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Abstract001

Hateful memes have become a significant con-002
cern on the Internet, necessitating robust auto-003
mated detection systems. While LMMs have004
shown promise in hateful meme detection, they005
face notable challenges like sub-optimal per-006
formance and limited out-of-domain general-007
ization capabilities. Recent studies further re-008
veal the limitations of both SFT and in-context009
learning when applied to LMMs in this set-010
ting. To address these issues, we propose a011
robust adaptation framework for hateful meme012
detection that enhances in-domain accuracy013
and cross-domain generalization while pre-014
serving the general vision-language capabil-015
ities of LMMs. Experiments on six meme016
classification datasets show that our approach017
achieves state-of-the-art performance, outper-018
forming larger agentic systems. Moreover, our019
method generates higher-quality rationales for020
explaining hateful content compared to stan-021
dard SFT, enhancing model interpretability.022

This paper contains content for demonstration023

purposes that may be disturbing for some readers.024

1 Introduction025

The rise of social media has led to a surge in hate-026

ful content, notably in the form of memes. Manual027

detection is infeasible due to the vast amount of028

content and psychological risks for human moder-029

ators. Consequently, hateful meme detection sys-030

tems have attracted considerable research interest031

(Kiela et al., 2021; Liu et al., 2022; Prakash et al.,032

2023; Shah et al., 2024).033

Large Multimodal Models (LMMs) have034

emerged as a promising solution for this complex035

task (Hee et al., 2024b; Lin et al., 2025). Their036

strong capabilities across a range of general vision-037

language tasks provide a solid foundation for un-038

derstanding the intricate interplay between text and039

image in memes (Zhu et al., 2023; Liu et al., 2023b).040

Furthermore, the generative nature of LMMs offers041

interpretability, allowing models to provide ratio- 042

nales for their detection decisions. Ideally, LMMs 043

also bring improved generalizability, enabling them 044

to adapt to the rapidly evolving landscape of online 045

memes, making them well-suited for deployment 046

in real-world content moderation systems. Despite 047

this potential, current LMMs face the following 048

challenges when applied to hateful meme detec- 049

tion. 050

1. Sub-optimal performance. LMMs struggle 051

to learn the interplay of visual and textual cues 052

inherent in hateful memes through standard 053

supervised fine-tuning (SFT), as reported by 054

Mei et al. (2024). We also report that SFT 055

LMMs produce lower-quality rationales when 056

explaining hateful content, possibly caused 057

by overfitting and the scarcity of the training 058

data. 059

2. Limited out-of-domain generalization. 060

Memes constantly evolve with social trends 061

and events, posing a generalization challenge 062

(Cao et al., 2024; Mei et al., 2024). While 063

in-context learning with retrieved examples 064

from a dynamic meme database is a potential 065

approach to generalize to unseen data for 066

LMMs, Huang et al. (2024) found that this 067

approach remains ineffective, highlighting 068

the need for more effective methods to use 069

few-shot meme examples. 070

3. Degradation of general vision-language 071

abilities can arise from fine-tuning for 072

meme classification. We observe that ap- 073

plying SFT for meme classification leads to 074

overfitting, which degrades performance on 075

general multimodal benchmarks like MMMU 076

(Yue et al., 2023). This undermines the ratio- 077

nale for choosing LMMs over single-purpose 078

specialized models such as CLIP. 079
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Figure 1: Comparison of rationales generated by SFT
and RA-HMD Qwen2VL-7B models on the Hateful-
Memes dataset. The bar chart shows the winning rate
of rationale quality based on pairwise comparisons be-
tween the two models. A more detailed analysis is
provided in Appendix K.

To address these challenges, we propose RA-080

HMD (Retrieval-Augmented Hateful Meme Detec-081

tion), a framework that incorporates architectural082

enhancements and a two-stage fine-tuning strategy083

to adapt LMMs for hateful meme detection without084

degradation in general vision-language ability.085

We address the three challenges of applying086

LMMs to hateful meme classification through the087

following contributions:088

1. We propose RA-HMD, a fine-tuning frame-089

work for adapting LMMs for hateful meme090

classification, achieving new state-of-the-art091

results on six widely used meme classifica-092

tion datasets. In addition, RA-HMD gener-093

ates higher quality rationales compared to SFT094

models, thereby enhancing the interpretability095

of LMM predictions, as shown in Figure 1.096

2. RA-HMD demonstrates more robust out-of-097

domain generalization compared to SFT mod-098

els. Notably, when RA-HMD is combined099

with a retrieval-augmented KNN classifier,100

it demonstrates state-of-the-art performance101

for out-of-domain meme classification. This102

setup leverages few-shot meme examples103

more effectively than in-context learning, ad-104

dressing the challenge of adapting to rapidly105

evolving memes without retraining.106

3. RA-HMD expands LMMs ability to perform107

hateful meme classification and explaining108

hateful memes without compromising per-109

formance on other vision–language tasks, as110

shown by results in Section 4.4.111

2 Related Work112

2.1 Hateful Meme Detection113

Most existing approaches to hateful meme detec-114

tion rely on supervised learning, with the majority115

of research leveraging CLIP (Radford et al., 2021).116

Numerous studies have fine-tuned models based117

on CLIP using different modality fusion mecha- 118

nisms (Pramanick et al., 2021b; Kumar and Nan- 119

dakumar, 2022; Shah et al., 2024). Other works 120

incorporate caption models into the CLIP-based 121

feature fusion network to further enhance perfor- 122

mance (Burbi et al., 2023; Cao et al., 2023; Ji 123

et al., 2024). Additionally, contrastive learning 124

techniques have been explored to address confound- 125

ing factors in meme classification (Lippe et al., 126

2020; Mei et al., 2024). 127

With the emergence of LMMs, recent research 128

has shifted toward using LMMs as generalist mod- 129

els, in contrast to the specialist nature of CLIP 130

based models (Laurençon et al., 2023; Hu et al., 131

2024). Moreover, decoder-based LMMs offer an 132

additional advantage: they can generate textual ra- 133

tionales to explain why a meme may be hateful 134

(Lin et al., 2024; Hee et al., 2024b). 135

While LMMs such as Flamingo (Alayrac et al., 136

2022) have shown promise in hateful meme de- 137

tection via SFT, fine-tuning strategies for LMMs 138

remain underexplored. In fact, Mei et al. (2024) 139

demonstrated that fine-tuned CLIP models can out- 140

perform much larger LMMs, highlighting the need 141

for specialized methods. In this work, we address 142

this gap by proposing LMM architecture refine- 143

ment alongside a novel fine-tuning approach for 144

LMMs that enhances their performance on hate- 145

ful meme detection while preserving their general 146

vision–language capabilities. 147

2.2 Low resource hateful meme detection 148

Low-resource hateful meme detection is critical for 149

real-world applications that demand out-of-domain 150

generalization. In this setting, an initially trained 151

model is deployed to a new domain without gra- 152

dient updates, relying only on demonstration ex- 153

amples for inference (Huang et al., 2024). Hee 154

et al. (2024a) utilized retrieved few-shot examples 155

to help LMMs generalize to unseen memes. Hu 156

et al. (2024) and Huang et al. (2024) explored 157

agent-based LMM systems with few-shot learn- 158

ing for out-of-domain settings. However, Huang 159

et al. (2024) observed that in-context learning is 160

less effective for meme classification compared to 161

other tasks, highlighting the need for more effec- 162

tive strategies to use demonstration examples. In 163

this work, we show that RA-HMD improves the 164

in-context learning capabilities of LMMs. Further- 165

more, when combined with a retrieval-augmented 166

KNN classifier, RA-HMD enables more effective 167

use of demonstration examples than conventional 168
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Figure 2: Architecture of RA-HMD. We decompose the LMM into two components: the LMM Backbone and
the LM Head (LMH). For each training example i, the last hidden state hi is fed to the LMH to obtain the LM
loss LLM

i . hi is also fed to a trainable multilayer perceptron (MLP) to generate an embedding gi for use as a
retrieval query and as a feature for the Logistic Regression Classifier (LRC) to compute the cross entropy loss LLR

i .
During training, contrastive learning examples are retrieved from the encoded meme database G for computing the
contrastive loss LCL

i . At inference, the same process retrieves the K nearest neighbors for Retrieval-augmented
KNN Classification (RKC), which predicts the label ŷRKC

t for an inference example t.

in-context learning.169

3 RA-HMD Methodology170

3.1 Preliminaries171

Problem Statement Hateful memes datasets are172

defined as {(Ii, Ti, yi)}Ni=1, where Ii ∈ RC×H×W173

is the image portion of the meme in pixels; Ti is174

the caption overlaid on the meme; yi ∈ {0, 1} is175

the label, where 0 stands for benign, 1 for hateful.176

Large Multimodal Models Some prior work has177

approached hateful meme detection via text gener-178

ation with LMMs, where the LMM takes a meme179

(Ii, Ti) as an input to predict a single token label180

ŷLMH
i ∈ {“benign”, “hateful”} (Lin et al., 2024).181

We refer to the final linear layer of the LMM as the182

LM Head (LMH), which maps hidden representa-183

tions to a probability distribution over the vocabu-184

lary via a softmax function. For meme classifica-185

tion, the LMH decodes the hidden state of the last186

token and generates the output label. This contrasts187

with approaches based on CLIP, which train Logis-188

tic Regression Classifiers (LRC) on encoder CLS189

tokens (Kumar and Nandakumar, 2022).190

3.2 RA-HMD Framework191

Architecture enhancement Leveraging represen-192

tations from large multimodal models (LMMs) for193

hateful meme classification is non-trivial, particu-194

larly when attempting to use LMM embeddings for195

classification while preserving the model’s origi- 196

nal language generation capabilities. Prior work 197

has explored various strategies for adapting these 198

representations to classification and retrieval tasks. 199

In our study, we similarly experimented with mul- 200

tiple adaptation methods. Appendix D provides a 201

comprehensive summary of these efforts, includ- 202

ing failure cases of previous approaches and key 203

insights that ultimately guided the design of RA- 204

HMD. 205

As illustrated in Figure 2, RA-HMD integrates 206

an LMM with two additional trainable components: 207

a Multilayer Perceptron (MLP) that projects the 208

LMM final hidden state hi into an embedding gi 209

for use in classification and retrieval; and an LRC 210

operating on gi . Figure 2 shows how the archi- 211

tecture supports multiple fine-tuning and inference 212

modes. 213

Retrieval During stage-2 training, FAISS- 214

based (Johnson et al., 2021) nearest neighbor 215

search retrieves contrastive learning examples 216

from the encoded meme database G. At inference, 217

FAISS is used to retrieve neighbors for the 218

Retrieval-augmented KNN Classifier (RKC). 219

Inference modes Figure 2 shows three different 220

classifiers: LMH, LRC, and RKC. For pre-trained 221

and SFT LMMs, we generate classification deci- 222

sions using the LMH as described in Section 3.1. 223

For RA-HMD models, we obtain meme classifica- 224
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tion decisions via the LRC, unless otherwise speci-225

fied. Section 4.7 presents a detailed comparison of226

the three inference modes.227

3.3 Stage 1: Logistic Regression Augmented228

Supervised Fine-tuning229

In stage 1, the LMM is fine-tuned via Low-Rank230

Adaptation (Hu et al., 2022), which applies train-231

able low-rank matrices to the model while freezing232

its original weights. The MLP and LRC are up-233

dated simultaneously. We optimize the joint loss234

for each training example i:235

LStage1
i = LLM

i + LLR
i , (1)236

where LLM
i is the language modeling objective237

used in SFT. In the context of meme classification,238

the model is trained to predict a single target token239

s(yi):240

s(yi) =

{
“benign” if yi = 0

“hateful” if yi = 1
. (2)241

LLM
i is computed as the negative log-likelihood of242

generating the correct target token, conditioned on243

the input image and text:244

LLM
i = − log p(ŷLMH

i = s(yi) | Ii, Ti) (3)245

The LLR
i is the binary cross-entropy loss applied246

to the LRC prediction ŷLRC
i :247

LLR
i = −yi log ŷ

LRC
i − (1− yi) log(1− ŷLRC

i )
(4)248

Jointly optimizing the language modeling loss249

LLM
i with the cross-entropy loss LLR

i allows the250

LMM to rapidly adapt to the hateful meme detec-251

tion task.252

3.4 Stage 2: LMM Contrastive Fine-tuning253

In stage 2, the LMM is frozen; only the MLP and254

LRC are fine-tuned to refine retrieval-aligned rep-255

resentations. Stage 2 jointly optimizes:256

LStage2
i = LCL

i + LLR
i , (5)257

where LLR
i is defined in Eq. 4, and LCL

i is the258

Contrastive Learning Loss.259

To compute LCL
i , we retrieve pseudo-gold posi-260

tive examples similar to RGCL (Mei et al., 2024)261

and hard negative examples (Schroff et al., 2015)262

from the training set. Specifically, for a given263

sample i with embedding gi, we use FAISS (John-264

son et al., 2021) to perform the nearest neighbor265

search between gi and every other target embed- 266

ding gj ∈ G from the training set. 267

Pseudo-gold positive examples are same-label 268

examples that have high similarity scores with gi, 269

while hard negative examples are opposite-label 270

examples that have high similarity scores. We de- 271

note the embedding of the pseudo-gold positive 272

example and hard negative example as g+
i and g−

i , 273

respectively. LCL
i is then computed as: 274

LCL
i = L(gi,g

+
i ,g

−
i ) 275

= − log
esim(gi,g

+
i )

esim(gi,g
+
i ) + esim(gi,g

−
i )

, (6) 276

where sim(·, ·) denotes the cosine similarity func- 277

tion. Stage 2 fine-tuning explicitly aligns the rep- 278

resentations of semantically similar meme pairs, 279

thereby improving the generalization of LMMs to 280

distribution shifts in unseen datasets. 281

3.5 Retrieval Augmented KNN Classification 282

In addition to the LMH and LRC, RKC is used 283

specifically for out-of-domain meme classifica- 284

tion. For a test meme t, we retrieve K similar 285

memes within the embedding space from the meme 286

database G. We perform similarity-weighted ma- 287

jority voting to obtain the prediction: 288

ŷRKC
t = σ(

K∑
k=1

yk · sim(gk, gt)), (7) 289

where σ(·) is the sigmoid function and 290

yk :=

{
1 if yk = 1

−1 if yk = 0
. (8) 291

Additionally, to enable RKC on pretrained or SFT 292

LMMs that do not incorporate an MLP, we use the 293

last hidden state hi for the nearest neighbor search. 294

The results are provided in Appendix F. 295

4 Experiments 296

We evaluate on six meme classification 297

datasets: HatefulMemes (Kiela et al., 298

2021), HarMeme (Pramanick et al., 2021a), 299

MAMI (Fersini et al., 2022), Harm-P (Pramanick 300

et al., 2021b), MultiOFF (Suryawanshi et al., 301

2020) and PrideMM (Shah et al., 2024). A 302

detailed description and statistics are in Ap- 303

pendix A. Implementation details are described in 304

Appendix B. 305
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HatefulMemes HarMeme MAMI Harm-P MultiOFF PrideMM
Model AUC Acc. AUC Acc. AUC Acc. Acc. F1 Acc. F1 Acc. F1

Best prior results VPD-55B ISSUES Pro-Cap ExplainHM RGCL MemeCLIP
89.2 80.8 92.8 81.6 83.8 73.6 90.7 90.7 67.1 58.1 76.1 75.1

Supervised fine-tuned CLIP-based Classifiers

1 CLIP 79.8 72.0 82.6 76.8 77.7 68.4 80.6 80.3 62.4 48.1 72.4 72.3
2 HateCLIPper 85.5 76.1 89.7 84.8 87.2 74.8 87.6 86.9 62.4 54.8 75.5 74.1
3 RGCL 87.0 78.8 91.8 87.0 89.4 78.4 89.9 89.5 67.1 58.1 76.3 76.5

Large Multimodal Models

4 GPT-4o - 71.3 - 72.9 - 79.4 63.1 64.5 58.3 58.1 75.3 73.7
LLaVA-1.5-7B

5 w/ zero-shot 63.7 57.6 71.4 48.6 67.6 58.3 61.6 46.4 59.6 51.7 63.4 65.6
6 w/ few-shot 63.4 57.2 73.4 59.6 68.1 62.7 53.5 52.2 38.9 56.0 62.1 64.0
7 w/ SFT 85.2 78.7 91.4 79.1 86.0 73.9 82.8 82.8 67.8 57.8 73.2 76.0
8 w/ RA-HMD 89.7 80.9 93.5 88.2 91.2 79.7 89.6 89.3 70.9 63.6 78.1 78.7

Qwen2VL-2B
9 w/ zero-shot 64.8 54.2 61.1 56.7 67.2 51.0 53.9 21.8 63.1 36.3 57.8 53.3
10 w/ few-shot 61.7 59.1 62.1 65.8 64.8 58.8 53.0 51.6 67.1 44.9 55.4 54.3
11 w/ SFT 84.0 76.2 90.2 82.5 77.7 68.6 80.3 79.7 66.4 54.5 73.7 74.2
12 w/ RA-HMD 88.4 79.1 92.9 87.7 89.3 79.4 88.9 88.7 68.5 61.8 76.0 76.7

Qwen2VL-7B
13 w/ zero-shot 71.9 63.2 64.8 64.1 76.2 58.5 55.5 22.9 63.4 35.9 65.3 62.9
14 w/ few-shot 71.5 63.8 71.5 67.2 73.4 66.1 55.6 65.2 64.4 54.7 69.1 56.6
15 w/ SFT 86.3 78.6 91.8 85.9 82.6 72.4 85.9 86.3 67.8 55.5 75.1 74.9
16 w/ RA-HMD 91.1 82.1 93.2 88.1 90.4 79.9 91.6 91.1 71.1 64.8 78.1 78.4

Table 1: Comparison with baseline systems under supervised settings. For large multimodal models, we report the
pre-trained models zero-shot and few-shot performance (using 4-shot evaluation), along with a comparison between
SFT and RA-HMD. Best performance is highlighted in bold; second-best is underlined.

4.1 Comparing RA-HMD to Baseline Systems306

under Supervised Settings307

Table 1 presents the performance of baseline sys-308

tems under supervised fine-tuning settings. We309

compare RA-HMD against a range of strong base-310

lines: the best prior models for each dataset1; super-311

vised fine-tuned CLIP-based classifiers; and Large312

Multimodal Models (LMMs). All models are fine-313

tuned and evaluated for each dataset separately.314

CLIP-based Classifiers We compare the perfor-315

mance of fine-tuned CLIP (Radford et al., 2021)316

model with two other fine-tuning methods for317

CLIP-based systems: HateCLIPper (Kumar and318

Nandakumar, 2022) and RGCL (Mei et al., 2024).319

Large Multimodal Models We experiment with320

three LMMs from two model families: LLaVA-321

1.5-7B (Liu et al., 2023a), Qwen2VL-2B and322

Qwen2VL-7B (Wang et al., 2024b). We report323

the performance of these LMMs in the following324

settings: pre-trained models with zero-shot and325

1From a recent paper (Nguyen and Ng, 2024); some
datasets have been updated with the new best results.

few-shot prompts using the LMH; SFT LMMs us- 326

ing the LMH; and classification using LRC under 327

the RA-HMD fine-tuning framework. We further 328

include the results with GPT-4o (OpenAI, 2024a) 329

with optimized prompting for each dataset for ref- 330

erence. For GPT-4o, the token likelihood is not 331

accessible to compute the AUC score. 332

Best Prior Models Visual Program Distillation 333

(VPD) (Hu et al., 2024) and ExplainHM (Lin et al., 334

2024) are LLM agent-based systems. The re- 335

maining state-of-the-art models, including ISSUES 336

(Burbi et al., 2023), Pro-Cap (Cao et al., 2023), 337

RGCL (Mei et al., 2024) and MemeCLIP (Shah 338

et al., 2024), are based on fine-tuning CLIP-based 339

vision and language models. Detailed descriptions 340

of these methods are provided in Appendix M. 341

Observation 1: Fine-tuned CLIP-based clas- 342

sifiers outperform baseline LMMs. 343

As shown in Table 1, RGCL (#3) achieves the high- 344

est performance among CLIP-based classifiers, sur- 345

passing standard fine-tuned CLIP (#1) by approxi- 346

mately 10% across multiple datasets. On 5 out of 347
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Evaluated on HatefulMemes HarMeme MAMI Harm-P MultiOFF PrideMM
Model AUC Acc. AUC Acc. AUC Acc. Acc. F1 Acc. F1 Acc. F1

Low resourced systems

1 GPT-4o - 66.4 - 68.4 - 72.9 55.4 55.1 61.1 51.1 63.8 62.3
2 Mod-Hate 64.5 58.0 73.4 69.5 67.4 61.0 - - - - - -
3 LOREHM - 65.6 - 73.7 - 75.4 - - - - - -

Systems fine-tuned under cross-dataset settings

Fine-tuning set HarMeme HatefulMemes

4 RGCL 69.9 66.9 64.3 61.1 67.8 62.4 56.4 57.1 53.7 45.1 59.8 61.5
LLaVA-1.5-7B

5 SFT + zero-shot 63.8 59.4 61.9 48.5 69.1 61.1 55.2 28.7 62.8 32.5 58.1 53.3
6 SFT + few-shot 63.1 56.4 69.9 52.8 65.5 50.1 55.6 49.6 56.0 38.9 48.5 55.3
7 RA-HMD + RKC 74.2 65.2 89.5 81.9 80.0 74.5 67.3 67.8 62.4 51.7 68.8 67.7

Qwen2VL-2B
8 SFT + zero-shot 64.1 59.7 61.3 52.2 66.4 57.3 53.5 20.3 62.3 29.3 56.4 59.0
9 SFT + few-shot 61.3 53.8 57.4 65.0 73.8 66.0 56.9 55.5 53.7 42.4 55.4 60.9
10 RA-HMD + RKC 70.9 62.8 86.0 78.4 74.8 72.3 63.4 66.0 63.4 53.4 69.0 69.1

Qwen2VL-7B
11 SFT + zero-shot 71.1 64.1 63.0 55.2 71.1 61.9 54.7 21.5 63.1 29.7 64.5 63.6
12 SFT + few-shot 72.3 60.6 67.2 62.4 73.4 66.0 56.4 64.9 62.0 53.7 55.4 60.9
13 RA-HMD + RKC 77.1 69.3 88.8 81.7 81.4 75.6 64.5 66.4 63.8 55.6 69.3 69.3

Table 2: Comparing out-of-domain meme classification performance under low-resource settings. For systems
fine-tuned under cross-dataset settings, models are fine-tuned on HarMeme and evaluated on the HatefulMemes
dataset. For the remaining evaluation datasets, models are fine-tuned on the HatefulMemes dataset. For LMMs, we
compare the SFT models using zero-shot and in-context learning with the RA-HMD fine-tuned models using RKC.
Few-shot examples (4-shot) and RKC examples are drawn from the training split of each evaluation dataset. #2 and
#3 are taken from the original paper. Best performance is highlighted in bold; second-best is underlined.

6 datasets, RGCL performs better than, or on par348

with, all three SFT LMMs (#7, #11, #15).349

Observation 2: In-context learning exhibits350

limited efficacy for meme classification.351

We compare the zero-shot (#5, #9, #13) and few-352

shot (#6, #10, #14) performance of the pre-trained353

LMMs. Our findings indicate that, in-context learn-354

ing does not benefit meme classification, which is355

consistent with previous results (Hee et al., 2024a;356

Huang et al., 2024). HarMeme is the only dataset357

where few-shot systems consistently outperform358

zero-shot systems. On Harm-P and MultiOFF, al-359

though the accuracies of zero-shot and few-shot360

remain comparable, the few-shot experiments yield361

a significant gain in F1 score. This improvement is362

due to a more balanced precision and recall after363

providing demonstration examples to the system.364

Observation 3: RA-HMD outperforms all365

strong baseline systems across six datasets366

Across six datasets and three LMMs, fine-tuning367

with RA-HMD significantly improves performance368

over SFT (Table 1: #7, #8; #11, #12; #15, #16). Sta-369

tistical significance tests comparing RA-HMD and370

SFT further validate these results, with all p-values371

below 0.05 (see Appendix C). Notably, as indicated372

in #16, Qwen2VL-7B fine-tuned with RA-HMD 373

outperforms VPD-PaLI-X-55B on HatefulMemes. 374

Moreover, RA-HMD improves upon RGCL with 375

gains of over 4% in AUC and 3% in accuracy on 376

HatefulMemes. These gains show RA-HMD’s ef- 377

fectiveness in improving LMMs for meme classifi- 378

cation over SFT. 379

4.2 Comparing RA-HMD with Baseline 380

Systems under Low-Resource Settings 381

Online hate speech is constantly evolving, posing a 382

challenge to systems as the distribution of memes 383

encountered in the wild departs from that of the 384

training data. To simulate real-world deployment 385

constraints, we evaluate systems on out-of-domain 386

examples under low-resource settings where gradi- 387

ent updates are prohibited and only demonstration 388

examples are available (Huang et al., 2024; Hee 389

et al., 2024a; Cao et al., 2024). 390

We adopt a cross-dataset evaluation protocol sim- 391

ilar to Mei et al. (2024): models fine-tuned on 392

HarMeme are evaluated on HatefulMemes, while 393

models trained on HatefulMemes are evaluated on 394

all other datasets. This protocol simulates a sce- 395

nario in which a trained meme classification system 396
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is deployed to evaluate trending memes. Few-shot397

and RKC examples are drawn from the training398

split of each of the target evaluation datasets to399

avoid test set contamination.400

We compare RA-HMD fine-tuned LMM with401

the RKC against the following systems: SFT402

LMMs with zero-shot and few-shot prompting us-403

ing LMH; GPT-4o (OpenAI, 2024a); specialized404

low-resource systems (LOREHM (Huang et al.,405

2024), Mod-hate (Cao et al., 2024)). For GPT-4o,406

we report results without prompt optimization for407

each dataset, as this setting assumes the hate type408

is not known in advance. Further discussion and409

comparison of GPT-4o results can be found in Ap-410

pendix J.411

Observation 1: Fine-tuning on one memes412

classification dataset does not help LMMs to413

improve generalization on other meme classifi-414

cation datasets415

Cross-domain fine-tuned LMMs show no consis-416

tent improvements over pre-trained LMMs for ei-417

ther zero-shot or few-shot prompting. Qwen2VL-418

7B zero-shot (#11 in Table 2) matches its SFT419

model performance (#13 in Table 1) on Hateful-420

Memes and PrideMM but has performance degra-421

dation on the remaining four datasets.422

Observation 2: SFT LMMs with in-context423

learning is ineffective424

As shown in Table 2 #6, #9 and #12, the few-425

shot approach remains similarly ineffective after426

LMMs are fine-tuned on different domains of hate-427

ful meme datasets, offering no significant gains428

over the SFT zero-shot models (Table 2 #5, #8,429

#11). In Section 4.5, we further analyze the effect430

of the number of shots in in-context learning and431

find that increasing the number of shots does not432

improve performance. Moreover, in Section 4.6,433

we show that in-context learning with RA-HMD434

consistently outperforms SFT models, demonstrat-435

ing RA-HMD’s effectiveness in enhancing out-of-436

domain generalization.437

Observation 3: RA-HMD fine-tuned LMMs438

with RKC inference mode outperforms baseline439

methods440

RA-HMD fine-tuned LMMs using RKC outper-441

form the baseline SFT LMMs in both zero-shot442

and few-shot settings under the same cross-dataset443

fine-tuning settings. Notably, RA-HMD trained444

Qwen2VL-7B with RKC improves over the base-445

line SFT few-shot model by 21.6% in AUC and446

19.3% in accuracy on HarMeme (Table 2 #11-13).447

The ablation study in Section 4.5, which varies the448

number of top k for RKC, further demonstrates 449

that RKC uses demonstration examples more effec- 450

tively than the few-shot in-context learning frame- 451

work. Moreover, as shown in Appendix F, applying 452

RKC to both pretrained and SFT LMMs results in 453

worse performance compared to RA-HMD, under- 454

scoring the effectiveness of our fine-tuning strategy. 455

Observation 4: RA-HMD trained LMMs with 456

RKC inference outperform other low resource 457

methods 458

When compared to other low-resource methods, 459

our RA-HMD fine-tuned LLaVA-1.5-7B with RKC 460

matches the performance of LOREHM on the 461

HatefulMemes dataset. Notably, LOREHM uses 462

a newer and larger LLaVA-1.6-34B within an 463

agent-based framework. Furthermore, our method 464

outperforms LOREHM by 8.2% in accuracy on 465

HarMeme, highlighting our methods’ effectiveness 466

under low-resource settings. 467

4.3 Effects of Two-Stage Fine-tuning 468

We assess the contribution of each stage within 469

our two-stage RA-HMD fine-tuning process. As 470

shown in Tables 3, omitting either stage leads to 471

performance degradation in both supervised and 472

cross-dataset settings, with Stage 1 contributing 473

more substantial gains. 474

When only Stage 1 is applied and Stage 2 is omit- 475

ted, the performance loss is less severe under su- 476

pervised settings than in cross-dataset evaluations. 477

We attribute this to the contrastive loss in Stage 478

2, which explicitly optimizes retrieval by aligning 479

representations of semantically similar meme pairs, 480

thereby enhancing robustness to distribution shifts 481

in unseen datasets. 482

We also compared a variant where we jointly 483

optimize the losses from both stages in a single 484

training phase. 485

LCombined
i = LCL

i + LLR
i + LLM

i . (9) 486

This combined training yields suboptimal results, 487

demonstrating that the two-stage fine-tuning effec- 488

tively resolves the optimization conflict between 489

task adaptation (Stage 1) and representation align- 490

ment (Stage 2). Furthermore, since the LMM 491

remains trainable throughout combined training, 492

updating the encoded meme database incurs sig- 493

nificantly higher computational costs compared 494

to the two-stage fine-tuning approach, where the 495

LMM is frozen in stage 2. This staged separation 496

thus enables more efficient training while obtaining 497

stronger performance. 498
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In Appendix H, we also conduct ablation stud-499

ies by removing individual loss terms within each500

stage and found that every loss component is essen-501

tial.

HatefulMemes HarMeme
Mode AUC Acc. AUC Acc.

RA-HMD 91.1 82.1 93.2 88.1
w/ Stage 1 only 90.2 81.4 92.0 86.2
w/ Stage 2 only 84.4 74.2 90.1 85.6
w/ LCombined

i 88.9 77.8 90.2 83.4

(a) Supervised settings, see Table 1 for detailed settings

HatefulMemes HarMeme
Mode AUC Acc. AUC Acc.

RA-HMD 77.1 69.3 88.8 81.7
w/ Stage 1 only 74.4 66.7 86.3 78.7
w/ Stage 2 only 72.0 62.1 84.9 78.1
w/ LCombined

i 72.2 65.3 87.5 80.2

(b) Cross-dataset settings, see Table 2 for detailed settings

Table 3: Ablation study of RA-HMD two-stage fine-
tuning framework on Qwen2VL-7B, evaluating the im-
pact of Stage 1 and Stage 2 Fine-tuning. For LCombined

i ,
we jointly optimize the three loss objectives from both
stages in a single training process as shown in Eq. 9.

502

4.4 Performance on General Vision-Language503

Benchmarks504

Table 4 compares the pretrained Qwen2VL-2B505

with its SFT and RA-HMD variants, both fine-506

tuned on the HatefulMemes dataset, across three507

general vision-language benchmarks: MMMU508

(Yue et al., 2023), SEED-Bench (Li et al., 2023a),509

and GQA (Hudson and Manning, 2019). Evalua-510

tion settings and additional results are provided in511

Appendix I. The SFT model shows performance512

degradation across all three benchmarks, while513

RA-HMD maintains performance comparable to514

the pretrained model. These results indicate that515

RA-HMD robustly preserves the general vision-516

language capabilities of LMMs.

Model MMMU SEEDBench GQA

Qwen2VL-2B 40.2 72.7 60.4
+SFT 39.1 72.1 57.0
+RA-HMD 40.4 72.7 60.1

Table 4: Comparison of the pretrained, SFT, and RA-
HMD Qwen2VL-2B models on three general vision-
language benchmarks. The SFT and RA-HMD models
are fine-tuned on the HatefulMemes dataset.

517

4.5 Numbers of Shots and Neighbors 518

In Appendix E, we ablate the effects of varying the 519

number of shots for few-shot in-context learning 520

and varying the number of top K nearest neigh- 521

bors for RKC. We find that merely adding more 522

shots does not necessarily improve performance 523

for in-context learning, aligning with the findings 524

of Huang et al. (2024). In contrast, increasing K 525

in RKC leads to steady performance gains, with 526

improvements plateauing around K = 20. These 527

results suggest that the RKC inference mode of RA- 528

HMD makes more effective use of demonstration 529

examples compared to in-context learning. 530

4.6 Comparing Out-of-Domain 531

Generalization Across Model Variants 532

To further evaluate out-of-domain generalization 533

across different model variants, we compare RA- 534

HMD against both pretrained and SFT models in 535

Appendix F, following the same protocol as in 536

Table 2. Our results show that RA-HMD consis- 537

tently outperforms both baselines under both the 538

in-context learning framework and the retrieval- 539

augmented KNN classifier (RKC), highlighting its 540

robustness and effectiveness for generalizing to un- 541

seen meme distributions. 542

4.7 Comparing Different Inference Modes 543

We compare RA-HMD using three classifiers: 544

LMH, LRC and RKC in Appendix G. Under super- 545

vised settings, the performance is similar. However, 546

in cross-dataset scenarios, RKC outperforms both 547

LMH and LRC, underscoring its superior effective- 548

ness in handling out-of-domain examples. 549

4.8 Demonstration examples 550

In Appendix L, we present a case analysis compar- 551

ing the classification results of RA-HMD and SFT. 552

Appendix K provides example rationales generated 553

by each model. 554

5 Conclusion 555

We propose RA-HMD, a robust adaptation frame- 556

work for LMMs tailored for hateful meme classi- 557

fication. Our approach effectively improves both 558

in-domain accuracy and out-of-domain generaliza- 559

tion, achieving state-of-the-art results across six 560

meme classification datasets while preserving the 561

general vision-language capabilities of the underly- 562

ing models. 563
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Limitations564

Hate speech is described using various terminolo-565

gies, including online harassment, online aggres-566

sion, cyberbullying, and harmful speech. The567

United Nations Strategy and Plan of Action on568

Hate Speech acknowledges that definitions of hate569

speech can be controversial and subject to debate570

(Nderitu, 2020). Similarly, the UK Online Harms571

White Paper highlights that certain harms may be572

insufficiently defined (Woodhouse, 2022).573

We acknowledge that the definition of hate574

speech can be subjective and varies across differ-575

ent cultural and legal contexts. To this end, we576

evaluate our methods on six widely used meme577

classification datasets, allowing for generalization578

across different definitions of hate speech. As the579

discourse on defining hate speech evolves, we align580

our research with this ongoing process and plan to581

incorporate new datasets as they become available.582

In our error analysis, we find that the system is583

unable to recognize subtle visual details in memes.584

Enhancing image understanding through a more585

powerful vision encoder could further improve per-586

formance, which we leave for future work.587

Ethical Statement588

Reproducibility. Detailed experimental setups,589

implementation specifics, and hyperparameter set-590

tings are provided in Appendix B to ensure repro-591

ducibility. The source code will be released upon592

publication.593

Usage of Datasets. The datasets used in this594

study—HatefulMemes, HarMeme, MAMI, Harm-595

P, MultiOFF, and PrideMM—were curated for re-596

search purposes to combat online hate speech. We597

strictly adhere to the terms of use established by598

the dataset authors.599

Societal benefits. Hateful meme detection sys-600

tems, like RA-HMD, can be used to automatically601

detect hateful content online, contributing signifi-602

cantly to reducing online hate speech. By reducing603

hate speech, fostering safer digital environments,604

and supporting human content moderators, these605

systems can make a significant impact on online606

communication and safety. We believe these bene-607

fits are both substantial and essential in the broader608

effort to create a more secure and respectful digital609

space.610

Intended use. We intend to enforce strict access 611

controls for model release. The model will be avail- 612

able only to researchers who agree to our terms 613

of use, which explicitly state that the system is 614

designed solely for the detection and prevention 615

of hateful speech. Its use for any purposes that 616

promote, condone, or encourage hate speech or 617

harmful content is strictly prohibited. 618

Misuse Potential. Although our system is not 619

inherently designed to induce bias, training on ex- 620

isting datasets such as HatefulMemes may inad- 621

vertently propagate existing biases towards certain 622

individuals, groups, or entities (Pramanick et al., 623

2021b). To mitigate the risk of unfair moderation 624

resulting from these dataset-induced biases, it is 625

essential to incorporate human oversight into the 626

moderation process if deployed. 627

Deployment consideration. Cultural differences 628

and subjective topics introduce biases in moder- 629

ating online hate speech. Expressions that may 630

seem benign to some can be deeply offensive to 631

others. Our RKC inference mode relies on retriev- 632

ing examples that generalize well across various 633

domains, allowing the creation of multiple retrieval 634

sets tailored to diverse cultural sensitivities with- 635

out requiring retraining. However, before deploy- 636

ing such systems, it is crucial to carefully evaluate 637

dataset annotations, particularly when addressing 638

cultural differences and subjective interpretations. 639

Key factors include data curation guidelines, po- 640

tential annotator biases, and the inherently context- 641

dependent definitions of hate speech. These con- 642

siderations are essential to ensuring the system is 643

deployed responsibly and effectively across varied 644

cultural contexts. 645

Environmental Impact Training large-scale 646

models is computationally intensive and contribute 647

to global warming due to heavy GPU/TPU usage. 648

However, our approach mitigates this issue by fine- 649

tuning LMMs using quantized LoRA, a parameter- 650

efficient method. As a result, our system can be 651

trained in under four hours on a single consumer- 652

grade GPU RTX3090, costing less than 1 USD, 653

significantly reducing both training time and com- 654

putational cost compared to full-scale LMM fine- 655

tuning. Furthermore, since our method generalizes 656

across different domains without requiring retrain- 657

ing, it further minimizes computational overhead. 658
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A Dataset details and statistics 954

Table 5 shows the data split for our evaluation 955

datasets. 956

HatefulMemes (Kiela et al., 2021) Released by 957

Meta in 2020, HatefulMemes contains 12,000 958

memes annotated as hateful or benign by trained ex- 959

perts. This benchmark dataset synthesizes memes 960

targeting religion, race, disability, and gender. It 961

includes confounder examples where the benign 962

memes are generated by altering either the image 963

or text to challenge models’ ability in multimodal 964

reasoning. 965

HarMeme and Harm-P HarMeme is a dataset 966

containing approximately 3,000 memes centered 967

on COVID-19 related political memes. A com- 968

panion dataset, Harm-P (Pramanick et al., 2021b), 969

contains around 3,000 memes related to US politics. 970

Although the original HarMeme was later renamed 971

Harm-C in subsequent work, we adhere to its orig- 972

inal name following previous studies (Cao et al., 973

2022). In HarMeme, memes are annotated into 974

three classes: very harmful, partially harmful, and 975

harmless. Consistent with prior work (Cao et al., 976

2022; Pramanick et al., 2021b), we merge the very 977

harmful and partially harmful categories into a sin- 978

gle hateful class, while treating harmless memes as 979

benign. 980

MAMI (Fersini et al., 2022) The MAMI dataset 981

focuses on detecting misogynistic memes sourced 982

from various social media platforms, including 983

Twitter and Reddit, as well as meme creation and 984

sharing websites, and even anti-women websites 985
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and forums. It contains annotation for two tasks:986

(1) binary classification of misogyny and (2) cat-987

egorization of misogyny types. In this work, we988

address the binary task of identifying whether a989

meme is misogynistic.990

MultiOFF (Suryawanshi et al., 2020) MultiOFF991

consists of memes gathered from Reddit, Facebook,992

Twitter, and Instagram, curated specifically for the993

detection of offensive content. Notably, the training994

set is extremely small, containing fewer than 500995

meme examples. We use this dataset to evaluate996

the applicability of our methods under ultra low-997

resource conditions.998

PrideMM (Shah et al., 2024) PrideMM contains999

LGBTQ+-themed memes annotated for four tasks:1000

hate speech detection, hate target identification,1001

topical stance classification, and humor detection.1002

In this work, we use the hate speech classification1003

annotations for hateful meme detection.1004

Datasets Train Test
#Benign #Hate #Benign #Hate

HatefulMemes 5450 3050 500 500
HarMeme 1949 1064 230 124
MAMI 4500 4500 500 500
Harm-P 1534 1486 173 182
MultiOFF 258 187 58 91
PrideMM 2581 2482 260 247

Table 5: Statistical summary of HatefulMemes and
HarMeme datasets

For HatefulMemes, HarMeme, and MAMI, we1005

report the Area Under the Receiver Operating Char-1006

acteristic Curve (AUC) and Accuracy (Acc) in line1007

with previous studies (Kumar and Nandakumar,1008

2022; Cao et al., 2023; Mei et al., 2024; Cao et al.,1009

2024). For Harm-P, MultiOFF, and PrideMM, we1010

report Accuracy and F1 score consistent with the1011

literature (Pramanick et al., 2021b; Mei et al., 2024;1012

Shah et al., 2024; Lin et al., 2024).1013

To access the Facebook HatefulMemes dataset,1014

one must follow the license from Facebook2.1015

HarMeme and Harm-P are distributed for research1016

purposes only, without a license for commercial1017

use. MultiOFF is licensed under CC-BY-NC.1018

MAMI is under Apache License 2.0. There is no1019

specified license for PrideMM.1020

2https://hatefulmemeschallenge.com/#download

B Experiment Setup and Implementation 1021

Details 1022

Environment. PyTorch 2.5.1, CUDA 1023

12.4, Huggingface Transformer 4.45.0 1024

and Python 3.10.12 were used for imple- 1025

menting the experiments. FAISS (Johnson et al., 1026

2021) vector similarity search library with version 1027

faiss-gpu 1.7.2 was used to perform dense 1028

retrieval. All the reported metrics were computed 1029

by TorchMetrics 1.0.1. 1030

Implementation Details. We use QLoRA 1031

(Dettmers et al., 2023) to fine-tune all LMMs, as 1032

our experiments show that LoRA and QLoRA 1033

perform similarly on this task while significantly 1034

outperforming full-parameter fine-tuning. The 1035

details for fine-tuning are covered in Appendix B.1. 1036

All reported metrics were based on the mean 1037

of five runs with different seeds. For statistical 1038

significance testing, each model is run five times 1039

with different random seeds. For baseline models, 1040

we strictly follow the settings specified in their 1041

original papers. 1042

Implementation environment. We conducted 1043

our experiments on a workstation equipped with 1044

NVIDIA RTX 3090 was used for the experiments. 1045

Run time The run time for RA-HMD two-stage 1046

fine-tuning on the HatefulMemes dataset is approx- 1047

imately 4 hours on a single NVIDIA RTX 3090 1048

GPU, and costs around 1 USD. 1049

To optimize efficiency in stage 2, we pre-extract 1050

the final hidden states from the frozen LMM and 1051

store them on disk before training, avoiding redun- 1052

dant LMM computations. This reduces the stage 2 1053

training time to approximately 10 minutes. 1054

In our ablation study, we examine the perfor- 1055

mance impact of merging the two-stage loss into a 1056

single fine-tuning stage. Since the LMM remains 1057

trainable in this setting, we cannot precompute and 1058

store the frozen LMM features, leading to signifi- 1059

cantly higher computational costs. This approach 1060

requires approximately 12 hours to complete fine- 1061

tuning on a single RTX 3090. 1062

B.1 LLaVA and Qwen2VL experiments 1063

We freeze the vision module throughout fine- 1064

tuning, following the standard LMM fine-tuning 1065

protocol. For prompt formatting, we adhere to 1066

InstructBLIP (Dai et al., 2023). For LLaVA few- 1067

shot experiments, since LLaVA is not explicitly 1068

trained to support in-context learning, we follow 1069
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the procedure outlined by Zong et al. (2024) to en-1070

able few-shot learning on LLaVA. For fine-tuning1071

LLaVA (Liu et al., 2023b,a), we follow the original1072

hyperparameters setting3 for fine-tuning on down-1073

stream tasks for both the SFT and RA-HMD stage1074

1 fine-tuning.1075

For Qwen2VL fine-tuning, we employ the1076

officially recommended fine-tuning library1077

LLaMA-Factory 0.9.14 with official hyper-1078

parameter settings for downstream tasks in both1079

the SFT and RA-HMD stage 1 fine-tuning. For1080

few-shot learning with Qwen2VL, we follow the1081

official multi-round conversation prompt format1082

to ensure consistency with the model’s intended1083

usage.1084

B.2 Hyperparameters for MLP and Stage 21085

Fine-tuning1086

The default hyperparameters for the MLP and the1087

stage 2 contrastive fine-tuning are shown in Table 6.1088

With this configuration of hyperparameters, the1089

number of trainable parameters is about 5 million.

Modelling hyperparameter Value

Projection dimension of MLP 1024
Number of layers in the MLP 2
Optimizer AdamW
Maximum epochs 30
Batch size 64
Learning rate 0.0001
Weight decay 0.0001
Gradient clip value 0.1

RGCL hyperparameter Value

# hard negative examples 1
# pseudo-gold positive examples 1
Similarity metric Cosine similarity
Loss function NLL
Top-K for RKC 20

Table 6: Default hyperparameter values

1090

C Statistical Significance Test1091

We conduct statistical significance tests comparing1092

the performance of SFT and RA-HMD fine-tuned1093

LMMs, as reported in Table 7.1094

D Insights for using LMMs1095

representation for Meme Classification1096

There has been substantial interest in adapting1097

decoder-only language models for retrieval and1098

classification tasks. In this section, we summarize1099

3https://github.com/haotian-liu/LLaVA
4https://github.com/hiyouga/LLaMA-Factory

the novelty of our approach in comparison to previ- 1100

ous efforts that attempt to repurpose decoder-only 1101

large language models (LLMs) or large multimodal 1102

models (LMMs) for such tasks. 1103

We categorize our adaptation attempts into two 1104

groups: (1) those that entirely failed to work for 1105

hateful meme classification, and (2) those that 1106

showed some promise in improving classification 1107

performance but significantly compromised the 1108

model’s language generation capabilities. Finally, 1109

we explain the rationale that led to the design of 1110

our current RA-HMD architecture. 1111

Attempts That Do Not Work 1112

Some prior approaches aim to modify the model 1113

architecture with contrastive training objective to 1114

enable bidirectional representations from decoder- 1115

only models. 1116

For instance, LLM2Vec (BehnamGhader et al., 1117

2024) proposes to introduce bidirectional attention 1118

and masked next-token prediction to make decoder- 1119

only models suitable for retrieval and general- 1120

purpose text embeddings. 1121

AutoVER (Xiao et al., 2024), on the other hand, 1122

introduces a special [RET] token and learns its 1123

embedding for visual entity retrieval. 1124

However, neither approach yielded meaningful 1125

improvements in our setting. When applied to hate- 1126

ful meme classification, both methods achieved 1127

classification accuracies only slightly above 60%. 1128

We attribute this failure to the limited availability 1129

of hateful meme training data, which is insufficient 1130

for training these complex adaptations effectively. 1131

Approaches That Partially Work 1132

Other works have explored using decoder-only 1133

LLM or LMM embeddings by either pooling the 1134

output token representations or using the final-layer 1135

embedding of the last token (Zhang et al., 2024; Li 1136

et al., 2023b; Wang et al., 2024a), often in combi- 1137

nation with contrastive learning. 1138

In our experiments, we found that mean pool- 1139

ing generally underperformed compared to using 1140

the final token embedding. While this approach 1141

achieved a reasonable classification accuracy of 1142

about 77% on the HatefulMemes dataset using 1143

Qwen2VL-7B (RA-HMS Qwen2VL-7B has an ac- 1144

curacy of 82%), it had a major drawback: the lan- 1145

guage generation ability of the model was com- 1146

pletely compromised. In practice, the model be- 1147

came unable to generate coherent text, suggest- 1148

ing that the learned representations were no longer 1149

aligned with the original language modeling objec- 1150

tive. 1151
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HatefulMemes HarMeme MAMI Harm-P MultiOFF PrideMM
Model AUC Acc. AUC Acc. AUC Acc. Acc. F1 Acc. F1 Acc. F1

LLaVA-1.5-7B
p-value 9.8e−3 3.5e−3 1.2e−2 8.5e−3 4.4e−3 6.2e−3 2.5e−3 1.6e−3 6.1e−3 4.6e−3 5.6e−3 8.9e−3

Qwen2VL-2B
p-value 4.2e−3 4.8e−3 9.1e−3 7.6e−3 6.5e−4 1.9e−4 9.3e−4 1.1e−3 2.0e−2 7.7e−3 7.1e−3 8.3e−3

Qwen2VL-7B
p-value 8.7e−4 2.4e−3 3.5e−2 1.6e−2 2.5e−3 2.6e−3 6.3e−3 8.6e−3 1.3e−2 5.9e−3 9.2e−3 7.2e−3

Table 7: For each LMM, we provide the p-value from significance testing between SFT and RA-HMD.

Our approach1152

To address these limitations, we propose two key1153

improvements that underpin the RA-HMD archi-1154

tecture:1155

• MLP Projection Head: We introduce a1156

lightweight, trainable multilayer perceptron1157

(MLP) on top of the final token embedding1158

from the LMM. While the language model1159

head (LMH) continues to use the original last-1160

token embedding for language generation, the1161

classification and retrieval heads operate on1162

the MLP-projected embedding. This separa-1163

tion enables the model to retain its language1164

generation capability while learning represen-1165

tations that are better suited for classification1166

and retrieval.1167

• Preserving the Language Modeling Objec-1168

tive: During Stage 1 of RA-HMD fine-tuning,1169

we retain the original language modeling loss1170

in the training objective. This encourages the1171

base embeddings to remain useful for text1172

generation, avoiding overfitting solely to the1173

classification task and preserving the model’s1174

general-purpose functionality.1175

E Numbers of Shots and Neighbors1176

We ablate the effects of varying the number of1177

shots for few-shot in-context learning and varying1178

the number of top K nearest neighbors for RKC.1179

Figure 3 demonstrates that increasing the num-1180

ber of in-context examples for LMMs does not con-1181

sistently yield performance improvements over the1182

zero-shot setting, and in some cases even causes1183

loss. These findings suggest that merely adding1184

more shots does not necessarily improve perfor-1185

mance, which is consistent with findings from1186

Huang et al. (2024).1187

Figure 3 shows that as the number of near-1188

est neighbors K for RKC increases, the perfor-1189

mance continues to increase for both AUC and1190

accuracy, plateauing at around K = 20. The con- 1191

sistent improvement in performance indicates that 1192

RKC trained with RA-HMD utilizes demonstra- 1193

tion examples more effectively than the standard 1194

in-context learning framework. 1195

Figure 3: Effects of increasing number of shots for in-
context learning with pre-trained LMM and effects of
increasing top K nearest neighbors for RKC trained with
RA-HMD

F Comparing Out-of-Domain 1196

Generalization Across Model Variants 1197

with In-Context Learning and RKC 1198

In this section, we compare the performance of the 1199

RKC inference mode against few-shot in-context 1200

learning for pre-trained LMMs, SFT LMMs, and 1201

LMMs fine-tuned using our proposed RA-HMD 1202

framework under the cross-dataset setting in Ta- 1203

ble 8. We observe three things: 1204

• RA-HMD-trained Qwen2VL-7B exhibits 1205

more robust generalization in the cross-dataset 1206

setting. Its in-context learning performance in 1207

few-shot scenarios consistently surpasses that 1208

of other models. 1209
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• RKC consistently outperforms the in-context1210

learning approach across all LMM variants,1211

demonstrating its superior ability to leverage1212

demonstration examples.1213

• Moreover, RA-HMD fine-tuned LMMs with1214

RKC outperform SFT LMMs with RKC, high-1215

lighting the effectiveness of our fine-tuning1216

strategy.1217

HatefulMemes HarMeme
Model Mode AUC Acc. AUC Acc.

Pre-trained Few-shot 71.5 63.8 71.5 67.2
Pre-trained RKC 74.5 64.5 80.1 72.4
SFT Few-shot 72.3 60.6 67.2 62.4
SFT RKC 75.8 67.1 84.5 75.4
RA-HMD Few-shot 74.3 63.5 73.2 68.1
RA-HMD RKC 77.1 69.3 88.8 81.7

Table 8: Comparing Pre-trained, SFT and RA-HMD sys-
tems with few-shot learning and RKC with Qwen2VL-
7B under cross-dataset settings. See Table 2

G Comparing Different Inference Modes1218

Table 9 compares Qwen2VL-7B fine-tuned with1219

RA-HMD using the three classifiers. Our results1220

indicate that under supervised settings, the differ-1221

ences among the three inference modes are mini-1222

mal. However, under cross-dataset settings, there1223

is a significant disparity in generalization perfor-1224

mance. Notably, RKC outperforms both LMH and1225

LRC, underscoring its superior effectiveness in han-1226

dling out-of-domain examples.

HatefulMemes HarMeme
Inference Mode AUC Acc. AUC Acc.

LMH 90.2 81.9 92.8 88.0
LRC 91.1 82.1 93.2 88.1
RKC 90.8 81.8 93.2 88.0

(a) Supervised settings, see Table 1 for detailed settings

HatefulMemes HarMeme
Inference Mode AUC Acc. AUC Acc.

LMH 74.2 64.3 64.5 60.3
LRC 59.5 55.4 57.9 52.2
RKC 77.1 69.3 88.8 81.7

(b) Cross-dataset settings, see Table 2 for detailed settings

Table 9: Comparing different inference modes using
RA-HMD fine-tuned Qwen2VL-7B. RKC shows much
better out-of-domain generalization compared to other
inference modes.

1227

H Ablation study on the loss function 1228

Table 10 shows the results when each loss objec- 1229

tive is removed from different stages of fine-tuning. 1230

Notably, when the cross-entropy loss is removed 1231

in stage 1 for the logistic regression component, 1232

the LRC fails to train properly via backpropaga- 1233

tion, resulting in performance that is equivalent to 1234

random guessing. Consequently, we exclude this 1235

case from our comparison. Overall, we observe that 1236

removing any loss function from the fine-tuning ob- 1237

jective leads to a significant drop in performance, 1238

highlighting the importance of each loss term in 1239

optimizing the model. 1240

Furthermore, Mei et al. (2024) utilize in-batch 1241

negative examples alongside hard negative exam- 1242

ples during training. However, we find that incorpo- 1243

rating in-batch negatives in Stage 2 of RA-HMD’s 1244

contrastive fine-tuning introduces noise and leads 1245

to a slight degradation in performance.

HatefulMemes HarMeme
Mode AUC Acc. AUC Acc.

RA-HMD 91.1 82.1 93.2 88.1
w/o LLM in stage 1 88.4 79.6 90.9 85.1
w/o LRGCL in stage 2 90.2 81.2 91.9 86.4
w/o LLR in stage 2 89.2 80.6 91.6 87.2

(a) Supervised settings, see Table 1

HatefulMemes HarMeme
Mode AUC Acc. AUC Acc.

RA-HMD 77.1 69.3 88.8 81.7
w/o LLM in stage 1 75.4 66.6 87.3 81.1
w/o LRGCL in stage 2 73.8 64.3 82.9 76.5
w/o LLR in stage 2 76.4 67.9 86.9 80.6

(b) Cross-dataset settings, see Table 2

Table 10: Ablation study of RA-HMD two-stage fine-
tuning framework on Qwen2VL-7B, evaluating the im-
pact of removing any of the loss objectives.

1246

I Evaluation on General Vision-Language 1247

Benchmarks 1248

To evaluate general vision-language capabilities, 1249

we use models fine-tuned on the HatefulMemes 1250

dataset via both supervised fine-tuning (SFT) 1251

and our proposed RA-HMD approach. We 1252

conduct the evaluation using the VLMEvalKit 1253

package5 (Duan et al., 2024). For MMMU, 1254

we report accuracy based on exact match us- 1255

ing the MMMU_DEV_VAL split to ensure re- 1256

producibility. For SeedBench, we use the 1257

5https://github.com/open-compass/VLMEvalKit
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SeedBench_IMG subset, also evaluated with ex-1258

act match. For GQA, we report results on the1259

GQA_TestDev_Balanced split. The full re-1260

sults are provided in Table 11.1261

Model MMMU SEEDBench GQA

Qwen2VL-2B 40.2 72.7 60.4
+SFT 39.1 72.1 57.0
+RA-HMD 40.4 72.7 60.1

Qwen2VL-7B 49.3 76.4 62.4
+SFT 48.0 75.2 61.2
+RA-HMD 49.2 76.4 62.3

Table 11: Comparison of the pretrained, SFT, and RA-
HMD Qwen2VL-2B models on three general vision-
language benchmarks. The SFT and RA-HMD models
are fine-tuned on the HatefulMemes dataset.

J GPT-4o Results and Prompts1262

We adopt the gpt-4o-2024-05-13 model for1263

our evaluations. We explore two prompting strate-1264

gies for GPT-4o. In Table 1, we present results1265

using optimized prompts, where the specific type1266

of hate (e.g., hatefulness, harmfulness, offensive-1267

ness, misogyny, etc.) is explicitly provided based1268

on the characteristics of each dataset. Below, we1269

include the detailed prompt formulations used for1270

each dataset:1271

• HatefulMemes:1272

You are an expert in identifying meme-based1273

social abuse. Given the meme, with the Text1274

[T] accompanied by the image. The task is1275

to classify whether the meme contains hateful1276

content or not. Please answer with ’yes’ or1277

’no’.1278

• Harmeme:1279

You are an expert in identifying meme-based1280

social abuse. Given the meme, with the Text1281

[T] accompanied by the image. The task is to1282

classify whether the meme contains harmful1283

content or not. Please answer with ’yes’ or1284

’no’.1285

• Harmp:1286

You are an expert in identifying meme-based1287

social abuse. Given the meme, with the Text1288

[T] accompanied by the image. The task is to1289

classify whether the meme contains harmful1290

content or not. Please answer with ’yes’ or1291

’no’.1292

• MultiOFF: 1293

You are an expert in identifying meme-based 1294

social abuse. Given the meme, with the Text 1295

[T] accompanied by the image. The task is to 1296

classify whether the meme contains offensive 1297

content or not. Please answer with ’yes’ or 1298

’no’. 1299

• PrideMM: 1300

You are an expert in identifying meme-based 1301

social abuse. Given the meme, with the Text 1302

[T] accompanied by the image. The task is 1303

to classify whether the meme contains hateful 1304

content related to LGBTQ+ Pride movement 1305

or not. Please answer with ’yes’ or ’no’. 1306

• MAMI: 1307

You are an expert in identifying meme-based 1308

social abuse. Given the meme, with the Text 1309

[T] accompanied by the image. The task is to 1310

classify whether the meme contains misogyny 1311

or not. Please answer with ’yes’ or ’no’. 1312

The low-resource comparison in Table 2 is de- 1313

signed to reflect real-world scenarios to detect the 1314

evolving harmful memes on the internet, where the 1315

specific type of hate is often unknown. Accord- 1316

ingly, we use the general term “hate” across all 1317

six datasets in this setting. Below, we include the 1318

detailed prompt formulations: 1319

• Given the meme, with the Text [T] accompa- 1320

nied by the image. Does the meme contain 1321

any hateful content or any social abuse? 1322

We directly present the comparison between the 1323

two sets of results in Table 12. For reference, Goat- 1324

Bench (Lin et al., 2025) published GPT-4o results 1325

on similar datasets using task-specific prompts. 1326

However, their evaluation is based on different data 1327

splits, making the results not directly comparable. 1328

Below, we summarize key differences in perfor- 1329

mance: 1330

• Hatefulness: This benchmark corresponds 1331

to our HatefulMemes dataset. While we use 1332

the test_seen split, Goat-Bench uses the 1333

test_unseen split. Despite this difference, 1334

the results are comparable: they report an ac- 1335

curacy of 71.7, while ours is 71.3. 1336

• Harmfulness: This benchmark aligns with 1337

our combined evaluation on HarMeme and 1338

Harm-P. Goat-Bench reports an accuracy of 1339
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66.01, whereas we achieve 72.9 on HarMeme1340

and 63.1 on Harm-P.1341

• Offensiveness: Due to the small size of the1342

MultiOFF dataset, Goat-Bench evaluates per-1343

formance using the combined training, vali-1344

dation, and test sets. In contrast, we report1345

results based solely on the test set. They re-1346

port an accuracy of 62.13 and an F1 score of1347

61.16, compared to our accuracy of 58.3 and1348

F1 score of 58.1.1349

K Rationale Generated by LMMs1350

We compare meme explanations generated by the1351

SFT and RA-HMD fine-tuned Qwen2VL-7B mod-1352

els (Table 1 rows 15 and 16). RA-HMD is evalu-1353

ated after Stage-1 fine-tuning, as Stage-2 does not1354

fine-tune the Language Model Head for language1355

generation. For evaluation, we prompt the above1356

two models with:1357

"Does the meme contain any hate speech or1358

offensive content? Please provide a detailed expla-1359

nation."1360

Following prior work (Yang et al., 2023),1361

we assess explanation quality using an LLM1362

judge. Specifically, we provide GPT-4o-mini1363

(gpt-4o-mini-2024-07-18) with reference1364

explanations from (Hee et al., 2023) and use the1365

comparison template from (Yang et al., 2023) for1366

pairwise evaluation. For reference, the prompt we1367

use is:1368
1369

[Instruction]1370
Please act as an impartial judge and1371
evaluate the quality of the responses1372
provided by two AI assistants to the1373
user question displayed below. You1374
should choose the assistant that follows1375
the user’s instructions and answers the1376
user’s question more accurately.1377

1378
When choosing the assistant, please1379
consider the true answers below:1380
Target: {true_label}{reference_info}1381
Implied Statement: This is a hateful1382
meme with text: "{meme_text}"1383

1384
Your evaluation should consider which1385
response is more similar to the true1386
answers. Begin your evaluation by1387
comparing the two responses and provide1388
a short explanation. Avoid any1389
positional biases and ensure that the1390
order in which the responses were1391
presented does not influence your1392
decision. Do not allow the length of the1393
responses to influence your evaluation.1394
Do not favor certain names of the1395

assistants. Be as objective as possible.1396

After providing your explanation, 1397
output your final verdict by strictly 1398
following this format: "[[A]]" if 1399
assistant A is more accurate, "[[B]]" if 1400
assistant B is more accurate, and "[[C 1401

]]" for a tie. 1402
1403

[Question] 1404
Determine whether the following post is 1405
offensive or not. You must choose one of 1406
the options. 1407

Post: A meme with text: "{meme_text}" 1408
Options: 1409
(A) Offensive 1410
(B) Not offensive 1411

1412
[The Start of Assistant A’s Answer] 1413
{example_a["reasoning"]} 1414
[The End of Assistant A’s Answer] 1415

1416
[The Start of Assistant B’s Answer] 1417
{example_b["reasoning"]} 1418
[The End of Assistant B’s Answer]} 14191420

Results are as follows: 1421

• RA-HMD beats SFT: 61.5 1422

• RA-HMD ties SFT: 13.8 1423

• SFT beats RA-HMD: 24.7 1424

Based on the analysis of the generated expla- 1425

nations, we find that improvements in classifica- 1426

tion accuracy are supported by deeper semantic 1427

understanding of memes. For challenging exam- 1428

ples, where comprehension of background events 1429

or fine-grained details from the image is required, 1430

the RA-HMD fine-tuned system generates better 1431

explanations. 1432

For reference, we include sample explanations 1433

of the meme examples in the Case Analysis in Ap- 1434

pendix L Table 13. 1435

Case 1 (Meme references 9/11 in a political con- 1436

text) 1437

• SFT: No. It does not contain any hate speech 1438

or offensive content. It appears to be a po- 1439

litical statement questioning the decision to 1440

vote for a particular political figure or party. It 1441

suggests a critique of the decision to support a 1442

political figure or party that is associated with 1443

the events mentioned in the text. 1444

• RA-HMD: Yes. The meme contains hate 1445

speech. It is offensive and disrespectful to 1446

suggest that the Twin Towers should be voted 1447

into the government. It is a tragic event that 1448

should never be forgotten, and it is not appro- 1449

priate to use it as a political meme. 1450
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HatefulMemes HarMeme MAMI Harm-P MultiOFF PrideMM
Model AUC Acc. AUC Acc. AUC Acc. Acc. F1 Acc. F1 Acc. F1

GPT-4o (Specific Prompt) - 71.3 - 72.9 - 79.4 63.1 64.5 58.3 58.1 75.3 73.7
GPT-4o (General Prompt) - 66.4 - 68.4 - 72.9 55.4 55.1 61.1 51.1 63.8 62.3

Table 12: Comparing the performance with GPT-4o with different prompts

Case 2 (Meme associates modern Japanese peo-1451

ple with suicide)1452

• SFT : No. It does not contain any hate speech1453

or offensive content. It simply features a per-1454

son holding a gun to their head with the text1455

"modern japanese" and two quotation marks.1456

The text and imagery do not convey any offen-1457

sive or hateful messages.1458

• RA-HMD: Yes. The meme contains hate1459

speech. It is a hateful meme that associates1460

modern Japanese people with suicide. It is a1461

very offensive meme.1462

Case 3 (Meme objectifies a woman with refer-1463

ences to the disability)1464

• SFT: No. It does not contain any hate speech1465

or offensive content. The meme contains text1466

that implies a sexual service is available for1467

purchase, which could be interpreted as ob-1468

jectifying or degrading. However, the image1469

itself does not contain any explicit or offensive1470

content.1471

• RA-HMD: Yes. The meme contains hate1472

speech. It is a hateful meme that makes fun1473

of a woman’s disability. It is a very offensive1474

meme.1475

These results further demonstrate the superior1476

meme understanding capabilities of RA-HMD, es-1477

pecially when compared to SFT.1478

L Case Analysis1479

L.1 Comparing SFT and RA-HMD1480

Predictions1481

Table 13 presents examples where our RA-HMD1482

method successfully corrects prediction errors1483

made by the SFT model on Qwen2VL-7B. Cases1484

1-4 involve hateful memes, while Cases 5-6 are1485

benign memes that the SFT model misclassified,1486

primarily due to poor multimodal alignment. These1487

examples require a deep, joint understanding of1488

both the image and text, a challenge that our RA-1489

HMD effectively addresses. For example, in Case1490

2, the model needs to use its understanding of 1491

Japanese culture and associate this knowledge with 1492

the visual cues in the image. 1493

L.2 Error Analysis 1494

In Table 14, we present examples where RA-HMD 1495

was unable to correct errors made by the baseline 1496

SFT model. In the first case, the model struggles 1497

with the nuanced visual understanding required to 1498

interpret the disabled body of the swimmer. Ad- 1499

ditionally, these examples demand complex rea- 1500

soning to assess the hatefulness of the memes. In- 1501

terpreting such nuanced meanings remains a chal- 1502

lenge for current models. However, we anticipate 1503

that the advanced reasoning capabilities of emerg- 1504

ing systems like OpenAI-o1 (OpenAI, 2024b) and 1505

DeepSeek-R1 (DeepSeek-AI, 2025) will help ad- 1506

dress these limitations. 1507

M Baseline Methods 1508

• Visual Programming Distillation (VPD) 1509

(Hu et al., 2024) builds an agentic LMM 1510

framework by fine-tuning the model’s ability 1511

to use external tools (e.g., writing and execut- 1512

ing programs). VPD fine-tunes PaLI-X 55B, 1513

achieving state-of-the-art performance on the 1514

HatefulMemes dataset. 1515

• ISSUES (Burbi et al., 2023) employs text in- 1516

version along with several projection layers 1517

and a feature combiner to enhance the pre- 1518

trained CLIP encoder, yielding state-of-the-art 1519

results on the HarMeme dataset. 1520

• RGCL (Mei et al., 2024) learns hate-aware 1521

vision and language representations through 1522

a contrastive learning objective applied to a 1523

pre-trained CLIP encoder, achieving state-of- 1524

the-art performance on the MultiOFF dataset. 1525

• ExplainHM (Lin et al., 2024) fine-tunes three 1526

LLMs arranged as two debaters (arguing 1527

whether a meme is hateful) and one judge 1528

(summarizing the debaters’ points) to both ex- 1529

plain and classify hateful memes. 1530
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• Pro-Cap (Cao et al., 2023) employs prompt-1531

ing techniques to guide pre-trained vision-1532

language models in generating image captions1533

that reflect hateful content. These generated1534

captions are then combined with textual infor-1535

mation to improve hateful meme detection.1536

• MemeCLIP (Shah et al., 2024) utilizes CLIP1537

features along with feature adapters to miti-1538

gate overfitting and employs a cosine classifier1539

to address class imbalance.1540

• HateCLIPper (Kumar and Nandakumar,1541

2022) explores various strategies to align and1542

fuse the visual and textual modalities in CLIP-1543

based encoders, enhancing their performance1544

on challenging hateful meme cases.1545

• LOREHM (Huang et al., 2024) adopts an1546

agent-based LMM framework that lever-1547

ages few-shot in-context learning and self-1548

improvement capabilities for low-resource1549

hateful meme detection.1550

• Mod-Hate (Cao et al., 2024) trains a suite of1551

LoRA modules and utilizes few-shot demon-1552

stration examples to train a module composer,1553

which assigns weights to the LoRA modules1554

for effective low-resource hateful meme de-1555

tection.1556

N AI Assistance1557

Our coding work was assisted by Github Copilot.1558

OpenAI ChatGPT was only used in proofreading1559

and spell-checking. We claim that the content pre-1560

sented in this paper was fully original.1561
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Case 1 Case 2 Case 3

Meme

Ground Truth #Hateful #Hateful #Hateful
SFT #Benign #Benign #Benign
RA-HMD #Hateful #Hateful #Hateful

Case 4 Case 5 Case 6

Meme

Ground Truth #Hateful #Benign #Benign
SFT #Benign #Hateful #Hateful
RA-HMD #Hateful #Benign #Benign

Table 13: Visualization of cases from SFT Qwen2VL-7B and RA-HMD Qwen2VL-7B Models on the HatefulMemes
Dataset. Case 5 contains an insect in the meme; we applied a blurring filter to obscure it.

Case 1 Case 2 Case 3

Meme

Ground Truth #Hateful #Hateful #Hateful
SFT #Benign #Benign #Benign
RA-HMD #Benign #Benign #Benign

Table 14: The error cases of SFT Qwen2VL-7B and RA-HMD Qwen2VL-7B models on HatefulMemes dataset
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