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Abstract

Federated learning usually requires specifying the amount of local computation
needed a priori. In this work, we instead propose a systematic scheme to auto-
matically adjust and potentially reduce the local computations while preserving
convergence guarantees. We focus on proximal-based methods, where we demon-
strate that the proximal operator can be evaluated inexactly up to a relative error,
rather than relying on a predefined sequence of vanishing errors. Our proposed
method, iFedDR, is based on a novel error-corrected version of inexact Douglas-
Rachford splitting. It mitigates the need for hyperparameter tuning the number
of client steps, by triggering refinement on-demand. We derive iFedDR as an in-
stance of a much more general construction, which allows us to handle minimax
problem, and which is interesting in its own right. Several numerical experiments
are carried out demonstrating the favorable convergence properties of iFedDR.

1 Introduction

Federated learning (FL) has emerged as a promising approach to distributed machine learning that
allows multiple clients to collaboratively train a model. In an attempt to keep communication costs
low, the clients repeatedly apply their update rule τ times before centrally aggregating the model and
proceeding to the next round.

A popular instance of this general idea is FedAvg (McMahan et al., 2017) which locally takes τ
gradient descent steps. Unfortunately, FedAvg requires a very small client stepsize in data heteroge-
neous settings to avoid the so called client-drift. This requirement appears theoretically as a horizon
dependent O(1/τ) client stepsize, which intuitively is used to prevent the τ steps to move beyond a
single (large) step of gradient descent (see e.g. Karimireddy et al. (2020, Thm. I)). Because of the
small stepsize the benefit of multiple local updates is unclear under data heterogeneous.

A more principled approach is arguably to instead use the local computation to approximate a well-
understood update rule such as the proximal operator, which is known to be more stable and usually
allows for larger stepsizes. FedProx (Li et al., 2020) was the first to use proximal operators for FL
and did so by directly averaging the client updates. This straightforward application of the prox turns
out to not necessarily converge to a solution when using fixed stepsize (Pathak & Wainwright, 2020,
Prop. 2) and proper convergence relies on behaving like FedAvg with τ = 1 by letting the proximal
stepsize γ go to zero (Malekmohammadi et al., 2022, Thm. 1). In other words, it might be argued
that one should simply use FedAvg with τ = 1 instead.

Fortunately there is a “correct” way to employ the proximal operator such that we can benefit from
its strong properties mentioned previously. By leveraging the operator splitting literature, FedSplit
(Pathak & Wainwright, 2020), FedDR (Tran Dinh et al., 2021) and FedPi (Malekmohammadi et al.,
2022) fixes the update rule of FedProx. However, all of these prox-based method still need the ap-
proximation errors of the proximal operator to be absolutely summable in the sense that the positive
approximation error sequence (εk)k∈� satisfies

∑∞
k=1 εk < ∞, but no further guidance is provided as

how to select them. This translates into requiring an increasing number of local updates that prob-
lematically needs to be specified preemptively.

This paper specifically looks at the approximation quality of the clients proximal update and ask:

Can we automate the number of local updates needed?
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Figure 1: Logistic regression on the heterogeneous vehicle dataset. (left) Similar to FedAvg and Fed-
Prox, FedDR does not necessarily converge if the proximal approximation is not accurate enough,
whereas iFedDR can converge by automatically adjusting the approximation quality to a sufficient
level. (right) The proximal stepsize γ can be taken large to speed up convergence and iFedDR will
automatically increase the number of local steps accordingly (cf. Remark 3.2 regarding the tradeoff).

We answer this in the affirmative by making the following contributions:

• We introduce the error-corrected algorithm, iFedDR, which automatically checks if refin-
ing the approximate evaluation of the proximal mapping is necessary through a computa-
tionally negligible error condition. This automatic adjustment mitigates the need for pre-
determining an appropriate number of client iterations, while allowing for large stepsizes
(see Figure 1). The construction is made possible by introducing a relative error condition,
which enables the error condition at each communication round to be treated separately.

• Our analysis for iFedDR extends to monotone inclusion problems and consequently enjoys
provable guarantees not only for (constrained) convex minimization but also for the im-
portant case of (constrained) minimax problems, and more generally m-player games. We
obtain iFedDR through a novel inexact preconditioned proximal point algorithm (iPPPA)
involving a semidefinite preconditioner and a correction step mitigating the effect of the
inexactness, which might be of independent interest.

• We demonstrate the favorable properties of iFedDR under heterogeneous data distributions.
A simple rule is proposed for minimizing the number of refinement calls. We observe that
iFedDR either match or improve the performance of the baselines without needing tuning.

1.1 Comparison with existing methods for federated learning

The issue of client drift for FedAvg is made precise in the (tight) lower bound Ω(H2/3/m2/3) for
convex and smooth functions in Glasgow et al. (2022, Thm. 3.3), where m is the number of outer
iterations and H is the heterogeneity constant in ∥∇fi(x)∥2 ≤ H2 + 2LB2( f (x) − f ⋆). The bound says
that FedAvg cannot avoid depending on the level of heterogeneity H and that the error decreases
relatively slowly as 1/m2/3.

To remove the dependency on the heterogeneity constant H and eventually obtain a O(1/m) rate,
FedDR (Tran Dinh et al., 2021) uses the local computation to instead approximate a proximal op-
erator on the clients, which are then integrated based on Douglas-Rachford splitting. The proposed
iFedDR method is an extension, that incorporates an adaptive stepsize and an extragradient cor-
rection step, to allow for the relaxed condition of relative inexactness. The relative error condition
mitigates the need for hyperparameter tuning of the number of client iterations. The iFedDR scheme
additionally enjoys provable guarantees for minimax problems. In contrast, the analysis technique
used in (Tran Dinh et al., 2021) relies on the Douglas-Rachford envelope (Themelis & Patrinos,
2020) and as such cannot be extended to the minimax setting. The (only) point of contact between
iFedDR and FedDR is for minimization problems, when the proximal operators can be computed
exactly, which is very rarely the case. See Appendix E for further details on comparison with FedDR.

FedDR itself can be seen as a relaxed version of FedSplit (Pathak & Wainwright, 2020) (FedSplit can
be recovered from FedDR by taking λk = 2). We note that without the relaxation it is not possible to
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Table 1: Comparison of iFedDR with existing algorithms under convexity and Li-smoothness of the
client objectives after m global iterations using τ local steps. The parameter H is the heterogeneity
constant. Due to the error-correction step, the proposed iFedDR method achieves a O( 1

γ3m ) com-
munication rate, while automatically setting the number of inner steps. The stepsize γ can be taken
large at the expense of a harder client subproblem. We use Õ to hide logarithmic factors.

Method Minimax Adaptive τ Comm. rate Local cond. number Proximal stepsize γ Reference

GD ✗ ✗ O( L
m ) - - (Nesterov et al., 2018)

FedAvg ✗ ✗ Ω( L
τm +

L1/3H2/3

m2/3 )2 - - (McMahan et al., 2017)
Scaffold ✗ ✗ Õ( L

m ) - - (Karimireddy et al., 2020, Thm. 3)
FedProx ✗ ✗1 O( 1

√
m )3 κi = 1 + γLi γ → 0 (Li et al., 2020)

FedDR ✗ ✗1 O( 1
mγ3 ) κi = 1 + γLi γ ∈ (0, 1/L) (Tran Dinh et al., 2021, Thm. 3.1)4

iFedDR ✓ ✓ O( 1
mγ3 ) κi = 1 + γLi γ > 0 Theorem 3.1

1 FedProx/FedDR requires a predefined summable error sequence regarding the client proximal updates.
2 The lowerbound for FedAvg is due to Glasgow et al. (2022, Thm. 3.3).
3 Convergence of FedProx requires decreasing stepsize sequence γk (Malekmohammadi et al., 2022, Thm. 1).
4 FedDR is analysed under nonconvex and Lipschitz continuous client objectives.

show convergence for convex problems without modifying the objective. For a detailed comparison
see Ryu & Yin (2022, Sec. 2.7.1) and Malekmohammadi et al. (2022, Sec. 3.3-3.4).

Another approach to removing the dependency on the heterogeneity constant H, is the Scaffold
algorithm, which uses the variance reduction technique SAGA to eventually obtain a rate of Õ(1/m)
in Karimireddy et al. (2020, Thm. III). The iFedDR algorithm uses the same level of communication
per iteration as Scaffold while saving on the memory usage on the server. In contrast with Scaffold,
iFedDR also extends to minimax problems and constrained problems with provable guarantees.

In the special case of strongly convex and smooth objectives, an acceleration of the communication
complexity was shown through ProxSkip (Mishchenko et al., 2022) by taking an (expected) number
of client steps with dependency on the conditioning number. The dependency was later improved in
followup works (Maranjyan et al., 2022; Sadiev et al., 2022). In contrast with these works, iFedDR
applies to general convex problems and as a byproduct does not require knowledge of the strong
convexity modulus. Our work takes an orthogonal direction to reducing the overall computation by
avoiding hyperparameter tuning of the client steps. Note that the prox referred to in ProxSkip is used
to capture the consensus constraint and is thus distinct from the one which is computed inexactly in
iFedDR.

An overview of the comparison is provided in Table 1 of Appendix A.

2 Problem setup & preliminaries

In order to capture both minimization problems and minimax problems we will be interesting in the
following finite sum inclusion problem, which seeks to find x ∈ �n such that

0 ∈ 1
N
∑N

i=1 Fi(x) +G(x), (2.1)

where each i ∈ [N] should be understood as a separate client, each only having access to their
associated operator Fi : �n → �n, while the server has access to the possible set-valued mapping G :
�n ⇒ �n. We will make the following assumptions (see Appendix B for any missing definitions).

Assumption I (Requirements for problem (2.1)).

(i) The operators Fi : �n → �n for all i ∈ [N] and G : �n ⇒ �n are maximally monotone.

(ii) The operator Fi is Li-Lipschitz continuous for all i ∈ [N], i.e.

∥Fi(x) − Fi(x′)∥ ≤ Li∥x − x′∥ ∀x, x′ ∈ �n.

Maximal monotonicity allows us to capture a large range of problems including (possibly con-
strained) convex minimization problems, convex-concave minimax problems and more generally
convex m-player games. We provide two prominent examples that can be cast as the inclusion (2.1)
below.
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Example 2.1 (Minimization). Consider the following convex optimization problem
minimizex∈�n

1
N
∑N

i=1 fi(x) + g(x) (2.2)
The first order stationary condition may be written in the form of the inclusion (2.1) by setting
Fi = ∇fi and G = ∂g. Maximally monotonicity of the operators are satisfied when g is proper lsc
convex and ( fi)i∈[N] are convex and smooth (cf. Appendix D.3 for details).
Example 2.2 (Minimax). Consider the following optimization problem

minimizeu∈�m maximizev∈�r g(u) + 1
N
∑N

i=1 fi(u, v) − h(v) (2.3)
Denoting x = (u, v) ∈ �n where n = m + r, the first order stationary condition may be written in the
form of the inclusion (2.1) with G(x) = (∂g(u), ∂h(v)), Fi(x) := (∇u fi(u, v),−∇v fi(u, v)). Maximally
monotonicity of the operators are satisfied when g, h are proper lsc convex and ( fi)i∈[N] are convex-
concave and Lipschitz continuous (cf. Appendix D.4 for details).

As the operators Fi are not accessible centrally, let x B (x1, ..., xN) ∈ �Nn and consider an equivalent
but lifted consensus formulation of (2.1) that we shall refer to as the primal inclusion in the lifted
space

0 ∈ TP(x) B A(x) + B(x) (2.4a)
with

A(x) B 1
N
(
F1(x1), . . . , FN(xN)

)
, B(x) B NC(x) + 1

N
(
G(x1), . . . ,G(xN)

)
(2.4b)

where C B {x ∈ �Nn | x1 = x2 = . . . = xN} is the consensus set, and NC = ∂δC denotes the normal
cone operator of the set C, while δC is the indicator function defined as δC(x) = 0 if x ∈ C and
+∞ otherwise. Maximal monotonicity of the operators A, B follows from that of Fi,G, and NC, and
since maximal monotonicity is closed under addition (Bauschke & Combettes, 2017, Prop. 20.23,
Ex. 20.26, Cor. 25.5). The dual problem associated with (2.4) consists of finding y ∈ �Nn such that

0 ∈ TD(y) B −A−1(−y) + B−1(y). (2.5)
The primal dual problem then consists of finding z = (x, y) ∈ �2Nn such that

0 ∈ TPD(z) B
[

A(x)
B−1(y)

]
+

[
y
−x

]
. (2.6)

The operator TPD is maximally monotone owing to the fact that skew symmetric linear operators
are maximally monotone, and since maximal monotonicity is closed under the inverse and addition
operators (Bauschke & Combettes, 2017, Prop. 20.22, 20.23, Cor. 25.5). A point z⋆ = (x⋆, y⋆)
solves the primal dual problem if and only if x⋆ is a solution to the primal problem (2.4) and y⋆
solves the dual problem (2.5).

When the resolvents of the operators A and B are available, a classical approach to solving both the
primal problem (2.4a) and the dual problem (2.5) is the Douglas-Rachford splitting (DRS) algorithm
(Douglas & Rachford, 1956):

uk = (id + γA)−1(sk)

vk = (id + γB)−1(2uk − sk)

sk+1 = sk + (vk − uk)

(DRS)

with a stepsize γ > 0. The iterates (uk)k∈� and (vk)k∈� are guaranteed to converge to a solution of
the primal problem (2.4a), while (yk)k∈� = (γ−1(uk − sk))k∈� converges to a solution of the dual
problem (2.5), when A, B are maximally monotone and a primal solution exists (Eckstein & Bert-
sekas, 1992). An alternative to (DRS) for solving (2.4a) is the forward-backward splitting (FBS),
(id+ γB)−1(id− γA). However, FBS may not converge when the operator A is merely monotone and
the condition on the stepsize γ is more stringent. In the next section we present iFedDR which we
obtain as an instance of an inexact and relaxed variant of DRS, that incorporates an error-correction
step enabling a relative error condition.

3 The iFedDR algorithm

We solve the primal dual problem (2.6) (and thus the original finite sum problem (2.1) through
the consensus reformulation (2.4)) with an error-corrected version of an inexact Douglas-Rachford
splitting (DRS) scheme that we refer to as iFedDR (Algorithm I). The update may appear difficult
to arrive at directly, and we indeed find it by casting DRS as a preconditioned proximal update

4
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Algorithm I The inexact federated Douglas-Rachford algorithm for problem 2.1 (iFedDR)

Require starting point s−1
i ∈ �

n, α−1 = 0 ∈ �, stepsize γ ∈ (0,∞), λ ∈ (0, 2), and σ ∈ (0, 1)
Repeat for k = 0, 1, . . . until convergence

I.1: Each client i ∈ [N] B {1, . . . ,N} computes
sk

i = sk−1
i − λαk−1(x̄k−1

i − p̂k−1)
and approximately compute the resolvent

x̄k
i ≃ (id + γFi)−1(sk

i ) (3.3)
and sends to the server (

x̄k
i , Fi(x̄k

i ), sk
i
)
.

I.2: The server computes the error-corrected average p̂k = (id + γG)−1( 1
N
∑N

i=1(x̄k
i − γFi(x̄k

i ))
)

and
the scalar quantities
ξk =

∑N
i=1 ∥x̄

k
i − p̂k∥2, ζk =

1
γ2

∑N
i=1 ∥γFi(x̄k

i )−sk
i + p̂k∥2, and µk =

∑N
i=1⟨x̄

k
i − p̂k, sk

i −γFi(x̄k
i )− p̂k⟩.

(3.4)
See Remark D.3 for how to carry out the computation memory-efficiently.

I.3: if
∑N

i=1 ∥s
k
i − γFi(x̄k

i ) − x̄k
i ∥

2 ≤ σ2 max{ξk, ζk} then
the server sends back

( p̂k, αk) where αk = µk/ξk.

I.4: else

request the clients to refine the approximation in (3.3) to higher accuracy.

Return p̂k

and instead working on this simpler abstraction level as detailed in Sections 4 and 5. The algorithm
includes an adaptive stepsize αk, an extragradient error-correction step, and a relative error condition
which can be efficiently computed on the server as commented on in Remark D.3.

Client subproblem Approximately computing the resolvent in (3.3) on the client amount to find-
ing an approximate zero to the following strongly monotone operator under Assumption I(i)

Fγi (x) := Fi(x) + 1
γ
(x − sk

i ), (3.1)

with the stepsize parameter γ > 0 (see Appendix D.3 for the special case of minimization). Due to
having an explicit optimization problem on the client, the approach becomes modular: The subprob-
lem may be solved in a variety of ways, e.g. with first-order methods such as the gradient method or
the extragradient method (Korpelevich, 1976). For minimization problem, where Fi = ∇fi reduces
to a gradient of some cost function fi, one may employ gradient descent, or its accelerated variants;
in case of additional structure such as scenarios where the client objectives fi itself is a finite sum,
variance reduction techniques may be employed.

Progress measure As a measure of progress we track the natural residual in the lifted space
defined as follows

Gγ(x) := 1
γ
(x − (id + γB)−1(x − γAx)) (3.2)

It is immediate that Gγ(x) = 0 if and only if x = (x, x, . . . , x) ∈ �Nn and x is a solution to the primal
problem (2.4), i.e., that x is a solution to the original problem (2.1).
Theorem 3.1. Suppose the operators in (2.4) satisfy Assumption I and zer(A + B) , ∅. Let (x̄k :=
1
N (x̄k

1, ..., x̄
k
N))k∈� be generated by iFedDR (Algorithm I) and s0 = 1

N (s0
1, ..., s

0
N). Then,

(i) The iterates (x̄k)k∈� converges to some x⋆ ∈ zer(A + B).

(ii) For all s⋆ = x⋆ + γAx⋆ where x⋆ ∈ zer(A + B), we have that

min
k=0,1,...,m

∥Gγ(x̄k)∥2 ≤
∥s0 − s⋆∥2

τ(m + 1)

where τ = (2−λ)λγ(1+γ2)
(1−σ)2 and m is the total number of communication rounds.
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Remark 3.2. Theorem 3.1 is obtained as a corollary of the more general Theorem 5.1 concerning
iPPPA, which is covered in Sections 4 and 5 (see Appendices D.1 and D.2 for the reduction). Some
remarks are in place. (i) Communication complexity: Theorem 3.1 implies, that to guarantee an ϵ-
accurate solution, iFedDR only needs m = O( 1

γ(1+γ2)ϵ ) communication rounds. (ii) Heterogeneity
agnostic: The theorem requires no heterogeneity assumption, i.e. the client operators Fi : �n →

�n can be arbitrarily different. (iii) Linear speedup in the number of clients: A centralized variant
would naively need access to

∑N
i=1 Fi(z), whereas this computation can be parallelized amongst N

clients with iFedDR, while still maintaining a O(1/m) rate. (iv) Accuracy-agnostic local solvers:
The errors from the proximal client solvers do not propagate to the rate in Theorem 3.1 due to the
error-correction step in iFedDR. Thus, the number of client updates does not have to be specified
preemptively based on the desired accuracy of the solution. (v) A natural tradeoff: A larger proximal
stepsize γ leads to a lower communication complexity through the factor 1

γ(1+γ2) . The price to pay is
a more expensive proximal subproblem on the clients, since the conditioning number of the strongly
monotone and Lipschitz continuous subproblem, κi = 1+ Liγ, becomes larger with increasing γ (cf.
Figure 1).

Linear convergence When dealing with minimization problems, linear convergence rate can be
established for the class of piecewise linear-quadratic (PLQ) functions (Rockafellar & Wets, 2011).

Definition 3.3 (Piecewise linear-quadratic). A function φ : �n → � is called piecewise linear-
quadratic (PLQ) if its domain can be represented as the union of finitely many polyhedral sets, and
in each such set it is given by an expression of the form 1

2 ⟨x,Hx⟩+ ⟨d, x⟩+c, for some c ∈ �, d ∈ �n,
and symmetric matrix H ∈ �n×n.

Piecewise linear-quadratic functions are widespread in application and include affine functions,
quadratic forms, indicators of polyhedral sets, polyhedral norms such as the ℓ1-norm, regularizers
such as elastic net, hinge loss, and many more, see (Aravkin et al., 2013).

We proceed to establish linear convergence for iFedDR when taking Fi = ∇fi and G = ∂g in (2.1)
with fi and g being PLQ. Notice that this assumption does not imply that the set of solutions is a sin-
gleton. Its proof is similar to (Latafat et al., 2019, Lem. IV), and relies on the fact that subdifferential
of fi and g as well as the normal cone of the consensus set are polyhedral sets implying that the oper-
ator T defined in (4.2) is metrically subregular at all points in its graph. Consequently, the following
corollary of Theorem 5.4 shows that iFedDR achieves linear rate for such problem classes.
Corollary 3.4 (Piecewise linear-quadratic functions). Suppose that the functions fi and g are piece-
wise linear-quadratic. Let Fi = ∇fi and G = ∂g in (2.1). Then, the sequences (sk

i )k∈� generated by
iFedDR (Algorithm I) converge R-linearly to zero.

4 DRS through inexact proximal point algorithm

To arrive at iFedDR (Algorithm I) we will start by considering a general inclusion problem, which
seeks a z ∈ �d such that

0 ∈ Tz. (4.1)
More compactly we will write the requirement as z ∈ zer T . The preconditioned proximal point
algorithm (PPPA) is given by

z̄k = (P + T )−1Pzk

zk+1 = zk + λk(z̄k − zk)
(PPPA)

where T : �d ⇒ �d is a set-valued operator and P ∈ �d×d is the preconditioning matrix.

The PPPA has been employed as an abstract framework to establish the convergence of numerical
methods such as augmented Lagrangian method (ALM), progressive hedging, Douglas-Rachford
splitting (DRS), various primal-dual methods, and many more (Rockafellar, 1976; Eckstein, 1988;
Rockafellar & Sun, 2019; Eckstein & Bertsekas, 1992).

While convergence of DRS (upon which iFedDR and FedDR relies) is typically studied through
nonexpansiveness properties of the resolvent (Bauschke & Combettes, 2017, Thm. 26.11), to allow
for relative inexact analysis we shall cast it as an instance of PPPA with a semidefinite precondi-
tioning. It is of immediate verification that DRS is nothing more than PPPA with the primal dual
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operator T = TPD as defined in (2.6) and the following preconditioning:

P =
[
γ−1I −I
−I γI

]
. (4.2)

Unlike the standard analysis of PPPA (Rockafellar, 1976) which assumes a positive definite pre-
conditioning, here the preconditioner P is only positive semidefinite. In recent years, PPPA with
semidefinite preconditioner has been studied in (Latafat & Patrinos, 2017, Thm. 3.4), (Bredies et al.,
2022, Sect. 2.1), (Evens et al., 2023, Thm. 2.4) and in the setting of DRS in (Condat, 2013, Thm.
3.3). However, existing results have been restricted to exact computations. Motivated by the above
reformulation of DRS as PPPA, we develop an inexactness variant of PPPA with mild conditions on
the inexactness suitable for federated learning applications. Our work is largely inspired by Solodov
& Svaiter (1999) which proposed relative inexactness as an alternative to the standard absolute
summable error criteria. In particular, we consider replacing (preconditioned) proximal updates by
the following

z̄ = (P + T )−1(Pz − ε) ⇐⇒ Pz − Pz̄ = v̄ + ε with v̄ ∈ T z̄,

where error ε ∈ �d would only be required to satisfy a relative condition waiving the summability
assumption. Although Solodov & Svaiter (1999) studies the classical proximal point method with
P = I, their analysis carries over to the case where P is positive definite. We here further generalize
their analysis and study PPPA under mere positive semidefiniteness of the preconditioner. To this
end we construct the positive definite matrix

R = I − Q + P ≻ 0, where Q = Πrange(P),

where ΠC(w) := arg minu∈C ∥u−w∥2 denotes the projection. While directly establishing convergence
of the sequence (zk)k∈� through the machinery of Fejér monotonicity is no longer possible (due to
lack of positive definiteness of P), we shall do so for the shadow sequence (Πrange(P)(zk))k∈� in the
space equipped with ⟨·, ·⟩R.

The proposed abstract inexact scheme corrects for the inaccuracy, ε, through an extragradient step
that we will synonymously refer to as the error-correction step. The scheme is defined by the fol-
lowing iterates given zk ∈ �d and the error tolerance σ ∈ (0, 1):

find z̄k ∈ �d and the associated v̄k ∈ T z̄k ∩ range P

s.t. Pzk − Pz̄k = v̄k + εk, ∥εk∥R−1 ≤ σmax
{
∥v̄k∥R−1 , ∥Pz̄k − Pzk∥R−1

}
compute zk+1 = zk − λkαkPv̄k where αk =

⟨v̄k, Pzk − Pz̄k⟩R−1

∥Pv̄k∥2R−1

(iPPPA)

We will study iPPPA under the following assumptions.

Assumption II (Requirements for abstract iPPPA).

(i) The operator T : �d ⇒ �d is maximally monotone, and the set of its zeros, zer T, is nonempty.

(ii) The preconditioning matrix P ∈ �d×d is positive semidefinite.

We obtain the error-corrected algorithms, iFedDR and iDRS, as instances of iPPPA through the
choice in (4.2). We remark that the requirement v̄k ∈ range P is a technical condition that is crucial in
the positive semidefinite setting studied here. Nevertheless, this condition is satisfied by construction
in iDRS and iFedDR and thus does not need to be verified. For detailed derivations see Appendix D.
We emphasize that in the convergence analysis in the next section, T and P are not restricted to the
particular choice made in (2.6) and (4.2) respectively, and are only required to satisfy Assumption II.

5 Convergence analysis

The convergence analysis of iPPPA hinges upon an indirect analysis by studying the properties of the
shadow sequences (wk)k∈� = (Qzk)k∈�, and (w̄k)k∈� = (Qz̄k)k∈� in place of the original sequences.
Having computed the points z̄k and v̄k by solving the approximate resolvent in the first step of iPPPA,
the update for evaluating wk+1 = Qzk+1 can be viewed (refer to the proof of Theorem 5.1 for details)
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as relaxed projections of wk onto the following halfspaces

Dk =
{
u | ⟨v̄k, Pw̄k − Pu⟩R−1 ≥ 0

}
. (5.1)

The projection ontoDk is given by the simple update

ΠR−1

Dk
(w) B arg min

u∈Dk

∥u − w∥2R−1 =

w − ⟨v̄
k ,Pw−Pw̄k⟩R−1

∥Pv̄k∥2
R−1

Pv̄k if w < Dk

w w ∈ Dk.
(5.2)

It is essential to ensure that the set Q zer T is contained withinDk. To see this note that since for any
w⋆ ∈ Q zer T there exists z⋆ ∈ zer T such that

⟨v̄k, Pw̄k − Pw⋆⟩R−1 = ⟨v̄k, PQw̄k − PQw⋆⟩R−1
(C.4)
= ⟨v̄k,RQw̄k − RQw⋆⟩R−1

= ⟨v̄k,Qz̄k − Qz⋆⟩ = ⟨v̄k, z̄k − z⋆⟩ ≥ 0,

where the last equality follows from v̄k ∈ range P, and the inequality follows from monotonicity of
T . Thus ensuring that Q zer T ⊆ Dk.

To ensure progress at every iteration (and thus to establish convergence), the crucial component in
our analysis is to argue that ⟨v̄k, Pwk − Pw̄k⟩R−1 remains strictly positive (when wk < Dk) even with a
semidefinite preconditioner P as long as certain conditions holds for the inaccuracy εk. The precise
requirement can be found in the update specified in iPPPA. The reader is referred to the proof of
Theorem 5.1 for further details.

Theorem 5.1 (Convergence and convergence rate analysis). Suppose that Assumption II holds and
that lim infk→∞(2− λk)λk > 0. If for some k ≥ 0, z̄k < zer T then αk > 0 is finite and ∥Pzk − Pz̄k∥ , 0.
Moreover, either the algorithm terminates in finite number of iterations with z̄k̄ ∈ zer T for some
k̄ ≥ 0, or it generates an infinite sequence (zk)k∈� for which the following hold

(i) (∥Pz̄k − Pzk∥)k∈� converges to zero.

(ii) (z̄k)k∈� converges to some z⋆ ∈ zer T.

(iii) For all z⋆ ∈ zer T, the sequence (z̄k)k∈� satisfies

min
k=0,1,...,m

dist2R−1 (0,T z̄k) ≤
∥Qz0 − Qz⋆∥2R−1

τ(m + 1)

where τ = lim infk→∞(2 − λk)λk
1

∥R∥(1−σ)2 .

Remark 5.2. Both iDRS and iFedDR are special cases of iPPPA so convergence of both schemes
immediately follows from Theorem 5.1 (see Appendix D.1 and Appendix D.2 respectively). In par-
ticular, Theorem 3.1 follows as a corollary.

Linear convergence We additionally study local linear properties of iPPPA under metric sub-
regularity (Dontchev & Rockafellar, 2009, Sect. 3) assumption of the operator T . This assumption
amounts to requiring the distance from the set of solutions to be upper bounded by a multiple of the
norm of Tz for all points z close to z⋆. This local property is a very mild assumption, and in par-
ticular does not imply uniqueness of the solution. Let us recall the notion of metric subregularity
(Dontchev & Rockafellar, 2009, Sect. 3):

Definition 5.3 (Metric subregularity). A set-valued mapping M : �n ⇒ �d is metrically subregular
at x̄ for ȳ if (x̄, ȳ) ∈ gph M and there exists a positive constant η together with a neighborhood of
subregularityU of x̄ such that

dist(x,M−1ȳ) ≤ η dist(ȳ,Mx) ∀x ∈ U.

Metric subregularity has been used extensively in the optimization literature for establishing linear
convergence for splitting techniques, see (Tseng, 2000; Drusvyatskiy & Lewis, 2018; Rockafellar,
2023).

Theorem 5.4 (Linear convergence under metric subregularity). Suppose that in addition to assump-
tions of Theorem 5.1, the operator T is metrically subregular at all z⋆ ∈ zer T for 0. Then, the
sequence (Πrange P zk)k∈� generated by iPPPA converges R-linearly.
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Figure 2: Logistic regression on a heterogeneous data split. We find that iFedDR can converge fast
without requiring tuning due to the error-correction step and automatic refinement. In contrast,
FedDR only converges when the number of inner iterations τ is set sufficiently high. Even with-
out any tuning iFedDR is competitive with all the baselines for which both client stepsize and client
steps are tuned.

6 Experiments

In this section we demonstrate iFedDR on a range of numerical problems.

Binary logistic regression We consider the vehicle dataset (Duarte & Hu, 2004) with the het-
erogenous split proposed for FL benchmarking in Wu et al. (2022) and a heterogenous split of the
w8a dataset (Chang & Lin, 2011) as used in Mishchenko et al. (2022). The settings uses 23 clients
and 10 clients respectively. We compare iFedDR against FedAvg, FedProx, FedDR and Scaffold
(see Appendix E for exact definitions). The baselines are given an unfair advantage by gridsearching
over the client stepsize and the number of inner iterations. In contrast, we run only a single configu-
ration of iFedDR. See Table 2 in Appendix F for details on the hyperparameters. We compare both
the total number of inner iterations and server iterations in Figure 2 (see Figure 5 for similar results
on w8a). If we tune the stepsizes λ and γ in iFedDR, we can improve the convergence speed further
as illustrated in Figure 8 of Appendix F and Figure 1.

Linear probing A common practice is to take off-the-shelf pre-trained models and specialize them
to a downstream task. Linear probing, in particular, freezes the feature mapping of a pre-trained
model and trains a linear classifier on top. We follow the setup in (Nguyen et al., 2022), which uses
a ResNet18 (He et al., 2016) pre-trained on ImageNet and for the downstream task considers a het-
erogeneous datasplit of CIFAR10 (Krizhevsky) across 20 clients with Dirichlet distribution with
parameter 0.1. All methods except for iFedDR are tuned (cf. Table 3 in Appendix F for hyperpa-
rameters). The results can be found in Figure 3 where iFedDR either matches or surpasses the tuned
baselines. We additionally train on Fashion-MNIST from scratch where we observe similar behavior
(cf. Appendix F).

We observe that the number of refinements is monotonically increasing in the number of server
steps. This observation motivates a very simple heuristic to almost entirely avoid the communication
overhead caused by refinement. We simply increase the number of initially used inner iterations at
the next server iteration k to be τk = τ × #(total refinements). The rule still enjoys the convergence
guarantees of Theorem 3.1, and, as long as the number of refinements are monotonically increasing,
it does not increase the total number of client steps. As illustrated in Figure 3 on CIFAR10, iFedDR
only needs 10 additional communication rounds in total using this simple rule. This can be further
decreased if a doubling strategy is employed, which is especially useful in ill-conditioned problems.
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Figure 3: (left) Linear probing on CIFAR10 under heterogeneous data split. The iFedDR algorithm
matches the test accuracy of a properly tuned FedDR algorithm. (right) By monotonically increasing
the subsequent inner iteration when a refinement is triggered, iFedDR only uses 10 more communi-
cation rounds over the cause of the entire training run.
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Figure 4: iFedDR on fair classification.
iFedDR matches FedDR without sweeping
over the number of inner steps.

Fair classification To demonstrate the applicability
to minimax problems, we consider the following for-
mulation of fair classification (Sharma et al., 2022;
Nouiehed et al., 2019):

minimize
u∈�m

maximize
v∈∆r

1
N
∑N

i=1 viℓi(u) − δ2∥v∥
2 (6.1)

where ∆r is the r-dimensional simplex and ℓi : �m →

� is the cross entropy loss over the client dataset. We
compare against baselines supporting projection. We
use the same dataset split of CIFAR10 and model con-
figuration as in Section 6 but report the test accuracy
on the worst class in Figure 4 (see Table 4 for hyper-
parameters).

7 Conclusion

We have developed a variant of FedDR, which automatically adjust the number of client iterations
and consequently mitigate the need for hyperparameter selection. The scheme enjoys guarantees
even for minimax problems (and more generally m-player games) and permits large proximal step-
sizes. Convergence is proven for a much more general method, namely an error-corrected proximal
point algorithm with a (general) semidefinite preconditioner, which might be interesting in its own
right. We demonstrate the favorable properties of the algorithm on a range of numerical experiments.
For future work it is interesting to extend the idea to partial participation and nonconvex problems.
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A Related works

Federated learning (FL) has seen considerable attention since it was first coined in (McMahan et al.,
2017). To treat heterogeneous data, (Li et al., 2020) proposed the prox-based method FedProx.
Prox-based FL methods have since been developed by building on operator splitting techniques as in
FedSplit (Pathak & Wainwright, 2020) and FedDR/FedPi (Tran Dinh et al., 2021; Malekmohammadi
et al., 2022). See Pathak & Wainwright (2020) for a detailed discussion on the convergence-failure
of pre-existing methods and Ryu & Yin (2022); Malekmohammadi et al. (2022) for an overview of
splitting algorithms. The FL setting has since its conception been extended to fixed point problems
(Malinovskiy et al., 2020) and minimax problem (Augenstein et al., 2019; Sharma et al., 2022;
Ramezani-Kebrya et al., 2023).

The idea of using a hyperplane projection as a correction step was first introduced in Solodov &
Svaiter (1999) for the proximal point method. It was later extended in Giselsson (2021) to treat
a large family of operator splitting approaches in a unified fashion and have been used for proving
convergence in nonmonotone problems (Pethick et al., 2023). A hyperplane projection argument was
also used in the adaptive stepsize for finding the intersection of convex sets analyzed in Combettes
(1997), which was recently applied to the FL setting in Jhunjhunwala et al. (2023).

B Preliminaries

We recall some standard definitions and refer to Bauschke & Combettes (2017); Rockafellar
(1970) for further details. We will the denote the distance to a set Z under the positive defi-
nite matrix D as distD(z,Z) := minz′∈Z ∥z − z′∥D and the normal cone to z ∈ Z as NZ(z) =
{v ∈ �n | ⟨v, z′ − z⟩ ≤ 0 ∀z′ ∈ Z}. A sequence (zk)k∈N is said to be Fejér monotone with respect to
a set S ⊆ �n if ∥zk+1 − z∥ ≤ ∥zk − z∥ for all z ∈ S, k ∈ N.

An operator or set-valued mapping A : �n ⇒ �d maps each point x ∈ �n to a subset Ax of �d. We
will use the notation A(x) and Ax interchangably. We denote the domain of A by

dom A B {x ∈ �n | Ax , ∅},
its graph by

gph A B {(x, y) ∈ �n ×�d | y ∈ Ax},

and the set of its zeros by
zer A B {x ∈ �n | 0 ∈ Ax}.

The inverse of A is defined through its graph: gph A−1 B {(y, x) | (x, y) ∈ gph A}. The resolvent of A
is defined by JA B (id+ A)−1, where id denotes the identity operator. When A is a subdifferential ∂g
of a closed, convex, and proper function g : �n → �, the resolvent reduces to the proximal operator,
i.e. (id + γA)−1(x) = proxγg(x) := arg miny∈�n g(y) + 1

2γ ∥y − x∥2 for γ > 0.

Definition B.1 (monotonicity). An operator A : �n ⇒ �n is said to be monotone, if for all
(x, y), (x′, y′) ∈ gph A

⟨x − x′, y − y′⟩ ≥ 0.

The operator A is said to be maximally monotone if its graph is not strictly contained in the graph
of another monotone operator.

C The inexact preconditioned proximal point algorithm (iPPPA)

Proof of Theorem 5.1 (Convergence and convergence rate analysis). Suppose that Pzk − Pz̄k , 0,
since otherwise 0 = v̄k+εk which combined with ∥εk∥R−1 ≤ σmax{∥v̄k∥R−1 , ∥Pzk−Pz̄k∥R−1 } = σ∥v̄k∥R−1

and σ ∈ (0, 1), implies v̄k = 0, i.e., that z̄k ∈ zer T .

That αk is finite follows from the fact that ∥v̄k∥ = 0 iff z̄k ∈ zer T .

We begin to derive a few basic relations that will be used in the sequel.

∥v̄k∥R−1 = ∥P(zk−z̄k)−εk∥R−1 ≥ ∥P(zk−z̄k)∥R−1−∥εk∥R−1 ≥ ∥P(zk−z̄k)∥R−1−σmax
{
∥v̄k∥R−1 , ∥Pz̄k − Pzk∥R−1

}
.

(C.1)
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Using the triangle inequality again

∥v̄k∥R−1 ≤ ∥Pzk − Pz̄k∥R−1 + ∥εk∥R−1 ≤ ∥Pzk − Pz̄k∥R−1 + σmax
{
∥v̄k∥R−1 , ∥Pz̄k − Pzk∥R−1

}
(C.2)

It follows from the last two inequalities that
1
ξ
∥v̄k∥R−1 ≤ ∥Pzk − Pz̄k∥R−1 ≤ ξ∥v̄k∥R−1 , (C.3)

where ξ = max
{
1 + σ, 1

1−σ

}
= 1

1−σ since σ < 0.

From the construction of R it follows that
P = R ◦ Q = P ◦ Q = Q ◦ P. (C.4)

We have the following identity
∥Pv̄k∥2R−1 = ⟨Pv̄k, Pv̄k⟩R−1 = ⟨PQv̄k, PQv̄k⟩R−1 = ⟨v̄k,Rv̄k⟩ = ∥v̄k∥2R, (C.5)

where v̄k ∈ range P was used in the third equality.

We start by introducing a shadow sequences wk = Qzk, w̄k = Qz̄k and defining the halfspace

Dk =
{
u | ⟨v̄k, Pw̄k − Pu⟩R−1 ≥ 0

}
. (C.6)

We have that Q zer T ⊆ Dk since for any w⋆ ∈ Q zer T there exists z⋆ ∈ zer T such that
⟨v̄k, Pw̄k − Pw⋆⟩R−1 = ⟨v̄k, PQw̄k − PQw⋆⟩R−1

(C.4) = ⟨v̄k,RQw̄k − RQw⋆⟩R−1

= ⟨v̄k,Qz̄k − Qz⋆⟩

= ⟨v̄k, z̄k − z⋆⟩ ≥ 0,

where the last equality follows from v̄k ∈ range P, and the inequality follows from monotonicity of
T .

Suppose that wk < Dk for the moment. The alternative will be dealt with later. Then, it follows from
Fact C.1 that

ΠR−1

Dk
(wk) = wk −

⟨v̄k, Pwk − Pw̄k⟩R−1

∥Pv̄k∥2R−1

Pv̄k.

Note that
wk+1 = Qzk+1 = Qzk − λkαkQPv̄k = wk − λkαkPv̄k = (1 − λk)wk + λk Π

R−1

Dk
(wk).

Recall that the mapping (1−λk)id+λk Π
R−1

Dk
is λk/2-averaged in the space equiped with ⟨·, ·⟩R−1 . Hence,

the sequence (wk)k∈� is Fejér monotone relative to Q zer T , i.e.,

∥wk+1 − w⋆∥2R−1 ≤ ∥wk − w⋆∥2R−1 −
1−
λk
2
λk
2

∥wk+1 − wk∥2

= ∥wk − w⋆∥2R−1 − (2 − λk)λkα
2
k∥Pv̄k∥2R−1 (C.7)

We proceed to consider two cases.

♠ Case 1: max{∥v̄k∥R−1 , ∥Pzk − Pz̄k∥R−1 } = ∥v̄k∥R−1 .

We have
⟨v̄k, Pzk − Pz̄k⟩R−1 = ⟨v̄k, v̄k + εk⟩R−1

≥ ∥v̄k∥2R−1 − ∥v̄k∥R−1∥εk∥R−1 = ∥v̄k∥R−1

(
∥v̄k∥R−1 − ∥εk∥R−1

)
≥ (1 − σ)∥v̄k∥2R−1 (C.8)

≥
(1−σ)
ξ
∥P(zk − z̄k)∥R−1∥v̄k∥R−1 (C.9)

where (C.3) was used in the last inequality.

♠ Case 2: max{∥v̄k∥R−1 , ∥Pzk − Pz̄k∥R−1 } = ∥Pzk − Pz̄k∥R−1 .

Similarly, we have
⟨v̄k, Pzk − Pz̄k⟩R−1 = ∥Pzk − Pz̄k∥2R−1 − ⟨ε

k, Pzk − Pz̄k⟩R−1

≥ ∥Pzk − Pz̄k∥2R−1 − ∥Pzk − Pz̄k∥R−1∥εk∥R−1
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≥
(1−σ)
ξ
∥P(zk − z̄k)∥R−1∥v̄k∥R−1 , (C.10)

where (C.3) was used in the last inequality.

In either case, we have
⟨v̄k, Pzk − Pz̄k⟩R−1 ≥

(1−σ)
ξ
∥P(zk − z̄k)∥R−1∥v̄k∥R−1 . (C.11)

If wk ∈ Dk, then
0 ≥ ⟨v̄k, Pwk − Pw̄k⟩R−1 = ⟨v̄k, Pzk − Pz̄k⟩R−1 ≥

(1−σ)
ξ
∥P(zk − z̄k)∥R−1∥v̄k∥R−1

which implies z̄k ∈ zer T since it must be that ∥v̄k∥R−1 = 0.

Suppose that wk < Dk. Then,

αk∥Pv̄k∥R−1 =
⟨v̄k, Pzk − Pz̄k⟩R−1

∥Pv̄k∥2R−1

∥Pv̄k∥R−1

(C.11) ≥ (1−σ)
ξ
∥P(zk − z̄k)∥R−1

∥v̄k∥R−1

∥Pv̄k∥R−1

(C.5) = (1−σ)
ξ
∥P(zk − z̄k)∥R−1

∥v̄k∥R−1

∥v̄k∥R
≥ c2

(1−σ)
ξ
∥P(zk − z̄k)∥R−1 (C.12)

for c2 = 1/
√
∥R∥ > 0, where we have used that the Rayleigh quotient,

∥v̄k∥2
R−1

∥v̄k∥2
, can be lower bounded by

λmin(R−1) = 1/∥R∥ where λmin(R−1) denotes the minimum eigenvalue of R−1.

We showed that if wk ∈ Dk, the algorithm has terminated. Otherwise, if wk < Dk, using (C.12) in
(C.7) yields

∥wk+1 − w⋆∥2R−1 ≤ ∥wk − w⋆∥2R−1 − (2 − λk)λk
c2

2(1−σ)2

ξ2
∥Pz̄k − Pzk∥2R−1 (C.13)

≤ ∥wk − w⋆∥2R−1 − (2 − λk)λk
c2

2(1−σ)2

ξ4
∥v̄k∥2R−1 . (C.14)

It follows that (wk)k∈� is bounded. In turn, implying boundedness of (z̄k)k∈� after observing that

z̄k = (P + T )−1Pzk = (P + T )−1Pwk, (C.15)
and that the preconditioned resolvent is locally bounded. Moreover, using a telescoping argument
we have that (∥v̄k∥)k∈� converges to zero, implying that the limit points of z̄k belong to zer T as
claimed. Hence, the limit points of (w̄k)k∈� = (Qz̄k)k∈� belong to Q zer T . As another consequence
of (C.13), we have ∑∞

k=0 ∥w̄
k − wk∥2R =

∑∞
k=0 ∥Pz̄k − Pzk∥2R−1 < ∞, (C.16)

which implies that the limit points of (wk)k∈� belong to Q zer T as well. The convergence of (wk)k∈�
then follows by (Bauschke & Combettes, 2017, Thm. 5.5). In turn by continuity of the precondi-
tioned resolvent and (C.15) the convergence of (z̄k)k∈� follows.

The rate follows by telescoping (C.14) to obtain

1
m+1
∑m

k=0 ∥v̄
k∥2R−1 ≤

∥w0−w⋆∥2
R−1

τ(m+1) (C.17)

with τ = lim infk→∞(2 − λk)λkc2
2(1−σ)2/ξ4. Observing that distR−1 (0,T z̄k) := minūk∈T z̄k ∥ūk∥R−1 ≤ ∥v̄k∥R−1

completes the proof.

Fact C.1. Given a point r < Dk, the projection ontoDk is given by

ΠR−1

Dk
(r) = r −

⟨v̄k, Pr − Pw̄k⟩R−1

∥Pv̄k∥2R−1

Pv̄k.

Proof of Theorem 5.4 (Linear convergence under metric subregularity). The proof relies on estab-
lishing a contraction by exploiting metric subregularity assumption and builds upon the analysis
of (Latafat & Patrinos, 2017, Thm. 3.3) extending it to the inexact preconditioned proximal point
setting with positive semidefinite preconditioning.

Recal that Q = range P and note that
P = R ◦ Q = P ◦ Q = Q ◦ P. (C.18)
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Recall that by the descent inequality for the shadow sequence (C.13):

dist2R−1 (wk+1,Q zer T ) ≤ ∥wk+1 − ΠR−1

Q zer T (wk)∥2R−1

≤ ∥wk − ΠR−1

Q zer T (wk)∥2R−1 − (2 − λk)λk
c2

2(1−σ)2

ξ2
∥Pz̄k − Pzk∥2R−1

= dist2R−1 (wk,Q zer T ) − (2 − λk)λk
c2

2(1−σ)2

ξ2
∥Pz̄k − Pzk∥2R−1 (C.19)

where in the last equality (C.18) was used, while attainment of the projection is obtained by convex-
ity of zer T .

We proceed to establish a contraction in terms of the above distance sequence by lower bounding
the last term. By Theorem 5.1 the sequence z̄k converges to some z⋆ ∈ zer T . Therefore, up to
discarding initial iterates, the whole sequence lies within the neighborhood of metric subregularity.
Since v̄k ∈ T z̄k, it follows from the subregularity assumption that there exists some η > 0 such that

dist(z̄k, zer T ) ≤ η∥v̄k∥. (C.20)
On the other hand, for the shadow sequence

distR−1 (w̄k,Q zer T ) = inf
v∈zer T

∥Qv − w̄k∥R−1 = inf
v∈zer T

∥Qv − Qz̄k∥R−1

≤ inf
v∈zer T

∥v − z̄k∥R−1 = distR−1 (z̄k, zer T )

≤ ∥R−1∥1/2 dist(z̄k, zer T )

≤ η∥R−1∥1/2∥v̄k∥

≤ η∥R−1∥1/2∥R∥1/2∥v̄k∥R−1 (C.21)
where (C.20) was used in the second last inequality while ∥Q∥ = 1 was used in the first one.

distR−1 (wk,Q zer T ) ≤ ∥wk − ΠQ zer T (w̄k)∥R−1 ≤ ∥w̄k − ΠQ zer T (w̄k)∥R−1 + ∥w̄k − wk∥R−1

= distR−1 (w̄k,Q zer T ) + ∥w̄k − wk∥R−1

(C.21)
≤ η∥R−1∥1/2∥R∥1/2∥v̄k∥R−1 + ∥w̄k − wk∥R−1

(C.18)
≤ η∥R−1∥1/2∥R∥1/2∥v̄k∥R−1 + ∥R−1∥ ∥Pz̄k − Pzk∥R−1

(C.3)
≤ ∥R−1∥1/2(ηξ∥R∥1/2 + ∥R−1∥1/2)∥Pz̄k − Pzk∥R−1 .

Combined with (C.19), Q-linear convergence of distR−1 (wk,Q zer T ) follows. In turn, by rearranging
(C.19), R-linear convergence of (∥Pzk −Pz̄k∥2R−1 )k∈� and consequently that of (∥v̄k∥2R−1 )k∈� follows by
(C.3). In light of finite αk > 0 (due to Theorem 5.1) and since ∥wk+1 − wk∥R−1 = λkαk∥Pv̄k∥R−1 and
(C.12), the claimed rate for (∥wk+1 − wk∥2R−1 )k∈� and the shadow sequence (wk)k∈� follows.

D Special cases of iPPPA

D.1 Inexact Douglas-Rachford splitting

Consider the following inclusion problem which seeks x ∈ �d/2 such that
0 ∈ (A + B)x (D.1)

where A : �d/2 ⇒ �d/2 and B : �d/2 ⇒ �d/2 are maximally monotone. As noted in Section 4, DRS
applied to problem (D.1) can be written as an instance of PPPA.

We instead consider an inexact version of PPPA with correction, which we recall for convenience
while dropping the iteration counter k. Given z ∈ �d, one iteration of the scheme proceeds as
follows:

find z̄ ∈ �d and the associated v̄ ∈ T z̄ ∩ range P
s.t. Pz − Pz̄ = v̄ + ε, ∥ε∥R−1 ≤ σmax

{
∥v̄∥R−1 , ∥Pz̄ − Pz∥R−1

}
compute z+ = z − λαPv̄ where α =

⟨v̄, Pz − Pz̄⟩R−1

∥Pv̄∥2R−1

(iPPPA)
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To derive the iDRS algorithm we apply iPPPA to the primal dual problem (2.6) by taking the operator
T = TPD and choose the preconditioner P as defined in (4.2). Note that the following derivation
works for any maximally monotone operators A, B, and the operators do not necessarily have to
be chosen as in (2.4b). We will later in Appendix D.2 specialize to (2.4b) involving the consensus
constraint to derive the iFedDR algorithm. The iPPPA reduces to

z̄ = (P + T )−1(Pz − ε) ⇔ Pz − Pz̄ ∈ T z̄ + ε

⇔

[
γ−1x − y
γy − x

]
−

[
γ−1 x̄ − ȳ
γȳ − x̄

]
∈

[
Ax̄ + ȳ

B−1ȳ − x̄

]
+

[
ε1
ε2

]
with ε = (ε1, ε2) and z̄ = (x̄, ȳ). By picking s = x − γy the update for x̄ reduces to

x̄ = (id + γA)−1(s − γε1) ⇔ x̄ = s − γ(ū + ε1) with ū ∈ Ax̄. (D.2)
With s̄ := x̄ − γȳ and v̄ = (v̄1, v̄2), we further have

T z̄ =
[

Ax̄ + ȳ
B−1ȳ − x̄

]
∋

[
v̄1
v̄2

]
=

[
γ−1(s − s̄) − ε1

s̄ − s − ε2

]
and Pz − Pz̄ =

[
γ−1(s − s̄)

s̄ − s

]
. (D.3)

The range of P consists of vectors of the form (a,−γa) for some a ∈ Rd/2. The requirement v̄ ∈
range P implies that v̄ must have the structure v̄2 = −γv̄1. Thus, it follows from the inclusion in
(D.3) that the update for ȳ reduces to

ȳ = (id + B−1)−1(γ−1s) = γ−1s − γ−1(id + γB)−1s (D.4)
where the last equality uses the resolvent identity (Rockafellar & Wets, 2011, Lm. 12.14),

β(id + β−1M)−1x + (id + βM−1)−1(βx) = βx. (D.5)
which holds when the operator M : �d/2 ⇒ �d/2 is maximally monotone and β > 0.

The requirement v̄ ∈ range P puts a restriction on ε, which can be characterized by developing the
inclusion in (D.3)[

−γAx̄ − γȳ
B−1ȳ − x̄

]
∋

[
s̄ − s + γε1
s̄ − s − ε2

]
⇔ γ−1(s − (γε1 + ε2)) ∈ ȳ + γ−1B−1ȳ

⇔ ȳ = (id + B−1)−1(γ−1(s − (γε1 + ε2)))
This together with (D.4) in turn implies that ε2 = −γε1.

Note that
v̄2 = −γv̄1 = −γ(ū + ȳ).

We are now ready to compute the following quantities appearing in iPPPA

∥Pz − Pz̄∥R−1 = 1
√
γ
∥s̄ − s∥

∥ε∥R−1 =
√
γ∥ε1∥

∥v̄∥R−1 =
√
γ∥ū + ȳ∥

∥Pv̄∥R−1 =
1+γ2
√
γ
∥ū + ȳ∥

⟨v̄, Pz − Pz̄⟩R−1 = ⟨ū + ȳ, s − s̄⟩

All that remains is to write down the update rule for the next iterate s+,

s+ = x+ − γy+ = x − λαv̄1 − γy + γλαv̄2 = s − λα (1+γ2)2

γ
(ū + ȳ),

where we have used that [
x+
y+

]
=

[
x
y

]
− λαPv̄ =

[
x − λα( 1

γ
+ γ)(ū + ȳ)

y + λα(1 + γ2)(ū + ȳ)

]
.

We can now define the inexact DRS algorithm (iDRS) specified in Algorithm II by specializ-
ing iPPPA. We absorb the γ-dependent factor into the adaptive stepsize parameter by setting
αk = α

(1+γ2)2

γ
, since the constants turns out to cancel out.

To provide convergence guarantees for the iDRS algorithm, we will generalize the natural residual
defined in (3.2) to allow for the operator A to be possibly set-valued:

Gγ(x̄k) := 1
γ
(x̄k − (id + γB)−1(x̄k − γūk)) (D.8)
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Algorithm II Inexact DRS (iDRS)

Require s0 ∈ �d/2 λ ∈ (0, 2), γ ∈ (0,∞), σ ∈ (0, 1)
Repeat for k = 0, 1, . . . until convergence
II.1: Find

x̄k = sk − γ(ūk + εk
1) and the associated ūk ∈ Ax̄k (D.6)

ȳk = γ−1(x̄k − γūk) − γ−1(id + γB)−1(x̄k − γūk) (D.7)

s̄k = x̄k − γȳk

such that
∥εk

1∥ ≤ σmax
{
∥ūk + ȳk∥, 1

γ
∥s̄k − sk∥

}
II.2:

sk+1 = sk − λαk(ūk + ȳk) with αk =
⟨ūk + ȳk, sk − s̄k⟩

∥ūk + ȳk∥2

Return sk+1

where ūk is the point in the set Ax̄k as defined in (D.6). It is of immediate verification that the natural
residual Gγ(x̄k) vanishes if and only if x̄ ∈ zer(A + B).

The iDRS algorithm enjoys the following convergence guarantee.

Theorem D.1. Suppose that A : �d/2 ⇒ �d/2 and B : �d/2 ⇒ �d/2 are maximally monotone and
that zer(A+B) , ∅. Let TPD : �d ⇒ �d as in (2.6) and let (x̄k)k∈� and (ȳk)k∈� be generated by iDRS
(Algorithm II). Then,

(i) The iterates (x̄k, ȳk)k∈� converges to some (x⋆, y⋆) ∈ zer TPD.

(ii) For all s⋆ = x⋆ − γy⋆ where (x⋆, y⋆) ∈ zer TPD, we have that

min
k=0,1,...,m

∥Gγ(x̄k)∥2 ≤
∥s0 − s⋆∥2

τ(m + 1)
(D.9)

where τ = (2−λ)λγ(1+γ2)
(1−σ)2 .

Proof. The claim is obtain as a special case of Theorem 5.1(iii) where maximal monotonicity of T =
TPD (Assumption II(i)) in Theorem 5.1 is implied by that of the operators A and B. Assumption II(ii)
is satisfied by the choice of the preconditioner P in (4.2). Theorem D.1(i) follows directly from
Theorem 5.1(ii) with T = TPD.

To establish the convergence rate in terms of variables of iDRS we will specialize the ∥v̄k∥2R−1 ap-
pearing in the rate (C.17):

∥v̄k∥2 = ∥v̄k
1∥

2 + ∥v̄k
2∥

2 = (1 + γ2)∥Gγ(x̄k)∥2 (D.10)

where we have used that
v̄k

2 = −γv̄
k
1 = −γ(ū

k + ȳk) = γGγ(x̄k)

where the last equality follows from (D.7) by recognizing the definition of the natural residual (D.8).
Furthermore, we have

∥v̄k∥2R−1 ≥
1
∥R∥∥v̄

k∥2 =
γ

1+γ2 ∥v̄k∥2 (D.11)

where the last equality follows from the particular choice of the preconditioner P in (4.2).

Combining (D.10) and (D.11) we get

γ∥Gγ(x̄k)∥2 ≤ γ
1+γ2 ∥v̄k∥2 ≤ ∥v̄k∥2R−1 (D.12)

What remains is to specialize the initial distance ∥Qz0 − Qz⋆∥2R−1 . From the particular choice of the
preconditioner P, we have that

Q(z) := Πrange(P)(z) = 1
1+γ2

[
s
−γs

]

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

with z = (x, y) and s = x − γy. It follows that

∥Qz0 − Qz⋆∥2R−1 ≤ ∥R−1∥ ∥Qz0 − Qz⋆∥2 = ∥R
−1∥

1+γ2 ∥s0 − s⋆∥2 (D.13)

where s⋆ = x⋆ − γy⋆ with (x⋆, y⋆) ∈ zer TPD. By substituting the computed quantities (D.12) and
(D.13) into the rate (C.17) and choosing constant λk = λ for simplicity, we obtain

min
k=0,1,...,m

γ∥Gγ(x̄k)∥2 ≤
∥R∥ ∥R∥−1(1 − σ)2∥s0 − s⋆∥2

(2 − λ)λ(1 + γ2)(m + 1)
Rearranging and noting that ∥R∥ ∥R−1∥ = 1 completes the proof.

D.2 The inexact federated Douglas-Rachford algorithm

The iDRS algorithm developed in Appendix D.1 can further be specified to the federated learning
setting by making the particular choice of the operators A, B provided in (2.4b). Note that the result-
ing inclusion problem (2.4) is an equivalent reformulation of the original federated learning problem
(2.1) as covered by Section 2. The reformulation introduces a lifted space whose variable will be
indicated by bold font, e.g. x ∈ �Nn.

The iDRS algorithm requires computing the resolvent (id − γB)−1 which acts in the lifted space.
The computation simplifies under the particular choice of the operator B in (2.4b) involving the
consensus constraint by reducing to computing the resolvent of G on an average as made precise
in Lemma D.2. See e.g. Latafat et al. (2021, Lm. 3.1) for a similar result in the specific case of
minimization.

Lemma D.2. Let B : �Nn ⇒ �Nn be defined as in (2.4b) and γ > 0. Then, given x = (x1, ..., xN) ∈
�Nn, the resolvent of B can be computed as follows

(id + γB)−1(x) =
{
(z̄, ..., z̄) | z̄ ∈ (id + γN G)−1( 1

N
∑N

i=1 xi)
}
.

Proof. Let z ∈ (id+γB)−1(x). Due to the consensus constraint we have that z = (z̄, ..., z̄) from which
the following equivalences follows:

z ∈ (id + γB)−1(x)
⇐⇒ x ∈ z + γBz
⇐⇒ xi ∈ z̄ + γN Gz̄ ∀i ∈ [N]

⇐⇒ 1
N
∑N

i=1 xi ∈ z̄ + γN Gz̄

⇐⇒ z̄ ∈ (id + γN G)−1( 1
N
∑N

i=1 xi)
This completes the proof.

With the particular choice of the operators A, B in (2.4b), the coordinates of iDRS reduces into
blocks. In what follows, we will refer to the variables in iDRS using bold font to make it apparent
that iDRS acts on the lifted space. For convenience we will rescale the variables in iDRS by N such
that

x̄k = 1
N (x̄k

1, ..., x̄
k
N), ūk = 1

N (ūk
1, ..., ū

k
N), ȳk = 1

N (ȳk
1, ..., ȳ

k
N)

s̄k = 1
N (s̄k

1, ..., s̄
k
N), sk = 1

N (sk
1, ..., s

k
N), εk

1 =
1
N (εk

1, ..., ε
k
N)

(D.14)

which implies that ūk
i ∈ Fi(x̄k

i ) for all i ∈ [N]. Similarly for p̂k := (id + γB)−1(x̄k − γūk) from (D.7),
it follows from Lemma D.2 that we can instead compute

p̂k := (id + γG)−1
(

1
N
∑N

i=1 x̄k
i − γū

k
i

)
for which p̂k = 1

N ( p̂k, ..., p̂k).

The resulting (implicit) algorithm is specified in Algorithm III. We have used the following equiva-
lences

ūk
i + ȳk

i = γ
−1(x̄k

i − p̂k)

s̄k
i − sk

i = γū
k
i + p̂k − sk

i

(D.15)

since v̄k
1 = ūk + ȳk and v̄k

2 = p̂k − x̄k.
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The algorithmic description in Algorithm III can explicitly be divided into an update rule for the
clients and the server as described in iFedDR (Algorithm I). The adaptive stepsize αk in iFedDR can
be implemented in a computationally and storage efficient manner as commented on in Remark D.3.

Remark D.3. Evaluation of ξk, ζk and µk in (3.4) can be performed in place without the need for
memory allocation of order Nn as follows:

ξk =
∑N

i=1 ∥x̄
k
i − p̂k∥2 =

∑N
i=1 ∥x̄

k
i ∥

2 − 2⟨
∑N

i=1 x̄k
i , p̂

k⟩ + N∥p̂k∥2,

µk =
∑N

i=1⟨x̄
k
i − p̂k, vk

i − p̂k⟩

= N∥p̂k∥2 − ⟨ p̂k,
∑N

i=1 vk
i ⟩ − ⟨

∑N
i=1 x̄k

i , p̂
k⟩ +
∑N

i=1⟨x̄
k
i , v

k
i ⟩,

ζk =
1
γ2

∑N
i=1 ∥s̄

k
i − sk

i ∥
2 = 1

γ2

∑N
i=1 ∥p̂

k − vk
i ∥

2

= 1
γ2

(∑N
i=1 ∥v

k
i ∥

2 − 2⟨
∑N

i=1 vk
i , p̂

k⟩ + N∥ p̂k∥2
)
,

with vk
i = sk

i − γFi(x̄k
i ). Note that the computation of ζk can be ignored entirely if the error condition

in Step I.3 is relaxed slightly by only involving ξk.

Algorithm III Inexact FedDR (implicit)

Require s0 ∈ �Nn λ ∈ (0, 2), γ ∈ (0,∞), σ ∈ (0, 1)
Repeat for k = 0, 1, . . . until convergence
III.1: Find

x̄k
i = sk

i − γ(ū
k
i + ε

k
i ) with ūk

i ∈ Fi(x̄k
i )

ȳk
i = γ

−1(x̄k
i − γū

k
i ) − γ−1(id + γG)−1

(
1
N
∑N

i=1 x̄k
i − γū

k
i

)
s̄k

i = x̄k
i − γȳ

k
i

such that ∑N
i=1 ∥ε

k
i ∥

2 ≤ σ2 max
{∑N

i=1 ∥ū
k
i + ȳk

i ∥
2, 1
γ2

∑N
i=1 ∥s̄

k
i − sk

i ∥
2}

III.2:

sk+1
i = sk

i − λαk(ūk
i + ȳk

i ) with αk =

∑N
i=1⟨ū

k
i + ȳk

i , s
k
i − s̄k

i ⟩∑N
i=1 ∥ū

k
i + ȳk

i ∥
2

Return sk+1

Proof of Theorem 3.1. The proof follows directly from Theorem D.1 with the particular choice of
A, B in (2.4b). Maximally monotonicity of A, B follows from that of Fi for all i ∈ [N] and G. Single-
valuedness of A follows from Lipschitz continuity of Fi for all i ∈ [N].

The condition (x⋆, y⋆) ∈ zer TPD is equivalent to requiring that x⋆ is a solution to the primal problem
(2.4) and y⋆ = Ax⋆ due to (2.6) and A being singlevalued. This completes the proof.

D.3 Application of iFedDR to minimization problems

Assumption I for the inclusion (2.1) are satisfied under the following assumption on problem (2.2)
where Fi = ∇fi and G = ∂g.

Assumption III (Requirements for problem (2.1)).

(i) The function fi : �n → � is convex for all i ∈ [N].

(ii) The gradient of fi is Li-Lipschitz continuous for all i ∈ [N], i.e.
∥∇fi(x) − ∇fi(x′)∥ ≤ Li∥x − x′∥ ∀x, x′ ∈ �n.

(iii) g : �n → � is proper lsc convex.

For convenience, Algorithm IV specializes iFedDR (Algorithm I) to the case of minimization where
the operator Fi = ∇fi and G = ∂g.
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Algorithm IV The inexact federated Douglas-Rachford algorithm (iFedDR) for minimization

Require starting point s−1
i ∈ �

n, α−1 = 0 ∈ �, stepsize γ ∈ (0,∞), λ ∈ (0, 2), and σ ∈ (0, 1)
Repeat for k = 0, 1, . . . until convergence
IV.1: Each client i ∈ [N] B {1, . . . ,N} computes

sk
i = sk−1

i + λαk−1(x̄k−1
i − p̂k−1)

and approximately solves
x̄k

i ≃ proxγ fi (sk
i ) := arg min

x∈�n
fi(x) + 1

2γ ∥x − sk
i ∥

2 (D.17)

and sends to the server (
x̄k

i ,∇fi(x̄k
i ), sk

i
)
.

IV.2: The server computes the average p̂k B proxγg
(

1
N
∑N

i=1(x̄k
i −γ∇fi(x̄k

i ))
)

and the scalar quantities

ξk =
∑N

i=1 ∥x̄
k
i− p̂k∥2, ζk =

1
γ2

∑N
i=1 ∥γ∇fi(x̄k

i )−sk
i+ p̂k∥2, and µk =

∑N
i=1⟨x̄

k
i− p̂k, γ∇fi(x̄k

i )−sk
i+ p̂k⟩.

(D.18)
See Remark D.3 for how to carry out the computation memory-efficiently.

IV.3: if
∑N

i=1 ∥s
k
i − γ∇fi(x̄k

i ) − x̄k
i ∥

2 ≤ σ2 max{ξk, ζk} then
the server sends back

( p̂k, ᾱk) where αk = µk/ξk.

IV.4: else

request the clients to refine the approximation in (D.17) to higher accuracy.

Return p̂k

The resolvent of the operator Fi = ∇fi in (3.3) reduces to finding an approximate solution to the
strongly convex problem

minimize
x∈�n

f γi (x) := fi(x) + 1
2γ ∥x − sk

i ∥
2. (D.16)

which can be solved first order iterative methods such as gradient descent on the following gradient
∇f γi (x) = ∇fi(x) + 1

γ
(x − sk

i ).

D.4 Application of iFedDR to minimax problems

We will consider the following N client minimax problem

minimize
u∈�m

maximize
v∈�r

g(u) +
1
N

N∑
i=1

fi(u, v) − h(v) (D.19)

Let n = m + r, x = (u, v) and choose G(x) := (∂g(u), ∂h(v)), Fi(x) := (∇u fi(u, v),−∇v fi(u, v)) in
iFedDR.

Assumption I used in Theorem 3.1 are satisfied under the following conditions.

Assumption IV. Problem (D.19) satisfies

(i) For all i ∈ [N], the function fi : �m+r → � is convex-concave, i.e. fi(·, v) is convex for all
v ∈ �r and fi(u, ·) is concave for all u ∈ �m.

(ii) The operator Fi : �m+r → �m+r is Li-Lipschitz continuous for all i ∈ [N], i.e.

∥Fi(x) − Fi(x′)∥ ≤ Li∥x − x′∥ ∀x, x′ ∈ �m+r.

(iii) g : �m → � and h : �r → � is proper lsc convex.

The resolvent of the operator Fi in (3.3) reduces to solving

min
u∈�m

max
v∈�r

f γi (u, v) := fi(u, v) + 1
2γ ∥u − sk

i,u∥
2 − 1

2γ ∥v − sk
i,v∥

2 (D.20)
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where sk
i = (sk

i,u, s
k
i,v). The subproblem (D.20) can be approximated by a first-order iterative solver

with access to the operator
∇Fγi (x) = Fi(x) + 1

γ
(x − sk

i ).

Note that, when Fi is monotone the operator Fγi is strongly monotone.

E Baseline methods

Given a client update rule Vi : �n → �n, defines the following compositions

Vk
i = Vi ◦ Vi ◦ · · · ◦ Vi︸              ︷︷              ︸

τ times

. (E.1)

Let the server update be given as

xk+1 = (1 − λ)xk +
λ

N

N∑
i=1

Vτi (xk). (E.2)

To recover FedAvg take Vi(x) := x − η∇fi(x) for some η > 0. Instead, to recover FedProx take
Vi(x) := x − η∇f γi (x) as defined in (3.1). It is useful to note that the Lipschitz constant for ∇f γi is

Lγi := 1
γ
+ Li. (E.3)

FedDR For convenience we also include the algorithmic description of FedDR (Tran Dinh et al.,
2021) in our notation in Algorithm I. To compare against our proposed iFedDR method, consider the
specialized case of minimization where iFedDR (Algorithm I) reduces to Algorithm IV. Originating
from the extragradient error-correction step in iPPPA, our method averages x̄k

i − γ∇fi(x̄k
i ) instead of

2x̄k
i − sk

i in the computation of the server average p̂k. This modification is crucial for allowing the
relative stopping criterion for the client proximal computation also appearing in our method. Lastly,
iFedDR comes with an adaptive stepsize in place of λk in Algorithm I, which is also a result of
the error-correction step. Only in the special case of minimization when the proximal operator can
additionally be computed exactly, do the two methods coincide.

Algorithm I FedDR

Require starting point s−1
i ∈ �

n, x̄−1
i = p̂−1 ∈ �n, stepsize γ ∈ (0,∞), and λk ∈ (0, 2)

Repeat for k = 0, 1, . . . until convergence
I.1: Each client i ∈ [N] B {1, . . . ,N} computes

sk
i = sk−1

i − λk−1(x̄k−1
i − p̂k−1)

and approximately solves
x̄k

i ≃ proxγ fi (sk
i ) (E.4)

and sends to the server
pk

i := 2x̄k
i − sk

i

I.2: The server computes and sends back the average p̂k B proxγg
(

1
N
∑N

i=1 pk
i

)
Return p̂k

F Experiments

The gradient method, x 7→ x − ηFγi (x) with η > 0, is used as the local solver for sake of simplic-
ity and consistent comparison between methods (see (3.1) concerning the objective for prox-based
methods). See Appendix D.3 and Appendix D.4 for details regarding the minimization case and
minimax case respectively. Not surprisingly, due to the deterministic nature of the update, we do not
observe significant variation in the experiments, and thus refrain from reporting standard deviations.
Experiments are carried out on a cluster of Intel(R) Xeon(R) CPU E5-2680 v3 2.50GHz, each exe-
cution using 4 cores and a maximum of 8192Mb. We provide a reference implementation of iFedDR
in both Jax and PyTorch.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 1 uses the same hyperparameters as Figure 2, which are specified in Table 2. The indicated
number of inner steps refers to the number of client steps used per client on average across all m
server iterations. The iFedDR method uses the uninformed safe default of γ = 1.0, λ = 1.0, and
σ2 = 0.99 throughout if not otherwise specified. More fine-grained recommendations are provided
in Figure 8.

Fashion-MNIST We additionally conduct experiments on Fashion-MNIST (Xiao et al., 2017)
under extreme label shift where client i only has class i for all i ∈ N. We fix the server steps
to K = 500 and optimize over the client learning rate. The prox-parameter γ in iFedDR is not
optimized, but picked to be a reasonable default of γ = 1.0. See Table 5 for a summary of the
hyperparameters and Figure 7 for the experimental results.

Table 2: Hyperparameters for experiments on the vehicle/w8a dataset.

Hyperparameter FedAvg Scaffold FedProx FedDR iFedDR
ℓ2-regularization 0.00001
Server steps K 2000

Server stepsize λ 1

Client learning rate η
{

1
Li
, 1

10Li
, 1

100Li

} {
1
Lγi
, 1

10Lγi
, 1

100Lγi

}
1 1

Lγi
1 1

Lγi
1

Client steps τ {10, 100} {10, 100} {10, 100} {10, 100} 102

Prox-parameter γ - - 1.0 1.0 1.0
Error tolerance σ2 - - - - 0.99

1 Defined in (E.3). 2 Before refinement.

Table 3: Hyperparameters for experiments on CIFAR10 with linear probing across 20 clients.
Rescaling the input image to match the pre-training sample size is avoided by relying on Adap-
tivePooling.

Hyperparameter FedAvg Scaffold FedProx FedDR iFedDR
ℓ2-regularization 0.00001
Server steps K 500

Server stepsize λ 1

Client learning rate η
{

1
Li
, 1

10Li
, 1

100Li

} {
1
Lγi
, 1

10Lγi
, 1

100Lγi

}
1 1

Lγi
1 1

Lγi
1

Client steps τ {10, 100} {10, 100} {10, 100} {10, 100} 102

Prox-parameter γ - - 1.0 1.0 1.0
Error tolerance σ2 - - - - 0.99

1 Defined in (E.3). 2 Before refinement.

Table 4: Hyperparameters for fair classification experiments. A gridsearch was necessary for estab-
lishing convergence of FedProx and FedDR. In particular FedDR needed 1000 client iterations.

Hyperparameter FedProx FedDR iFedDR
ℓ2-regularization 0.00001
Server steps K 500

Server stepsize λ 1
Max regularization δ 0.1
Client learning rate η {0.0001, 0.001, 0.01, 0.1}

Client steps τ {10, 100} {10, 100, 1000} 102

Prox-parameter γ 1.0 1.0 1.0
Error tolerance σ2 - - 0.99

1 Defined in (E.3). 2 Before refinement.
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Table 5: Hyperparameters for Fashion-MNIST experiments in Figure 7. We use the cross entropy
loss on a linear model with softmax and full-batch gradient descent for the client update.

Hyperparameter FedAvg FedProx FedDR iFedDR
ℓ2-regularization 0.00001
Server steps K 500

Server stepsize λ 1
Client learning rate η {0.5, 0.1, 0.01} {0.5, 0.1, 0.01} {0.5, 0.1, 0.01} {0.5, 0.1, 0.01}

Client steps τ {50, 100, 200} {50, 100, 200} {50, 100, 200} 501

Prox-parameter γ - 1.0 1.0 1.0
Error tolerance σ2 - - - 0.99

1 Before refinement.
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Figure 5: Logistic regression on a heterogeneous data split of w8a.
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Figure 6: CIFAR10 training accuracy and optimality gap.

Figure 7: Fashion-MNIST under data heteogenity.
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Figure 8: Hyperparameter ablation of iFedDR (default parameters are described in Table 2). (top)
The theoretically optimal choice of the stepsize parameter λ ∈ (0, 2) is λ = 1 for monotone problems,
but especially for strongly monotone problem it is recommended to set it closer to 2 (cf. Section 1.1
regarding connection to FedSplit). (bottom) The error tolerance σ ∈ (0, 1) does not have a noticeable
effect on the convergence, but it changes how many client iterations are needed. It is recommended
to set σ close to 1 to minimize the number of client steps. Finally, the proximal stepsize parameter
γ can be picked arbitrarily large, but leads to a computationally harder proximal subproblem. The
tradeoff is explored in Figure 1 and discussed in Remark 3.2.
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