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ABSTRACT

Locating the modes of a probability density function is a fundamental problem
in many areas of machine learning. However, classical mode-seeking algorithms
such as mean-shift and its variants exhibit quadratic complexity with respect to
the number of data points due to exhaustive pairwise kernel computation - a
well-known bottleneck that severely restricts the applicability. In this paper, we
propose Random Feature mean-shift (RFMS), a novel linear complexity mode-
seeking algorithm. We give a sampling-based estimator using random feature
kernel approximation and zeroth-order gradient method that allows us to provably
achieve linear runtime per iteration, with comprehensive theoretical guarantees for
mode estimation and convergence behavior. Empirical evaluations on clustering
and pixel-level image segmentation tasks show RFMS is up to 12x faster when
compared with other mean-shift variants, offering substantial efficiency gains while
producing near-optimal results. Overall, RFMS offers a practical and principled
framework for scalable mode-seeking beyond kernel-value approximation, with
explicit guarantees on the induced mode landscape and optimization dynamics.

1 INTRODUCTION

Figure 1: Kernel density estimation over
synthetic 2D data(with 2 clusters) using
Gaussian kernel. Points converge to the
modes of empirical distribution in mean-
shift.

Mode-seeking refers to the identification of maxima
(“modes”) of a probability density. It provides a principled
way to summarize and organize complex multimodal dis-
tributed data. This technique is routinely used in a variety
of unsupervised learning tasks, notably clustering [13; 32],
image processing [15; 38], and object tracking [16; 74].
For decades, Mean-shift [20] and its many variants have
been the de facto algorithm for mode-seeking, the algo-
rithm iteratively shifts each data point towards regions of
higher density by computing local means within a prede-
fined window. As a non-parametric method, mean-shift
requires minimal assumptions about data distributions,
making it highly versatile and effective.

The idea of mean-shift is closely related to kernel den-
sity estimation (KDE), where the gradients of the KDE
function are employed to guide the points toward local
maxima, representing the modes of the underlying prob-
ability density function. Figure 1 demonstrates the simple
geometric intuition behind mean-shift. One natural way
of interpreting the mean-shift procedure is gradient ascent,
in the sense that the point will eventually converge to the modes of KDE. Despite its effectiveness,
conventional mean-shift methods face significant computational limitations, primarily stemming from
their quadratic complexity related to exhaustive pairwise kernel function computation required for
KDE. This bottleneck restricts the applicability of mean-shift to large-scale datasets and computation-
ally intensive applications. Existing works on efficient mean-shift algorithms have explored solutions
such as discretizing the feature space via hashing [38], employing specialized data structures for
distance-based queries [72], or accelerating the algorithm in hardware [35]. Despite those efforts,
none have succeeded in addressing the complexity bottleneck of mean-shift asymptotically without
discretizing data representation in some fashion. Noticing the close connection between kernel density
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estimation using shift-invariant kernels [1] and random Fourier feature kernel approximation [65; 21].
In this paper, we propose a novel sampling-based estimator for the mean-shift process. Based on
random feature kernel approximation and zeroth-order optimization, RFMS is useful in many areas
of machine learning. Overall, our contributions are as follows:

• Algorithm: We propose Random Feature mean-shift (RFMS), an asymptotic complexity
improvement of the standard mean-shift algorithm(from O(n2) to O(n) with respect to the
number of data points), enabling efficient density-based analysis and mode-seeking.

• Theory: Strong and comprehensive theoretical guarantees for RFMS are provided. We first
establish high-probability concentration bounds for random feature KDE approximation
(Theorem 1, 2). Furthermore, error bounds for mode estimation and tracking are also
provided(Theorem 5, 6), ensuring the results obtained by RFMS are close to the actual
modes of kernel density estimation.

• Evaluation: Experiments against other mean-shift variants on clustering and pixel-level
image segmentation demonstrate RFMS’s advantage on reducing computational cost (up to
12x speedup on clustering and 3x on segmentation) while providing nearly optimal results.

Our work saliently and naturally brings together density estimation, random feature approximation,
and mode-seeking into a single end-to-end framework. To the best of our knowledge, this is the
first work to provide high-probability random feature-induced perturbation guarantees for KDE, and
propagate these approximation effects into principled mode-stability and convergence guarantees for
an efficient mode-seeking algorithm.

2 RELATED WORKS

Mean-shift: The mean-shift algorithm has been extensively studied as a powerful non-parametric
technique for locating the modes of a density function. The algorithmic basis of mean-shift was
first introduced by Fukunaga and Hostetler [20], who proposed a method to estimate the gradient
of a multivariate probability density function and perform mode-seeking iteratively. This initial
formulation was later improved and popularized through the lens of clustering [13] and computer
vision tasks such as edge-preserving smoothing and image segmentation [15]. The mean-shift
algorithm is computationally expensive. Specifically, one iteration of mean-shift on a single point
requires computing the kernel values between all other points, resulting in a computational complexity
of O(n2) per iteration, where n is the number of data points. Modern implementations of mean-shift
algorithms typically utilize a flat kernel and efficient data structures, such as ball-tree or kd-tree, to
organize distance searches over data points [62; 72]. This, however, does not improve the asymptotic
complexity. More recently, mean-shift++[39] by Jang et al. proposes to hash data points into discrete
hypercubes at the beginning of every iteration, allowing mean-shift to be performed by averaging the
neighboring hypercubes instead of all other points. However, as the number of hypercubes scales
exponentially with data dimensionality, MS++ does not scale well into higher dimensions. Despite
mean-shift being the de facto and the most used mode-seeking method in practice, we note that
other methods for finding mode of a KDE exist, notably the works by Lee et al. [54] and Luo et
al. [54]. However, they primarily aim to find an approximately global maximizer of the KDE with
dimensionality reduction plus additional heavy algorithmic machinery (e.g., solving polynomial
systems). In contrast, RFMS is designed to run a mean-shift–style mode-seeking process for many
modes, which is necessary in clustering and segmentation. Furthermore, RFMS is designed to
use only simple and fully vectorized computation (essentially just dot products and some simple
element-wise operations which emphasizes scalability and efficiency.

Random Features: Emerging from the literature on kernel methods, Random Features(RFF) [65]
is a strategy to scale up kernel-based learning algorithms. The central idea behind random feature
methods is to approximate a shift-invariant kernel k(x, x′) = k(x − x′) (i.e. Gaussian, Laplacian
and Cauchy kernels) using an explicit randomized feature map ϕ : Rd → RD or CD such that
k (x, x′) = E [⟨ϕ(x), ϕ (x′)⟩], the expectation is taken with respect to the construction of ϕ. This
is theoretically grounded in Bochner’s theorem, which states that any continuous, shift-invariant,
positive definite kernel k on Rd is the Fourier transform of a probability measure. Specifically,
let p(ω) be the spectral density of the kernel, since k(x − x′) =

∫
Rd p(ω)e

jω·(x−x′)dω , one can
approximate the integral via Monte Carlo method [57] by sampling on frequencies ω. The error of
Random Feature approximation can be controlled by increasing D, the number of features. One
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central challenge of Random Feature is to achieve a high-quality approximation with D being as
small as possible. Several variants and extensions have been developed, such as orthogonal random
features [78] and Quasi Monte-Carlo [36] to reduce the size of D. Prior random feature works largely
focus on approximating kernel values or improving the uniform-error bound behavior. In contrast, our
work here provides an end-to-end framework for RFF-based mode-seeking, and we give theoretical
insights on how random feature approximation induced errors can propagate into KDE approximation
and mode stability.

Zeroth-Order Optimization: Also known as derivative-free optimization or black-box optimiza-
tion, is a class of optimization methods that do not require first-order information (i.e., without
computing gradients). Such techniques are often used for problems where gradient information is
unavailable, expensive, or unreliable [51]. The central challenge in Zeroth-Order Optimization is
approximating the gradient using only function values. One of the most common approaches is the
finite-difference gradient estimator [58; 17], which estimates the gradient ∇f(x) by querying the
function at perturbed points around x via ∇̂f(x) = f(x+µu)−f(x)

µ u, where u is a random direction
and µ is a small scalar called smoothing parameter. Particularly, if u is sampled from multivariate
Gaussian or uniformly from a sphere of radius the same as the dimension of the problem [51], then
Eu∼N (0,Id) or U(S(0,d))

[
∇̂f(x)

]
= ∇fµ(x), which provides an unbiased estimation to the gradient

of fµ, the smoothed version of f , useful for Stochastic Gradient methods [26; 52].

3 NOTATION AND PRELIMINARIES

Consider D = {x1, x2, . . . , xn} ⊂ Rd a dataset of n points in d-dimensional euclidean space. One
way to model the probability density function of the underlying data generative process is to construct
a kernel density estimation (KDE) [61] over observed data points: f̂(x) = 1

nc

∑n
i=1 k (x, xi) ∀xi ∈

D. Here k : Rd → R+ :is a radially symmetric kernel function, and c is some kernel dependent
constant that ensures

∫
Rd f̂(x)dx = 1 so it is a valid probability distribution. KDE represents a

smoothed version of the empirical distribution, with the kernel function distributing mass around
each point xi. Although any shift-invariant kernel can be used in RFMS, for consistency and ease of
notation, in this paper we consider k to be the Gaussian kernel and denote kh the Gaussian kernel
of bandwidth h: kh (xi, xj) = exp

(
− 1

2h2 ∥xi − xj∥2
)

= kh(∆) where ∆ = ∥xi − xj∥2, and

f̂kh is the KDE using kh. As such c =
∫
Rd kh(∆)d∆ =

(
2πh2

)d/2
. One natural way of finding

the modes of the KDE is to allow points to “climb” over the KDE via gradient ascent [20; 32]:
∇f̂kh(x) = 1

h2cn

∑n
i=1 kh (x− xi) · (xi − x). This expression shows that the gradient of the

KDE points in the direction of a weighted average of the (xi − x)∀xi ∈ D. Notice that ∇ ˆfkh

is proportional to m(x) =
∑n

i=1 xikh(x−xi)

f̂kh
(x)

− x by a multiplicative factor of
(
h2cnf̂kh(x)

)−1

.

Consider the gradient ascent x(l+1) = x(l) + m(x(l)) which gives the modern fix-point iteration

version of the mean-shift [15]: x(l+1) =
∑n

i=1 xikh(x
(l)−xi)∑n

i=1 kh(x
(l)−xi)

. In this way, since x(l+1) − x(l) =

m(x(l)) =
(
h2cnf̂kh(x

(l))
)−1

∇f̂h(x(l)) we can also view the update rule as normalized gradient

ascent (by the density at x(l)) on the KDE. This allows us to define the mean-shift problem we aim to
solve in this paper:

x
(l+1)
i = x

(l)
i + η

∇f̂kh(x
(l)
i )

f̂kh(x
(l)
i )

∀i ∈ {1 . . . n} with x
(0)
i = xi ∀xi ∈ D (1)

Similar mean-shift formulations are also studied in previous papers [1; 32; 20]. The main overhead
of this procedure comes from the density estimation via KDE (denominator) and the gradient com-
putation (numerator), both of which takes O(n2) since each iteration of update requires computing
pairwise kernel value between x

(l)
i and xi ∈ D, which is the main bottleneck. It is worth noting that

although many variants of the mean-shift algorithm have been proposed in existing literature, such as
Blurring mean-shift [15; 7], Robust mean-shift [5], they all suffer from the same quadratic complexity
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limitation. In this work, we demonstrate that it is in fact possible to construct an efficiency estimator

for ∇f̂kh
(x

(l)
i )

f̂kh
(x

(l)
i )

that takes constant time per point to achieve O(n) complexity per iteration of update.

4 RANDOM FEATURE MEAN-SHIFT (RFMS)

Here, we provide algorithmic details of Random Feature mean-shift (RFMS), a novel linear complex-
ity mode-seeking algorithm. We first establish a framework for efficient kernel density estimation
using random feature method and then utilize it for zeroth-order gradient ascent for mode-seeking.

Random Feature Density Estimation: As discussed in Section 3, one of the main bottleneck of
mean-shift algorithm is the computation of local density as f̂kh(x) for any x ∈ Rd requires the
pairwise kernel computation between x and every xi in dataset D. This becomes problematic if
D is large. However, recall that f̂kh(x) =

1
nc

∑n
i=1 kh (x, xi), which is the sum of kernel values

with a fixed data point. Now consider a Random Feature [65] transformation for kh denoted as
ϕkh : Rd → CD with the property that ⟨ϕkh(x), ϕkh (x′)⟩ ≈ kh (x, x

′) ∀x, x′ ∈ Rd for some
sufficiently large D. We can then rewrite f̂kh(x):

f̂kh(x) =
1

nc

n∑
i=1

kh (x, xi) ≈
1

nc

n∑
i=1

⟨ϕkh(x), ϕkh(xi)⟩ =
1

nc

〈
ϕkh(x),

n∑
i=1

ϕkh(xi)

〉
(2)

The above derivation uses the fact that the complex inner product is linear in the second argument. We
can then define Φ = 1

nc

∑n
i=1 ϕkh(xi), and density estimation can be done by f̂kh(x) ≈ ⟨ϕkh(x),Φ⟩.

As a reminder c = (2πh2)d/2 for Gaussian kernel of bandwidth h over Rd and complex vector inner
product ⟨a, b⟩ = (a · b)∀a, b ∈ CD. To construct ϕkh , simply sample random features {ω1 . . . ωD}
from ω ∼ N

(
0, 1

h2 Id
)

and we have:

ϕkh(x) =
1√
D

[
ej(ω

T
1 x)ej(ω

T
2 x)ej(ω

T
3 x) . . . ej(ω

T
Dx)
]

(3)

Here, j is the imaginary unit. Let ĝ(x) = 1
nc ⟨ϕkh(x),Φ⟩, it is an unbiased estimation of the KDE:

f̂kh(x) = Eω∼N(0, 1
h2 Id) [ĝ(x)] ∀x ∈ Rd (See Appendix E for the proof). (4)

We will later give a high-probability bound on the concentrations around this expected value. One
important caveat is that although the expectation of ĝ(x) is real, in an approximation setting where D
is finite, the value of ĝ(x) is not guaranteed to be real-valued. However, since KDE is a real-valued
function, it implies that the imaginary part has zero mean therefore adds only variance, so in practice
we only take the real part: Re (ĝ(x)) = Re (⟨ϕkh(x),Φ⟩) = 1

nc

∑n
i=1 Re (⟨ϕkh(x), ϕkh(xi)⟩). What

this means is that when evaluating the KDE at some point in Rd with respect to a dataset D, instead
of compute n kernel values, one can get an approximation in constant time via ĝ(x) because the
mapping ϕkh(x) takes constant time per point and Φ only needs to be computed once over D at the
beginning and stored.

Zeroth-Order Gradient Estimation: Recall in Equation 1, in order to construct the mean-shift
updates for a point x ∈ Rd using a dataset D ⊂ Rd, it is necessary to obtain the ascending-direction
vector∇f̂kh(x), which is the average of (xi−x)∀xi ∈ D weighted by kh(x, xi). Previously, we have
established that one can estimate the KDE value fkh(x) by querying ĝ(x) = ⟨ϕkh(x),Φ⟩. Naviely,
one could take the gradient of ĝ(x) as a surrogate to the actual KDE gradient; however, that would
require computing the Jacobian w.r.t every dimension of x, which will result in an complexity of
O(Dd) per point per iteration. To further reduced the mean-shfift cost toO(D) per point per iteration,
we apply zeroth-order gradient method instead of calculating the gradient analytically. Therefore, the
ability to query density estimation is powerful as it enables us to estimate∇f̂kh(x) via a zeroth-order
gradient estimator, particularly the 2-point forward estimator taking the form:

∇̂f̂kh(x) =
Re (ĝ(x+ µu)− ĝ(x))

µ
u (5)

Here we sample u, the random ascent direction, uniformly from the standard Gaussian u ∼ N (0, Id).
And µ is a small smoothing parameter set beforehand. This estimator works by probing the function

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Time (in seconds) per iteration of
mean-shift on randomly generated 2D data.

Figure 3: Kernel approximation quality us-
ing MC and QMC, D = 30.

in a randomly chosen direction and measuring the change in function output after taking a small
step. This change is used to estimate the directional derivative. Geometrically, it captures how
steeply the function rises in that sampled direction, giving a noisy ascent direction. Repeating this
across iterations allows a point to follow the landscape of the function without ever computing actual
gradients. Two levels of approximation are happening in Equation5, the first one being that ĝ(x)
itself is an unbiased estimation of the KDE f̂kh(x). The second one is the gradient estimation of the
KDE, namely the ∇̂f̂kh , which is unbiased with respect to the gradient of a smoothed version of f̂kh .
With that, we can arrive at a new update rule for mean-shifting:

x
(l+1)
i = x

(l)
i + η

∇̂f̂kh(x
(l)
i )

Re
(
ĝ(x

(l)
i )
) ∀i ∈ {1 . . . n} with x

(0)
i = xi ∀xi ∈ D (6)

Here, η is the learning rate, since the core characteristic of zeroth order optimization is that it
only requires evaluating function values (in the context of KDE, the f̂kh), it is worth noting that
other, potentially more advanced, zeroth order gradient estimator [50; 12] can be used as drop-in
replacement in RFMS which can lead to further variance reduction in gradient estimation and faster
convergence.

Complexity & Scalability: Essentially, RFMS estimates the mean-shift update via two density
estimations; as such, by using Re(ĝ), the cost of RFMS per iteration becomes constant per data point
and scales linearly in the size of D. One other cost of RFMS comes from the number of random
features used in ϕkh , making the final time complexity O(nD) for RFMS in contrast to the O(n2d)
complexity of standard mean-shift algorithm (both in the gradient ascent form and fixed-point iteration
form). In situations where the dataset is very small, since D is typically larger than d, standard
mean-shift can potentially be faster than RFMS. However, in practical settings, RFMS is much more
suited for scaling to larger tasks. In Fig. 2, we empirically demonstrate the scalability of RFMS on
randomly generated 2D data, showing a minimal increase in cost (time per iteration) when compared
to standard mean-shift algorithms. RFMS inherits the standard RFF trade-off between efficiency and
approximation quality as D increases, but this approximation is widely accepted because it replaces
quadratic kernel computations with simple feature inner products and yields major scalability gains
in large-n settings.

5 ESTIMATION AND CONVERGENCE BOUNDS

Re(ĝ) serves as a surrogate of the actual KDE function f̂kh . The quality of RFMS largely depends
on how well it approximates KDE. In this section, we first establish an error bound on estimating
f̂kh with Re(ĝ). Then, we show conditions under which the modes of the f̂kh and Re(ĝ) are close
and bounded. Lastly, utilizing existing results regarding zeroth-order optimization, we show the
convergence of RFMS to points near the modes of f̂kh .

Error bound on estimating f̂kh(x) with ĝ(x): The goal here is to give a bound on the error of
estimating KDE value with ĝ. That is, we want to bound

∣∣∣ĝ(x)− f̂kh(x)
∣∣∣. By applying Hoeffding’s

inequality, we can derive the following bound:

5
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Theorem 1 For any point x ∈ Rd, chose any δ ∈ (0, 1), with probability at least 1− δ:∣∣∣ĝ(x)− f̂kh(x)
∣∣∣ ≤ 4

c

√
1

2D
ln

4

δ
(See Appendix F for the proof.) (7)

Furthermore, since the ĝ(x) concentrates around a real number, the complex part of ĝ(x) contribute
only variance, so if KDE is approximated via Re (ĝ(x)), the bound can be further reduced to
2
c

√
1
2D ln 4

δ . For the remainder of this section, we will only consider the real part of ĝ(x). Extending
classicial results on random feature method [65], we then extend Theorem1 to a uniform convergence
bound:

Theorem 2 Let X be a compact set over Rd such that D ⊂ X . Denote diam(X ) the diameter of X .
Then, for error tolerance ϵ, the following bound holds:

Pr

(
sup
x⊂X

∣∣∣Re (ĝ(x))− f̂kh(x)
∣∣∣ ≥ ϵ

)
≤ 28

(
c
√
d diam(X )

hϵ

)2

exp

(
− Dϵ2

c24(d+ 2)

)
(See Appendix G for the proof.)

(8)

The above yields a uniform additive bound for approximating KDE via RFF. The primary reason for
providing an additive error bound instead of a relative error bound is that the density can be arbitrarily
close to 0 in low-density regions, hence a relative error bound over the entire space is generally
ill-posed unless one restricts to regions with meaningful density values [10; 43]. If we pose constrain
to a subset S ∈ Rd such that S =

{
x : f̂kh(x) ≥ τ

}
, our uniform additive error bound immediately

implies a relative bound: supx∈S
∣∣∣(Re (ĝ(x))− f̂kh(x)

)
/f̂kh(x)

∣∣∣ ≥ ϵ
τ .

Mode Stabillity: In RFMS, we use Re (ĝ) as an surrogate of the KDE f̂kh . Therefore, for mode-
seeking purposes, we would like to show that the modes of f̂kh and Re (ĝ) are close. To achieve this,
we first demonstrate the point-wise closeness of the gradient and the Hessian.

Theorem 3 C is a universal constant, for any point x ∈ Rd, chose any δ ∈ (0, 1), with probability
at least 1− δ:∥∥∥∇Re (ĝ(x))−∇f̂kh(x)

∥∥∥ ≤ 1

nc

(
8Cen

√
d ln(2/δ)

Dh
+

√
8Cen2d ln(2/δ)

Dh2

)
(See Appendix H for the proof.)

(9)

Theorem 4 For any point x ∈ Rd, chose any δ ∈ (0, 1), with probability at least 1− δ:∥∥∥∇2 Re (ĝ(x))−∇2f̂kh(x)
∥∥∥
F
≤ 1

nc

8eCnd ln(2/δ)

Dh2
+

√
8eCn2d

√
d(d+ 2) ln(2/δ)

Dh4


(See Appendix I for the proof.)

(10)

Then, assume f̂kh is a Morse function (a function with non-degenerate critical points). Denote Lip(·)
the Lipschitz constant of a function, and λmin(·) the smallest eigenvalue of a square matrix. We can
then establish the conditions regarding the closeness between their critical points (modes):

Theorem 5 Let x∗ be any critical point of f̂kh , define: α =
Lip(∇2 Re(ĝ))ϵ1

(λmin(∇2f̂kh
(x∗))−ϵ2)

2 . If : (1). Chose

ϵ2 ≤ λmin

(
∇2f̂kh(x

∗)
)

. (2). Chose ϵ1 such that α ≤ 1
2 . (3).

∥∥∥∇Re (ĝ(x))−∇f̂kh(x)
∥∥∥ ≤ ϵ1

and
∥∥∥∇2 Re (ĝ(x))−∇2f̂kh(x)

∥∥∥
F
≤ ϵ2 both holds with probability at least 1 − δ/2. Then, with

probability at least 1− δ, there is only one critical point x̂∗ of Re (ĝ) such that:

x̂∗ ∈ B

x∗,
ϵ1

λmin

(
∇2f̂kh(x

∗)
)
− ϵ2

 (See Appendix J for the proof.) (11)
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This result enables the quantification of how much each mode shifts between the KDE f̂kh and
the random feature approximated KDE Re (ĝ). Since we can make ϵ1 and ϵ2 arbitrarily small by
increasing D (see theorem 3 and theorem 4), with properly chosen ϵ1 and ϵ2, the mode change can be
well controlled, hence making Re (ĝ) a good surrogate for mode-seeking. Our gradient/Hessian and
mode-closeness guarantees (Theorems 3–5) imply that the true modes are preserved and can shift
only by a small amount under the random-feature approximation. Any additional modes, if they occur,
must arise from minor oscillations of the approximated density in low-density regions; such minor
oscillations are typically negligible for mode-seeking and do not affect the algorithm’s behavior. To
empirically substantiate these claims, Appendix B presents synthetic 1D and 2D experiments that
visualize and compare the random-feature density approximation against the exact KDE surface. The
results are consistent with the theory.

Convergence of RFMS: Recall the RFMS iteration in equation 6, the algorithm can be interpreted as
running zeroth-order gradient ascent on Re (ĝ) with decaying step-size. This interpretation allows us
to analyze the convergence of RFMS with existing results from zeroth-order optimization literature.

Theorem 6 Suppose a point x ∈ Rd has a local mode x̂∗ of Re (ĝ) with Łojasiewicz exponent θ. Let
l∗ ∈ {0 · · ·T} be the iteration index such that Eu∼N (0,Id)

∥∥∇Re
(
ĝ
(
x(l)
))∥∥2 is the smallest. Then:

Eu∼N (0,Id)

[∥∥∥x̂∗ − x(l∗)
∥∥∥2] ≤ O(( 1√

T
+ µ2d2

)1/2θ
)

(See Appendix K for the proof.) (12)

Combined with Theorem 5, the above result allows one to quantify how close the solution returned
by RFMS is to an actual mode of the KDE. We believe this “kernel approximation + mode stability +
zeroth-order optimization” synthesis is nontrivial and substantial, because it directly addresses what
matters for mean-shift: not just approximating the kernel function, but preserving the mode structure
that defines clusters.

6 IMPLEMENTATION DETAIL

The pseudocode for RFMS is presented in Alg. 1. It takes in a set of points in Rd and outputs the
shifted version of those points also in Rd. We provide additional details on RFMS to enhance its
efficiency and extend it to applications that require a blurring process.

Algorithm 1: Random Feature mean-shift (RFMS)
Data: Dataset D, bandwidth h, smoothing parameter µ, Learning rate η, number of iteration T ,

RFF dimension D
1 ϕkh ← generate random feature mapping for gaussian kernel with band width h via QMC;
2 ei ← ϕkh(xi) ∀xi ∈ D; /*Encode each data point into*/
3 Φ← 1

nc

∑n
i=1 ei; /*Define Φ to be used in ĝ(x)*/

4 x
(0)
i ← xi ∀xi ∈ D; /*Initial position*/

5 for l = 0, 1, 2, 3 . . . T do
6 for each x

(l)
i do

7 u← N (0, Id) ; /*Sample random ascent direction*/

8 x
(l+1)
i ← x

(l)
i + η

((
∇̂f̂kh

(
x
(l)
i

))
/Re

(
ĝ
(
x
(l)
i

)))
; /*Update position*/

9 end
10 if Blurring then
11 Φ← 1

nc

∑n
i=1 e

(l+1)
i ; /*Update Φ to reflect new density function after shifting*/

12 end
13 end
14 return {x(T )

i }; /*New points after mean-shift*/

Construct Random Feature Mapping using Quasi Monte-Carlo: We use the random feature
method in equation 3 for kernel approximation. As discussed previously, one core challenge here is

7
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to reduce the number of features used while still providing a good approximation; in other words,
how to make D as small as possible while still providing a high-quality approximation. Since
evaluating a shift-invariant kernel is essentially the same as evaluating an integral associated with
the kernel(Bochner’s Theorem [66]), one prominent solution is to incorporate Quasi Monte-Carlo
(QMC) techniques for numerical integration into the random feature framework [36; 76]. QMC uses
low-discrepancy sequences (e.g., Sobol, Halton, or Faure sequences) to generate random features that
cover the space more uniformly. To put it simply, instead of sampling frequencies ω ∼ N

(
0, 1

h2 Id
)
,

we can improve RFMS by sample ω from Halton sequence and apply inverse cumulative distribution
function to move them into the correct distribution. The intuition behind QMC is that well-distributed
deterministic sampling can outperform random sampling in integration and approximation tasks. We
demonstrate the improvement of QMC In Fig. 3 where we generate random 2D points and compute
pairwise kernel values with kh, ϕkh constructed with Monte-Carlo, and ϕkh constructed use QMC.
As shown, with the same D, QMC can produce much higher-quality approximations, especially when
the actual kernel value is small. The use of QMC allows us to reduce D, hence further improving the
computational efficiency of RFMS.

Non-blurring vs. Blurring mean-shift: In non-blurring setting, each point climbing a hill (mode)

based on the fixed landscape: x(l+1) =
∑n

i=1 xikh(x
(l)−xi)∑n

i=1 kh(x
(l)−xi)

. The landscape is fixed in the sense that
kernels are computed with unshifted points. However, in many application scenarios such as image
smoothing [15], data consolidation [7], or structure-preserving denoising [34], blurring mean-shift:

x(l+1) =
∑n

i=1 xikh(x
(l)−x(l)

i )∑n
i=1 kh(x

(l)−x(l)
i )

is preferred for its faster convergence due to data contraction. This

blurring process can be easily integrated into RFMS. Simply view the blurring as gradient ascent over
a new KDE based on shifted points at every iteration. We can update Φ at the end of every iteration,
so the Re(ĝ(x)) would produce an estimated KDE value over shifted points.

Representing shift via element-wise multiplication: Alg. 1 requires going back and forth between
Rd and Cd. However, with the help of complex number properties, it is possible to run RFMS entirely
on the encoded version of the data points. Consider ϕkh the encoding function, we can then represent
translation(shift) in Rd via element-wise multiplication in Cd based on the property that:

ϕkh(x+ x′) =
D√
D
ϕkh(x)⊗ ϕkh(x

′) ∀x, x′ ∈ Rd (See Appendix L for the proof). (13)

Where⊗ denotes element-wise multiplication. This is the primary reason we chose to use the complex
version of the random feature instead of the real-valued version, as the real-valued version is unable
to achieve the same results due to the periodic nature of the cosine function. In this way, the original
data can be discarded after the encoding, and subsequent operations can be performed exclusively on
the encoded version of the data:

e
(l+1)
i =

D√
D
e
(l)
i ⊗ ϕkh

(
η
∇̂f̂kh(x(l))

Re
(
ĝ(x(l))

)) (14)

The capability of updating encodings in place is appealing as it further simplifies the algorithm.
Although instead of shifted points, the algorithm will give {e(T )

i } with pairwise inner products
approximating kh over shifted points. Since there exists a one-to-one correspondence between kernel
value and distance, this is sufficient for any subsequent kernel or distance-based algorithms.

7 EXPERIMENTS

We verify the effectiveness and applicability of RFMS, we first directly inspect the mode-seeking
behavior of RFMS using randomly synthesized clusters of different variance and cluster shape. The
data points at different iterations are visualized and shown in Figure 4. As demonstrated, RFMS
indeed achieves the intended mode-seeking functionality. It is also worth noting that the observations
here closely match the theoretical insights we provided in Section 5. With a relatively small D = 200,
we observe the points converge to a point very close to the actual modes (Theorem 5). Since directly
evaluating mode-seeking algorithms is difficult, we instead apply RFMS in two applications where
mean-shift algorithms are often applied - (1). In section 7.1, the RFMS algorithm is evaluated
against other mean-shift algorithms in the context of clustering. We report clustering quality and
time consumption of different methods. (2). In section 7.2, we apply RFMS to pixel-level image
segmentation, a practical area of interest in computer vision. We use QMC for both experiments.
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Figure 4: Trajectory Visualization of RFMS at T = {0, 30, 100} and D = 200 on three separate
examples with varying variance and cluster shape. Red points mark actual modes of clusters.

Figure 5: Comparison of different mean-shift algorithms in terms of time (measured in seconds in
log scale) and normalized mutual information(NMI).

7.1 MEAN-SHIFT CLUSTERING

Mean-Shift algorithms are routinely used as clustering algorithms. It is particularly useful as it
does not require the number of clusters to be predefined and can discover arbitrarily shaped clusters,
given cluster forms a density peak. RMFS, as an efficient approximator of the classical mean-shift
formulation, can also be used in this way. Here, we compare RFMS against other types of mean-shift
algorithms: (MS).Fixed point iteration [9; 47; 3; 5]. (GMS). Gradient ascent over KDE [32; 20].
(BMS). Blurring mean-shift [9; 28; 71]. (MS++).Grid-based hashing [38]. Points that converge
to the same mode are considered a cluster. After applying mean-shift, the connected component
algorithm [8] is used to assign data points into different clusters. We conduct experiments on eight
clustering benchmarking datasets from Fänti et al. [18]. We use T = 100 across all methods and
D = 300 for RFMS. Each experiment was run 5 times, and we report the mean and standard
deviation. The main clustering results are presented in Figure 5. Another huge advantage RFMS has
is that its computational complexity scales well with d, the dimension of the data. The same is not
true for hashing-based methods like MS++. To verify this, we conduct additional experiments on
higher-dimensional real datasets [19; 40; 4]. The NMI and time results are shown in Table 1.

Results: We observe that RFMS can produce nearly optimal clustering results (on average 0.03
NMI drop-off compared with best NMI on each dataset) while being significantly more efficient
than conventional mean-shift algorithms (MS, BMS, and GMS), with up to a 12x speed-up. We also
observe that the efficiency benefit becomes more significant as the dataset grows larger, which is
due to the asymptotic complexity improvement of RFMS, thereby verifying its scalability. Despite
RFMS being slightly slower than MS++ (On average, 5.6s slower), RFMS produced better clustering
quality in 6 out of 8 datasets tested in terms of normalized mutual information. In Table 1, on
additional datasets, with increasing ambient dimension d, the efficiency of MS++ drops significantly.
Particularly, when d = 7(WirelessLocalization dataset), RFMS is over 70x faster than MS++. On the
WallRobots dataset, where both d and n are large, RFMS show the overall best efficiency performance.
The results above demonstrate the good scalability and mode-seeking quality of RFMS in comparison
with previous mean-shift approaches.

7.2 PIXEL-LEVEL IMAGE SEGMENTATION

Mean-shift is also a popular vision algorithm commonly used for pixel-level segmenta-
tion [15; 38]. It is useful in generating initial region proposals or superpixels for deep
semantic segmentation networks [55; 6; 45; 59; 77; 80]. Adapting a similar evalua-
tion setup as MS++ [38], we conduct experiments on the Berkeley Segmentation Dataset
Benchmark (BSDS500) [56], which contains 500 images with human-labelled segments.
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Method WallRobot UserKnowledge WirelessLocalization
d = 4, n = 5456, D = 2000 d = 5, n = 403, D = 500 d = 7, n = 2000, D = 750

NMI Time(s) NMI Time(s) NMI Time(s)
MS 33.8 ± 0.0 32.9 ± 2.8 34.3 ± 0.0 0.2 ± 0.0 74.5 ± 0.0 4.5 ± 0.6

MS++ 33.5 ± 0.0 27.7 ± 1.2 32.6 ± 0.0 8.6 ± 0.5 70.8 ± 0.0 499.8 ± 129.5
RFMS 31.4 ± 0.7 9.5 ± 0.3 33.6 ± 1.7 2.8 ± 0.1 71.1 ± 2.9 6.9 ± 1.5

Table 1: Comparison of different mean-shift algorithms on additional higher-dimensional real datasets.

Figure 6: Comparison of different mean-shift
image segmentation algorithms in terms of
time and Fowlkes-Mallows Score(FM). Ex-
ample segmented images can be found in Ap-
pendix O.

Each image is processed into a dataset containing
154401 three-dimensional points representing pixels
in LAB color space. In addition to MS, BMS, and
MS++ baselines, we also include QuickShift [69];
another popular segmentation algorithm based on
mean-shift that jointly considers spatial and color
features. We use the blurring version of RFMS. Due
to the inefficiency of the conventional mean-shift
algorithm, MS and BMS were run on images 1/36 of
the original size, all other methods were run on full
resolution. For RFMS, we set D = 10. All methods
were run until convergence or a maximum of 100
iterations.

Results: We observe that RFMS, MS++, MS, and
BMS all perform equally well on segmentation tasks.
Despite MS and BMS being run on lower-resolution sampled images, RFMS still achieves 3x speedup
when compared with MS and BMS, and 2x speedup when compared to QuickShift. In contrast to the
clustering experiments, we also observed that RFMS is slightly faster than MS++. This is due to the
fact that the MS++ algorithm does not scale well to higher-dimensional input because the number of
neighboring hypercubes increases exponentially with dimensionality. RFMS, however, is not affected
by the dimension of the data.

Additional information: Full experimental details regarding baseline algorithms, important hyperpa-
rameters, and additional results can be found in Appendix N and O. We also provide a comprehensive
ablation study regarding the sensitivity of RFMS hyperparameters (D,T, h, η, µ) and the effects of
using MC and QMC sampling for RFMS in Appendix M. Furthermore, we also provided useful
discussions on the significance of mean-shift algorithms, limitations & future works of RFMS in
Appendix C and D.

8 CONCLUSION

Mean-shift is the de facto algorithm for mode-seeking - a fundamental procedure in many areas. In
this paper, we propose Random Feature mean-shift (RFMS) for mode-seeking over kernel density
estimation. Built on top of Random Feature method and zeroth-order optimization, RFMS is an
asymptotic complexity improvement over the classical mean-shift algorithm. Theoretically, we show
that the modes RFMS produces are close to the actual modes of the kernel density estimation, making
RFMS an effective and efficient mode-seeking algorithm. Rather than presenting standard RFF
concentration bounds, we develop a complete pipeline tailored to mode seeking. The key significance
and novelty here is connecting random-feature approximation to the preservation of modes and
mode-seeking dynamics, which, to our knowledge, is not addressed by prior RFF analyses that focus
on kernel/value approximation. Empirically, RFMS matches the best clustering NMI within 0.03
while delivering up to 12× speedups. Similarly, on BSDS500, it attains 2–3× speedup compared
to the baselines. This advancement broadens the practical applicability of mean-shift algorithms to
domains previously limited by high computational demands.
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The appendix here provides additional details for the ICLR 2026 submission, titled “Random Feature
Mean-Sift”. The appendix is organized as follows:

• A - List of Notation

• B - RFMS Density Estimation Visualization

• C - Discussion

• D - Limitation & Future Work

• E. Proof of Equation 4

• F - Proof of Theorem 1

• G - Proof of Theorem 2

• H - Proof of Theorem 3

• I - Proof of Theorem 4

• J - Proof of Theorem 5

• K - Proof of Theorem 6

• L - Proof of Equation 13

• M - Ablation Study

• N - Additional Details on Clustering Experiments

• O - Additional Details on Image Segmentation Experiments

• P - Reproducibility / Code Availability

• Q - LLM Usage
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A LIST OF NOTATION

We hereby provide a list of notations used in this paper and accompanying proofs:

Symbol Meaning

d, D Data dimension, number of random feature
C Universal constant
x data point in Rd
D Dataset
n Number of data points in D
k Positive symmetric kernel function.
h Gaussian kernel bandwidth
kh Gaussian kernel of bandwidth h
f Data generating density function for D
f̂kh Kernel density estimation of f using kh
c Normalizing constant making sure the integral of f̂kh is 1

x
(l)
i Point xi aftter l iterations of mean-shift

ϕkh Random Feature transformation for kernel kh
∇f̂kh , ∇̂f̂kh Gradient and Estimated gradient of KED

Φ Summation of random feature transformed points
ĝ Random Feature estimation of KDE
ω Frequencies for constructing Random Feature Mapping
T Total number if iteration
η Learning rate for gradient ascent
µ Smoothing parameter in zeroth-order optimization
j Imaginary unit
X Compact set over Rd

Lip(·) Lipschitz constant of a function
λmin(·) Smallest eigenvalue of a square matrix
B(x, r) Closed ball centered at x with radius r

θ Łojasiewicz exponent
∥ · ∥ L2 norm
∥ · ∥ψ1

Sub-exponential Orlicz norm
∥ · ∥F Frobenius norm
∥ · ∥op Operator norm

Table 2: List of notations.

B RFMS DENSITY ESTIMATION VISUALIZATION

This section provides a qualitative sanity check of the random-feature density approximation used by
RFMS. While Theorems 3–5 establish that the approximation preserves mode locations up to a small
perturbation (and that any spurious modes must be confined to low-density regions), visualizing the
estimated density surfaces offers an intuitive confirmation of these claims.

Setup: We generate synthetic 1D and 2D mixtures of Gaussians with multiple separated (and mildly
overlapping) components, so that the ground-truth KDE exhibits several distinct modes. For each
dataset, we compute (i) the exact Gaussian KDE and (ii) the RFF density approximation obtained
from the same kernel bandwidth but replacing the kernel evaluation with a finite-dimensional random-
feature map of dimension D. We visualize the resulting density functions on a uniform grid (line plot
in 1D; 3D surface and heatmap in 2D). The results are shown in Figure 7.
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Figure 7: Density visualization on synthetic 1D and 2D points using Gaussian KDE and random
feature density estimation. (Top) Actual and RFF approximated density function using 800 1D points
with 3 clusters and different variances. (Middle) Actual and RFF approximated density function
using 2000 2D points with 2 clusters and different variances. (Bottom) Heatmap of 2D examples.

Observations: Across both 1D and 2D examples, the RFMS desnity approximation accurately
reproduces the dominant basins of attraction and preserves the number and locations of the high-
density modes. Small local discrepancies mostly visible in the tails where the true density is near
zero. In these low-density regions, the RFMS surface may exhibit mild ripples; consistent with our
theory, such oscillations can introduce visually small, isolated extrema that do not correspond to
meaningful modes and do not affect mode-seeking trajectories initialized in moderate-to-high density
regions. As D increases, the RFMS surface becomes progressively smoother and converges visually
to the KDE surface: peak locations stabilize, and tail oscillations diminish. This qualitative trend
aligns with the approximation guarantees, where the gradient/Hessian error decreases with larger D,
implying improved stability of critical points and their local geometry. Overall, these visualizations
support the theoretical guarantees that RFMS preserves the relevant mode structure of the KDE and
that any approximation-induced artifacts are limited to low-density regions where they have minimal
impact on the practical mode-seeking behavior.

C DISCUSSION

C.1 COMPARISON WITH OTHER FAST KDE APPROACHES

A rich body of literature accelerates KDE through techniques such as coresets, locality sensitive
hashing (LSH), and specialized data structures (e.g., space partitioning) [63; 10; 43; 27; 73; 39; 48].
Our focus here is different in that we aim for an end-to-end mode-seeking algorithm whose per-
iteration cost is linear in n, without discretizing the domain or relying on search structures that
can weaken in higher dimensions (e.g., tree, grid–style space partitions, or fast Gauss transform-
based approaches [27; 73; 39; 48] whose cost grows rapidly with ambient data dimension). More
importantly, those prior methods primarily target fast evaluation of KDE at a query point, whereas
our analysis is designed to support mode-seeking correctness: we bound how the modes of the
approximate KDE move relative to true KDE modes (Theorems 3–5) and prove convergence of
a stochastic/ascent-style iteration to a neighborhood of those modes (Theorem 6). Propagating
RFF-based KDE approximation error through to mode stability and tracking guarantees is a central
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contribution of our work. We also note a compatibility issue with blurring mean shift: when
points move each iteration, data-structure or coreset-based accelerations may require rebuilding or
substantial updates, potentially eroding their efficiency. In contrast, RFMS only updates and sums the
evolving feature encodings, which remains inexpensive and highly parallelizable. Overall, we view
RFMS as a complementary point in the broader design space of fast KDE approximations, alongside
coresets, LSH, and partitioning methods. Distinguished by RFMS’s simplicity in computation and a
well-established RFF theoretical foundation.

C.2 COMPATIBLE KERNEL FUNCTIONS

We note that the class of shift-invariant kernels is extensive — including Gaussian, Laplacian, Cauchy,
Matérn, and other widely used non-negative similarity measurements. Furthermore, RFMS is not
restricted to Fourier-based kernels. It can accommodate other random feature constructions, such as
Polynomial kernels via random Maclaurin expansions or dot-product kernels. In this sense, RFMS is
a general mode-seeking framework over random feature approximated kernel densities, and is not
inherently limited to any particular kernels.

C.3 BOUNDS TIGHTNESS

Theorem 1 attains the canonical Monte Carlo RFF rate where the KDE approximation error decays as
O(1/

√
D) [65] in the number of features D. This dependence is standard (and essentially optimal)

for vanilla i.i.d. feature sampling. Theorems 3-4 extend the same O(1/
√
D) dependence to the

gradient and Hessian. The extra factors are the usual cost of controlling the derivatives uniformly, not
a deterioration in the RFF sampling rate. We note that the constants in the bounds can be conservative
due to the use of Hoeffding-type inequality arguments, but the rates in D are the key notion of
tightness here and are sufficient for our mode-tracking guarantees. Practically, this yields a clean
accuracy-efficiency knob; the RFF-KDE is unbiased w.r.t. feature randomness, so increasing D
reduces variance and improves approximation, while runtime scales roughly linearly in D and T .
Thus, the approximation can be made arbitrarily tight by choosing D large enough.

C.4 RELATION TO HDC/VSA

Hyperdimensional computing (HDC)—also known as Vector Symbolic Architecture (VSA)— is
a class of computational models that represent and manipulate structured information using high-
dimensional vectors. The characteristic of VSA/HDC is that it first encodes data as high-dimensional
vectors and operates on encoded data using a set of simple algebraic operations that are efficient
and highly parallelizable [41; 64]. HDC is connected to theoretical neuroscience as its mathematical
framework closely resembles models of neural coding in the brain [22]. As a result, various machine
learning algorithms based on HDC/VSA have been proposed, such as classification [23], cluster-
ing [24], and regression [31]. However, there is a lack of density-based analysis methods in existing
HDC/VSA literature. The notion of high-dimensional, distributed, and compositional representation
of HDC/VSA aligns closely with RFMS. In that sense, RFMS can be viewed functionally as an
HDC/VSA algorithm, therefore filling in the gap between HDC/VSA and density-based analysis.
Furthermore, HDC/VSA has also been extensively studied, especially within the hardware community.
Various types of accelerators [79; 67] have been proposed for HDC/VSA workloads. This explicit
connection between RFMS and HDC/VSA, and their computational similarity, can potentially lead to
the use of existing HDC/VSA accelerators for RFMS, providing practical benefits.

C.5 SIGNIFICANCE OF MEAN-SHIFT ALGORITHMS

Mean-Shift, as a geometry-respecting procedure, is broadly useful across machine learning and data
analysis, some notable examples including vision, anomaly detection, self-supervised learning and
more [38; 44; 75]. Despite known limitations such as bandwidth sensitivity and the applicability
in high-dimensional data, mean-shift remains meaningful because it is often used as an algorithmic
primitive and is still being actively used by recent research [2; 53; 44]. Furthermore, the regimes
where mean-shift performs well are well understood [25; 15], and our approach provides a faithful
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approximation with asymptotic complexity improvements, making it desirable for many existing and
emerging applications.

D LIMITATION & FUTURE WORK

D.1 MORSE FUNCTION ASSUMPTION

In Theorem 5, our results regarding the stability of critical points have the assumption that the KDE
is a Morse function, meaning a smooth function with non-degenerate critical points. This is, in fact, a
standard assumption in density-based mode analysis [1; 11]. Moreover, the general body of literature
regarding the mean-shift algorithm assumes that gradient ascent on a KDE surface is well-behaved.
This implicitly assumes the density function has isolated, non-degenerate modes, aligning with the
Morse function.

D.2 SEMANTIC SEGMENTATION

In the context of image processing, mean-shift is a non-parametric unsupervised algorithm based on
low-level features such as color and/or spatial proximity. It operates on the pixel level and groups
pixels based on local density in a feature space, not on high-level semantic categories. Consequently,
mean-shift can segment coherent regions but cannot segment regions based on semantic information.
Despite its limitations, mean-shift can still be helpful in roles like generating superpixels or region
proposals, which can be a key step in semantic segmentation with deep neural networks [55; 6; 45;
59; 77].

D.3 MODE-SEEKING FOR HIGH-DIMENSIONAL DATA

In the high-dimensional regime, both RFMS and classical mean shift (or any KDE-based method)
are fundamentally limited by the curse of dimensionality. Our goal here is not to fix this statistical
issue, but to provide a computationally scalable approximation to classical mean-shift in regimes
where it is still used, which leads to substantial runtime gains in large n settings for the low-to-
moderate dimensional data. Despite this limitation, it remains useful and a powerful primitive in many
applications [38; 44; 75; 2; 53; 44; 14]. We believe RFMS can be incorporated with other methods
(e.g., dimensionality reduction methods such as in [54; 49]) and be explored in higher-dimensional
regimes. Our present goal, however, is to lay the theoretical foundations and analyze frameworks for
this sampling-based mean-shift estimator to support any future extensions.

D.4 FUTURE WORK

The primary aim of this paper is to establish the algorithmic and theoretical foundation of RFMS.
We view this work as a principled first step toward scalable, kernel-based mode-seeking for domains
such as tracking and point cloud, as these applications have been addressed by inefficient forms of
mean-shift [37]. RFMS is also designed to be modular and extensible: different random-feature maps
and zeroth-order gradient strategies can be used depending on the application. We believe RFMS can
be incorporated into other learning pipelines (e.g., deep neural networks) [2; 53; 44]. It is also well
known that the mean-shift algorithms work best in a low-to-moderate dimension regime, as kernel
density estimation suffers from the curse of dimensionality [25]. As a potential future direction, we
would also like to extend RFMS into high-dimensional regimes [10; 9]. In any case, this paper can
serve as a theoretical foundation for this sampling-based mean-shift estimator in support of any future
extensions.

E PROOF OF EQUATION 4

Proof. Want to show ĝ(x) is an unbiased estimation of the kernel density estimation f̂(x) with
respect to the randomness in ω ∼ N

(
0, 1

h2 Id
)
. Recall the definition of ϕkh :
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ϕkh =
1√
D

[
ej(ω

T
1 x)ej(ω

T
2 x)ej(ω

T
3 x) . . . ej(ω

T
Dx)
]

(15)

We start by showing that the complex inner products between encodings produced by ϕkh are an
unbiased estimation of the kernel function kh. For any x, x′ ∈ Rd, the results follow directly after
linearity of expectation and Bochner’s theorem:

Eω∼N(0, 1
h2 Id) [⟨ϕkh(x), ϕkh(x

′)⟩]

= Eω∼N(0, 1
h2 Id)

[
1

D

D∑
k=1

ej(ω
T
k x)ej(ω

T
k x

′)

]
= Eω∼N(0, 1

h2 Id)

[
ej(ωT x)ej(ω

T x′)
]

= Eω∼N(0, 1
h2 Id)

[
ejω

T (x′−x)
]

=

∫
Rd

p(ω)ejω·(x
′−x)dω

= kh(x
′, x) = kh(x, x

′)

(16)

Recall that Φ = 1
nc

∑n
i=1 ϕkh(xi)∀xi ∈ D and ĝ(x) = ⟨ϕkh(x),Φ⟩, so:

Eω∼N(0, 1
h2 Id) [⟨ϕkh(x),Φ⟩]

= Eω∼N(0, 1
h2 Id)

[
ϕkh(x) ·

(
1

nc

n∑
i=1

ϕkh(xi)

)]

= Eω∼N(0, 1
h2 Id)

[
1

nc

n∑
i=1

(
ϕkh(x) · ϕkh(xi)

)]

=
1

nc

n∑
i=1

kkh(x, xi) = f̂kh(x)

(17)

■

F PROOF OF THEOREM 1

Proof. First expand
∣∣∣ĝ(x)− f̂kh(x)

∣∣∣:
∣∣∣ĝ(x)− f̂kh(x)

∣∣∣ = ∣∣∣∣∣⟨ϕkh(x),Φ⟩ − 1

nc

n∑
i=1

kh (x, xi)

∣∣∣∣∣
=

∣∣∣∣∣
〈
ϕkh(x),

1

nc

n∑
i=1

ϕkh(xi)

〉
− 1

nc

n∑
i=1

kh (x, xi)

∣∣∣∣∣
=

∣∣∣∣∣ 1nc
n∑
i=1

⟨ϕkh(x), ϕkh(xi)⟩ −
1

nc

n∑
i=1

kh (x, xi)

∣∣∣∣∣
=

1

nc

∣∣∣∣∣
n∑
i=1

⟨ϕkh(x), ϕkh(xi)⟩ −
n∑
i=1

kh (x, xi)

∣∣∣∣∣
=

1

nc

∣∣∣∣∣
n∑
i=1

1

D

D∑
k=1

ejω
T
k (xi−x) −

n∑
i=1

kh (x, xi)

∣∣∣∣∣

(18)
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We define an estimator:

Zk =

n∑
i=1

ejω
T
k (xi−x) (19)

Since Random Feature is unbiased for approximating individual kernel values, we know that:

Eω∼N(0, 1
h2 Id) [Zk] =

n∑
i=1

kh (x, xi) (20)

Since the sampling of random features ω in the construction of ϕkh is uniform i.i.d., the approximation
is an average of i.i.d. complex-valued random variables Zk, with expectation equal to the target
kernel sum. Split Zk into real and imaginary parts using sine and cosine:

Zk = Ak + jBk where: Ak =

n∑
i=1

cos
(
ωTk (xi − x)

)
, Bk =

n∑
i=1

sin
(
ωTk (xi − x)

)
(21)

Since sine and cosine functions are bounded between [−1, 1], it is clear that Ak, Bk ∈ [−n, n], which
is bounded. Use Hoeffding’s inequality for both Ak and Bk. Chase any δ ∈ (0, 1) with probability if
at least 1− δ/2:

∣∣∣∣∣ 1D
D∑
k=1

Ak − Eω∼N(0, 1
h2 Id) [Ak]

∣∣∣∣∣ ≤ 2n

√
1

2D
ln

4

δ∣∣∣∣∣ 1D
D∑
k=1

Bk − Eω∼N(0, 1
h2 Id) [Bk]

∣∣∣∣∣ ≤ 2n

√
1

2D
ln

4

δ

(22)

Since kh is real valued, meaning Eω∼N(0, 1
h2 Id) [Bk] = 0, so E [Ak] = Eω∼N(0, 1

h2 Id) [Zk] =∑n
i=1 kh (x, xi). Recall that for complex number Zk, |Zk| =

√
A2
K +B2

K ≤ |Ak|+ |Bk|, and the
probability of both the imaginary and real inequality holds is (1− δ/2)2 > 1− δ, so:

∣∣∣∣∣ 1D
D∑
k=1

Zk −
n∑
i=1

kh(x, x
′)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1D

D∑
k=1

Ak −
n∑
i=1

kh (x, xi)

∣∣∣∣∣+
∣∣∣∣∣ 1D

D∑
k=1

Bk

∣∣∣∣∣
≤ 4n

√
1

2D
ln

4

δ

(23)

Finally:

∣∣∣ĝ(x)− f̂kh(x)
∣∣∣ = 1

nc

∣∣∣∣∣ 1D
D∑
k=1

Zk −
n∑
i=1

kh(x, x
′)

∣∣∣∣∣
≤ 4

c

√
1

2D
ln

4

δ
With probability at least 1− δ

(24)

■

So, for any δ ∈ (0, 1), with probability at least 1 − δ, the above error bound holds. Additionally,
suppose KED are estimated via Re (ĝ(x)). In that case, there will be no additional variance from the

imaginary part, further reducing the bound to 2
c

√
1
2D ln 4

δ .
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G PROOF OF THEOREM 2

Proof. Let X be a compact set over Rd such that D ⊂ X . The goal is to extend Theorem 1 to a
uniform convergence statement over the entire X .

sup
x⊂X

∣∣∣(Re (ĝ(x))− f̂kh(x)
)∣∣∣ = sup

x⊂X

∣∣∣∣∣ 1nc
∣∣∣∣∣
n∑
i=1

Re (⟨ϕkh(x), ϕkh(xi)⟩)−
n∑
i=1

kh (x, xi)

∣∣∣∣∣
∣∣∣∣∣

≤ 1

c
sup
x,y⊂X

||Re (⟨ϕkh(x), ϕkh(y)⟩)− kh (x, y)||
(25)

Ignoring the constant 1c for now, the remaining is the uniform convergence of random Fourier features,
which has been studied by Rahimi and Recht [65], for an error tolerance epsilon ϵ:

Pr

(
sup
x,y⊂X

||Re (⟨ϕkh(x), ϕkh(y)⟩)− kh (x, y)|| ≥ ϵ

)

≤ 28


√
Eω∼N(0, 1

h2 Id) [⟨ω, ω⟩] diam(X )

ϵ

2

exp

(
− Dϵ2

4(d+ 2)

) (26)

Next, solve
√
Eω∼N(0, 1

h2 Id) [⟨ω, ω⟩]:

√
Eω∼N(0, 1

h2 Id) [⟨ω, ω⟩] =
√

d

h2
=

√
d

h
(27)

Putting everything back together:

Pr

(
sup
x⊂X

∣∣∣Re (ĝ(x))− f̂kh(x)
∣∣∣ ≥ ϵ

)
≤ 28

(
c
√
d diam(X )

hϵ

)2

exp

(
− Dϵ2

c24(d+ 2)

)
(28)

■

H PROOF OF THEOREM 3

Proof. Here, we would like to show a bound between the gradient of the Random Feature approxi-
mated KDE and the gradient of the actual KDE. Specifically, since we are using real-valued version
of ĝ(x), we what to show a bound on

∥∥∥∇Re (ĝ(x))−∇f̂kh(x)
∥∥∥. We first expand:

∥∥∥∇Re (ĝ(x))−∇f̂kh(x)
∥∥∥ =

1

nc

∥∥∥∥∥
n∑
i=1

1

D

D∑
k=1

∇Re
(
ejω

T
k (xi−x)

)
−

n∑
i=1

∇kh (x, xi)

∥∥∥∥∥
=

1

nc

∥∥∥∥∥ 1

D

D∑
k=1

n∑
i=1

∇ cos(ωTk (xi − x))−
n∑
i=1

∇kh (x, xi)

∥∥∥∥∥
(29)

We define an estimator:

Zk =

n∑
i=1

∇ cos(ωTk (xi − x)) (30)
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Since Differentiation commutes with expectation:

Eω∼N(0, 1
h2 Id) [Zk] = ∇Eω∼N(0, 1

h2 Id)

[
n∑
i=1

cos(ωTk (xi − x))

]
=

n∑
i=1

∇kh (x, xi) (31)

To bound the deviation of Zk from its expectation, we apply Bernstein’s inequality:

Zk =

n∑
i=1

sin
(
ωTk (xi − x)

)
ωk (32)

However, since ω ∼ N
(
0, 1

h2 Id
)

is unbounded, random variable Zk is also unbounded, so the
standard Bernstein inequality does not apply. However, notice that the ω is sub-exponential, we apply
the Bernstein inequality for a tail-heavy random variable.

Consider the version of Bernstein inequality presented by Lanthaler et al. [46] which states: Let
Z be a sub-exponential random variable in a separable Hilbert space, choose any δ ∈ (0, 1), with
probability at least 1− δ, the following holds:

∥∥∥∥∥ 1

D

D∑
k=1

Zk − Eω∼N(0, 1
h2 Id) [Zk]

∥∥∥∥∥ ≤ 2b ln(2/δ)

D
+

√
2σ2 ln(2/δ)

D
(33)

Where:

σ2 = 4e

√
Eω∼N(0, 1

h2 Id)

[
∥Zk − Eω∼N(0, 1

h2 Id) [Zk] ∥
2
]
∥Zk∥ψ1 and b = 4e∥Zk∥ψ1 (34)

∥ · ∥ψ1
denotes sub-exponential Orlicz norm. Since Rd is a separable Hilbert space, it is directly

applicable here. First bounding:

Eω∼N(0, 1
h2 Id)

[∥∥∥Zk − Eω∼N(0, 1
h2 Id) [Zk]

∥∥∥2]
= Eω∼N(0, 1

h2 Id)
[
∥Zk∥2

]
− ∥Eω∼N(0, 1

h2 Id)[Zk]∥
2

≤ Eω∼N(0, 1
h2 Id)

[
∥Zk∥2

] (35)

Since the sine function is bounded:

∥Zk∥ ≤ n∥ωk∥ (36)

Recall that ωk are drawn from N
(
0, 1

h2 Id
)
, so:

Eω∼N(0, 1
h2 Id)

[
∥Zk∥2

]
≤ n2Eω∼N(0, 1

h2 Id)
[
∥ωk∥2

]
≤ n2d

h2
(37)

Now bounding ∥Zk∥ψ1 :

∥Zk∥ψ1 = ∥∥Zk∥∥ψ1 ≤ ∥n∥ωk∥∥ψ1 = n∥∥ωk∥∥ψ1 = n∥ωk∥ψ1 =
n

h
∥z∥ψ1 (38)

Where z ∼ N (0, I). We know that [70]:

∥z∥ψ1 ≤ C
√
d (39)
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Where C is a universal constant, so:

∥Zk∥ψ1 ≤
Cn
√
d

h
(40)

Which means:

σ2 ≤ 4eCn2d

h2
and b ≤ 4eCn

√
d

h
(41)

We can bound the deviation of Zk from its expectation:

∥∥∥∥∥ 1

D

D∑
k=1

Zk − Eω∼N(0, 1
h2 Id) [Zk]

∥∥∥∥∥ ≤ 8Cen
√
d ln(2/δ)

Dh
+

√
8Cen2d ln(2/δ)

Dh2
(42)

The above holds with probability at least 1− δ. And finally, also with probability at least 1− δ:

∥∥∥∇Re (ĝ(x))−∇f̂kh(x)
∥∥∥ ≤ 1

nc

(
8Cen

√
d ln(2/δ)

Dh
+

√
8Cen2d ln(2/δ)

Dh2

)
(43)

■

I PROOF OF THEOREM 4

Proof. We also want to bound the Frobenius norm of the difference between the Hessian:

∥∥∥∇2 Re (ĝ(x))−∇2f̂kh(x)
∥∥∥
F
=

1

nc

∥∥∥∥∥ 1

D

D∑
k=1

n∑
i=1

∇2 cos(ωTk (xi − x))−
n∑
i=1

∇2kh (x, xi)

∥∥∥∥∥
F
(44)

Define an estimator:

Zk =

n∑
i=1

∇2 cos(ωTk (xi − x)) (45)

Again, because differentiation commutes with expectation, know that:

Eω∼N(0, 1
h2 Id) [Zk] = ∇

2Eω∼N(0, 1
h2 Id)

[
n∑
i=1

cos(ωTk (xi − x))

]
=

n∑
i=1

∇2kh (x, xi)

(46)

Use the proving technique as seen in the proof of Theorem 3. We start by bounding σ2 and b:

Zk =

n∑
i=1

− cos
(
ωTk (xi − x)

)
ωkω

T
k (47)

Then:
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Eω∼N(0, 1
h2 Id)

[∥∥∥Zk − Eω∼N(0, 1
h2 Id) [Zk]

∥∥∥2
F

]
= Eω∼N(0, 1

h2 Id)
[
∥Zk∥2F

]
− ∥Eω∼N(0, 1

h2 Id)[Zk]∥
2
F

≤ Eω∼N(0, 1
h2 Id)

[
∥Zk∥2F

] (48)

Since the cosine function is bounded:

∥Zk∥F ≤ n∥ωkωTk ∥F (49)

Recall that ωk are drawn from N
(
0, 1

h2 Id
)
, so:

Eω∼N(0, 1
h2 Id)

[
∥Zk∥2F

]
≤ n2Eω∼N(0, 1

h2 Id)
[
∥ωkωTk ∥2F

]
≤ n2d(d+ 2)

h4
(50)

Now bounding ∥Zk∥ψ1 :

∥Zk∥ψ1 = ∥∥Zk∥F ∥ψ1 ≤ ∥n∥ωkωTk ∥F ∥ψ1 = n∥∥ωkωTk ∥F ∥ψ1 = n∥ωkωTk ∥ψ1 ≤
Cnd

h2
(51)

Which means:

σ2 ≤
4eCn2d

√
d(d+ 2)

h4
and b ≤ 4eCnd

h2
(52)

Bound the deviation of Zk from its expectation:

∥∥∥∥∥ 1

D

D∑
k=1

Zk − Eω∼N(0, 1
h2 Id) [Zk]

∥∥∥∥∥
F

≤ 8eCnd ln(2/δ)

Dh2
+

√
8eCn2d

√
d(d+ 2) ln(2/δ)

Dh4
(53)

The above holds with probability at least 1− δ. And finally, also with probability at least 1− δ:

∥∥∥∇2 Re (ĝ(x))−∇2f̂kh(x)
∥∥∥
F
≤ 1

nc

8eCnd ln(2/δ)

Dh2
+

√
8eCn2d

√
d(d+ 2) ln(2/δ)

Dh4

 (54)

■

J PROOF OF THEOREM 5

Proof. The aim here is to show the critical points between Re (ĝ) and f̂kh are close under a mild
assumption. Assume f̂kh is a Morse function, i.e., a smooth function with non-degenerate critical
points [29], let x∗ be any critical point of f̂kh , we have:

∇fkh (x∗) = 0 and ∇2fkh (x
∗) is invertible with all positive eigenvalues (55)

In Theorem 3 and 4, we have shown that Re (ĝ) and f̂kh , are point-wise close in terms of their
gradient and hessian for all x ∈ Rd, suppose:
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∥∇Re (ĝ(x))−∇fkh(x)∥ ≤ ϵ1 With probability at least 1− δ/2∥∥∇2 Re (ĝ(x))−∇2fkh(x)
∥∥
F
≤ ϵ2 With probability at least 1− δ/2

(56)

Where ϵ1, ϵ2 can be made arbitrarily small by increasing D (see Theorem 3 and Theorem 4).

We’re looking for x̂∗ near x∗ such that:

∇Re (ĝ(x̂∗)) = 0 (57)

x̂∗ can be found via Newton iteration:

T (x) = x−
[
∇2 Re (ĝ(x))

]−1∇Re (ĝ(x)) (58)

Start at x∗, we can show the distance between x∗ and x̂∗ using Newton–Kantorovich theorem [42],
which gives the optimality and convergence result of Newton’s Method.

We first bound the gradient residual at x∗:

∥∇Re (ĝ(x∗))∥ =
∥∥∥∇Re (ĝ(x∗))−∇f̂kh(x∗)

∥∥∥ ≤ ϵ1 (59)

Then, show the invertibility of ∇2 Re(ĝ(x∗)) by showing all its eigenvalue are positive. Let λmin(·)
denote the smallest eigenvalue of a matrix, by Weyl’s inequality:

∣∣∣λmin (∇2 Re(ĝ(x∗))
)
− λmin

(
∇2f̂kh(x

∗)
)∣∣∣

≤
∥∥∇2 Re (ĝ(x∗))−∇2fkh(x

∗)
∥∥
op

≤
∥∥∇2 Re (ĝ(x∗))−∇2fkh(x

∗)
∥∥
F

≤ ϵ2

(60)

Which implies:

λmin
(
∇2 Re(ĝ(x∗))

)
≥ λmin

(
∇2f̂kh(x

∗)
)
− ϵ2 (61)

This means, in order for ∇2 Re(ĝ(x∗)) to be invertible, simply chose ϵ2 ≤ λmin

(
∇2f̂kh(x

∗)
)

.

Further more we can bound the operator norm of
[
∇2 Re(ĝ(x∗))

]−1
:

∥∥∥[∇2 Re(ĝ(x∗))
]−1
∥∥∥
op
≤ 1

λmin (∇2 Re(ĝ(x∗)))
≤ 1

λmin

(
∇2f̂kh(x

∗)
)
− ϵ2

(62)

Since we successfully bounded the operator norm, we also know that:∥∥∥[∇2 Re (ĝ(x∗))
]−1∇Re (ĝ(x∗))

∥∥∥ ≤ ϵ1

λmin

(
∇2f̂kh(x

∗)
)
− ϵ2

(63)

Define:

α =
Lip

(
∇2 Re (ĝ)

)
ϵ1(

λmin

(
∇2f̂kh(x

∗)
)
− ϵ2

)2 (64)
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If α < 1
2 , Newton–Kantorovich theorem [60; 33] states that:

x̂∗ ∈ B

x∗,
ϵ1

λmin

(
∇2f̂kh(x

∗)
)
− ϵ2

 (65)

B(x, r) means a closed ball centered at x with radius r, and x̂∗ is the only critical point in the region.

Overall, what this means is that for any critical point x∗ of f̂kh , if we choose:

1. ϵ2 ≤ λmin

(
∇2f̂kh(x

∗)
)

2. ϵ1 such that α ≤ 1
2

3. ∥∇Re (ĝ(x))−∇fkh(x)∥ ≤ ϵ1 and
∥∥∇2 Re (ĝ(x))−∇2fkh(x)

∥∥
F
≤ ϵ2 both holds with

probability at least 1− δ/2.

Then, with probability least 1 − δ, there is only one critical point x̂∗ of Re (ĝ) such that: x̂∗ ∈

B

(
x∗, ϵ1

λmin(∇2f̂kh
(x∗))−ϵ2

)
.

■

K PROOF OF THEOREM 6

The convergence of zeroth-order gradient methods using two-point gradient estimation over noncon-
vex but L-smooth function is established by Nesterov and Spokoiny [58], who showed the method
converges to approximate stationary points at a sublinear rate. Specifically, in our case, with decaying
step-size, the average squared gradient norm satisfies:

min
0≤l<T

Eu∼N (0,Id)

∥∥∥∇Re
(
ĝ
(
x(l)
))∥∥∥2 = O

(
1√
T

+ µ2d2
)

(66)

The second term comes from the fact that gradient estimation is biased (due to the smoothing
parameter µ) but close to the real gradient. We can further derive a bound to quantify the result
of zero-th order gradient ascent over Re (ĝ): Let l∗ ∈ {0 · · ·T} be the iteration index such that
Eu∼N (0,Id)

∥∥∇Re
(
ĝ
(
x(l)
))∥∥2 is the smallest. Since Re (ĝ) is real analytical, it satisfies Łojasiewicz

inequality around a local mode x̂∗:

Re (ĝ (x̂∗))− Re
(
ĝ
(
x(l∗)

))
≤ O

(∥∥∥∇Re
(
ĝ
(
x(l∗)

))∥∥∥2/2θ) (67)

Where θ is the Łojasiewicz exponent. Combine with the descent lemma:

1

2Lip (∇Re (ĝ))

∥∥∥x̂∗ − x(l∗)
∥∥∥2 ≤ Re (ĝ (x̂∗))−Re

(
ĝ
(
x(l∗)

))
≤ O

(∥∥∥∇Re
(
ĝ
(
x(l∗)

))∥∥∥2/2θ)
(68)

Taking the expectation on both sides yields:

Eu∼N (0,Id)

[∥∥∥x̂∗ − x(l∗)
∥∥∥2] ≤ O(( 1√

T
+ µ2d2

)1/2θ
)

(69)

■
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L PROOF OF EQUATION 13

Proof. Want to show that ϕkh(x+ x′) = D√
D
ϕkh(x)⊗ ϕkh(x

′) ∀x, x′ ∈ Cd. Recall that ϕ(.) is:

ϕkh(x) =
1√
D

[
ej(ω

T
1 x)ej(ω

T
2 x)ej(ω

T
3 x) . . . ej(ω

T
Dx)
]

(70)

So:
D√
D
ϕkh(x)⊗ ϕkh(x

′) =
D√
D

1√
D

[
ej(ω

T
1 x)ej(ω

T
2 x)ej(ω

T
3 x) . . . ej(ω

T
Dx)
]

⊗ 1√
D

[
ej(ω

T
1 x

′)ej(ω
T
2 x

′)ej(ω
T
3 x

′) . . . ej(ω
T
Dx

′)
]

=
D√
D

1

D

[
ej(ω

T
1 x)ej(ω

T
1 x

′) . . . ej(ω
T
Dx)ej(ω

T
Dx

′)
]

=
D√
D

1

D

[
ej(ω

T
1 (x+x′)) . . . ej(ω

T
D(x+x′))

]
=

1√
D

[
ej(ω

T
1 (x+x′)) . . . ej(ω

T
D(x+x′))

]
= ϕkh(x+ x′)

(71)

■

M ABLATION STUDY

M.1 HYPERPARAMETER SENSITIVITY

Here, we provide a sensitivity analysis on important RFMS hyperparameters, including the mapped
dimension(d), number of iterations (T ), kernel bandwidth(h), learning rate(η), and smoothing
parameter(µ). Experimental results here are done on S4 dataset. Unless specified in the table below,
we use the default D = 500, T = 100, h = 0.2, η = 0.003, µ = 5e− 4.

S4 dataset D = 50 D = 100 D = 200 D = 300 D = 500
NMI 64 67 68 69 69

Time(s) 1.7 2.7 6.2 10.3 17.8

S4 dataset T = 10 T = 50 T = 100 T = 150 T = 200
NMI 0 35 70 70 71

Time(s) 2.1 8.6 17.4 25.8 33.7

S4 dataset h = 0.05 h = 0.1 h = 0.2 h = 0.4 h = 0.8
NMI 50 62 67 10 0

S4 dataset η = 0.00075 η = 0.0015 η = 0.003 η = 0.006 η = 0.1
NMI 49 54 69 71 28

S4 dataset µ = 5e− 6 µ = 5e− 5 µ = 5e− 4 µ = 5e− 3 µ = 1
NMI 69 70 70 64 5
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We introduce η as a step-size parameter so the mean-shift update matches the familiar gradient ascent
form. This also lets us control how far we move each iteration. In practice, the kernel affects the
scale of the update through bandwidth, and η provides a convenient way to absorb/adjust that step
magnitude and to improve stability under approximation/zeroth-order noise.

Among the hyperparameters, only D and T will affect the runtime of the algorithm. As claimed in
the paper, runtime scales linearly in both T and D. Larger T and D will almost certainly produce
better results, which aligns with Theorems 5 and 6 in the paper that quantify the closeness between
the result returned by RFMS and actual modes of KDE. RFMS can be sensitive to h, η, µ. Similar to
many machine learning approaches, those hyperparameters need to be chosen empirically based on
the on-hand data. The advantage of RFMS is that it allows for much faster hyperparameter-tuning
due the the algorithm’s efficiency.

M.2 MONTE-CARLO(MC) VS. QUASI MONTE-CARLO(QMC)

Here, we add additional experiments to disentangle the effect of Monte-Carlo sampling (MC) and
Quasi Monte-Carlo sampling (QMC) in RFMS at varying D, better NMI are highlighted:

NMI (D = 50) a1 a2 a3 unbalance s1 s2 s3 s4
MC 0.83 0.86 0.85 0.98 0.92 0.86 0.67 0.65

QMC 0.85 0.86 0.86 0.98 0.94 0.87 0.71 0.66

NMI (D = 100) a1 a2 a3 unbalance s1 s2 s3 s4
MC 0.87 0.87 0.89 0.98 0.96 0.89 0.7 0.64

QMC 0.89 0.89 0.90 0.98 0.96 0.91 0.74 0.68

NMI (D = 200) a1 a2 a3 unbalance s1 s2 s3 s4
MC 0.89 0.91 0.92 0.98 0.97 0.91 0.74 0.63

QMC 0.92 0.93 0.94 0.98 0.98 0.93 0.74 0.68

NMI (D = 300) a1 a2 a3 unbalance s1 s2 s3 s4
MC 0.92 0.94 0.95 0.98 0.98 0.92 0.75 0.68

QMC 0.95 0.97 0.96 0.98 0.98 0.93 0.76 0.69

At the same D, QMC shows a consistent improvement over MC sampling as expected.

N ADDITIONAL DETAILS ON CLUSTERING EXPERIMENTS

All clustering experiments were run on an Intel i5-11400 CPU. All algorithms are implemented in
Python and use the NumPy [30] library. We provide further details on the clustering experiments
below. For the cluster assignment after mean-shift, we construct a graph over shifted data points where
an edge exists between x and x′ if kh(x, x′) > 0.9 and run the connected component algorithm.

N.1 DIFFERENT MEAN-SHIFT ALGORITHMS

Gradient mean-shift(GMS):

x(l+1) = x(l) + η
∇fkh(x(l))

fkh(x
(l))

(72)

Fixed-point iteration mean-shift(MS):
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x(l+1) =

∑n
i=1 kh

(
xi − x(l)

)
xi∑n

i=1 kh
(
xi − x(l)

) (73)

Blurring mean-shift(BMS):

x(l+1) =

∑n
i=1 kh

(
x
(l)
i − x(l)

)
x
(l)
i∑n

i=1 kh

(
x
(l)
i − x(l)

) (74)

For MS++, we refer the readers to the original paper by Jiang et al. [38] for a more detailed discussion.

N.2 DATASET DETAILS

a1 a2 a3 unbalance s1 s2 s3 s4
n 3000 5250 7500 6500 5000 5000 5000 5000

# Cluster 20 35 50 8 15 15 15 15
d 2 2 2 2 2 2 2 2

WallRobot UserKnowledge WirelessLocalization
n 5456 403 2000

# Cluster 4 4 4
d 4 5 7

Table 3: Dataset information for clustering experiments.

N.3 HYPERPARAMETER INFORMATION

We fix the number of iterations across all methods. Parameters such as h, µ, η are chosen impiricially.
For RFMS, D is chosen to be as small as possible while not degrading the result significantly.

a1 a2 a3 unbalance s1 s2 s3 s4
Random Feature dimension D 300 300 300 300 300 300 300 300

Bandwidth h 0.1 0.1 0.1 0.5 0.2 0.2 0.2 0.2
Iteration T 100 100 100 100 100 100 100 100

Smoothing parameter µ 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4
Learning rate η 1e-3 1e-3 1e-3 1e-3 3e-3 3e-3 3e-3 3e-3

WallRobot UserKnowledge WirelessLocalization
Random Feature dimension D 500 2000 750

Bandwidth h 0.2 0.5 0.7
Iteration T 100 100 100

Smoothing parameter µ 5e-4 5e-4 5e-4
Learning rate η 1e-2 3e-2 5e-2

Table 4: RFMS hyperparameters.
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a1 a2 a3 unbalance s1 s2 s3 s4
Bandwidth 0.15 0.15 0.15 0.3 0.15 0.15 0.15 0.15

WallRobot UserKnowledge WirelessLocalization
Bandwidth 0.2 0.5 0.5

Table 5: MS++ hyperparameter.

For MS, GMS, and BMS, we use the same hyperparameter whenever applicable.

N.4 ADDITIONAL EXPERIMENTAL RESULTS

Figure 8: Adjusted mutual information(AMI), Rand Score(RS) and Adjusted Rand Score(ARS)

Metric Method a1 a2 a3 unbalance s1 s2 s3 s4

AMI

RFMS 0.93 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.93 ± 0.01 0.75 ± 0.01 0.66 ± 0.03
GMS 0.97 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.94 ± 0.00 0.78 ± 0.00 0.68 ± 0.00
MS 0.96 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.95 ± 0.00 0.79 ± 0.00 0.72 ± 0.00
BMS 0.96 ± 0.00 0.97 ± 0.00 0.92 ± 0.00 0.82 ± 0.00 0.90 ± 0.00 0.90 ± 0.00 0.73 ± 0.00 0.69 ± 0.00
MS++ 0.89 ± 0.00 0.86 ± 0.00 0.83 ± 0.00 0.99 ± 0.00 0.95 ± 0.00 0.84 ± 0.00 0.73 ± 0.00 0.68 ± 0.00

NMI

RFMS 0.94 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.93 ± 0.01 0.75 ± 0.01 0.67 ± 0.03
GMS 0.97 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.95 ± 0.00 0.78 ± 0.00 0.69 ± 0.00
MS 0.96 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.95 ± 0.00 0.79 ± 0.00 0.72 ± 0.00
BMS 0.96 ± 0.00 0.97 ± 0.00 0.92 ± 0.00 0.82 ± 0.00 0.90 ± 0.00 0.90 ± 0.00 0.73 ± 0.00 0.69 ± 0.00
MS++ 0.89 ± 0.00 0.87 ± 0.00 0.84 ± 0.00 0.99 ± 0.00 0.95 ± 0.00 0.84 ± 0.00 0.74 ± 0.00 0.69 ± 0.00

ARS

RFMS 0.91 ± 0.02 0.93 ± 0.01 0.92 ± 0.04 1.00 ± 0.00 0.98 ± 0.01 0.91 ± 0.02 0.60 ± 0.02 0.47 ± 0.09
GMS 0.96 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.94 ± 0.00 0.67 ± 0.00 0.51 ± 0.00
MS 0.95 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.94 ± 0.00 0.71 ± 0.00 0.63 ± 0.00
BMS 0.92 ± 0.00 0.88 ± 0.00 0.66 ± 0.00 0.61 ± 0.00 0.72 ± 0.00 0.74 ± 0.00 0.51 ± 0.00 0.54 ± 0.00
MS++ 0.71 ± 0.00 0.55 ± 0.00 0.45 ± 0.00 1.00 ± 0.00 0.87 ± 0.00 0.65 ± 0.00 0.57 ± 0.00 0.53 ± 0.00

RS

RFMS 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.94 ± 0.01 0.91 ± 0.03
GMS 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.95 ± 0.00 0.92 ± 0.00
MS 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.96 ± 0.00 0.95 ± 0.00
BMS 0.99 ± 0.00 0.99 ± 0.00 0.98 ± 0.00 0.81 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.91 ± 0.00 0.93 ± 0.00
MS++ 0.96 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 0.98 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00

Time(s)

RFMS 4.44 ± 0.05 8.36 ± 0.07 12.71 ± 0.17 10.63 ± 0.12 7.80 ± 0.14 7.71 ± 0.12 8.03 ± 0.10 7.93 ± 0.15
GMS 30.24 ± 0.54 88.36 ± 4.21 175.98 ± 8.26 136.82 ± 2.19 75.12 ± 0.29 75.42 ± 0.47 76.82 ± 4.22 79.19 ± 3.96
MS 16.98 ± 0.24 50.31 ± 2.04 93.03 ± 1.65 68.54 ± 0.36 45.21 ± 0.93 45.63 ± 0.74 45.80 ± 1.46 44.96 ± 0.34
BMS 17.28 ± 0.24 47.16 ± 0.29 84.12 ± 0.51 68.34 ± 0.09 42.9 ± 0.24 43.21 ± 0.05 43.56 ± 0.04 43.37 ± 0.12
MS++ 1.48 ± 0.05 2.70 ± 0.05 4.17 ± 0.12 4.10 ± 0.09 2.54 ± 0.02 2.63 ± 0.07 2.61 ± 0.07 2.61 ± 0.04

Table 6: Full clustering experimental results in table format under different metrics.
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O ADDITIONAL DETAILS ON IMAGE SEGMENTATION EXPERIMENTS

Segmentation experiments were run on an Intel i5-11400 CPU. RFMS, MS, BMS, and MS++ are
implemented in Python using the Numpy [30] library. QuickShift implementation comes from the
Scikit-Image library [68]. Since RFMS, MS, and BMS might produce noisy clustering, we divide
LAB color space into hypercubes of side length 100 after shifting for clustering assignment. For
RFMS, we use D = 10, µ = 0.1 and η = 30. RFMS, MS, and BMS use h = 25 whereas bandwidth
for MS++ and Quickshift is 30 and 20, respectively.

O.1 EXAMPLE SEGMENTATION RESULTS

Figure 9: Visualization of segmentation result using different mean-shift based algorithms on
BSDS500 dataset. Pixels belonging to the same cluster are marked with the same color.

O.2 ADDITIONAL EXPERIMENTAL RESULT

Figure 10: Adjusted Rand Score(ARS)
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FM (Fowlkes-Mallows score)
RFMS MS++ Quickshift MS BMS
0.54 0.56 0.42 0.54 0.54

ARS (Adjusted Rand Index)
RFMS MS++ Quickshift MS BMS
0.27 0.27 0.25 0.19 0.21

Time(s)
RFMS MS++ Quickshift MS BMS

5000.11 5111.94 10557.48 15703.66 15019.48

Table 7: Full image segmentation experimental results in table format under different metrics.

P REPRODUCIBILITY / CODE AVAILABILITY

We value the availability and reproducibility of our work. The code and all the hyperparameters used
in the experiment section are supplied as part of the supplemental material. We will also make our
code publicly available upon acceptance of the paper.

Q LLM USAGE

Large Language Models (LLMs) were used during the preparation of this paper for assistance. Usage
includes grammar, phrasing correction, polishing writing, and searching for or discovering related
papers. All ideation, algorithms, technical novelties, and details are done by the authors. All LLM
outputs were carefully reviewed and validated before inclusion in the manuscript.
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