0th-order version
of EigenGame should not require gradient information,
relying instead on function evaluations to guide the
search for optimal solutions. These techniques, such as
forward finite differences [44] and simultaneous per-
turbation stochastic approximation (SPSA) [45], pro-
vide approximate gradient information through multi-
ple function evaluations [18].
For simplicity, we will focus on the forward finite differ-
ences technique. Based on the objective in (4), we study
the case when an error σ ∈ R appears in each partial
derivative. The error σ can be purely stochastic or pre-
defined, and the treatmentwe give to it will differ based
on its nature. Then, the 0th-order utility partial derivative with respect to the m-th component of
vi ∈ Rp can be approximated as:

∂f(vi | vj<i)

∂vi,m
≈ f(vi,1, . . . , vi,m + σ, . . . , vi,p | vj<i))− f(vi | vj<i))

σ

The above lead to the following observation, that will be helpful in the theory we will present:
Observation 1 We perform forward finite differences in order to obtain an analytical expression for a σ-
approximate partial derivative of them-th component of vi, which yields (see Appendix A):

∇̃vif(vi | vj<i) = 2M

vi −∑
j<i

v⊤i Mvj
v⊤j Mvj

vj

+ σ

diag(M)−
∑
j<i

(Mvj)
◦2

v⊤j Mvj

 . (6)

Algorithm 4 0th-order EigenGame for i-th player
Input: M ∈ Rp×p, initial vectors vi,init, learned
approximate parents vj<i, perturbation σ ∈ R
and step size α, # of iters. ti
vi,1 ← vi,init
for t = 1 : ti do

utility := 2M
(
vi,t −

∑
j<i

v⊤i,tMvj

v⊤j Mvj
vj
)

error := σ
(
diag(M)−

∑
j<i

(Mvj)
◦2

v⊤j Mvj

)
∇̃vif(vi,t | vj<i) = utility + error
ṽi,t+1 ← vi,t + α∇̃vif(vi,t | vj<i)
vi,t+1 ← ṽi,t+1

∥ṽi,t+1∥2

end for
Return vi,ti

Observe a linear dependence on σ on the
second term, while the first term is identi-
cal to the analytical utility gradient. Based
on (6), Algorithm 4 describes the 0th-order
EigenGame procedure including both the an-
alytical and the error terms of the finite differ-
ences approximated utility gradient.
Theoretical guarantees. We provide conver-
gence proofs for the 0th-order EigenGame and
for the parameterized EigenGame in Appen-
dices C and E, respectively, and error accu-
mulation theory for both in Appendix G. We
first summarize the global convergence rate
for both algorithms in the following.

Theorem 1 (Convergence of 0th-order
EigenGame for all players). Consider the Algorithm 4 with input matrix M ∈ Rp×p and learned
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“parent” eigenvectors vj<i ∈ Rp that are accurate enough, i.e., that |ϕj<i| ≤ cigi
(i−1)Λ11

≤
√

1
2 with

0 ≤ ci ≤ 1
16 . Let the initialization vector vi,init be within perturbation π

4 from v⋆i , i.e., ∠(vi,init, v⋆i ) ≤ π
4 , for

all i. Consider perturbation σ ∈ R for the finite difference approximation, and step size α for the gradient
ascent. Then, Algorithm 4 returns an approximate eigenvector vi with angular error less than ϕtol > 0 in

T =

O
 k∑
i=1

Li(0)
Li(σ)

 (k−1)!
ϕtol

k∏
j=1

(
16Λ11

gj

)2

 iterations,

whereLi(σ) is the Lipschitz continuity assumption of the 0th-order EigenGame based on a finite difference step
size σ as in ∥∇̃vif(vi | vj<i)∥2 ≤ Li(σ), Λ is the diagonal eigenvalue matrix ofM containing eigenvalues
Λ11 > Λ22 > . . . > Λkk with Λ11 being the top eigenvalue, and gi = Λii−Λi+1,i+1 is the eigengap between
the two consecutive eigenvalues of players i and i+ 1. The proof of this theorem is developed in Appendix D.

Theorem 2 (Convergence of QuantumGame for all players). Under sufficient decrease assumptions, Algo-
rithm 3 achieves convergence to within ϕtol angular error of the top-k principal components independent of
initialization. Let |ϕj<i| ≤ cigi

(i−1)Λ11
≤
√

1
2 with 0 ≤ ci ≤ 1

16 . Let each v(θ̂i) = U(θ̂i)|s⟩, with a sufficiently
expressive ansatz U(θ̂i) [46, 47] and an initial state |s⟩ such that ∠(v(θ̂i), v⋆i ) ≤ π

4 . Algorithm 3 returns the
eigenvectors with angular error less than ϕtol in

T =

O
 k∑
i=1

Lθi
2

√
ℓq

 (k−1)!
ϕtol

k∏
j=1

(
16Λ11

gj

)2

 iterations,

where Lθi is the Lipschitz continuity constant of QuantumGame, ℓ is the number of layers of the ansatz and
q is the number of qubits. The proof is shown in Appendix F.

𝑣𝑗
ො𝑣𝑗 φ𝑗

𝑣𝑖

ො𝑣𝑖

φ𝑖

Sphere of
radius 1

Figure 4: Error accumulation
of a child eigenvector v̂i from
its parent eigenvector v̂j , given
ϕj ≤ ϵ≪ 1.

We are also interested in establishing the error accumulation rate
in both algorithms, given inaccurate parents. To do so, we bound
the gradient difference between exact and inexact parent eigen-
vectors. Our error accumulation theorem is stated as follows.

Theorem 3 (0th-order and parameterized error accumulation). As-
sume the angular error ϕj ≤ ϵ between the true eigenvector vj , j < i
of a parent and its estimate v̂j to satisfy ϵ ≪ 1. The Euclidean error of
the parent isO(ϵ) and the Euclidean error of the child’s 0th-order gradi-
ent isO(ϵ). Similarly, the Euclidean error of the child’s parameterized
gradient is O(ϵ

√
ℓq), with ℓ being the number of layers and q the num-

ber of qubits of the parameter space. An illustration for the 0th-order case
is shown in Figure 4, and proofs are given in Appendix G.

Proof Sketch of Theorems 1 and 2. The 0th-order theory begins by
specifying the assumptions of utility lower bound (Assumption 1) and sufficient decrease (Assumption
2) necessary to identify the finite sample convergence rate of the i-th player ofAlgorithm4. Theorem
5 specifies the generic Riemannian descent convergence rate under both assumptions, which we
use for Riemannian ascent instead. The theory follows by defining the conditions under which the
assumptions are satisfied, and used in Theorem 5.
Lemmas 9 and 10 provide a Lipschitz continuity coefficient Li(σ) that admits a finite-differences
approximation error σ for the i-th player, where Li(0) becomes the Lipschitz coefficient of the exact
EigenGame gradient. Corollary 11 approximately bounds the utility using Li(σ), approximately
satisfying Assumption 1. Lemma 12 then incorporates Corollary 11 to approximately bound the
difference in the utility of consecutive steps, approximately satisfying Assumption 2. We then input
these values into Theorem 5, and thus determine the number of iterations required for the 0th-order
EigenGame to converge in Lemma 15.
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We employ a similar strategy for the parameterized scenario that we implement on quantum de-
vices: we aim to satisfy Assumptions 1 and 2, and find the convergence rate for each player. To
that effect, we assume the use of a highly expressive ansatz that can reach the exact eigenvalue of
interest, and include information on the number of parameters of the ansatz in our analysis.
Lemmas 17 and 18 determine a Lipschitz continuity constant Lϕ̂i

for the i-th player, introducing the
number of layers ℓ and the number of qubits q from the ansatz. Corollary 19 states that the utility
of the parameterized EigenGame is bounded by the same Li constant of the original EigenGame,
satisying Assumption 1. We use a first-order Taylor expansion of the utility to approximately satisfy
Assumption 2 in Lemma 20. The identified values that satisfy Assumption 1 and approximately
satisfy Assumption 2 are used to provide the number of iterations necessary to reach finite sample
convergence for QuantumGame in Lemma 22.

4. Experiments and discussion
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QuantumGame vs VQD for the H2 molecule
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0
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Figure 5: Excited state energy levels of the
two-qubit H2 molecule mapping calculated with
noiselessQuantumGame (blue line), noisyQuan-
tumGame (orange line), noiseless VQD (green
line) and noisy VQD (purple line) over accumu-
lative iterations. The noisy setting only uses statis-
tical shot noise with 10k shots. The exact energy
level (dashed line) is extracted usingNumpy. The
inset plot shows the total number of iterations
for noiseless VQD and noisy VQD with values of
β ∈ [0.1, 0.5, 1, 2, 3, 4, 5].

We are interested in understanding how well
our versions of EigenGame perform compared
to the state of the art. With the application
being the retrieval of energy levels for specific
molecules, our experiments focus on charac-
terizing the energy levels of the H2 molecule,
as well as understanding the impact of noise
on QuantumGame compared to the Variational
Quantum Deflation (VQD) algorithm.
Experimental setup. We use Pennylane’s
RandomLayers ansatz [48] with a number of
layers ℓ proportional to the problem size of
q qubits, following ansatz design suggestions
from [49] where a direct relation between the
degree of entanglement and the number of lay-
ers of an ansatz ismade in the low-qubit regime,
showing a linear scaling for layers thatwe adopt
here. We study a 2-qubit version of the H2

molecule by applying a ParityMapper to the
second quantization Hamiltonian of H2. We
select a low number of 3 parameters per layer
with 3 layers, sufficient to obtain the correct
eigenvalues in a noiseless scenario.
Baselines. We compare results against the Vari-
ational Quantum Deflation (VQD) algorithm
[30], which aims to optimize:

min
θ(r)∈Rm

⟨ψ(θ(r))|M |ψ(θ(r))⟩+
∑
j<r

β|⟨ψ(θ(r))|ψ(θ(j))⟩|2 s.t. |ψ(θ(r))⟩ =
ℓ−1∏
i=0

Ui(θ
(r)
i )|ψ0⟩, (7)

a similar approach to our algorithm but instead including a regularization parameter β which re-
quires adequate tuning to reach comparable accuracy, adding a small overhead. We avoid this
overhead by using an energy-aware adaptive regularization term, scaled with previously calculated
eigenvalues. We test VQD over β ∈ [0.1, 0.5, 1, 2, 3, 4, 5] and set it to 0.1 in the main plot of Figure
5, with the least total number of iterations among the options tested. The total number of iterations
for all β values are shown in the inset plot of Figure 5. Our settings for QuantumGame and VQD
experiments are comprised of exact statevector simulation and shot-based simulation, where results
are estimated based on averaging values over 10k shots or samples affected by statistical shot noise
through the expression ⟨M⟩est ≈ ⟨M⟩ ±

√
Var(M)
N , where N is the number of shots, ⟨M⟩est is the

estimate of the expectation value ofM and Var(M) = ⟨M2⟩ − ⟨M⟩2 is its variance [48].
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Results. Figure 5 illustrates the convergence of the QuantumGame and VQD to the energy levels of
theH2 molecule when no noise effects are present andwhen under the effect of statistical shot noise
–our noisy scenario– for 10k shots. We use the Gradient Descent optimizer with η = 1/2L, L =

∥M∥, and a tolerance ∥∇θ̂if(v(θ̂i), v(θ̂j<i))∥2 ≤ 10−2. A similar convergence rate can be observed
for the eigenvalue estimates of VQD when noise is present against their noiseless counterparts for
β ≤ 1, with shot noise being a larger source of errors among all values of β tested. This could be
caused by our choices of the Gradient Descent optimizer, step size η, or the number of shots. For
any of the scenarios, either more parameters or more shots may aid in obtaining higher accuracy.
QuantumGame thus showsmore accurate results than the baselinewithout hyperparameter tuning.
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EigenGame vs 0th-order EigenGame
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Figure 6: Total number of iterations required for
eigenvalue calculation to within a tolerance of
ρi ≤ 10−3, i < k using the exact and the 0th-
order EigenGame over k = {2i | i ∈ [3, 10]} non-
degenerate eigenvalues sampled from a power-
law distribution over 5 runs. The blue and red
line correspond to the exact EigenGame and the
0th-order EigenGame, respectively.

Ablation studies. We also inspect the behav-
ior of our 0th-order EigenGame compared to the
exact EigenGame to validate the accuracy and
convergence rate of the algorithms. These ex-
periments are performed in a classical noiseless
setting, as mapping exact statevectors vi onto
a quantum computer is impractical given the
exponential resources required. We first pre-
pare theM Hamiltonian matrix fromwhich we
calculate the 8 leading eigenvalue/eigenvector
pairs. Our focus is on finding the number of it-
erations required to reach ∥∇vif(vi | vj<i)∥2 ≤
10−3 on all i < k eigenvalues, for k = {2i | i ∈
[3, 10]}. In order to have adequate control over
the optimization process and to ensure results
that don’t end up as corner cases, we construct
M using a set of eigenvalues sampled from a
power-law distribution in the range (0, 1) and
employing a similarity transformation through
M = P−1DP with D = λI a diagonal matrix
with eigenvalues on the diagonal, and λ being
a set of non-negative andnon-degenerate eigen-
values. Given no prior knowledge on the eigen-
vectors to calculate, we generate a random in-

vertible matrix P as a random orthonormal matrix through a QR decomposition where Q = P ,
P † = P−1, P ∈ Cn×n. Figure 6 describes our results and shows a similar scaling trend on both
algorithms when using the Gradient Descent optimizer with η = 1/2L, L = ∥M∥.

5. Conclusions

We propose a variational algorithm for the problem of finding the top k eigenvalues of a Hamilto-
nian based on EigenGame [50]. We also propose a 0th-order EigenGame using forward finite dif-
ferences based on a 0th-order oracle restriction motivated by the oracle class available to quantum
computers. We perform a conventional classical convergence analysis for the 0th-order EigenGame
and state a global convergence rate, along with an error accumulation rate that accounts for impre-
cise parents. A similar analysis is performed for QuantumGame, where we include the number of
layers and qubits of an ansatz.
We conduct an ablation study on the 0th-order EigenGame by comparing the number of steps re-
quired to accurately estimate the top k eigenvalues of aHamiltonianM against the exact EigenGame
for small, medium and large dimensionality. We observe a similar scaling trend, implying that de-
spite numerical errors being introduced, correct eigenvalues can still be found. We compared our
QuantumGame formulation against the VQD algorithm and found an advantage of our formulation
over VQD in experimental convergence rate and accuracy.
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Future work. A parallel implementation of QuantumGame where eigenvalues are calculated on
different quantum devices simultaneously. It is our aim to remove any unnecessary assumptions in
the analysis of our algorithms to strengthen our theory.
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A. Calculating the expression of the finite differences EigenGame
gradient

To map the finite differences formulation on the EigenGame objective, we delve into the specifics of
the utility function, by unrolling the matrix/vector inner products entrywise:

f(vi | vj<i) = v⊤i Mvi −
∑
j<i

(v⊤i Mvj)
2

v⊤j Mvj

=
∑
l

∑
k

vi,lvi,kMl,k −
∑
j<i

(
∑
l

∑
k vj,lvi,kMk,l)

2∑
l

∑
k vj,lvj,kMl,k

= vi,m ·

∑
k ̸=m

vi,kMm,k

+

∑
k ̸=m

vi,kMk,m

 · vi,m + v2i,mMm,m +
∑
l ̸=m

∑
k ̸=m

vi,lvi,kMl,k

−
∑
j<i

(
vi,m · (

∑
lMm,lvj,l) +

∑
l

∑
k ̸=m vj,lvi,kMk,l

)2
v⊤j Mvj

where blue terms correspond to the components from the core objective term v⊤i Mvi, while red
terms correspond to the regularized term of the EigenGame formulation,∑j<i

(v⊤i Mvj)
2

v⊤j Mvj
. Adding

the error term σ to them-entry of vi, we obtain:

f(vi,1, . . . , vi,m + σ, . . . , vi,p | vj<i) = (vi,m + σ) ·

∑
k ̸=m

vi,kMm,k

+

∑
k ̸=m

vi,kMk,m


· (vi,m + σ) + (vi,m + σ)

2
Mm,m +

∑
l ̸=m

∑
k ̸=m

vi,lvi,kMl,k

−
∑
j<i

((vi,m+σ)·(
∑

lMm,lvj,l)+
∑

l

∑
k ̸=m vj,lvi,kMk,l)

2

v⊤j Mvj

Next, we perform forward finite differences in order to obtain an expression for an σ-approximate
partial derivative of them-th component of vi:

f(vi,1, . . . , vi,m + σ, . . . , vi,p | vj<i)− f(vi | vj<i)
σ

=
σ

σ
·

(∑
k ̸=m

vi,kMm,k +
∑
k ̸=m

vi,kMk,m + (2vi,m + σ)Mm,m

−
∑
j<i

(2vi,m+σ)(
∑

lMm,lvj,l)
2

v⊤j Mvj
−
∑
j<i

2(
∑

lMm,lvj,l)(
∑

l

∑
k ̸=m vj,lvi,kMk,l)

v⊤j Mvj

)

= 2Mm,:vi + σMm,m −
∑
j<i

(
2Mm,:vj ·(v⊤i Mvj)+σ·(Mm,:vj)·(Mm,:vj)

v⊤j Mvj

)

= 2Mm,:

vi −∑
j<i

v⊤i Mvj
v⊤j Mvj

vj

+ σ

Mm,m −
∑
j<i

(Mm,:vj)
2

v⊤j Mvj


Finally, the previous expression, in a vectorized gradient form, is equivalent to:

∇̃vif(vi | vj<i) = 2M

vi −∑
j<i

v⊤i Mvj
v⊤j Mvj

vj

+ σ

diag(M)−
∑
j<i

(Mvj)
◦2

v⊤j Mvj

 . (8)
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B. Swap test and Hadamard test derivations
The SwapTest [51, 52] calculates the inner product between two quantum states. It requires 2q + 1
qubits for its operation, including q qubits for representing each of both quantumstates, and 1 ancilla
qubit that will store the inner product. In particular, for two states |ϕ1⟩, |ϕ2⟩ ∈ Cp, the SwapTest
circuit outputs a probability value:

P (|0 . . .⟩) = 1
2 −

1
2 |⟨ϕ1|ϕ2⟩|

2 ∈ [1/2, 1], (9)
that represents the probability of the first qubit in a quantum state being in the |0⟩ state. E.g., when
|ϕ1⟩, |ϕ2⟩ are coaligned, then |⟨ϕ1|ϕ2⟩| = 1, and thus P (|0 . . .⟩) = 1, while when |ϕ1⟩, |ϕ2⟩ are orthog-
onal, then |⟨ϕ1|ϕ2⟩| = 0 and thus P (|0 . . .⟩) = 1

2 (i.e., observing 0 is equivalent to a toss of a perfect
coin). This allows one to, for example, estimate the squared inner product between the two states,
|⟨ϕ1|ϕ2⟩|2, to ε additive error by taking the average over O( 1

ε2 ) runs of the SwapTest.

|0⟩ H H

|ψ(θi)⟩

|ψ(θj)⟩ M

Figure 7: Circuit schematic for SwapTest.
Here,M is the problemHamiltonian, and
H is the Hadamard gate.

Figure 7 shows our implementation of the procedure,
where we prepare:

|ϕ1⟩ = |ψ(θ(i))⟩, |ϕ2⟩ =M |ψ(θ(j))⟩,

for each index in the sum of eq. 5, obtaining:
|⟨ψ(θ(i))|M |ψ(θ(j))⟩|2 = 1− 2P (|0 . . .⟩). (10)

In order to correctly implement the SwapTest, the ma-
trixM must satisfy one of the following requirements:

• M is a unitary matrix.
• M can be decomposed into a linear combination of Pauli operators {Pi} as M =

∑
i aiPi such

that each evaluation ⟨v̂i(θi)|Pi|v̂j(θi)⟩2 ≥ 0.
• M can be decomposed into a linear combination of unitary matrices {Ui} asM =

∑
i aiUi such

that each evaluation ⟨v̂i(θi)|Ui|v̂j(θi)⟩2 ≥ 0.

These limitations are due to the SwapTest being only able to calculate the overlap of quantum states
whenM is a quantumgate applied to one of the two states. IfM is already a unitarymatrix, only one
evaluation is necessary. On the other hand, ifM is not a unitary matrix, it should be decomposed
into a linear combination of unitary matrices such as Pauli operators. After a successful decompo-
sition ofM asM =

∑
i aiUi, the following quantities may be calculated:

|⟨ψ(θi)|Ui|ψ(θj)⟩| =
√
1− 2Pi(|0 . . .⟩). (11)

which can be combined and contrasted with the expected calculation via

|⟨ψ(θi)|M |ψ(θj)⟩| =
∣∣∣∑

i

ai⟨ψ(θi)|Ui|ψ(θj)⟩
∣∣∣

≥
∑
i

ai|⟨ψ(θi)|Ui|ψ(θj)⟩|.
(12)

In order to reach an equivalence, eitherM = U0 or:
⟨ψ(θi)|Ui|ψ(θj)⟩ ≥ 0, ai > 0 (13)

must be satisfied.
In order to overcome the limitation of (13), we propose a novel circuit for computing this value,
illustrated in Figure 2. We will describe how this implementation computes ⟨ψ(θ(r))|M |ψ(θ(j))⟩ via
the following Lemma:

Lemma 4 The circuit depicted in Figure 2 is able to compute the value ⟨ψ(θ(r))|M |ψ(θ(j))⟩ using q + 1
qubits and two expectations ofM .
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Proof. Without loss of generality, assume we are computing Re(⟨ψ(θ(r))|M |ψ(θ(j))⟩) (as com-
puting Im(⟨ψ(θ(r))|M |ψ(θ(j))⟩) is an analogous operation). We will show that we can compute
Re(⟨ψ(θ(r))|M |ψ(θ(j))⟩)with q + 1 qubits and one expectation ofM .
Let |ψ(θ(j))⟩ = U(θ(j))|0⟩ and |ψ(θ(r))⟩ = U(θ(r))|0⟩, after preparing the superposition in Figure 2,
if we letΨ represent the state of our quantum system, then Ψ can be written as:

Ψ =
1√
2
(|ψ(θ(j))⟩|0⟩+ |ψ(θ(r))⟩|1⟩) (14)

We then apply the phase gate S to Ψ depending on whether we want to measure the imaginary
component of ⟨ψ(θ(r))|Ĥ|ψ(θ(j))⟩. We will proceed our analysis without applying the S gate to
compute Re(⟨ψ(θ(r))|Ĥ|ψ(θ(j))⟩), although the analysis will proceed symmetrically if the S gate is
applied to compute Im(⟨ψ(θ(r))|Ĥ|ψ(θ(j))⟩).
We then apply the H gate again to our quantum system, putting it in the state:

Ψ =
1

2
(|ψ(θ(j))⟩|0⟩+ |ψ(θ(j))⟩|1⟩+ |ψ(θ(r))⟩|0⟩ − |ψ(θ(r))⟩|1⟩) (15)

We then compute the expectation value of our Hamiltonian, measuring the effects of our ancilla:

⟨Ψ|Ĥ ⊗ Z|Ψ⟩ = 1

4
(⟨0|⟨ψ(θ(j))|+ ⟨1|⟨ψ(θ(j))|+ ⟨0|⟨ψ(θ(r))| − ⟨1|⟨ψ(θ(r))|)Ĥ ⊗ Z(|ψ(θ(j))⟩|0⟩ (16)

+ |ψ(θ(j))⟩|1⟩+ |ψ(θ(r))⟩|0⟩ − |ψ(θ(r))⟩|1⟩) (17)

=
1

4
(⟨ψ(θ(j))|Ĥ|ψ(θ(j))⟩+ ⟨ψ(θ(r))|Ĥ|ψ(θ(j))⟩ − ⟨ψ(θ(j))|Ĥ|ψ(θ(j))⟩ (18)

+ ⟨ψ(θ(r))|Ĥ|ψ(θ(j))⟩+ ⟨ψ(θ(j))|Ĥ|ψ(θ(r))⟩+ ⟨ψ(θ(r))|Ĥ|ψ(θ(r))⟩ (19)
+ ⟨ψ(θ(j))|Ĥ|ψ(θ(r))⟩ − ⟨ψ(θ(r))|Ĥ|ψ(θ(r))⟩) (20)

=
1

4
(2⟨ψ(θ(r))|Ĥ|ψ(θ(j))⟩+ 2⟨ψ(θ(j))|Ĥ|ψ(θ(r))⟩) (21)

=
1

4
(4Re(⟨ψ(θ(r))|Ĥ|ψ(θ(j))⟩)) (22)

= Re(⟨ψ(θ(r))|Ĥ|ψ(θ(j))⟩) (23)

as desired.

C. Classical finite differences convergence analysis
Following recent theory on nonconvex optimization on manifolds [53], we can restate two main
assumptions regarding the convergence of the generic Riemann descent algorithm:

Assumption 1 (Assumption O.2 in [29]) (Lower bound). There exists f⋆ > −∞ such that f(x) ≥ f⋆,
∀x ∈M.

Assumption 2 (Assumption O.3 in [29]) (Sufficient decrease). There exist scalars ξ, ξ′ > 0 such that,
∀k ≥ 0,

f(xk)− f(xk+1) ≥ min{ξ · ∥∇Rf(xk)∥2, ξ′} · ∥∇Rf(xk)∥2. (24)

We make another assumption based on a design decision made in [29], where the authors claim
omitting the projection step mimics modulating the learning rate, improving stability:
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Assumption 3 (Projection). For all k ≥ 0, ∀x ∈M = Rn,
∇Rf(xk) := ∇f(xk). (25)

Based on Assumption 3, the sufficient decrease of Assumption 2 may be reformulated as:
f(xk)− f(xk+1) ≥ min{ξ · ∥∇f(xk)∥2, ξ′} · ∥∇f(xk)∥2. (26)

For our derivative-free approach, we will define the gradient of function f as ∇f(x) := ∇xf(x) +
∇σf(x), an additively separable gradient that decomposes into a term that corresponds to the an-
alytical gradient ∇xf(x), and a term that corresponds to the error ∇σf(x). In order to find the
number of iterations required to reach convergence, we will consider the case where the algorithm
converges with a finite differences gradient estimation (i.e. when the gradient is error-prone, rep-
resented by ∇f(x)), and use Theorem 3 of [53] which we state in Theorem 5 of this paper.

Theorem 5 (Thm 3 in [53]) Under Assumption 1 and Assumption 2, the generic Riemannian descent
algorithm returns an error-prone x ∈M satisfying f(x) ≤ f(x0) and ∥∇f(x)∥2 ≤ δ in⌈

f(x0)−f⋆

ξ · 1
δ2

⌉
(27)

iterations, provided ϵ ≤ ξ′

ξ . If ρ >
ξ′

ξ , at most ⌈ f(x0)−f⋆

ξ · 1δ ⌉ iterations are required.

Proof. If Algorithm 2 executesK − 1 iterations without terminating, then ∥∇f(xk)∥2 > δ for all k ∈
0, . . . ,K − 1. Using Assumption 1 and Assumption 2 in a classic telescoping summation argument
gives:

f(x0)− f⋆ ≥ f(x0)− f(xK) =

K−1∑
k=0

f(xk)− f(xk+1)

A2
≥

K−1∑
k=0

min{ξ · ∥∇f(xk)∥2, ξ′} · ∥∇f(xk)∥2

∥∇f(xk)∥2>δ
>

K−1∑
k=0

min{ξ · δ, ξ′} · δ

= Kmin{ξ · δ, ξ′} · δ.
By contradiction, when f(x0) − f⋆ ≤ Kmin{ξ · δ, ξ′} · δ, the algorithm will have terminated if
K ≥ f(x0)−f∗

min{ξδ,ξ′}δ .
The proofs for this section aim towards finding the conditions that satisfy Assumptions 1 and 2, and
determine a convergence rate for an i-th agent using Theorem 5, which we finally state in Theorem
1. We resume by stating the convergence proofs of [29] that can be directly applied to our problem.
Theorem L.1 proves that the PCA solution is the Unique strict-Nash Equilibrium as is stated in the
following.

Theorem 6 (PCA Solution is the Unique strict-Nash Equilibrium). Assume that the top-k eigenvalues of
X⊤X are positive and distinct. Then the top-k eigenvectors form the unique strict-Nash equilibrium of the
proposed game in Equation (4).

The theory from Section N of [29] can be directly applied to our problem, as the results presented
there mainly depend on the utility function and are algorithm-independent. The main result from
the mentioned section is contained in TheoremN.2, where a bound on the angular deviation of any
maximizer of a child’s utility given any deviation direction for the child or its parents is derived.
Here we restate the theorem.

Theorem 7 Assume it is given that |ϕj | ≤ cigi
(i−1)Λ11

≤
√

1
2 for all j < i with 0 ≤ ci ≤ 1

16 . Then:

|ϕ∗i | = |arg max
ϕi

{ui(v̂i(ϕi,∆i), v̂j<i)}| ≤ 8ci. (28)
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We can summarize the redefinition of ui(v̂i, vj<i) included in Section N of [29], which the authors
use to determine initialization conditions for ϕi. Lemma N.1 defines v̂i = cos(ϕi)vi + sin(ϕi)∆i in
order to restate the utility function using

ui(v̂i, vj<i) = ui(vi, vj<i)− sin2(ϕi)

(
Λii −

∑
l>i

zlΛll

)
. (29)

Lemma N.3 further redefines ui(v̂i, vj<i) as

ui(v̂i, vj<i) = A(ϕj ,∆j ,∆i) sin
2(ϕi)−B(ϕj ,∆j ,∆i)

sin(2ϕi)

2
+ C(ϕj ,∆j ,∆i), (30)

and Lemma N.4 simplifies the previous expression into

ui(v̂i, vj<i) =
1

2

[√
A2 +B2 cos(2ϕi + γ) +A+ 2C

]
, (31)

where ϕ = tan−1
(
B
A

).
Lemma O.7 also remains unchanged, and specifies an upper bound to the ratio of generalized inner
products in Lemma 8 below. By using Lemma O.7 we may also state the Lipschitz bound of the
gradient estimate similarly to Lemma O.8 in Lemma 9 below.

Lemma 8 Let |ϕj | ≤ ϵ < 1 for all j < i. Then, the ratio of generalized inner products is bounded as:

⟨v̂i,Λv̂j⟩
⟨v̂j ,Λv̂j⟩

≤ 1 + (1 + κj)ϵ√
1− ϵ2

. (32)

Lemma 9 (Lipschitz Bound). Let |ϕj | ≤ ϵ < 1 for all j < i. Then, the norm of the approximate ambient
gradient of ui is bounded as:

∥∇̃v̂iui(v̂i, v̂j<i)∥2 ≤ 2Λ11

(
1 + (i− 1)

1 + (1 + κi−1)ϵ√
1− ϵ2

)
+ σ

(
∥diag(M)∥2 + (i− 1)

Λ11κi−1

1− ϵ2

)
.

(33)

Proof. Starting with the gradient (eq. 6), we find:

∥∇̃v̂iui(v̂i, v̂j<i)∥2 =

∥∥∥∥∥∥2M
v̂i −∑

j<i

v̂⊤i Mv̂j
v̂⊤j Mv̂j

v̂j

+ σ

diag(M)−
∑
j<i

(Mv̂j)
◦2

v̂⊤j Mv̂j

∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥M
v̂i −∑

j<i

v̂⊤i Mv̂j
v̂⊤j Mv̂j

v̂j

∥∥∥∥∥∥
2

+ σ

∥∥∥∥∥∥diag(M)−
∑
j<i

(Mv̂j)
◦2

v̂⊤j Mv̂j

∥∥∥∥∥∥
2

L8
≤ 2Λ11

1 +
∑
j<i

1 + (1 + κj)ϵ√
1− ϵ2

+ σ

∥∥∥∥∥∥diag(M)−
∑
j<i

(Mv̂j)
◦2

v̂⊤j Mv̂j

∥∥∥∥∥∥
2

(34)
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≤ 2Λ11

(
1 + (i− 1)

1 + (1 + κi−1)ϵ√
1− ϵ2

)
+ σ

∥∥∥∥∥∥diag(M)−
∑
j<i

(Mv̂j)
◦2

v̂⊤j Mv̂j

∥∥∥∥∥∥
2

≤ 2Λ11

(
1 + (i− 1)

1 + (1 + κi−1)ϵ√
1− ϵ2

)
+ σ

∥diag(M)∥2 +
∑
j<i

∥∥∥∥∥ (Mv̂j)
◦2

v̂⊤j Mv̂j

∥∥∥∥∥
2


≤ 2Λ11

(
1 + (i− 1)

1 + (1 + κi−1)ϵ√
1− ϵ2

)
+ σ

∥diag(M)∥2 +
∑
j<i

∥Mv̂j∥22 ·

∣∣∣∣∣ 1

v̂⊤j Mv̂j

∣∣∣∣∣


≤ 2Λ11

(
1 + (i− 1)

1 + (1 + κi−1)ϵ√
1− ϵ2

)
+ σ

∥diag(M)∥2 +
∑
j<i

Λ2
11

⟨cos(ϕj)vj+sin(ϕj)∆j ,Λ(cos(ϕj)vj+sin(ϕj)∆j)⟩


= 2Λ11

(
1 + (i− 1)

1 + (1 + κi−1)ϵ√
1− ϵ2

)
+ σ

∥diag(M)∥2 +
∑
j<i

Λ2
11

cos(ϕj)2Λjj + sin(ϕj)2⟨∆j ,Λ∆j⟩


≤ 2Λ11

(
1 + (i− 1)

1 + (1 + κi−1)ϵ√
1− ϵ2

)
+ σ

∥diag(M)∥2 +
∑
j<i

Λ2
11

cos(ϕj)2Λjj


≤ 2Λ11

(
1 + (i− 1)

1 + (1 + κi−1)ϵ√
1− ϵ2

)
+ σ

∥diag(M)∥2 +
∑
j<i

Λ2
11

Λjj(1− ϵ2)


= 2Λ11

(
1 + (i− 1)

1 + (1 + κi−1)ϵ√
1− ϵ2

)
+ σ

∥diag(M)∥2 +
∑
j<i

Λ11κj
(1− ϵ2)


= 2Λ11

(
1 + (i− 1)

1 + (1 + κi−1)ϵ√
1− ϵ2

)
+ σ

(
∥diag(M)∥2 + (i− 1)

Λ11κi−1

(1− ϵ2)

)
.

(35)
We use this previous result to provide a Lipschitz bound where the error is upper bounded, and we
reach an expression dependent on the current agent i.

Lemma 10 (Lipschitz Bound with Accurate Parents) . Assume |ϕj | ≤ ϵ ≤ cigi
(i−1)Λ11

≤
√

1
2 for all j < i

with 0 ≤ ci ≤ 1
16 . Then the norm of the ambient gradient of ui is bounded as:

∥∇̃v̂iui(v̂i, v̂j<i)∥2 ≤ 4 (Λ11i+ (1 + κi−1)cgi) + σ (∥diag(M)∥2 + 2(i− 1)Λ11κi−1)
def
= Li(σ) (36)

where Li = 4 [Λ11i+ (1 + κi−1)cgi]when σ = 0.
Proof. Starting with Lemma 9, we find:

∥∇̃v̂iui(v̂i, v̂j<i)∥2 ≤ 2Λ11

(
1 + (i− 1)

1 + (1 + κi−1)ϵ√
1− ϵ2

)
+ σ

(
∥diag(M)∥2 + (i− 1)

Λ11κi−1

(1− ϵ2)

)
≤ 2Λ11 (1 + 2(i− 1)(1 + (1 + κi−1)ϵ)) + σ (∥diag(M)∥2 + 2(i− 1)Λ11κi−1)

Assumption
≤ 2Λ11

(
1 + 2(i− 1) + 2

(1 + κi−1)cgi
Λ11

)
+ σ (∥diag(M)∥2 + 2(i− 1)Λ11κi−1)

≤ 4 [Λ11(1 + (i− 1)) + (1 + κi−1)cgi] + σ (∥diag(M)∥2 + 2(i− 1)Λ11κi−1)

= 4 [Λ11i+ (1 + κi−1)cgi] + σ (∥diag(M)∥2 + 2(i− 1)Λ11κi−1) .
(37)

Corollary 11 (Bound on Utility) . Assume |ϕj | ≤ cigi
(i−1)Λ11

≤
√

1
2 for all j < i with 0 ≤ ci ≤ 1

16 . Then,
the norm of the absolute value of the utility is bounded as follows:

|ui(v̂i, v̂j<i)| = |v̂⊤i ∇v̂i | ≤ ∥v̂i∥2 · ∥∇v̂i∥2 = ∥∇v̂i∥2 ≈ ∥∇̃v̂i∥2 ≤ Li(σ), (38)

20



thereby approximately satisfying Assumption 1.

Lemma 12 Assume |ϕj | ≤ cigi
(i−1)Λ11

≤
√

1
2 for all j < i with 0 ≤ ci ≤ 1

16 . Then Assumption 2 is
approximately satisfied with ξ = ξ′ = 8

5Li(σ). The proof is developed in Lemma O.10 of [29].

We now shift our focus towards defining an accuracy for |ϕi|. Lemma 13 defines a somewhat gen-
eral target accuracy which acts as a criteria for reasonable approximate optimization. Lemma 14
provides upper bounds for the difference between one agent’s estimated value for θ and its optimal
value for an inaccurate gradient calculation that includes finite differences. These directly corre-
spond to O.11 and O.12 of [29], respectively. The proof continues with Lemma 15 where a number
of iterations is given for convergence of an agent’s cost function, and ends on Theorem 1 with the
finite sample convergence rate for all agents.

Lemma 13 (Approximate Optimization is Reasonable Given Accurate Parents) . Assume |ϕj | ≤
cigi

(i−1)Λ11
≤
√

1
2 for all j < i with 0 ≤ ci ≤ 1

16 . i.e., the parents have been learned accurately. Then for
any approximate local maximizer (ϕ̄i, ∆̄i) of ui(v̂i(ϕi,∆i), v̂j<i), if the angular deviation |ϕ̄i − ϕ∗i | ≤ ē
where θ∗i forms the global max:

|ϕ̄i| ≤ ē+ 8ci (39)
where ϕ̄i denotes the angular distance of the approximate local maximizer to the true eigenvector vi.

Lemma 14 Assume v̂i is within π
4 of its maximizer, i.e., |ϕi − ϕ∗i | ≤ π

4 . Also, assume that |ϕj<i| ≤
cigi

(i−1)Λ11
≤
√

1
2 with 0 ≤ ci ≤ 1

16 . Then the norm of the Riemannian gradient of ui upper bounds this
angular deviation:

|ϕi − ϕ∗i | ≤
π

gi
∥∇Rv̂iui(v̂i, v̂j<i)∥2 (40)

We now use∇f(x) = ∇f(x)x +∇f(x)σ to state the following lemma.

Lemma 15 Assume v̂i is initialized within π
4 of its maximizer and its parents are accurate enough, i.e., that

|ϕj<i| ≤ cigi
(i−1)Λ11

≤
√

1
2 with 0 ≤ ci ≤ 1

16 . Let δi = ρi − ∥∇̃v̂if(v̂i|v̂j<i)σ∥2 be the maximum tolerated
error desired for v̂i. Then finite-differences Riemannian gradient ascent returns:

|ϕi| ≤
π

gi
δi + 8ci, (41)

after at most ⌈ 5Li(0)
4Li(σ)

· 1
δ2i
⌉ iterations.

Proof. The assumptions of Theorem 5 are approximately met by Corollary 11 and Lemma 12 with
ξ = ξ′ = 8

5 using Riemannian gradient ascent. Theorem 5 thus ensures that Riemannian gradient
ascent returns unit vector v̂i satisfying u(v̂i) ≥ u(v̂0i ) and ∥∇R∥2 ≤ δi in at most:⌈

u(v̂∗i )− u(v̂0i )
8
5Li(σ)

· 1
δ2i

⌉
(42)

iterations (where v̂i is initialized to v̂0i ). Also, for any v̂i, ui(v̂∗i ) − ui(v̂i) ≤ 2Li(σ) where Li(σ)
bounds the absolute value of the utility ui (see Corollary 11) and v̂∗i = arg max ui(v̂i). Combining
this with Lemma 14 gives:

|ϕi − ϕ∗i | ≤
π

gi
δi (43)

after at most ⌈ 5Li(0)
4Li(σ)

· 1
δ2i
⌉ iterations. We then use Lemma 13 to yield |ϕi| ≤ π

gi
δi + 8ci in the said

amount of iterations.
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D. Proof of the main 0th-order convergence theorem

We state our finite sample convergence theorem on the 0th-order EigenGame for all players.
(Convergence of 0th-order EigenGame for all players). Consider the Algorithm 4 with input matrix
M ∈ Rp×p and learned “parent” eigenvectors vj<i ∈ Rp that are accurate enough, i.e., that |ϕj<i| ≤
cigi

(i−1)Λ11
≤
√

1
2 with 0 ≤ ci ≤ 1

16 . Let the initialization vector vi,init be within perturbation π
4 from v⋆i , i.e.,

∠(vi,init, v⋆i ) ≤ π
4 , for all i. Consider perturbation σ ∈ R for the finite difference approximation, and step size

α for the gradient ascent. Then, Algorithm 4 returns an approximate eigenvector vi with angular error less
than ϕtol > 0 in:

T =

O
 k∑
i=1

Li(0)
Li(σ)

 (k−1)!
ϕtol

k∏
j=1

(
16Λ11

gj

)2

 iterations,

whereLi(σ) is the Lipschitz continuity assumption of the 0th-order EigenGame based on a finite difference step
size σ as in ∥∇̃vif(vi | vj<i)∥2 ≤ Li(σ), Λ is the diagonal eigenvalue matrix ofM containing eigenvalues
Λ11 > Λ22 > . . . > Λkk with Λ11 being the top eigenvalue, and gi = Λii−Λi+1,i+1 is the eigengap between
the two consecutive eigenvalues of players i and i+ 1.

Proof. Let |ϕj<i| ≤ cigi
(i−1)Λ11

≤
√

1
2 with ck ≤ 1

16 for all j < k and let the initialization vector vi,init
be within perturbation π

4 from v⋆i , i.e., ∠(vi,init, v⋆i ) ≤ π
4 . Lemma 13 defines a bound for the angular

error in v̂k obtained from Riemmanian gradient descent as:

|ϕ̄i| ≤ ē+ 8ci (44)

where ē quantifies the convergence error and 8ci the error propagated by the parents. Let half the
error of |θk| come from imperfect parents v̂j<k and half come from the convergence error of the k-th
agent. Also, let each parent be learned accurately enough, and the error from learning v̂i−1 be less
than the threshold of any of its succesors. Per [29], the error from v̂i−1’s parents can be bounded as

ci−1 ≤
cigi

16(i− 1)Λ11
, (45)

which recursively leads to a bound on ci through:

ci ≤
(i− 1)!

∏k
j=i+1 gj

(16Λ11)k−i(k − 1)!
ck, (46)

which would satisfy the requirement for accurate parents in v̂i’s error bound. We may then bound
the convergence error of the i-th agent as:

ρ ≤
[
gigi+1

2πiΛ11

]
ci+1, (47)

with at most

ti =

⌈
5Li(0)

Li(σ)

(
πiΛ11

gigi+1

)2
1

c2i+1

⌉
(48)

iterations through Lemma 15. We can then input eq. 46 to obtain
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ti =

⌈
5Li(0)

Li(σ)

(
πiΛ11

gigi+1

)2
(16Λ11)

2(k−i−1)((k − 1)!)2

(i!)2
∏k
j=i+2 g

2
j

1

c2k

⌉

=

⌈
5π2Li(0)

Li(σ)

162(k−i)Λ
2(k−i)
11 ((k − 1)!)2

(
∏k
j=i g

2
j )((i− 1)!)2

1

(16ck)2

⌉

≤

5π
2Li(0)

Li(σ)

[
(16Λ11)

k−1(k − 1)!∏k
j=1 gj

1

16ck

]2 , Λ11 ≥ gi ∀i

=

O
Li(0)

Li(σ)

[
(16Λ11)

k−1(k − 1)!∏k
j=1 gj

1

16ck

]2

(49)

for any agent i. The total number of iterations to learn v̂j<k is thus

Tk =

O
 k∑
i=1

Li(0)

Li(σ)

[
(16Λ11)

k−1(k − 1)!∏k
j=1 gj

1

16ck

]2 . (50)

E. Parameterized convergence analysis
The generic Riemannian descent convergence analysis of [29] is analyzed in the context of a parameter-
ized EigenGame in this section, given that x = v(θ) = |ψ(θ)⟩with x ∈M = Rn, and θ ∈M = Rℓ×q
over ℓ layers and q qubits representing the parameters of an ansatz U(θ) that prepares a state via
v(θ) = U(θ)|s⟩. We choose to use v(θ) instead of |ψ(θ)⟩ for the proofs to facilitate analysis. Particu-
larly, Assumptions 1 and 2 remain unchanged for θ.
The θ parameters do not require any explicit projection for |ψ(θ)⟩ to lie within the unit sphere Sn−1,
and the design decision for Assumption 3 becomes a strict statement. Hence, we restate Assumption
3 in the following.

Lemma 16 (Non-projection). For all k ≥ 0, ∀θ ∈M = Rℓ×q ,

∇Rf(θk) = ∇f(θk). (51)

The proofs for the parameterized EigenGame stems from the generic Riemannian descent convergence
of Theorem 5, with a similar approach as in the 0th-order case, with a rate of convergence for a
particular agent i in Lemma 22, and a finite sample convergence rate for all agents in Theorem 2.
The remainder of the proofs from Appendix C remain unchanged except for those we restate in the
rest of this section.

Lemma 17 (Parameterized Lipschitz Bound) . Let |ϕj | ≤ ϵ < 1 for all j < i. Assume Jθ̂ikl
= ∂v(θ̂i)

∂θ̂ikl
=

U ′(θ̂i)|s⟩ ∈ Cn where
∥∥∥Jθ̂ikl

∥∥∥ = 1. Then the norm of the ambient gradient of ui is bounded as:

∥∇θ̂iui(v(θ̂i), v(θ̂j<i))∥ ≤ 2
√
ℓqΛ11

(
1 + (i− 1)

1 + (1 + κi−1)ϵ√
1− ϵ2

)
. (52)

Proof. We start by defining the gradient of the utility with respect to θ̂i and relating it to the gradient
with respect to v(θ̂i) as follows:

∇θ̂iui(v(θ̂i), v(θ̂j<i)) =
dui
dv

dv

dθ̂i
= Jθ̂i∇v(θ̂i)ui(v(θ̂i), v(θ̂j<i)), (53)
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where

Jθ̂i =

 |
− ∂v(θ̂i)

∂θ̂ikl
−

|

 .
︸ ︷︷ ︸

ℓ×q

(54)

We proceed by including the number of layers ℓ and qubits q in the new upper bound:

∥∇θ̂iui(v(θ̂i), v(θ̂j<i))∥2 =
∥∥∥Jθ̂i∇v(θ̂i)ui(v(θ̂i), v(θ̂j<i))∥∥∥2

≤ 2
∥∥∥Jθ̂i∥∥∥2 ·

∥∥∥∥∥∥M
v(θ̂i)−∑

j<i

v(θ̂i)
†Mv(θ̂j)

v(θ̂j)†Mv(θ̂j)
v(θ̂j)

∥∥∥∥∥∥
2

L9
≤ 2

∥∥∥Jθ̂i∥∥∥2 · Λ11

(
1 + (i− 1)

1 + (1 + κi−1)ϵ√
1− ϵ2

)
= 2
√
ℓqΛ11

(
1 + (i− 1)

1 + (1 + κi−1)ϵ√
1− ϵ2

)
.

(55)

We now upper bound the error and define a Lipschitz continuity bound for agent i.

Lemma 18 (Parameterized Lipschitz Bound with Accurate Parents) . Assume |ϕj | ≤ ϵ ≤ cigi
(i−1)Λ11

≤
√

1
2

for all j < i with 0 ≤ ci ≤ 1
16 , and Jθ̂ikl

= ∂v(θ̂i)

∂θ̂ikl
= U ′(θ̂i)|s⟩ ∈ Cn where

∥∥∥Jθ̂ikl

∥∥∥ = 1. Then the norm of
the ambient gradient of ui is bounded as:

∥∇θ̂iui(v(θ̂i), v(θ̂j<i))∥2 ≤ 4
√
ℓq [Λ11i+ (1 + κi−1)cgi] =

√
ℓqLi

def
= Lθi . (56)

Proof. Starting with Lemma 17 and using the derivation for the first term of Lemma 10 we find:

∥∇θ̂iui(v(θ̂i), v(θ̂j<i))∥2 ≤ 2
√
ℓqΛ11

(
1 + (i− 1)

1 + (1 + κi−1)ϵ√
1− ϵ2

)
L10
≤ 4

√
ℓq (Λ11i+ (1 + κi−1)cgi)

C11
=
√
ℓqLi.

(57)

We redefine the notation of Corollary 11 by accounting for the ansatz parameters θ̂.

Corollary 19 (Parameterized Bound on Utility) . Assume |ϕj | ≤ cigi
(i−1)Λ11

≤
√

1
2 for all j < i with

0 ≤ ci ≤ 1
16 . Then the norm of the absolute value of the utility is bounded as follows:

|ui(v(θ̂i), v(θ̂j<i))| = |v(θ̂i)†∇v(θ̂i)| ≤ ∥v(θ̂i)∥2 · ∥∇v(θ̂i)∥2 = ∥∇v(θ̂i)∥2 ≤ Li, (58)

Lemma 20 Assume |ϕj | ≤ cigi
(i−1)Λ11

≤
√

1
2 for all j < i with 0 ≤ ci ≤ 1

16 . Then Assumption 2 is
approximately satisfied with ξ = ξ′ = 1

2Lθi
.

Proof. Let ω = α∇θ̂iui(θ̂i), α > 0. Using the first-order Taylor approximation of ui(θ̂i + ω):

ui(θ̂i + ω) ≈ ui(θ̂i) +∇θ̂iui(θ̂i)
†ω

= ui(θ̂i) + α∇θ̂iui(θ̂i)
†∇θ̂iui(θ̂i)

= ui(θ̂i) + α∥∇θ̂iui(θ̂i)∥
2.

(59)
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We may now lower bound the utility difference as follows. Let α = 1
2Lθi

, then:
ui(θ̂i + ω)− ui(θ̂i) ≈ ui(θ̂i) + α∥∇θ̂iui(θ̂i)∥

2 − ui(θ̂i)

= α∥∇θ̂iui(θ̂i)∥
2

≥ min(α, α∥∇θ̂iui(θ̂i)∥)∥∇θ̂iui(θ̂i)∥
= min(ξ, ξ′∥∇θ̂iui(θ̂i)∥)∥∇θ̂iui(θ̂i)∥

(60)

with ξ = ξ′ = α = 1
2Lθi

.

Lemma 21 Assume |v̂(θi)⟩ is within π
4 of its maximizer, i.e., |ϕi − ϕ∗i | ≤ π

4 . Also, assume that |ϕj<i| ≤
cigi

(i−1)Λ11
≤
√

1
2 with 0 ≤ ci ≤ 1

16 . Then the norm of the Riemannian gradient of ui upper bounds this
angular deviation:

|ϕi − ϕ∗i | ≤
π

gi
∥∇θ̂iui(|v(θ̂i)⟩, |v(θ̂j<i)⟩)∥ (61)

Lemma 22 Assume |v(θ̂i)⟩ is initialized within π
4 of its maximizer and its parents are accurate enough, i.e.,

that |ϕj<i| ≤ cigi
(i−1)Λ11

≤
√

1
2 with 0 ≤ ci ≤ 1

16 . Let ρi be the maximum tolerated error desired for θ̂i. Then
Riemannian gradient ascent returns:

|ϕi| ≤
π

gi
ρi + 8ci (62)

after at most ⌈
4Lθi

2

√
ℓq
· 1

ρi2

⌉
(63)

iterations.

Proof. We input the results of Corollary 19 and Lemma 20 into Lemma 5, thus satisfying Assump-
tions 1 and 2, respectively, to provide an upper bound on the number of iterations required for
Riemannian gradient ascent to reach convergence in the following. Given ξ = ξ′ = α = 1

2Lθi
from

Lemma 20, we reach a set of parameters ϕ that satisfy u(v(θ̂i)) ≥ u(v(θ̂0i )) and ∥∇θ̂i∥ ≤ ρi in at most:⌈
u(v(θ̂∗i ))− u(v(θ̂0i ))

1/2Lθi
· 1

ρi2

⌉
(64)

iterations. We may now use Corollary 19 to specify u(v(θ̂∗i ))− u(v(θ̂0i )) ≤ 2Li = 2Lθi/
√
ℓq where:

|ϕi − ϕ∗i | ≤
π

gi
ρi (65)

in at most: ⌈
4Lθi

2

√
ℓq
· 1

ρi2

⌉
(66)

iterations.

F. Proof of the main parameterized convergence theorem
(Convergence of QuantumGame for all players). Algorithm 3 achieves finite sample convergence to within
ϕtol angular error of the top-k principal components independent of initialization. Let |ϕj<i| ≤ cigi

(i−1)Λ11
≤√

1
2 with 0 ≤ ci ≤ 1

16 . Let each v(θ̂i) = U(θ̂i)|s⟩, with a sufficiently expressive ansatz U(θ̂i) [46, 47] and
an initial state |s⟩ such that ∠(v(θ̂i), v⋆i ) ≤ π

4 . Algorithm 3 returns the eigenvectors with angular error less
than ϕtol in:

T =

O
 k∑
i=1

Lθi
2

√
ℓq

 (k−1)!
ϕtol

k∏
j=1

(
16Λ11

gj

)2

 iterations,
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where Lθi is the Lipschitz continuity constant of QuantumGame, ℓ is the number of layers of the ansatz and
q is the number of qubits.

Proof. Let |ϕj<i| ≤ cigi
(i−1)Λ11

≤
√

1
2 with ck ≤ 1

16 for all j < k and let the initialization vector vi,init be
within perturbation π

4 from v⋆i , i.e., ∠(vi,init, v⋆i ) ≤ π
4 . Using the same convergence error bound for

the i-th agent:

ρ ≤
[
gigi+1

2πiΛ11

]
ci+1 (67)

from Theorem 1, convergence is reached in at most:

ti =

⌈
4Lθi

2

√
ℓq

(
πiΛ11

gigi+1

)2
1

c2i+1

⌉
(68)

iterations using Lemma 22. The total numer of iterations required to reach finite sample convergence
for all players with eigenvectors v(θ̂)j<k is then:

Tk =

O
 k∑
i=1

Lθi
2

√
ℓq

[
(16Λ11)

k−1(k − 1)!∏k
j=1 gj

1

16ck

]2 . (69)

G. Error accumulation

Theorem 23 Assume the angular error ϕj ≤ ϵ between the true eigenvector of a parent vj and its estimate
v̂j to satisfy ϵ ≪ 1 such that the length of the cord that connects both vectors is l = |v̂j − vj | = 2sin( ϵ2 ) for
the Euclidean error of the parent to be O(ϵ). The Euclidean error of the child’s 0th-order gradient is O(ϵ) and
is expressed as:

∥b∥ = ∥∇Rv̂ju(v̂j |v̂j<i)−∇
R
v̂ju(v̂j |vj<i)∥

≤ 2 ∥M∥
∑
j<i

(
∥∥vjw⊤

j

∥∥+ ∥∥wjv⊤j ∥∥+ ∥∥wjw⊤
j

∥∥)Λ11

Λjj
+ σ

∑
j<i

(2 ∥Mvj∥ ∥Mwj∥+ ∥Mwj∥2) 1
Λjj

. (70)

Proof. Let b be the difference between the Riemannian gradient with approximate parents and that
with exact parents. We can specify v̂j = vj + wj where wj is the vector that represents the mis-
specification error of v̂j , and proceed by bounding b in the following:

b = ∇Rv̂iu(v̂i|v̂j<i)−∇
R
v̂iu(v̂i|vj<i) =

(I − v̂iv̂⊤i )

2M
v̂i −∑

j<i

v̂⊤i Mv̂j
v̂⊤j Mv̂j

v̂j

+ σ

diag(M)−
∑
j<i

(Mv̂j)
◦2

v̂⊤j Mv̂j

−
2M

v̂i −∑
j<i

v̂⊤i Mvj
v⊤j Mvj

vj

+ σ

diag(M)−
∑
j<i

(Mvj)
◦2

v⊤j Mvj

 =

(
I − v̂iv̂⊤i

)2M
∑
j<i

v̂⊤i Mvj
v⊤j Mvj

vj −
∑
j<i

v̂⊤i Mv̂j
v̂⊤j Mv̂j

v̂j

+ σ

∑
j<i

(Mvj)
◦2

v⊤j Mvj
−
∑
j<i

(Mv̂j)
◦2

v̂⊤j Mv̂j

 ,

(71)

where the norm of the difference is
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∥b∥ =

∥∥∥∥∥∥(I − v̂iv̂⊤i )
2M

∑
j<i

v̂⊤i Mvj
v⊤j Mvj

vj −
∑
j<i

v̂⊤i Mv̂j
v̂⊤j Mv̂j

v̂j

+ σ

∑
j<i

(Mvj)
◦2

v⊤j Mvj
−
∑
j<i

(Mv̂j)
◦2

v̂⊤j Mv̂j

∥∥∥∥∥∥
2

≤
∥∥(I − v̂iv̂⊤i )∥∥2 ·

∥∥∥∥∥∥2M
∑
j<i

v̂⊤i Mvj
v⊤j Mvj

vj −
∑
j<i

v̂⊤i Mv̂j
v̂⊤j Mv̂j

v̂j

+ σ

∑
j<i

(Mvj)
◦2

v⊤j Mvj
−
∑
j<i

(Mv̂j)
◦2

v̂⊤j Mv̂j

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥2M
∑
j<i

v̂⊤i Mvj
v⊤j Mvj

vj −
∑
j<i

v̂⊤i Mv̂j
v̂⊤j Mv̂j

v̂j

+ σ

∑
j<i

(Mvj)
◦2

v⊤j Mvj
−
∑
j<i

(Mv̂j)
◦2

v̂⊤j Mv̂j

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥2M
∑
j<i

v̂⊤i Mvj
Λjj

vj −
∑
j<i

v̂⊤i Mv̂j
v̂⊤j Mv̂j

v̂j

+ σ

∑
j<i

(Mvj)
◦2

Λjj
−
∑
j<i

(Mv̂j)
◦2

v̂⊤j Mv̂j

∥∥∥∥∥∥
2

(72)

≤

∥∥∥∥∥∥2M
∑
j<i

v̂⊤i Mvj
Λjj

vj −
∑
j<i

v̂⊤i Mv̂j
Λjj

v̂j

+ σ

∑
j<i

(Mvj)
◦2

Λjj
−
∑
j<i

(Mv̂j)
◦2

Λjj

∥∥∥∥∥∥
≤ 2 ∥M∥

∑
j<i

∥∥∥ v̂⊤i Mvj
Λjj

vj − v̂⊤i Mv̂j
Λjj

v̂j

∥∥∥+ σ
∑
j<i

∥∥∥ (Mvj)
◦2

Λjj
− (Mv̂j)

◦2

Λjj

∥∥∥
2

= 2 ∥M∥2 ·
∑
j<i

∥∥∥∥ (vjv
⊤
j −v̂j v̂⊤j )Mv̂i

Λjj

∥∥∥∥
2

+ σ ·
∑
j<i

∥∥∥ (Mvj)
◦2−(Mv̂j)

◦2

Λjj

∥∥∥
2

≤ 2 ∥M∥2 ·
∑
j<i

∥∥vjv⊤j − v̂j v̂⊤j ∥∥2 · ∥Mv̂i∥2

|Λjj | + σ ·
∑
j<i

∥∥∥ (Mvj)
◦2−(Mv̂j)

◦2

Λjj

∥∥∥
2

≤ 2 ∥M∥2 ·
∑
j<i

∥∥vjv⊤j − v̂j v̂⊤j ∥∥2 · Λ11

Λjj
+ σ ·

∑
j<i

∥∥∥ (Mvj)
◦2−(Mv̂j)

◦2

Λjj

∥∥∥
2

= 2 ∥M∥2 ·
∑
j<i

∥∥vjv⊤j − (vj + wj)(vj + wj)
⊤∥∥

2
· Λ11

Λjj
+ σ

∑
j<i

∥∥∥ (Mvj)
◦2−(M(vj+wj))

◦2

Λjj

∥∥∥
= 2 ∥M∥2 ·

∑
j<i

∥∥−(vjw⊤
j + wjv

⊤
j + wjw

⊤
j )
∥∥
2
· Λ11

Λjj
+ σ ·

∑
j<i

∥∥∥−(2(Mvj)◦(Mwj)+(Mwj)
◦2)

Λjj

∥∥∥
2

≤ 2 ∥M∥2 ·
∑
j<i

(
∥∥vjw⊤

j

∥∥
2
+
∥∥wjv⊤j ∥∥2 + ∥∥wjw⊤

j

∥∥
2
) · Λ11

Λjj
+ σ ·

∑
j<i

(2 ∥Mvj∥2 · ∥Mwj∥2 + ∥Mwj∥22)
1

Λjj
.
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Theorem 24 Assume the angular error ϕj ≤ ϵ between the true eigenvector of a parent vj and its estimate
v̂j to satisfy ϵ ≪ 1 such that the length of the cord that connects both vectors is l = |v̂j − vj | = 2sin( ϵ2 )
for the Euclidean error of the parent to be O(ϵ). The Euclidean error of the child’s parameterized gradient
is O(ϵ

√
ℓq), with ℓ being the number of layers and q the number of qubits for the parameter space, and is

expressed as:

∥b∥2 = ∥∇R
θ̂i
u(v(θ̂i)|v(θ̂j<i))−∇Rθ̂iu(v(θ̂i)|v(θj<i))∥2

≤ 2
√
ℓq · ∥M∥2 ·

∑
j<i

(∥∥v(θj)w⊤
j

∥∥
2
+
∥∥wjv(θj)⊤∥∥2 + ∥∥wjw⊤

j

∥∥
2

)
· Λ11

Λjj
.

(74)

Proof. Let b be the difference between the Riemannian gradient with approximate parents and that
with exact parents. We can specify v(θ̂j) = v(θj) + wj where wj is the vector that represents the
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mis-specification error of v(θ̂j), and proceed by bounding b in the following:

b = ∇R
θ̂i
u(v(θ̂i)|v(θ̂j<i))−∇Rθ̂iu(v(θ̂i)|v(θ̂j<i))

= (I − v(θ̂i)v(θ̂i)⊤)
[
∇θ̂iu(v(θ̂i)|v(θ̂j<i))−∇θ̂iu(v(θ̂i)|v(θ̂j<i))

]
= (I − v(θ̂i)v(θ̂i)⊤)Jv(θ̂i)

[
∇θ̂iu(v(θ̂i)|v(θ̂j<i))−∇θ̂iu(v(θ̂i)|v(θ̂j<i))

]
= (I − v(θ̂i)v(θ̂i)⊤)Jv(θ̂i)

2M
v(θ̂i)−∑

j<i

v(θ̂i)
⊤Mv(θ̂j)

v(θ̂j)⊤Mv(θ̂j)
v(θ̂j)

− 2M

v(θ̂i)−∑
j<i

v(θ̂i)
⊤Mv(θj)

v(θj)⊤Mv(θj)
v(θj)


=
(
I − v(θ̂i)v(θ̂i)⊤

)
Jv(θ̂i)

2M
∑
j<i

v(θ̂i)
⊤Mv(θj)

v(θj)⊤Mv(θj)
v(θj)−

∑
j<i

v(θ̂i)
⊤Mv(θ̂j)

v(θ̂j)⊤Mv(θ̂j)
v(θ̂j)

 ,
(75)

where the norm of the difference is

∥b∥ =

∥∥∥∥∥∥
(
I − v(θ̂i)v(θ̂i)⊤

)
Jv(θ̂i)

2M
∑
j<i

v(θ̂i)
⊤Mv(θj)

v(θj)⊤Mv(θj)
v(θj)−

∑
j<i

v(θ̂i)
⊤Mv(θ̂j)

v(θ̂j)⊤Mv(θ̂j)
v(θ̂j)

∥∥∥∥∥∥
≤
∥∥∥(I − v(θ̂i)v(θ̂i)⊤)∥∥∥∥∥∥Jv(θ̂i)∥∥∥

∥∥∥∥∥∥2M
∑
j<i

v(θ̂i)
⊤Mv(θj)

v(θj)⊤Mv(θj)
v(θj)−

∑
j<i

v(θ̂i)
⊤Mv(θ̂j)

v(θ̂j)⊤Mv(θ̂j)
v(θ̂j)

∥∥∥∥∥∥
≤
∥∥∥Jv(θ̂i)∥∥∥

∥∥∥∥∥∥2M
∑
j<i

v(θ̂i)
⊤Mv(θj)

v(θj)⊤Mv(θj)
v(θj)−

∑
j<i

v(θ̂i)
⊤Mv(θ̂j)

v(θ̂j)⊤Mv(θ̂j)
v(θ̂j)

∥∥∥∥∥∥
=
∥∥∥Jv(θ̂i)∥∥∥

∥∥∥∥∥∥2M
∑
j<i

v(θ̂i)
⊤Mv(θj)
Λjj

v(θj)−
∑
j<i

v(θ̂i)
⊤Mv(θ̂j)

v(θ̂j)⊤Mv(θ̂j)
v(θ̂j)

∥∥∥∥∥∥
≤
∥∥∥Jv(θ̂i)∥∥∥

∥∥∥∥∥∥2M
∑
j<i

v(θ̂i)
⊤Mv(θj)
Λjj

v(θj)−
∑
j<i

v(θ̂i)
⊤Mv(θ̂j)
Λjj

v(θ̂j)

∥∥∥∥∥∥
≤ 2 ∥M∥

∥∥∥Jv(θ̂i)∥∥∥∑
j<i

∥∥∥ v(θ̂i)⊤Mv(θj)
Λjj

v(θj)− v(θ̂i)
⊤Mv(θ̂j)
Λjj

v(θ̂j)
∥∥∥

= 2 ∥M∥
∥∥∥Jv(θ̂i)∥∥∥∑

j<i

∥∥∥ (v(θj)v(θj)
⊤−v(θ̂j)v(θ̂j)⊤)Mv(θ̂i)

Λjj

∥∥∥
≤ 2 ∥M∥

∥∥∥Jv(θ̂i)∥∥∥∑
j<i

∥∥∥v(θj)v(θj)⊤ − v(θ̂j)v(θ̂j)⊤∥∥∥ ∥Mv(θ̂i)∥
Λjj

≤ 2 ∥M∥
∥∥∥Jv(θ̂i)∥∥∥∑

j<i

∥∥∥v(θj)v(θj)⊤ − v(θ̂j)v(θ̂j)⊤∥∥∥ Λ11

Λjj

= 2 ∥M∥
∥∥∥Jv(θ̂i)∥∥∥∑

j<i

∥∥v(θj)v(θj)⊤ − (v(θj) + wj)(v(θj) + wj)
⊤∥∥ Λ11

Λjj

= 2 ∥M∥
∥∥∥Jv(θ̂i)∥∥∥∑

j<i

∥∥−(v(θj)w⊤
j + wjv(θj)

⊤ + wjw
⊤
j )
∥∥ Λ11

Λjj

≤ 2 ∥M∥
∥∥∥Jv(θ̂i)∥∥∥∑

j<i

(
∥∥v(θj)w⊤

j

∥∥+ ∥∥wjv(θj)⊤∥∥+ ∥∥wjw⊤
j

∥∥)Λ11

Λjj

= 2
√
ℓq ∥M∥

∑
j<i

(
∥∥v(θj)w⊤

j

∥∥+ ∥∥wjv(θj)⊤∥∥+ ∥∥wjw⊤
j

∥∥)Λ11

Λjj
.

(76)
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