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ABSTRACT

Differential privacy has been successfully used to safeguard the privacy of classical
algorithms and has more recently been extended to protect the privacy of quantum
algorithms. However, in the present era of Noisy Intermediate-Scale Quantum
(NISQ) computing, practical applications are limited to hybrid quantum-classical
algorithms (e.g., quantum machine learning and variational quantum algorithms)
to tackle computational tasks due to inherent quantum noise. Unfortunately, the
issue of privacy in such algorithms has been largely disregarded. This paper ad-
dresses this gap by defining the differential privacy of quantum measurements as a
means to protect the overall privacy of hybrid quantum-classical algorithms. The
core concept involves the use of differentially private quantum measurements to
ensure privacy since hybrid quantum-classical algorithms heavily rely on quantum
measurements for the interaction between quantum and classical computing. To
address this, we explore post-processing and composition theorems to establish the
efficiency and feasibility of differentially private quantum measurements. By intro-
ducing quantum depolarizing noise or a unique classical noise (measurement-based
exponential mechanisms) into quantum measurements, we bolster the security
of algorithms against privacy violations. Taking the hybrid nature of differen-
tially private quantum measurements, our framework offers both classical and
quantum differential privacy. To validate these theoretical results, we carry out
various numerical experiments demonstrating the effectiveness and practicality of
our framework using differentially private quantum measurements to protect the
privacy of hybrid quantum-classical algorithms.

1 INTRODUCTION

In the present era of Noisy Intermediate-Scale Quantum (NISQ) computing Preskill| (2018]), charac-
terized by quantum computers containing hundreds of noisy quantum bits (qubits), noise inevitably
impacts the quantum computing process. Consequently, there has been a surge in the development
of hybrid quantum-classical algorithms. These algorithms leverage the complementary strengths
of classical and quantum computing to address the limited computational capacity resulting from
medium scalability and noise in NISQ computers. Hybrid quantum-classical algorithms operate akin
to classical machine learning algorithms, utilizing parameterized quantum circuits (analogous to
classical neural networks) alongside classical optimizers to adjust parameters based on the output dis-
tributions of quantum data obtained from quantum measurements, thereby enabling the resolution of
intricate computational tasks. Notable examples of such algorithms include the Variational Quantum
Eigensolver (VQE) |Peruzzo et al.|(2014) and the Quantum Approximate Optimization Algorithm
(QAOA) [Farhi et al.| (2014). VQE is tailored for determining the ground state energy of molecules
and materials. It accomplishes this by generating potential states using parameterized quantum
circuits and subsequently employing classical optimizers to minimize the expected value. QAOA,
on the other hand, concentrates on addressing combinatorial optimization problems by producing
feasible solutions through parameterized quantum circuits and utilizing classical optimizers to refine
parameters to optimize the objective function. Consequently, hybrid quantum-classical algorithms
present a promising approach for integrating quantum computing into practical applications within
the current NISQ era. They offer advantages in terms of performance and resilience to noise Jones
et al.[(2019); Endo et al.|(2021)).



In algorithms like these, the handling of privacy-sensitive classical data (e.g., personal financial
records and drug information) stored in quantum data is crucial, as highlighted in several studies |Cao
et al.| (2018); |De Leon et al.|(2021); Orus et al.[(2019). This heightened awareness emphasizes the
importance of protecting users’ privacy within these algorithms. In classical algorithms, addressing
personal privacy concerns often involves employing differential privacy [Dwork et al.|(2014), which
aims to reduce the impact of individual data differences in neighboring datasets on algorithm outcomes.
The concept of differential privacy has also been utilized to improve quantum data privacy in quantum
information processing by establishing meaningful relationships between neighboring quantum states.
These relationships are mainly assessed using informative metrics — local operation |Aaronson &
Rothblum|(2019) and trace distance Zhou & Ying|(2017) — to describe the similarity between quantum
states qualitatively and quantitatively, respectively. Local operation involves a classical similarity
achieved through a local operation to transition one state to another, while trace distance measures
the difference between quantum states on a scale from O to 1. As a result, there is a growing body
of literature exploring quantum differential privacy Senekane et al.| (2017)); |Watkins et al.| (2023);
Hirche et al.| (2023)); [Angrisani et al.| (2022)); |Angrisani & Kashefi| (2022); |Quek et al.|(2021); |Du
et al.| (2021)); Nuradha et al.|(2024)) in various scenarios. However, these studies predominantly focus
on the quantum realm and often overlook privacy concerns in hybrid quantum-classical algorithms
where quantum and classical information are exchanged through quantum measurements.

In this paper, we focus on ensuring the privacy guarantee of hybrid quantum-classical algorithms
by designing differentially private quantum measurements used in such algorithms. Our approach
addresses the limitations of existing classical and quantum differential privacy frameworks, which
primarily target privacy leakage in either purely classical or purely quantum data processing (See
Appendix [Alfor details). To achieve this, we study how to enforce differential privacy for quantum
measurements by introducing appropriate privacy-enhancing mechanisms. To ensure that privacy
guarantees are preserved even after further processing, we establish a post-processing theorem. While
quantum measurements inherently involve randomness, they often do not satisfy strong differential
privacy conditions. To strengthen privacy protection, we introduce classical noise mechanisms applied
after measurements and quantum noise mechanisms applied before measurements. Specifically, we
propose using either quantum depolarizing noise (analogous to the classical randomized response
mechanism |[Mironov| (2017)) or a novel measurement-based exponential mechanism (an adaptation
of the classical exponential mechanism Dwork et al.|(2014))). The measurement-based exponential
mechanism uses the original measurement outcome distributions as utility functions, allowing
outcome selection with differential privacy guarantees without relying on sensitivity calculations.
Furthermore, we establish a composition theorem to analyze the privacy loss when multiple quantum
measurements are combined. Finally, through extensive numerical experiments, we demonstrate
the effectiveness and practicality of our proposed methods for protecting the differential privacy of
quantum measurements in hybrid quantum-classical algorithms.

In summary, our main contributions are as follows:

1. Formulating a method to protect the differential privacy of quantum measurements in hybrid
quantum-classical algorithms, thereby ensuring both classical and quantum differential
privacy guarantees.

2. Introducing a post-processing theorem to guarantee the robustness of differentially private
quantum measurements against subsequent computations following the initial analysis of
private data.

3. Utilizing either a quantum depolarizing noise or (classical) measurement-based exponential
mechanism to enhance the privacy of quantum measurements to a desired privacy protection
budget.

4. Developing a composition theorem to establish the differential privacy of hybrid quantum-
classical algorithms by utilizing jointly differentially private quantum measurements.

5. Performing a series of numerical experiments to validate the efficiency of our framework, par-
ticularly focusing on the efficacy of integrating differentially private quantum measurements
through quantum depolarizing noise and measurement-based exponential mechanisms.



2 PRELIMINARIES

In this section, we review the basic concepts and notations of hybrid quantum-classical algorithms
and quantum/classical differential privacy. For more details, we refer toNielsen & Chuang| (2001}).

Let £ denote a quantum (noisy) circuit or channel (i.e., a completely positive trace-preserving
map) acting on quantum states of a Hilbert space 7, and let M = {II;};c represent a quantum
measurement, where {II;} is a POVM (positive operator-valued measure) on H with outcome set O.

Definition 1 A hybrid quantum-classical algorithm A = (£, M = {11, };c0) on a Hilbert space H
is a randomized function A : D(H) — O from quantum state set D(H) to classical measurement
outcome set O satisfying the measurement outcome distribution:

pi =Pr[A(p) = i] = tr(IL,E(p)) Vie O,pe D(H).

An illustration of a hybrid quantum-classical algorithm is shown in Figure[T}
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Figure 1: Hybrid quantum-classical algorithm.  Figure 2: Relationship among DP frameworks.

Heisenberg Picture: To analyze quantum measurements in hybrid quantum-classical algorithms,
we adopt the Heisenberg picture, which contrasts with the Schrodinger picture by focusing on the
evolution of observables rather than quantum states. Given a quantum measurement M = {IL; };co
and a quantum circuit £ with Kraus operators { £, }, the measurement outcome probability can be
equivalently expressed as:

PrM(E(p)) = i] = tr(ET(IL;)p),
where £T(-) = 3 j E;()EJ is the adjoint of £. This reformulation defines a new measurement

Mg = {€1(I1;) }ico, allowing the action of a quantum circuit followed by measurement to be
interpreted as measuring p directly with M. This perspective is particularly useful for analyzing
privacy-preserving mechanisms on quantum measurements.

Classical and Quantum Differential Privacy. Differential privacy (DP) was originally used to
protect individual privacy in classical datasets and has been extended to quantum settings. In both
frameworks, privacy is defined concerning neighboring inputs, but the notion of "neighboring" differs.

Definition 2 (Classical Differential Privacy Dwork et al.|(2014)) Lete > 0and 0 < § < 1. A
randomized function K satisfies (e, 0)-classical differential privacy (CDP) if for all neighboring
datasets U ~ & and any subset S C Range(K),

Pr[K(7) € S] < e Pr[K(&) € S] + 4,
where U ~ & means the two datasets differ in only one entry.

Definition 3 (Quantum Differential Privacy |Zhou & Ying (2017)) Lete > 0and 0 < 0 < 1. A
quantum channel £ satisfies (¢, 6)-quantum differential privacy (QDP) if for all neighboring quantum
states p ~ o, any measurement M = {11, },co, and any subset S C O,

> tr(ILE(p)) < e > tr(ILE(e)) + 6.

€S €S

Several notions of neighboring quantum states have been proposed. The two most widely used are:
(1) Trace distance-based Zhou & Ying (2017): p ~ o if 3tr|p — 0| < 7, for some fixed 7 € [0, 1].
(2) Local operation-based /Aaronson & Rothblum|(2019): p ~ ¢ if they can transfer to each other
by a 1-qubit operation. A hybrid formulation combining both definitions was proposed in|/Angrisani
et al.[(2023)).



3 DIFFERENTIAL PRIVACY OF HYBRID QUANTUM-CLASSICAL ALGORITHM

In this section, we study the differential privacy of quantum measurements within hybrid quantum-
classical algorithms. Since quantum measurements serve as the interface between quantum and
classical computation, their privacy properties directly impact the overall privacy of the algorithm. To
rigorously characterize and protect the privacy of such measurements, we develop post-processing
and composition theorems, enabling practical analysis and modular design of privacy-preserving
mechanisms. A central focus of our approach is the construction of differentially private quantum
measurements, which are the core component for achieving privacy of hybrid quantum-classical
algorithms. For convenience, all proofs of our theoretical results are put in the appendix [E]

Now, we begin with defining differential privacy for quantum measurements.

Definition 4 (Differential Privacy of Quantum Measurement) Let ¢ > O and 1 > § > 0 be
constants. A quantum measurement M = {I1;},co is said to satisfy (e, d)-differential privacy
((e, 6)-DP) if for any pair of neighboring quantum states p ~ o and any subset S C O, the following
inequality holds:
Pr[M(p) € S] < exp(e) - Pr[M(o) € S] + 4.

Here, Pr[M(p) € S| = ;. Pr[M(p) = i] = >, g tr(Il;p) represents the probability that the
measurement outcome belongs to a subset S of O. When § = 0, the quantum measurement satisfies
the standard e-differential privacy condition.

This definition ensures that the probability distributions over outcomes resulting from measuring two
neighboring quantum states are similar up to a multiplicative factor exp(e) and additive term 4. It is
conceptually aligned with classical and quantum differential privacy, while specifically focusing on
the privacy of fixed quantum measurements in hybrid settings.

We leave the notion of neighboring quantum states abstract at this point. Any reasonable definition
can be applied in this context and in subsequent results, such as the post-processing and composition
theorems. If a specific definition is required, it will be clearly stated in the relevant sections.

The definition of differential privacy for quantum measurements integrates key ideas from CDP and
QDBP, as introduced in Definitions [2]and 3] respectively. This connection is illustrated in Figure 2]
which demonstrates how the measurement-based definition serves as a conceptual bridge between
the classical and quantum settings with the help of the neighboring-preserving quantum encoding
method, which encodes classical information into quantum states keeping neighboring relationship
between classical and quantum settings and is formally introduced in the appendix [B] We provide a
precise characterization of this property in the following theorem.

Theorem 1 Let & represent a quantum circuit and let A be a neighboring-preserving quantum
encoding. It follows that:

 Eis (e,6)-ODP if and only if for any quantum measurement M = {11, };c o, the transformed
measurement Mg = {E1(IL;) }ico in the Heisenberg picture is (¢, §)-DP.

o If a quantum measurement M is (¢, 6)-DP, then the classical randomized function M o A is
(e,0)-CDP.

Here, M o A denotes the functional composition of M and A.

Table 1: Comparison of CDP, QDP, and differential privacy of quantum measurement.

Privacy Type Input Differentially Private Mechanism  Output

CDP Classical Dataset Randomized Function Classical Distribution
QDP Quantum Statef Quantum Circuit Quantum State

DP of QM Quantum State” Quantum Measurement Classical Distribution

* The quantum state can also be derived from classical data through quantum encoding.

Based on the above theorem, the definition of differential privacy for quantum measurements enables
connections to both classical and quantum differential privacy. Specifically, classical differential



privacy can be recovered by applying a neighboring-preserving quantum encoding, while quantum
differential privacy can be achieved by introducing quantum noise that ensures differential privacy
under any quantum measurement. To avoid confusion among these three definitions, Table ] presents
a comparison highlighting their key differences.

Recall that incorporating a randomized mechanism can protect the privacy of classical algorithms.
However, while quantum measurement inherently involves randomness due to the probabilistic aspect
of quantum computing, its primary purpose is not to ensure privacy protection. Hence, quantum
measurement typically does not offer an effective guarantee of differential privacy. To illustrate this
point more clearly, we provide a representative example in Appendix [C| which highlights the need for
developing differentially private quantum measurements to effectively safeguard the privacy of hybrid
quantum-classical algorithms. Given the mixed nature of quantum measurements, incorporating
both quantum and classical noise is essential. Similar to classical and quantum differential privacy
frameworks, it is crucial to establish post-processing and composition theorems initially to ensure the
efficiency and scalability of differentially private quantum measurements in the following section.

3.1 POST-PROCESSING THEOREM AND COMPOSITION THEOREM

Post-processing is a crucial aspect of differential privacy as it prevents any additional computational
analysis by an adversary from divulging more information about an individual’s privacy. Just like in
classical computing, the preservation of differential privacy of quantum measurements relies on the
post-processing theorem.

Theorem 2 Let M = {11, };co be an (€, §)-DP quantum measurement on a Hilbert space H. For
any randomized function K : O — O', Ko M : D(H) — O’ is (¢,6)-DP.

This theorem demonstrates that classical post-processing does not affect overall privacy guarantees.
This is critical, as it assures that adversarial manipulations do not compromise privacy.

In classical computing, the composition of multiple algorithms plays a fundamental role in building
more complex systems. Correspondingly, composition theorems have been established for both
classical and quantum differential privacy Dwork et al.| (2014); |Guan et al.| (2023) to ensure that
privacy guarantees are preserved under composition. As part of our framework, we introduce a
composition theorem that formally characterizes the privacy guarantees when combining differentially
private quantum measurements.

Theorem 3 (informal) If quantum measurements My = {1, };co, and My = {Il;};co, are
(e1,01)-DP and (eq, 62)-DP respectively, then the combined measurement is (€1 + €3, 01 + 62)-DP.

The formal format of the above theorem is provided in Appendix

4 DIFFERENTIALLY PRIVATE QUANTUM MEASUREMENTS

In this section, we describe how to design differentially private quantum measurements by introducing
classical or quantum noise. The overall framework is illustrated in Fig. [3]
-
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Figure 3: Our hybrid quantum-classical differential privacy framework

Adversary

Classical Noise Strategy. In CDP, Laplace and Gaussian noise are effective for continuous, real-
valued data. However, quantum measurement outcomes are discrete and finite, limiting the applica-
bility of these methods. Prior work has explored their use in quantum settings |Angrisani et al.| (2023}
2022), their applicability is limited due to this mismatch in suitability.



Therefore, we propose the measurement-based exponential mechanism (MBEM) as a classical noise
approach well-suited to quantum measurements. This method addresses the discrete nature of mea-
surement outcomes and aims to balance privacy and utility. MBEM adapts the classical exponential
mechanism [Dwork et al,| (2014) to the quantum setting, enabling differentially private quantum
measurements. The mechanism selects outputs based on utility scores, assigning probabilities via
an exponential function, which is particularly effective for categorical outcomes like measurement
results. Further details are provided in Appendix [F} In our adaptation, the original measurement
outcome distribution is used as the utility function, and outcomes are redistributed accordingly. This
extends the exponential mechanism to the quantum domain, preserving its privacy-utility guarantees
in probabilistic settings.

Below, we outline the step-by-step details of our MBEM.

1. Defining measurement-based utility function: Given a quantum measurement M =
{II; }ico, the outcome distribution for input state p is Ppq(i|p) = tr(IL;p). This prob-
ability serves as the utility function: w(p,i) = Pa(i|p). For large-scale computations
where the exact output distribution is difficult to evaluate, one can instead employ the
empirical distribution obtained from repeated measurements as the utility function.

2. Setting sensitivity bound: Sensitivity Au represents the maximum impact of the utility
function u concerning changes in the neighboring quantum states and outcome set O. As u
is a distribution, we can set a global maximum Au = 1, independent of the neighboring
relation between quantum states.

3. Calculating probabilities: Following the exponential mechanism, the probability of selecting
outcome 7 is
exp (52
eu(p,j) M
> jeo P ( FAL

4. Selecting measurement outcome: By using the calculated probability distribution Pg s (i|p),
a measurement outcome is randomly chosen from the set O.

Ppun(ilp) =

The procedures outlined above guarantee that our MBEM can offer e-DP.

Theorem 4 The MBEM defined through the above procedure can enable any quantum measurement
to be e-DP.

Quantum Noise Strategy. We turn to introduce quantum noise to enable differentially private
quantum measurements. We opt for quantum depolarizing noise as the method for achieving this,
given its ability to operate independently of the target quantum measurement and the quantum state
neighboring relationships. By utilizing this noise, we can enhance the assurance of achieving better
differential parivacy.

Let’s delve into the concept of quantum noise. A quantum noise, denoted as £y, consists of a set of

Kraus matrices { En 1. }rex and operates as Ex(p) = > e EN,k,OEJka forall p € D(H).

For an n-qubit Hilbert space #, the depolarizing noise £pep, can be expressed as:

pl
Epe =(1- N
pep(P) = (L= P)p+ 5
where Dim = 2" represents the dimension of the state Hilbert space, and p is the noisy probability.

To assess this enhancement quantitatively, we will utilize trace distance-based neighboring re-
lationships between quantum states in the following discussion of this section, that is, p ~
o if and only if the trace distance 7(p, o) = 3tr|p — o] < 1.

Building upon this concept, we first prove that introducing any quantum noise £y will not degrade
the differential privacy of any quantum measurement M.

Theorem 5 If a quantum measurement M = {11, };co is (€,6)-DP, then Mg, = {EJT\,(Hi)}ie@ is
also (e, 6)-DP for any quantum noise Ey.



This theorem demonstrates that incorporating quantum noise does not compromise privacy protection,
even if the quantum noise is not generated by a differential privacy mechanism (a designated noise),
but rather arises from the intrinsic random noise in quantum devices or a combination thereof. This
substantiates the efficacy of our framework in the existing NISQ era where random noise is an
inevitable factor of hybrid quantum-classical algorithms.

Considering Theorem [5|enables the exploration of introducing noise, prompting the inquiry into the
possibility of utilizing noise to achieve differential privacy in quantum measurements. The affirmative
answer to this lies in the utilization of depolarizing noise. This is formally stated in the following.

Theorem 6 Suppose we have a quantum measurement denoted by M = {11, };c o and a depolarizing
noise denoted by Ep,, with a noisy probability p. Then the obtained noisy measurement Mg, is

(e, 5)-DPf0r any € > 0, where
ptI‘(Hs)
C Dim
with ¥s = NAmax(Ils) — (e + 7 — 1) Amin(Ils) and Ils = ), c ¢ Hg. If we focus on e-DP, then
Me,,, is &DP, where € = In[(§ — 1)n + 1] and 6 = maxgco O with
_ Dim - (1 — p)Amax(ILs) + tr(Ils)p
Dim - (1 — p)Amin(Ig) + tr(lg)p

0 =max | (1 —p)ys — (" = 1)

@

S

By the above result, we can adjust the noisy probability p to achieve the intended privacy budget €
and ¢ in the differentially private noisy measurement Mg, .

The result of Theorem|[6]relies on the quantum measurement M. If the details of the measurement
are unknown or if we aim to ensure that all quantum measurements are differentially private, we can
still employ depolarizing noise to accomplish this with a worse (higher) e-DP.

Corollary 1 Let Ep,, represent a depolarizing noise characterized by a noisy probability p. For
any quantum measurement M, the obtained noisy measurement Mg, is e-DP, where ¢ =
In (Dim-(lfp),'7 + 1)

p

In Corollary [T} we present a general upper bound on the differential privacy guarantee achievable for
any quantum measurement. This result aligns with prior findings in the QDP framework when depolar-
izing noise is applied to quantum circuits Zhou & Ying|(2017), indicating that our measurement-level
privacy mechanism can also satisfy QDP-style guarantees.

Furthermore, our approach remains effective under alternative notions of neighboring quantum states,
such as the local operation-based definition. Since the maximum trace distance between quantum
states is 1, setting 77 = 1 in Theorem|[6|ensures that all quantum states are treated as neighbors. Under
this setting, the depolarizing noise channel £p, guarantees a privacy level of In (w + 1) for
any measurement, regardless of the underlying notion of proximity between states.

Remark. In the above, we propose a measurement-based method to ensure the differential privacy
of a hybrid quantum-classical algorithm by introducing noise through both quantum and classical
noise mechanisms. Theorems [ and [6] demonstrate that either the Measurement-Based Exponential
Mechanism (MBEM) or depolarizing noise can significantly improve privacy guarantees. We validate
our approach using a series of quantum machine learning (QML) algorithm examples based on
variational quantum classifiers (VQC), from Examples [2|to 4|in the appendix |C| demonstrating how
each mechanism transforms the privacy characteristics of the measurement.

5 EVALUATION

In this section, to evaluate the effectiveness and implications of these mechanisms, we conduct a
series of numerical experiments. These experiments assess both the privacy-utility trade-offs of
MBEM and depolarizing noise across different parameter settings and provide internal comparisons
between the mechanisms. In our experiments, we quantify utility loss using the maximum Kullback-
Leibler (KL) divergence between measurement outcome distributions before and after noise addition;
see Appendix [H]for the details. Additionally, we compare our approach against the existing QDP
framework, highlighting that achieving equivalent privacy guarantees often requires less noise when
using our proposed methods for specified quantum measurements.
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5.1 HYBRID DIFFERENTIAL PRIVACY MECHANISMS

We evaluate the efficacy of the MBEM and the depolarizing noise mechanism in achieving e-DP

across various ¢ values.
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Quantum depolarizing noise mechanism. To assess how depolarizing noise influences privacy, we
examine the relationship between the noise probability p and privacy parameter ¢, as per Corollary
with results shown in Fig. ] Experiments are conducted on a 3-qubit system (Dim = 8), using
trace distance-based n-neighboring relationships for various 7 values. Results show that increasing p
consistently reduces ¢, indicating stronger privacy, regardless of the 7 value.

We also investigate the relationship between 7 and e, as presented in Appendix which highlights
the trade-off between neighborhood looseness and privacy budget.

Measurement-based exponential mechanism. To evaluate MBEM, we analyze the relationship
between utility loss and the sensitivity parameter Au, as shown in Fig.[5] The figure presents four
curves under different privacy budgets e, illustrating how utility loss varies with Au. Since Au
measures the sensitivity of probability distributions, it is bounded above by 1, with a tighter upper
bound of Au = 1/2 in our setting. Thus, Fig.[5|spans Au € [1/2,1]. The results show that as Au
decreases (i.e., becomes more precise), utility loss also decreases. This indicates that more accurate
choices of Awu can improve utility while maintaining privacy, confirming MBEM’s effectiveness in
balancing the trade-off.

Additional experiments and analysis on Aw and its relationship with e are provided in Appendix [J.1]
further highlighting how optimizing Aw can yield better privacy-utility trade-offs.

5.2 COMPARISON TO QUANTUM DIFFERENTIAL PRIVACY

Our approach differs from QDP in scope: QDP ensures privacy under all possible quantum measure-
ments, while we focus on a fixed, known measurement (see Fig. [2). Furthermore, when applying
quantum depolarizing noise, our method offers stronger privacy protection than the QDP framework.
This difference is visualized in Fig. [6] which compares the privacy parameter estimated by QDP
with the actual differential privacy parameter achieved under our method, as discussed in Example
The figure shows a clear gap between the two, highlighting that our method achieves tighter privacy
bounds when the measurement is fixed and known. This demonstrates a significant advantage of our
approach in the context of hybrid quantum-classical algorithms.

5.3 PRIVACY-UTILITY TRADE-OFF ANALYSIS

We conduct an empirical investigation into the trade-off between privacy and utility by comparing
our MBEM and depolarizing noise mechanisms internally as well as with other mechanisms across
various quantum circuits featuring different numbers of qubits. In each comparison, we present the
most representative experiment, while additional experimental findings are detailed in Appendix .
These experiments collectively highlight the benefits of our mechanisms in effectively balancing
privacy and utility.

We performed experiments utilizing three different kinds of quantum circuits: GHZ circuit, variational
quantum circuit (VQC) and random circuit (RC). VQCs represent a common hybrid quantum-classical
algorithm extensively applied in quantum machine learning. They function as quantum counterparts
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to classical neural networks, facilitating parameter tuning for particular objectives. The random
circuit is generated in a random manner based on a predefined pattern.

Internal Comparison: We initially assess the balance between privacy and utility in our MBEM
utilizing classical noise and the depolarizing noise mechanism employing quantum noise. The trade-
offs between privacy and utility for both approaches on three 3-qubit quantum circuits are illustrated
in Fig.[7] The graph clearly illustrates that both MBEM and the depolarizing noise mechanism result
in a reduction in utility as the level of privacy protection increases. However, the extent of this
reduction varies among the different circuits. Additionally, we notice that the depolarizing noise
mechanism, incorporating quantum noise, exhibits better utility compared to the MBEM method
using classical noise, at the same level of privacy protection. Nonetheless, the correlation between
utility and privacy for these methods does not exhibit a significant distinction. This suggests that both
methods are valid choices for privacy protection, and the selection between them should be based on
the specific requirements of the practical issue at hand.

MBEM v.s. Other Classical Noise: We evaluate the effectiveness of our MBEM approach in
comparison to the commonly employed Laplace mechanism and the Gaussian noise mechanism
within our framework. The specific implementation details can be found in the Appendix [} By
plotting privacy-utility curves, illustrated in Fig. [§] we examine the trade-offs between privacy
and utility. The results indicate that the MBEM method offers notably improved utility without
compromising the level of privacy provided. Additionally, it is apparent that the utility of MBEM
increases as the level of privacy protection lessens.

Qubit Number: At last, the privacy-utility trade-offs for MBEM and depolarizing noise mechanisms
on quantum random circuits and variational quantum circuits (VQC) with varied qubit numbers
are conducted. The result of MBEM on VQC is presented in Fig.[9], and other similar results are
presented in Appendix [K] In these experiments, VQC and RC allow for a range of 3 to 12 qubits.
Although our approach is applicable to any qubit number, the computation of utility loss becomes
more resource-intensive with increasing qubit numbers due to the exponential growth in the dimension
of the measurement outcome distribution. To streamline operations, we present the privacy-utility
trade-off analysis within the confines of 12 qubits. The results highlight that our methods can be
applied to any quantum circuits with different qubit number.

6 CONCLUSION

In this paper, we have introduced a quantum measurement-based differential privacy framework to
address privacy concerns in hybrid quantum-classical algorithms. The post-processing theorem we
have presented ensures the maintenance of privacy guarantees from quantum measurements even
after subsequent data processing. Additionally, our composition theorem establishes a comprehensive
method for ensuring the differential privacy of complex hybrid quantum-classical algorithms. By
leveraging the unique characteristics of quantum measurements, our approach integrates quantum
depolarizing noise with the measurement-based exponential mechanism to provide robust privacy
protections, as demonstrated through a series of numerical experiments. Moreover, we have demon-
strated how our framework enables achieving both classical and quantum differential privacy. These
contributions extend the application scope of differential privacy techniques into the realm of hybrid
quantum-classical algorithms, bridging a significant gap in the current literature.
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A RELATED WORKS

Classical and quantum differential privacy methods have effectively protected the privacy of classical
and quantum algorithms, respectively. Nevertheless, these approaches may not directly ensure the
privacy of present hybrid quantum-classical algorithms due to their limitations outlined below. In
this work, we address the differential privacy of quantum measurements in hybrid quantum-classical
algorithms and propose effective mechanisms to tackle these challenges.

Classical Methods: Classical differential privacy (CDP)Dwork et al.|(2014) has undergone extensive
research across various fields such as data analysis, machine learning, and dataset queries|Abadi et al.
(2016); Murakami & Kawamoto|(2019); Hu et al.| (2021)); \Gadotti et al.|(2022); |Avent et al.|(2017);
Xiao & Xiong|(2015); [Li et al.|(2017). These classical methods ensure robust privacy safeguards of
deterministic algorithms by introducing classical randomized noise mechanisms to their outputs. Key
noise mechanisms include the Laplace mechanism, Gaussian mechanism, and exponential mechanism,
each offering distinct strategies for achieving CDP. The selection between these mechanisms depends
on the specific data characteristics and privacy objectives. The Laplace/Gaussian mechanism involves
adding noise sampled from the Laplace/Gaussian distribution to the output of a deterministic function
to enforce differential privacy. However, these mechanisms are unsuitable for developing differentially
private quantum measurements due to the inherent randomness in the measurements. Instead, we
consider adapting the exponential mechanism into the quantum domain for implementing differentially
private quantum measurements as it works for categorical outputs that can be regarded as measurement
outcomes. The exponential mechanism upholds differential privacy by selecting outputs based on their
quality scores, with probabilities determined by an exponential function of the score. To apply this
mechanism to quantum measurements, we leverage the original measurement outcome probability
distribution as quality scores for measurement outcomes, redistributing outcomes based on the
exponential function of the scores. This extension broadens the utility of the exponential mechanism
to the quantum realm within the probabilistic domain. Through the innovative measurement-based
exponential mechanism, the creation of differentially private quantum measurements is simplified,
reinforcing the privacy of hybrid quantum-classical algorithms.

Quantum Methods: Researchers have been exploring how to incorporate differential privacy into
quantum algorithms Hirche et al.| (2023); |Angrisani et al.| (2022); |/Angrisani & Kashefi (2022);
Quek et al|(2021); Du et al.| (2021)). They are investigating the impact of inherent quantum noise
in quantum algorithms and additional quantum noise on the overall differential privacy of these
algorithms. Specifically, quantum differential privacy (QDP) is designed to protect the output states
of quantum algorithms against privacy breaches resulting from any quantum measurement. In our
context of a hybrid quantum-classical algorithm, where only one specific measurement is revealed,
the focus is on mitigating privacy risks associated with the particular measurement rather than all
potential quantum measurements. To tackle this issue, a depolarizing mechanism is suggested to
introduce quantum noise directly into the quantum measurement. This approach simplifies the process
of achieving differential privacy for the measurement, ensuring a desired level of privacy protection
for the hybrid quantum-classical algorithm. This level of protection depending on the measurement
offers a higher degree (lower bound) of privacy compared to traditional QDP, as demonstrated in
Theorem[6] and its corollary.

B NEIGHBORING-PRESERVING QUANTUM ENCODING

As discussed in Section 2] various quantum encoding techniques exist for transforming classical
datasets into quantum states. When a quantum encoding method can maintain the neighboring
relationships present in the original classical datasets within the resulting quantum states, it is referred
to as a neighboring-preserving quantum encoding technique |/Angrisani et al.| (2023); |Guan et al.
(2023). In other words, if two classical datasets /, & are encoded using a neighboring-preserving
quantum encoding A to produce quantum states A(#) and A (&), the neighboring relationship between
the original classical datasets should be preserved in the quantum domain, implying that

7, @ are neighboring = A(7), A(&J) are neighboring.
An illustration showcasing the implementation of a neighboring-preserving quantum encoding

through amplitude encoding, can be found in the Appendix
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In addition to utilizing amplitude encoding for implementing a neighboring-preserving quantum
encoding approach, basis encoding can also be employed for classical bit string datasets, main-
taining local operation-based neighboring relationships introduced in Section 2] Basis encoding
inherently converts classical bit strings to quantum bit strings; for instance, "0001" is represented
as |0001) (0001]| through basis encoding. The local operation-based neighboring relationship is
essentially an extension of its classical counterpart.

However, trying to create a neighboring-preserving quantum encoding through basis encoding and a
trace distance-based neighboring relationship would be unproductive and inconsequential. This is
because, in basis encoding, setting = 1 is required to achieve this, as the trace distance between
quantum states encoding any two neighboring bit strings is 1. Since the trace distance ranges from
0 to 1, all quantum states are considered neighboring states, making the concept less significant.
Therefore, it is essential to precisely define neighboring relationships of quantum states, especially
when exploring various quantum encoding techniques, particularly in the context of utilizing quantum
computing for addressing classical problems with differential privacy guarantees.

Now, by leveraging neighboring-preserving quantum encoding and the Heisenberg picture as outlined
in Section 2} we can connect CDP and QDP through our framework, as demonstrated in the following
theorem and depicted in Fig.

B.1 NEIGHBORING-PRESERVING EXAMPLE

Example 1 Consider two neighboring classical vector datasets 7 = (vg,...,Vp_1),8 =
(W0, ey wn—1) € Q, differing only in a single element, let’s say the (k + 1)-th element, i.e. vy, # wg.
Initially, we normalize these vectors to obtain ﬁ and H%H where ||V|| and ||&|| represent the
norms of V and @, respectively. Subsequently, employing the amplitude encoding, these vectors are
transformed into quantum states A(H%”) and A(H%”) correspondingly.

The trace distance between these states is given by:

|2 : .
Let M = maxycq max; % denote the maximum square norm of an element among all normalized

[

vectors. Then assuming |vi| > |wy

vt @

170 [l

, we obtain:

_ L2
LT ] w - Vowg + ... + Vp_1Wp—1 2
17l izt
. 2
N e T
170l
. 2
R A
= 72
17
> (1 -2M)>.
Consequently, we derive:
v w TRV
1717 I

Given the arbitrariness of U and &, we can set 1 = /4M — 4M? to maintain the classical neighbor-
ing relationship in the trace distance-based n-neighboring relationship within the encoded quantum
states through amplitude encoding. Thus, we have successfully implemented a neighboring-preserving
quantum encoding utilizing amplitude encoding.
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C RUNNING EXAMPLES

C.1 DIFFERENTIAL PRIVACY FOR VQC

Variational Quantum Classifier (VQC). Variational quantum circuits (VQCs) have become a central
component in quantum machine learning, particularly for classification tasks. A VQC is a parame-
terized quantum circuit designed to process classical data encoded into quantum states and produce
measurement outcomes that can be used to distinguish between data classes. It typically consists of
an input encoding layer (e.g., angle or amplitude encoding), followed by trainable quantum gates and
entangling layers, and ends with measurement in the computational basis.

The parameters of the circuit are optimized using a classical optimizer based on a loss function
derived from the measurement outcomes, forming a hybrid quantum-classical learning loop. This
structure allows the VQC to act as a quantum analogue of a classical neural network and has been
applied to various supervised learning tasks such as binary and multi-class classification Schuld &
Killoran| (2019); Havlicek et al.|(2019)). In practice, VQCs are trained on labeled datasets to minimize
classification error and output a prediction by measuring specific qubits.

An example of a 2-qubit VQC circuit is shown in Fig. which includes input encoding, parameter-
ized rotations, and entanglement via a CNOT gate.

EXAMPLE OF VQC CIRCUIT FAILS TO SATISFY DIFFERENTIAL PRIVACY

Example 2 (VQC circuit fails to satisfy differential privacy) We investigate whether the 2-qubit
Variational Quantum Classifier (VQC) circuit shown in Fig. [I0|satisfies the definition of differential
privacy for quantum measurements (Definition E]) The circuit consists of input encoding via Ry (x;)
rotations, trainable gates Rz (6) and Ry (0), and an entangling layer implemented via a CNOT gate.

Let Mvqc denote the computational basis measurement applied to the output of this circuit. We
consider two neighboring classical inputs x = (0,0) and ' = (0,7), which differ only in the
second component. These are encoded into quantum states as p = Ry (0) ® Ry (0) |00) = |00) and
0 = Ry (0) ® Ry (w)|00) = |01).

We apply the following fixed parameters to the trainable layers:

61:03 02:07 93:

Under these parameters, the output probability distributions over the basis states {00,01, 10,11}
are approximately:

Muyqc(p) ~ (0.5,0.5,0,0),
MVQC (CT) ~ (0, 0.5, 0.5, 0).

For outcome 00, p yields probability 0.5 while o yields 0, leading to an unbounded probability ratio.
Thus, Mvqc does not satisfy e-differential privacy for any finite €. Even under (¢, §)-differential
privacy, it would require § > 0.5 to satisfy the inequality, violating the condition § < 1.

This example demonstrates that quantum measurements in VQC circuits, despite involving random-
ness, do not inherently satisfy differential privacy and must be carefully modified to ensure privacy
guarantees.

] — Ry(I1) . RZ(ol) RY(GS)
Ry (0,

Figure 10: A 2-qubit variational quantum classifier (VQC) circuit. The input (z1, z2) is encoded via
Ry rotations, followed by parameterized gates and entangling operations.

Ty — Ry(ﬂ?g) — Rz(eg)

D
Ay
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EXAMPLE OF MBEM

To demonstrate the effectiveness of our MBEM, we apply it to the VQC measurement Mvyqc
discussed in Example[2] which was shown to violate differential privacy under certain inputs.

Example 3 (Applying MBEM to the VQC measurement) We consider the 2-qubit VQC circuit
and the quantum measurement M~qc as described in Example@]and Fig. For the input quantum
state p = |00) (00|, assume the original output distribution over {00,01, 10, 11} is approximately
(0.5,0.5,0,0).

To achieve differential privacy, we apply the Measurement-Based Exponential Mechanism (MBEM) to
generate a new output distribution. We define a utility function u such that u(p,00) = u(p,01) = 0.5
(the outcomes with non-zero original probabilities), and u(p, i) = 0 for i € {10, 11}. The sensitivity
Awu is conservatively set to 1.

Using Eq.[I} the new output probabilities under MBEM are:

exp
Pen(00 | p) = Pen(01 | p) = X(E
4

Pen (10 = Ppm(11 =—

(1019 = Pon(11 ) = 5o
This exponential mechanism redistributes the measurement outcome probabilities in a privacy-
preserving way while maintaining high utility on likely outcomes. As a result, even if an adversary
has knowledge of the circuit and input encoding, the post-processed measurement outcomes no longer
reveal the input state with certainty.

This process can be applied to other quantum states similarly. In summary, MBEM enables the
measurement Mvqc to satisfy e-differential privacy, as formally guaranteed by Theorem

Our MBEM thus provides a practical instance of classical exponential mechanisms adapted to quan-
tum measurement outputs. In hybrid quantum-classical algorithms, it helps ensure both privacy and
accuracy by perturbing only the final measurement stage, while preserving the quantum computational
process.

EXAMPLE OF DEPOLARIZING NOISE

Example 4 (Applying depolarizing noise to the VQC measurement) We revisit the VQC quan-
tum measurement M~ qc described in Example 2] using the same local operation-based neighbor-
ing relationship and input quantum states p = 100) (00| and o = |01) (01| on a 2-qubit system
(Dim = 4).

To evaluate the privacy of the noisy measurement Mg, under depolarizing noise with probability
p = 1/3 and neighboring parameter n = 1, we apply Theorem@ The central quantity is 0g, which
depends on the spectral properties of the coarse-grained measurement operator Ils = 3, < Tlvqc,k
forall S C {00,01,10,11}.

Assume (from simulation or analysis of the VQC structure) that for any single outcome i €

{00,01,10,11}, the measurement operators satisfy: Amax(Ilvac,i) = 3. Amin(Ilvac,i) = 0,

and tr(Ilyqc,:) = 1. Using Eq.[2| we obtain:
4(1_p)')\max(HS)+p'tr(HS) 4%%—’_

0 = = = 5.
o p - tr(Ilg)

W=

W=

For larger subsets |S| > 2, since 0 < Apin(Ils) < Anax(Ils) < 1 and tr(Ilg) = |S
41-p)-1+p-IS| _ 5+5lI81 _ ¢
p-|S] sls| —

, we derive:

0s <

Therefore, the worst-case value is maxsc(00,01,10,11} s = 5, and the corresponding differential
privacy guarantee is € = In 5.
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This result demonstrates that although the original measurement M~ qc does not satisfy differential
privacy, the addition of depolarizing noise yields a noisy measurement that satisfies ln(5)-differential
privacy for quantum measurements.

C.2 DIFFERENTIAL PRIVACY FOR GHZ CIRCUIT

Example 5 We have selected a 3-qubit quantum circuit known as the GHZ circuit, which is de-
signed to produce a GHZ state. These states find important applications in quantum computing and
communication, serving purposes like quantum error correction and secure quantum key distribu-
tion|Greenberger et al.|(1989); Mermin|(1990); \Caves et al.|(12002). The specific configuration of the
circuit is

—{#]

]
]
——1{=

After the quantum circuit, we employ the quantum measurement M = {I1; }o<;<7 to retrieve the
classical information:

I, = |000) (000, II; = [001) (001],
I, =[010)(010], = |011) (011],
I, =[100)(100|, II5 = |101)(101],
g = |110) (110], II; = [111)(111].

As stated earlier in the Heisenberg picture, the GHZ circuit and the quantum measurement can be
considered together as a new quantum measurement. We can derive the measurement as Mgz =
{IGHz,i fo<i<7 with

Uerzo = % |000) (000| + ? L 100) (100]
Uenza = 3 |001) (001] + 3 |101) (101],
Ugnza =3 |010) (010 + : 110) (110,
erzs = =3 |011) (011] + ; |111) (111,
Ugrz,a =3 |011) (011] 4+ : [111) (111],
Uonzs =3 |010) (010] + : 110) (110,
Henze = ? |001) (001] + ? |101) (101,
Ugnzz = = |000) (000| + £ [100) (100].

Example 6 (Continuing Example[5) We investigate the DP budgets offered by the quantum mea-
surement Mgz as illustrated in Example [5] employing the local operation-based neighboring
relationship for quantum states p ~ o. Consider two neighboring quantum states p = |000) (000|
and o = |001) (001|. The probability distributions of measuring the two states by Mgz over the
outcome set {0,1,...,7} are (3,0,0,0,0,0,0, 3) and (0,1,0,0,0,0, £,0).

92 ’ 92
As per the definition of DP in Definition{] the probabilities for each outcome should be relatively
similar. When considering e-DP, it is observed that for the outcome 0, the measurement Mgy fails
to meet the differential privacy requirement regardless of the chosen magnitude of €. Moreover, in the
context of (¢,0)-DP, it necessitates § to be 1 violating the constrait 6 < 1. Irrespective of the type
of DP considered, it is evident that this quantum measurement lacks differential privacy protection
attributes.

Example 7 (Continuing Example[5) We examine quantum measurement Mpz as detailed in Ex-
amplel 5] For quantum state py = |OOO> ( , 1, ..., 7 with correspond-
ing probabilities of ( 0,0,0,0,0,0, ) In the subsequent steps, our objective is to employ the
MBEM to compute a new outcome dlstrlbution and randomly choose the measurement result to ensure
privacy preservation.
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The utility function u is defined as u(pz,0) = u(pz,7) = 3 and u(pz,i) = 0 for 1 < i < 6.

Sensitivity Au is set to 1. Then, using Eq. I} the distribution of selecting outcomes is
Per(0lps) = Pem(T|pn) = 5——Fcv =
Ppu(lpz) = = Pem(6lps) = s——F——-

Here, we have illustrated how to add noise to quantum state py. This same process can be used for
other input states as well. In conclusion, the quantum measurement M gyz using our MBEM adheres
to €-DP as proven in Theorem

Example 8 (Continuing Example[5) We employ the quantum measurement Mgz as outlined in
Example[5} maintaining the same local operation-based neighboring relationship and input states

p = 000) (000| and o = |001) (001 from Example|6|on a 3-qubit system (Dim = 8).

To find the optimal € given by noisy measurement Mg, with a noisy probability p = 1/3 and
n = 1, according to Theorem[6] we first determine the maximum and minimum eigenvalues of
s =3 cq Heuzk, forall S C {0, ..., 7}. Let |S| indicate the number of elements in the set.

For ‘Sl =1landi € {O, .. .,7}, we have /\maX(HGHZ,i) = %, /\min(HGHZ,i) = 0, tr(HGHZ,i) = 1,
and g = 9 by Eq.

For |S| > 2 and any S C {0, ..., 7}, we have tr(Ils) = |S|. Combining the fact 0 < Ayin(Ils) <
Amax(ITs) < 1, we obtain

Therefore, maxgcyo,... 7y 0s = 9, and € = In 9.

D POST-PROCESSING AND COMPOSITION THEOREM

As we mentioned in the introduction, with the rapid development of quantum computing and the
superior computational capabilities of quantum computers, an increasing number of classical problems
are now being addressed using hybrid quantum-classical algorithms denoted as A = (£, M). The
process involves converting a classical dataset I/ into a quantum input state pz through quantum
encoding, as depicted in Fig. 3| of Section[2] Subsequently, the quantum circuit £ and quantum
measurement M are applied, leading to the retrieval of classical data (measurement outcome set O)
based on a probability distribution determined by the measurement M. This approach serves as a
model for leveraging hybrid quantum-classical algorithms to solve classical problems. In the context
of privacy considerations, a pertinent question arises: Does the post-process theorem still apply when
employing quantum computing for classical problem-solving? Encouragingly, favorable outcomes
can be observed with the use of neighboring-preserving quantum encoding techniques and noting that
we can use measurement M ¢ to describe the above evolution of hybrid quantum-classical algorithm
A = (£, M) in the Heisenberg picture in Section 2}

Corollary 2 Suppose A represents a neighboring-preserving quantum encoding. If M = {11, };co
is a quantum measurement that is (€,8)-DP, then K o M o A is (¢,0)-CDP for any randomized
Sunction K : O — O'.

In the result above, M o A represents a classical randomized function with classical input, classical
output, and quantum processing. This indicates that integrating a differentially private quantum
measurement into a classical problem can also provide privacy protection against any subsequent
post-processing analysis. Moreover, when combined with the second assertion in Theorem [T} our
DP can deliver efficient privacy safeguarding in CDP that can withstand post-process attacks. This
improves the privacy protection when utilizing quantum computers for solving classical problems.
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D.1 COMPOSITION THEOREM

In classical computing, it is crucial to explore how two algorithms can be combined, as this ap-
proach naturally leads to the creation of more advanced algorithms. Researchers have introduced
composition theorems for classical and quantum differential privacy to safeguard the privacy of such
combined algorithms Dwork et al.| (2014); |Guan et al.| (2023). Similarly, in our DP framework of
quantum measurement, we aim to investigate whether the fusion of two differentially private quantum
measurements maintains its differentially private nature. To accomplish this goal, we must initially
introduce how two quantum measurements can be combined and subsequently formulate the relevant
composition theorem by extending the relationships between neighboring states from a single system
to those within composed systems.

Given two quantum measurements, M; = {II; };co, and My = {II; } c,, their joint measurement
can be expressed as

M172 = {Hi,j =1I; ®Hj,i € Ol,j S 02}.

The combination M 7 is viewed as a randomized function from the tensor product of the state space
D(H1) ® D(H2) to a probability distribution over the set of joint measurement outcomes O; x Os.

In the composed state space D(H1) ® D(Hz2), quantum states are in the form of tensor products,
such as pq 2 = p1 @ pa, where p; € D(H,;) for i € {0, 1}. This type of state p;  is referred to as a
product state. Two product states, p1.2 = p1 ® p2 and 01 2 = 01 ® 09, are considered neighboring,
denoted as p1 2 ~ 01 2, when the respective subsystem states are also neighboring, meaning p; ~ o;
for i € {1,2}/Zhou & Ying|(2017). This notion of neighboring relationships can be straightforwardly
generalized to any finite composite state space D(H1) @ D(Ha) @ - -+ @ D(Hy)-

Now, we present a composition theorem for differentially private quantum measurements within our
framework.

Theorem 7 If quantum measurements M1 = {11, };c0, and Mo = {I1;};c0, are (€1,61)-DP and
(€2,02)-DP on Hilbert spaces Hi and Hy respectively, then the combined measurement M o is
(61 + €9,01 + 52)-DP.

Compared to the composition theorem in QDP |Hirche et al.[(2023), which states that the composition
satisfies (€1 + €2, d)-differential privacy with 6 = min{d; + €1 da, €21 + 02}, our composition
theorem achieves a tighter bound. Specifically, we show that the composition satisfies (€1 +€2, 01 +92)-
DP. This result aligns the composition bound in our framework with the well-established CDP
composition bound, significantly simplifying the analysis and improving the privacy guarantee
compared to QDP. Thus, our composition theorem highlights the advantage of differential privacy
framwork of quantum measurement in bridging classical and quantum differential privacy while

offering a more efficient composition bound.

This result can be extended to the finite composition case.

Corollary 3 Foreach k € [n] = {1,2,...,n}, suppose My, = {11;, }i, co, is an (€, 0y )-DP quan-
n

tum measurement on the Hilbert space Hy.. Then their joint measurement My, is (37—, €5, Y 1 0;)-
DP, where

n
M[n] = {Hil,...,in = ®H,k : (il, ,Zn) S 01 X+ X On} .
k=1

Given the above result along with the post-processing theorem, our method for differentially private
quantum measurements proves to be successful. As a result, we can now focus on developing such
measurements to protect the privacy of hybrid quantum-classical algorithms.

E PROOFS OF THEORETICAL RESULTS

E.1 PROOF OF THEOREM[I]

Proof 1 The first claim of the theorem can be deduced from the definitions of differential privacy of
quantum measurement and quantum differential privacy.
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Proving the second assertion of the theorem: It is easy to find that Range(M o A) = O. For any two
neighboring classical input states U ~ &, since A is neighboring-preserving, A(V) ~ A(J). As M is
(e,9)-DP, we have
tr(Ilg (A(P)) < e‘tr(Ilg(A(J)) + 0,
forall S C O. Then we have
PrMoA() € 5] = t(s(A(7)
< eftr(Tlg(A(®)) + 8
e PriM o A(&) € S] + 4,

forall S C O. That means M o A is (€, 8)-CDP.

E.2 PROOF OF THEOREM[2]

This follows from the post-process theorem in classical differential privacy (Dwork et al., 2014, Propo-
sition 2.1, Remark 3.1) by noting that M is a randomized function over a classical set. Specifically,
consider a randomized function & : @ — O’. Observe that

D2, (K(P)IIK(Q)) < D%(PIQ).

It means that if M is (e, §)-differentially privacy, so is KC o M. Here D°_(P||Q) stands for the §-max
divergence of random variables P and @, the specific definition is as follows:

PrlPe S| -6
D% (P = _—_
=(PlQ) sgo;gg[%gies]zé Pr[Q € 9]
E.3 PROOF OF THEOREM[4]
Proof 2 Forall p ~ o and i € O, we have
( exp(5%7) )
Poulil) _ \Scom(5%2)
Pru(ilo) ( exp (587 ) >
Zjeoexf’(eé(g{j))
eu(p,i) eu(o,j)
exXp | 5A, Zjeo XP | 3Aq
exp (422) )\ jeo e (42
_ e(u(p, i) — u(o,1))
- < 2Au

5o xp (452
> jeo eXP (L;(Apif))

S jeoexp (542

< exp(3) exp(3)
< exp(5)exp(35) - :
2 2 > jeo €XP ( 2%5))
= exp(e).
Similarly, by the symmetry, we obtain that
Pru(ilp)
—— = > exp(—e).
PEZ\/[(Z‘O') ( )

E.4 PROOF OF THEOREM[3

Proof 3 According to Theorem 3.5 in\Guan et al.|(2023), by choosing U as I, we can arrive at this
conclusion.
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E.5 PROOF OF THEOREMI6I

Proof 4 According to the definition of the depolarizing noise, we have that, for any matrix A,

p
Ehep(A) = (1 —p)A+ tr(A)%I.

So we can get that

doeb, ) = &, 1) =&, (1)
keS keS

p
= (1—-pII tr(Ilg) —1I.
(1 —p)s + tr( S)Dim

Susequently, we have
Amax (Epep(Is)) = (1 = P)Amax(Is) + tr(Ils) 2,
Amin(Ehep (TTs)) = (1 = p)Ammin (Ts) + tr(Ils) 7.

Then by using Proposition[l} we can get the conclusion.

E.6 PROOF OF COROLLARYI

Proof 5 For any quantum measurement M = {Il;},co and for any S C O, we have 0 <
Amin (ILs) < Amax(Ils) < tr(Ilg). Then according to Theorem@

Dim - (1 — p)Amax(Is) + tr(ILs)p

9 = Dim (1 = p)Amin(s) + tr(Ils)p
_ Dim- (1 - p)tr(lls) + tr(Ils)p
- tr(Ils)p
_ Dim-(1-p)+p
— . .
So 6 = maxgcp fs < w and
e < ln[(w —1)n+1)

b
Dim - (1 —
_ m(””<mn+Q.
p
Which means Mg, is e-DP, where

D' . 1_
ezm(ZM<p%+Q_
p

E.7 PROOF OF THEOREM[]]
To prove the composition theorem, we need the following lemma.

Lemma 1 Let iy, vy be distributions over a finite set K1, and let pi5, vo be distributions over a finite
set Ko, such that:
Forany S, C Ky,

,Ufl(Sl) <e- 1/1(51) + 61.

For any Sy C Ko,
H2(S2) < e - 1y(Ss) + da.

Here i (S;) = 3 e, i(s) and vi(Si) = > g, vi(s), fori € {1,2}.
Define i1 2 and vy 5 be the distributions over set K1 x Ko, when s = (k1, k) € K1 x Ko,

p1,2(s) = pa(ky) - po(ka), v12(s) £ vi(ky) - va(ka).

21



Then, for any S C K1 x Ko,
,LL172(S) S 661+62I/172(S) + 61 + (52.

Here p112(S) = > cg p1,2(8) and vy 2(S) = > c g v1,2(5).

Proof 6 First, we separate K into two parts Ay, As, satisfying A1 U Ay = K1, A1 N Ay = 0, for
any a € Ay, pi(a) > etvy(a), and for any a € As, pi(a) < e“vi(a). We separate Ky into
two parts like this: By U Bs = Ko, By N By = 0, for any b € By, ua(b) > e“wvy(b), and for
any b € B, pa(b) < e®2uy(b). Then we separate S into three parts C; = SN (A1 x K3),Cy =
(S—Cl) Q(Kl X 31)703 = S—Cl —02.

Let C, = (ax Ka)NS,a € K1,Cp = (K1 xb)N (S —Ch),b € Ky. Foralla € Ay, it is
easy to prove that ji1 2(Cy,) — €21y 5(Cy) < pi(a)ds. Furthermore, for all b € By, it is easy
to prove that py 2(Cy) — e 721 o(Cy) < pa(b)dy. For any ¢ € Cs, it is easy to prove that
p12(c) — ety o(¢) < 0. Then we have

f11,2(8) — e 5(5)
~ U et U s+ U st

acA, bEB, ceCs
—651+62( U 1/172(Ca)+ U 1/172(01))+ U V1,2(C))
a€Aq beB1 ceCs
< U m@s+ | )
a€A, be By
< 01+ 0.

Now we can prove Theorem 7]

Proof 7 When i € 01,5 € O,
tr(l;; - (p®0))

tr((IL; @ I1;) (p @ o))
= tr(IL;p) x tr(Il;0).

According to lemmall] for any S C O1 x Oa, we have
S (il - (p® o))
(i,9)€S

S 6(61+€2) . Z tI‘(Hi’j . (pl ® O'/)) —+ 51 + 62.
(i,5)es

So the combination M1 s is (€1 + €2, 61 + 02)-differentially private.

F EXPONENTIAL MECHANISM

The exponential mechanism is a method used to select the "best" output while ensuring differential
privacy, particularly when directly adding noise to the computed result would destroy its value. The
exponential mechanism uses a utility function to define the probability distribution of the outputs,
thus choosing outputs with higher utility scores while ensuring privacy.

F.1 STEPS OF THE EXPONENTIAL MECHANISM

1. Define Utility Function: First, define a utility function v : NIXI x R — R, which maps a
dataset = and output r to a utility score. The utility function represents the quality or benefit
of each possible output.

2. Compute Utility Scores: For a given dataset « and all possible outputs » € R, compute the
utility score u(x,r) for each r.
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3. Compute Probability Distribution: Assign a probability to each possible output based
on its utility score. Specifically, the probability of output r being chosen is proportional to

exp (<427 where A is the sensitivity of the utility function, defined as:
2Au

— _ /
Au = 0K |u(z, ) — u(a’,r)|

Here, 2 and ' are any two neighboring datasets.

4. Normalization: Normalize these probabilities so that they sum to 1. Specifically, the
probability of choosing output r is:

o (55

S erexp (2R )

5. Sampling: Sample an output from the set of possible outputs R according to the computed
probability distribution.

P(rlz) =

F.2 INTUITIVE EXPLANATION

The core idea of the exponential mechanism is to choose outputs with higher utility scores more
frequently by assigning them higher probabilities. This ensures that, even with the addition of noise
to protect privacy, an output close to the optimal can still be selected. As the utility score decreases,
the probability of selection decreases exponentially, ensuring that high-utility outputs have a greater
chance of being chosen than low-utility ones.

* There are five bidders, each bidding a different amount for an item: $1.00, $2.00, $3.00,
$4.00, and $5.00.

 The goal is to choose a price that maximizes the total revenue.
* Define the utility function u(x, p) as the total revenue at price p, where x represents all bids.

* Use the exponential mechanism to select a price based on the utility function.

Suppose we have a dataset of bids: z = [1, 2, 3, 4, 5]. The utility function u(x, p) computes the total
revenue for a given price p. For example:

If the price is $1, all five bidders will buy the item, resulting in a total revenue of $5. For higher prices:
at $2, the revenue is $8; at $3, the revenue is $9; at $4, the revenue is $8; and at $5, the revenue is $5.

For a given € = 1.0 and a sensitivity Au = 1, we compute the probability of selecting each price
using the exponential mechanism. The probabilities are proportional to exp(eu(x, p)/2Au), let
Z = exp(2.5) 4+ exp(4) + exp(4.5) + exp(4) + exp(2.5), after normalize these probabilities so that
they sum to 1, we get:

_exp(2.5) _exp(4) exp(4.5)
e O
_exp(4) _exp(2.5)
P(4) = 7 ,P(5) = —

Finally, we sample a price from these normalized probabilities. This ensures that prices with higher
utility scores (total revenue) have a higher chance of being selected, while maintaining differential
privacy.

G CHARACTERIZING HYBRID DIFFERENTIAL PRIVACY

Proposition 1 (Guan et al.||2023| Theorem 4.1) Let M = {11, },co represent a quantum measure-
ment. The following conditions hold for M:
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* Mis (€,6)-DP if and only if 6 > maxgco 0g, where
55’ = nAmax(HS) - (ee + n— 1))\min(HS)

and the matrix Ilg =, _ ¢ Ily. The terms Amax(ILs) and Amin(Ils) refer to the maximum
and minimum eigenvalues of the positive matrix 11g, respectively.

e M is said to be e-DP if and only if € > €*, where €* is the optimal bound of € given by
=1 -1 1 d k"= II
€ =M[(s" = Un+1] and " =maxs(lls),

Here, k(Ilg) = ’;\‘“L((gj)) represents the condition number of matrix Ilg, and if Apin (Tlg) =

0, then r(Ilg) is considered as +oc.

H UTILITY LOSS EVALUATION

To analyze the trade-off between utility and privacy, we employ the Kullback-Leibler (KL) divergence
to evaluate the effectiveness of differentially private mechanisms. KL divergence measures the
discrepancy between a model’s probability distribution and the actual distribution, and is widely used
in classical differential privacy to assess how distinguishable the private output is from the original
one Duchi et al.| (2013));|/Ghazi & Issal (2024); Kairouz et al.| (2014)); Asoodeh & Zhang| (2024).

In our context, we compute the maximum KL divergence between the measurement outcome
distributions before and after applying a noise mechanism, across all quantum states. Let M denote
the original quantum measurement, and M y the measurement after applying a noise mechanism N
(e.g., MBEM or depolarizing noise). The utility loss is defined as:

UL(N) = ax Dy (M(p)[|Mn(p))-

A smaller UL(N) indicates lower distortion from the noise and thus better utility preservation,
whereas a larger value suggests greater utility degradation. This quantitative metric allows us to
systematically compare the impact of different noise mechanisms within our framework.

I CLASSICAL NOISE-BASED QUANTUM DIFFERENTIAL PRIVACY METHOD

Recent studies have proposed achieving quantum differential privacy by leveraging the addition of
classical noise to the outputs of quantum measurements. This method provides privacy guarantees by
randomizing the results of measurements on quantum states, thereby making the output distributions
for neighboring quantum states statistically indistinguishable. Specifically, the method employs two
widely-used classical noise mechanisms:

» Laplace Mechanism: By adding noise drawn from a Laplace distribution with a scale
parameter b, where b > A f /e (with A f representing the sensitivity of the measurement
and e the privacy budget), this mechanism ensures that the measurement output remains
e-differentially private.

* Gaussian Mechanism: Gaussian noise with variance o2 > 21n(1.25/5)A?/€? is added
to the measurement results, achieving (¢, ¢)-differential privacy. Here, A denotes the
sensitivity, € is the privacy budget, and § controls the probability of privacy failure.

This hybrid approach integrates classical differential privacy techniques into quantum settings.
The central idea is that classical noise mechanisms exploit the statistical properties of quantum
measurement outputs while accounting for the bounded trace distance of neighboring quantum states.
This combination reduces the distinguishability of outputs derived from neighboring quantum states
and provides formal privacy guarantees.

The method is particularly advantageous in noisy intermediate-scale quantum (NISQ) devices, where
classical noise mechanisms complement inherent quantum noise. The authors further demonstrate
that this technique aligns with a unified framework for quantum and classical differential privacy,
ensuring robust privacy protection without significantly compromising utility.
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J ADDITIONAL EXPERIMENTS OF DIFFERENTIAL PRIVACY MECHANISMS

This section provides supplementary experiments to further evaluate the effectiveness and utility of
differential privacy mechanisms of quantum measurement. Specifically, we present detailed analyses
and experimental results for two key mechanisms: the Measurement-Based Exponential Mechanism
(MBEM) and the Depolarizing Noise mechanism. The goal is to explore how these mechanisms
perform under different configurations, with a focus on balancing privacy and utility.

PLATFORM AND COMPUTE COST

All experiments were conducted on a MacBook Pro equipped with an Apple M1 Pro chip (10-core
CPU, 16 GB unified memory, integrated GPU), running macOS Monterey 12.0.1.

To evaluate the computational cost of our methods, we measured the execution time for privacy-
utility trade-off experiments using both MBEM and depolarizing noise mechanisms on two types of
circuits—random circuits (RC) and variational quantum circuits (VQC)—with 10 and 12 qubits. The
results are shown in Table [4l

We observe that MBEM is extremely lightweight, requiring less than 3 seconds even on 12-qubit
circuits. In contrast, the depolarizing noise mechanism is more computationally intensive due to
spectral analysis over high-dimensional measurement operators. For instance, on 12-qubit VQCs, the
depolarizing method takes approximately 10 minutes.

These experiments demonstrate that the computational cost is modest for MBEM and moderate but
still manageable for depolarizing noise. All experiments were run on a single consumer-grade laptop
without GPU acceleration.

J.1 ADDITIONAL ANALYSIS OF MBEM FOR HYBRID DIFFERENTIAL PRIVACY

In this subsection, we extend the analysis of the MBEM introduced in Example [/} We explore the
application of the MBEM to safeguard the e-DP of a quantum state pz = |000) (000| against any other
state when measured by the quantum measurement Mgyz. Table[2illustrates the resulting probability
distributions with varying levels of noise error introduced by the MBEM to achieve different levels of
privacy as defined by e in our framework. The second row in the table represents the distribution of
measurement outcomes without the mechanism, which does not ensure privacy protection (¢ = c0).
The first column in the table denotes the expected level of differential privacy provided by the
MBEM in Theorem ] while columns two through nine display the adjusted measurement outcome
distributions due to the mechanism. The final column indicates the more actual level, denoted by €p,
of differential privacy achieved by the mechanism as a baseline.

The table illustrates that as the value of € decreases, the MBEM introduces more noise, thereby
enhancing privacy protection. This highlights the mechanism’s effectiveness in ensuring privacy.
However, the level of privacy guaranteed by € deviates significantly from the true privacy level €p. To
address this discrepancy and obtain a more accurate estimation of the privacy protection offered by
the MBEM, selecting a more suitable value for Au, which represents the sensitivity of the mechanism,
is crucial. In Example [3]and Table 2] we assume Aw = 1, but a more precise value can be calculated
using the formula in Eq. ??, resulting in Au = 1/2. By substituting this refined value into the
example, we derive the outcomes presented in Table 3]

A comparison between Tables [2]and 3] reveals that to achieve the same expected differential privacy
effect ¢, setting Aw to 1/2 reduces the added noise, as evidenced by the probability distribution
post-noise addition closely resembling the original distribution. Furthermore, a more accurate Au
leads to € approaching €p), indicating that a precise Au can deliver the desired privacy protection with
minimal interference from noise, thus balancing privacy and utility. This trade-off is demonstrated in

Fig.[5

J.2 ADDITIONAL ANALYSIS OF DEPOLARIZING NOISE MECHANISM FOR HYBRID
DIFFERENTIAL PRIVACY

In addition to MBEM, we also examine the performance of the depolarizing noise mechanism in
achieving hybrid differential privacy. The depolarizing noise mechanism introduces a noisy probabil-
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¢ | Penm(0lps) | Pem(lpz) | Pemlps) | Pem(lpz) | Pev(lps) | Pem(5lps) | Pem(6lpz) | Pem(Tlps) | ep
0 0.5 0 0 0 0 0 0 0.5 00
1 ~ (0.1499 ~ 0.1167 ~ 0.1167 ~ 0.1167 ~ 0.1167 ~ 0.1167 ~ 0.1167 ~ (0.1499 0.25
3 =~ 0.2069 ~ 0.0977 ~ 0.0977 ~ 0.0977 ~ 0.0977 ~ 0.0977 ~ 0.0977 ~ 0.2069 0.75
5 ~ 0.2680 ~ 0.0770 ~ 0.0770 ~ 0.0770 ~ 0.0770 ~ 0.0770 ~ 0.0770 ~ 0.2680 1.25
10 =~ 0.4006 ~ 0.0329 ~ 0.0329 ~ 0.0329 ~ 0.0329 ~ 0.0329 ~ 0.0329 =~ 0.4006 2.50

Table 2: The distributions for different values of ¢ by the measurement-based exponential mechanism
with Au = 1.

e | Per(0]pz) | Pem(ps) | Pem(lpz) | PemBlpz) | Pevi(4pz) | Pevi(Glps) | Pem(6lps) | Pem(Tlps) | €p
o0 0.5 0 0 0 0 0 0 0.5 S
1 ~ 0.1770 ~ 0.1076 ~ 0.1076 ~ 0.1076 ~ 0.1076 ~ 0.1076 ~ 0.1076 ~ 0.1770 0.50
3 =~ 0.2990 ~ 0.0668 ~ 0.0668 ~ 0.0668 ~ 0.0668 ~ 0.0668 ~ 0.0668 =~ 0.2990 1.50
5 ~ 0.4010 ~ (0.0329 ~ (0.0329 ~ (0.0329 ~ (0.0329 ~ (0.0329 ~ (0.0329 ~ (0.4010 2.50
10 ~ 0.4901 ~ (0.0033 ~ (0.0033 ~ (0.0033 ~ (0.0033 ~ (0.0033 ~ (0.0033 ~ 0.4901 5.00

Table 3: The distributions for different values of € by the measurement-based exponential mechanism
with Au = 1/2.

ity p to alter quantum measurements and ensure privacy. We investigate the correlation between the
neighboring parameter 7 and the privacy budget € illustrated in Fig.[I1]for p € {0.2,0.3,0.4}. The
figure shows that an increase in 7 suggests a broader consideration of neighboring quantum states,
making it harder to safeguard privacy from these neighboring states (resulting in an increase in €).
This observation highlights the compromise between the relationship of n-neighbors and the DP

budget e.

Circuit Type Mechanism 10 Qubits | 12 Qubits
. MBEM ~ Os 1s
Random Circuits (RC) Depolarizing noise 27s Tmin 7s
. . MBEM ~ Os 3s
Variational Quantum Circuits (VQC) Depolarizing noise s TOmin 155

Table 4: Execution times for privacy-utility trade-off analysis of MBEM and depolarizing noise
mechanisms on RCs and VQCs.

K PRIVACY-UTILITY TRADE-OFF FOR DIFFERENT MECHANISMS AND
CIRCUITS

In this section, we present privacy-utility trade-offs for both the MBEM and depolarizing noise mech-
anisms applied to two types of quantum circuits: random circuits and variational quantum circuits
(VQC). The experiments were conducted with varied qubit numbers to evaluate the performance of
these mechanisms in multi-qubit scenarios. Specifically, we aim to explore how the hybrid differential
privacy framework behaves under classical and quantum noise in multi-qubit settings.

K.1 EXPERIMENT SETUP AND CIRCUIT CONFIGURATIONS

In these experiments, we utilize two types of quantum circuits: random circuits and variational
quantum circuits (VQC). Their configurations are described as follows:

* Random Circuit: The random circuit consists of 3 to 12 qubits, with a depth randomly
chosen between 3 and 5 layers. Single-qubit gates (e.g., H, X, Z, R,(0), R.(0)) and CX
gates are randomly applied, where the rotation angles 6 are uniformly sampled from [0, 27].
This circuit serves as a baseline to evaluate the performance of structured circuits like VQC.

* VQC: The variational quantum circuit (VQC) is widely used in quantum machine learning as
it serves as a quantum analog of classical neural networks, enabling parameter optimization
for specific tasks. In our experiments, the VQC consists of 3 to 12 qubits and multiple layers
proportional to the number of qubits. Each layer includes parameterized R, (¢) rotation
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Figure 11: Trade-off between e-DP and n-neighboring relationship under depolarizing noise with
noisy probability p.

gates with randomly initialized parameters applied to each qubit, followed by CNOT gates
that entangle neighboring qubits.

For both types of circuits, the input states were initialized as classical binary strings, and the output
states were simulated using the Statevector method to compute exact probability distributions.
Errors were introduced into the circuits using the MBEM and depolarizing noise mechanisms,
resulting in noisy output distributions. The utility loss was quantified by computing the KL divergence
between the original (noise-free) distributions and the noisy output distributions, while the privacy
guarantee was assessed by varying the privacy parameter e.
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Figure 12: Privacy-utility curves for MBEM on variational quantum circuits (VQC) with varied qubit
numbers.
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Figure 13: Privacy-utility curves for MBEM on quantum random circuits with varied qubit numbers
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Figure 14: Privacy-utility curves for depolarizing noise mechanism on quantum random circuits with
varied qubit numbers
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Figure 15: Privacy-utility curves for depolarizing noise mechanism on variational quantum circuits
(VQC) with varied qubit numbers

The results of these experiments are shown in Figures to[15} which illustrate the privacy-utility
trade-offs for the two mechanisms applied to random circuits and VQC, respectively. Specifically:

* Figures [12] and [13] present the privacy-utility trade-offs for MBEM applied to random
circuits and VQC, respectively. The results demonstrate that as privacy protection weakens
(e increases), utility loss decreases, indicating that reduced privacy leads to improved
usability. Furthermore, the utility of the algorithm decreases as the number of qubits
increases, with the degradation more evident in MBEM compared to the depolarizing noise
mechanism.

* Figures[I4]and [15|display the corresponding privacy-utility trade-offs for the depolarizing
noise mechanism. Similar to MBEM, weaker privacy protection improves utility. However,
the impact of qubit numbers on utility is less significant for the depolarizing mechanism
compared to MBEM.

K.2 ANALYSIS AND CONCLUSIONS

From these results, we observe that the depolarizing noise mechanism exhibits a privacy-utility
trade-off that is less sensitive to the number of qubits, making it more predictable in multi-qubit
scenarios. On the other hand, MBEM is more sensitive to qubit numbers, indicating that it requires
detailed privacy-utility trade-off analyses tailored to specific qubit configurations when applied in
practice.

Table [d] compares the execution times of the two mechanisms for different qubit numbers. MBEM
demonstrates significantly faster execution, completing analyses within seconds, even for 12 qubits.
In contrast, the depolarizing mechanism requires much longer computational times as the qubit
number increases. For example:

1Figis a copy of Fig.El
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* On random circuits with 10 qubits, MBEM completes in almost 0 seconds, whereas the
depolarizing noise mechanism requires 27 seconds. For 12 qubits, MBEM takes 1 second,
but the depolarizing noise mechanism requires 7 minutes and 7 seconds.

* On VQC circuits with 10 qubits, MBEM completes in almost O seconds, while the depolar-
izing noise mechanism requires 34 seconds. For 12 qubits, MBEM takes 3 seconds, whereas
the depolarizing noise mechanism requires 10 minutes and 15 seconds.

In summary, these findings highlight two key takeaways:

1. The depolarizing mechanism’s utility-privacy trade-off is less affected by the qubit number
of quantum systems, making it a robust choice in multi-qubit scenarios.

2. MBEM, while more sensitive to qubit number, offers extremely fast execution times, al-
lowing for efficient privacy-utility trade-off analyses without significantly impacting per-
formance. This makes MBEM suitable for balancing privacy and utility in time-sensitive
applications where computational efficiency is critical.
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