
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RANDOM FEATURE MEAN-SHIFT

Anonymous authors
Paper under double-blind review

ABSTRACT

Locating the modes of a probability density function is a fundamental problem
in many areas of machine learning. However, classical mode-seeking algorithms
such as mean-shift and its variants exhibit quadratic complexity with respect to
the number of data points due to exhaustive pairwise kernel computation - a
well-known bottleneck that severely restricts the applicability. In this paper, we
propose Random Feature mean-shift (RFMS), a novel linear complexity mode-
seeking algorithm. We give a sampling-based estimator using random feature
kernel approximation and zeroth-order gradient method that allows us to provably
achieve linear runtime per iteration, with comprehensive theoretical guarantees for
mode estimation and convergence behavior. Empirical evaluations on clustering
and pixel-level image segmentation tasks show RFMS is up to 12x faster when
compared with other mean-shift variants, offering substantial efficiency gains while
producing near-optimal results. Overall, RFMS offers a practical and principled
framework for scalable mode-seeking beyond kernel-value approximation, with
explicit guarantees on the induced mode landscape and optimization dynamics.

1 INTRODUCTION

Figure 1: Kernel density estimation over
synthetic 2D data(with 2 clusters) using
Gaussian kernel. Points converge to the
modes of empirical distribution in mean-
shift.

Mode-seeking refers to the identification of maxima
(“modes”) of a probability density. It provides a principled
way to summarize and organize complex multimodal dis-
tributed data. This technique is routinely used in a variety
of unsupervised learning tasks, notably clustering [13; 32],
image processing [15; 38], and object tracking [16; 74].
For decades, Mean-shift [20] and its many variants have
been the de facto algorithm for mode-seeking, the algo-
rithm iteratively shifts each data point towards regions of
higher density by computing local means within a prede-
fined window. As a non-parametric method, mean-shift
requires minimal assumptions about data distributions,
making it highly versatile and effective.

The idea of mean-shift is closely related to kernel den-
sity estimation (KDE), where the gradients of the KDE
function are employed to guide the points toward local
maxima, representing the modes of the underlying prob-
ability density function. Figure 1 demonstrates the simple
geometric intuition behind mean-shift. One natural way
of interpreting the mean-shift procedure is gradient ascent,
in the sense that the point will eventually converge to the modes of KDE. Despite its effectiveness,
conventional mean-shift methods face significant computational limitations, primarily stemming from
their quadratic complexity related to exhaustive pairwise kernel function computation required for
KDE. This bottleneck restricts the applicability of mean-shift to large-scale datasets and computation-
ally intensive applications. Existing works on efficient mean-shift algorithms have explored solutions
such as discretizing the feature space via hashing [38], employing specialized data structures for
distance-based queries [72], or accelerating the algorithm in hardware [35]. Despite those efforts,
none have succeeded in addressing the complexity bottleneck of mean-shift asymptotically without
discretizing data representation in some fashion. Noticing the close connection between kernel density

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

estimation using shift-invariant kernels [1] and random Fourier feature kernel approximation [65; 21].
In this paper, we propose a novel sampling-based estimator for the mean-shift process. Based on
random feature kernel approximation and zeroth-order optimization, RFMS is useful in many areas
of machine learning. Overall, our contributions are as follows:

• Algorithm: We propose Random Feature mean-shift (RFMS), an asymptotic complexity
improvement of the standard mean-shift algorithm(from O(n2) to O(n) with respect to the
number of data points), enabling efficient density-based analysis and mode-seeking.

• Theory: Strong and comprehensive theoretical guarantees for RFMS are provided. We first
establish high-probability concentration bounds for random feature KDE approximation
(Theorem 1, 2). Furthermore, error bounds for mode estimation and tracking are also
provided(Theorem 5, 6), ensuring the results obtained by RFMS are close to the actual
modes of kernel density estimation.

• Evaluation: Experiments against other mean-shift variants on clustering and pixel-level
image segmentation demonstrate RFMS’s advantage on reducing computational cost (up to
12x speedup on clustering and 3x on segmentation) while providing nearly optimal results.

Our work saliently and naturally brings together density estimation, random feature approximation,
and mode-seeking into a single end-to-end framework. To the best of our knowledge, this is the
first work to provide high-probability random feature-induced perturbation guarantees for KDE, and
propagate these approximation effects into principled mode-stability and convergence guarantees for
an efficient mode-seeking algorithm.

2 RELATED WORKS

Mean-shift: The mean-shift algorithm has been extensively studied as a powerful non-parametric
technique for locating the modes of a density function. The algorithmic basis of mean-shift was
first introduced by Fukunaga and Hostetler [20], who proposed a method to estimate the gradient
of a multivariate probability density function and perform mode-seeking iteratively. This initial
formulation was later improved and popularized through the lens of clustering [13] and computer
vision tasks such as edge-preserving smoothing and image segmentation [15]. The mean-shift
algorithm is computationally expensive. Specifically, one iteration of mean-shift on a single point
requires computing the kernel values between all other points, resulting in a computational complexity
of O(n2) per iteration, where n is the number of data points. Modern implementations of mean-shift
algorithms typically utilize a flat kernel and efficient data structures, such as ball-tree or kd-tree, to
organize distance searches over data points [62; 72]. This, however, does not improve the asymptotic
complexity. More recently, mean-shift++[39] by Jang et al. proposes to hash data points into discrete
hypercubes at the beginning of every iteration, allowing mean-shift to be performed by averaging the
neighboring hypercubes instead of all other points. However, as the number of hypercubes scales
exponentially with data dimensionality, MS++ does not scale well into higher dimensions. Despite
mean-shift being the de facto and the most used mode-seeking method in practice, we note that
other methods for finding mode of a KDE exist, notably the works by Lee et al. [54] and Luo et
al. [54]. However, they primarily aim to find an approximately global maximizer of the KDE with
dimensionality reduction plus additional heavy algorithmic machinery (e.g., solving polynomial
systems). In contrast, RFMS is designed to run a mean-shift–style mode-seeking process for many
modes, which is necessary in clustering and segmentation. Furthermore, RFMS is designed to
use only simple and fully vectorized computation (essentially just dot products and some simple
element-wise operations which emphasizes scalability and efficiency.

Random Features: Emerging from the literature on kernel methods, Random Features(RFF) [65]
is a strategy to scale up kernel-based learning algorithms. The central idea behind random feature
methods is to approximate a shift-invariant kernel k(x, x′) = k(x − x′) (i.e. Gaussian, Laplacian
and Cauchy kernels) using an explicit randomized feature map ϕ : Rd → RD or CD such that
k (x, x′) = E [⟨ϕ(x), ϕ (x′)⟩], the expectation is taken with respect to the construction of ϕ. This
is theoretically grounded in Bochner’s theorem, which states that any continuous, shift-invariant,
positive definite kernel k on Rd is the Fourier transform of a probability measure. Specifically,
let p(ω) be the spectral density of the kernel, since k(x − x′) =

∫
Rd p(ω)e

jω·(x−x′)dω , one can
approximate the integral via Monte Carlo method [57] by sampling on frequencies ω. The error of
Random Feature approximation can be controlled by increasing D, the number of features. One

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

central challenge of Random Feature is to achieve a high-quality approximation with D being as
small as possible. Several variants and extensions have been developed, such as orthogonal random
features [78] and Quasi Monte-Carlo [36] to reduce the size of D. Prior random feature works largely
focus on approximating kernel values or improving the uniform-error bound behavior. In contrast, our
work here provides an end-to-end framework for RFF-based mode-seeking, and we give theoretical
insights on how random feature approximation induced errors can propagate into KDE approximation
and mode stability.

Zeroth-Order Optimization: Also known as derivative-free optimization or black-box optimiza-
tion, is a class of optimization methods that do not require first-order information (i.e., without
computing gradients). Such techniques are often used for problems where gradient information is
unavailable, expensive, or unreliable [51]. The central challenge in Zeroth-Order Optimization is
approximating the gradient using only function values. One of the most common approaches is the
finite-difference gradient estimator [58; 17], which estimates the gradient ∇f(x) by querying the
function at perturbed points around x via ∇̂f(x) = f(x+µu)−f(x)

µ u, where u is a random direction
and µ is a small scalar called smoothing parameter. Particularly, if u is sampled from multivariate
Gaussian or uniformly from a sphere of radius the same as the dimension of the problem [51], then
Eu∼N (0,Id) or U(S(0,d))

[
∇̂f(x)

]
= ∇fµ(x), which provides an unbiased estimation to the gradient

of fµ, the smoothed version of f , useful for Stochastic Gradient methods [26; 52].

3 NOTATION AND PRELIMINARIES

Consider D = {x1, x2, . . . , xn} ⊂ Rd a dataset of n points in d-dimensional euclidean space. One
way to model the probability density function of the underlying data generative process is to construct
a kernel density estimation (KDE) [61] over observed data points: f̂(x) = 1

nc

∑n
i=1 k (x, xi) ∀xi ∈

D. Here k : Rd → R+ :is a radially symmetric kernel function, and c is some kernel dependent
constant that ensures

∫
Rd f̂(x)dx = 1 so it is a valid probability distribution. KDE represents a

smoothed version of the empirical distribution, with the kernel function distributing mass around
each point xi. Although any shift-invariant kernel can be used in RFMS, for consistency and ease of
notation, in this paper we consider k to be the Gaussian kernel and denote kh the Gaussian kernel
of bandwidth h: kh (xi, xj) = exp

(
− 1

2h2 ∥xi − xj∥2
)

= kh(∆) where ∆ = ∥xi − xj∥2, and

f̂kh is the KDE using kh. As such c =
∫
Rd kh(∆)d∆ =

(
2πh2

)d/2
. One natural way of finding

the modes of the KDE is to allow points to “climb” over the KDE via gradient ascent [20; 32]:
∇f̂kh(x) = 1

h2cn

∑n
i=1 kh (x− xi) · (xi − x). This expression shows that the gradient of the

KDE points in the direction of a weighted average of the (xi − x)∀xi ∈ D. Notice that ∇ ˆfkh

is proportional to m(x) =
∑n

i=1 xikh(x−xi)

f̂kh
(x)

− x by a multiplicative factor of
(
h2cnf̂kh(x)

)−1

.

Consider the gradient ascent x(l+1) = x(l) + m(x(l)) which gives the modern fix-point iteration

version of the mean-shift [15]: x(l+1) =
∑n

i=1 xikh(x
(l)−xi)∑n

i=1 kh(x
(l)−xi)

. In this way, since x(l+1) − x(l) =

m(x(l)) =
(
h2cnf̂kh(x

(l))
)−1

∇f̂h(x(l)) we can also view the update rule as normalized gradient

ascent (by the density at x(l)) on the KDE. This allows us to define the mean-shift problem we aim to
solve in this paper:

x
(l+1)
i = x

(l)
i + η

∇f̂kh(x
(l)
i )

f̂kh(x
(l)
i )

∀i ∈ {1 . . . n} with x
(0)
i = xi ∀xi ∈ D (1)

Similar mean-shift formulations are also studied in previous papers [1; 32; 20]. The main overhead
of this procedure comes from the density estimation via KDE (denominator) and the gradient com-
putation (numerator), both of which takes O(n2) since each iteration of update requires computing
pairwise kernel value between x

(l)
i and xi ∈ D, which is the main bottleneck. It is worth noting that

although many variants of the mean-shift algorithm have been proposed in existing literature, such as
Blurring mean-shift [15; 7], Robust mean-shift [5], they all suffer from the same quadratic complexity

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

limitation. In this work, we demonstrate that it is in fact possible to construct an efficiency estimator

for ∇f̂kh
(x

(l)
i )

f̂kh
(x

(l)
i )

that takes constant time per point to achieve O(n) complexity per iteration of update.

4 RANDOM FEATURE MEAN-SHIFT (RFMS)

Here, we provide algorithmic details of Random Feature mean-shift (RFMS), a novel linear complex-
ity mode-seeking algorithm. We first establish a framework for efficient kernel density estimation
using random feature method and then utilize it for zeroth-order gradient ascent for mode-seeking.

Random Feature Density Estimation: As discussed in Section 3, one of the main bottleneck of
mean-shift algorithm is the computation of local density as f̂kh(x) for any x ∈ Rd requires the
pairwise kernel computation between x and every xi in dataset D. This becomes problematic if
D is large. However, recall that f̂kh(x) =

1
nc

∑n
i=1 kh (x, xi), which is the sum of kernel values

with a fixed data point. Now consider a Random Feature [65] transformation for kh denoted as
ϕkh : Rd → CD with the property that ⟨ϕkh(x), ϕkh (x′)⟩ ≈ kh (x, x

′) ∀x, x′ ∈ Rd for some
sufficiently large D. We can then rewrite f̂kh(x):

f̂kh(x) =
1

nc

n∑
i=1

kh (x, xi) ≈
1

nc

n∑
i=1

⟨ϕkh(x), ϕkh(xi)⟩ =
1

nc

〈
ϕkh(x),

n∑
i=1

ϕkh(xi)

〉
(2)

The above derivation uses the fact that the complex inner product is linear in the second argument. We
can then define Φ = 1

nc

∑n
i=1 ϕkh(xi), and density estimation can be done by f̂kh(x) ≈ ⟨ϕkh(x),Φ⟩.

As a reminder c = (2πh2)d/2 for Gaussian kernel of bandwidth h over Rd and complex vector inner
product ⟨a, b⟩ = (a · b)∀a, b ∈ CD. To construct ϕkh , simply sample random features {ω1 . . . ωD}
from ω ∼ N

(
0, 1

h2 Id
)

and we have:

ϕkh(x) =
1√
D

[
ej(ω

T
1 x)ej(ω

T
2 x)ej(ω

T
3 x) . . . ej(ω

T
Dx)
]

(3)

Here, j is the imaginary unit. Let ĝ(x) = 1
nc ⟨ϕkh(x),Φ⟩, it is an unbiased estimation of the KDE:

f̂kh(x) = Eω∼N(0, 1
h2 Id) [ĝ(x)] ∀x ∈ Rd (See Appendix E for the proof). (4)

We will later give a high-probability bound on the concentrations around this expected value. One
important caveat is that although the expectation of ĝ(x) is real, in an approximation setting where D
is finite, the value of ĝ(x) is not guaranteed to be real-valued. However, since KDE is a real-valued
function, it implies that the imaginary part has zero mean therefore adds only variance, so in practice
we only take the real part: Re (ĝ(x)) = Re (⟨ϕkh(x),Φ⟩) = 1

nc

∑n
i=1 Re (⟨ϕkh(x), ϕkh(xi)⟩). What

this means is that when evaluating the KDE at some point in Rd with respect to a dataset D, instead
of compute n kernel values, one can get an approximation in constant time via ĝ(x) because the
mapping ϕkh(x) takes constant time per point and Φ only needs to be computed once over D at the
beginning and stored.

Zeroth-Order Gradient Estimation: Recall in Equation 1, in order to construct the mean-shift
updates for a point x ∈ Rd using a dataset D ⊂ Rd, it is necessary to obtain the ascending-direction
vector∇f̂kh(x), which is the average of (xi−x)∀xi ∈ D weighted by kh(x, xi). Previously, we have
established that one can estimate the KDE value fkh(x) by querying ĝ(x) = ⟨ϕkh(x),Φ⟩. Naviely,
one could take the gradient of ĝ(x) as a surrogate to the actual KDE gradient; however, that would
require computing the Jacobian w.r.t every dimension of x, which will result in an complexity of
O(Dd) per point per iteration. To further reduced the mean-shfift cost toO(D) per point per iteration,
we apply zeroth-order gradient method instead of calculating the gradient analytically. Therefore, the
ability to query density estimation is powerful as it enables us to estimate∇f̂kh(x) via a zeroth-order
gradient estimator, particularly the 2-point forward estimator taking the form:

∇̂f̂kh(x) =
Re (ĝ(x+ µu)− ĝ(x))

µ
u (5)

Here we sample u, the random ascent direction, uniformly from the standard Gaussian u ∼ N (0, Id).
And µ is a small smoothing parameter set beforehand. This estimator works by probing the function

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Time (in seconds) per iteration of
mean-shift on randomly generated 2D data.

Figure 3: Kernel approximation quality us-
ing MC and QMC, D = 30.

in a randomly chosen direction and measuring the change in function output after taking a small
step. This change is used to estimate the directional derivative. Geometrically, it captures how
steeply the function rises in that sampled direction, giving a noisy ascent direction. Repeating this
across iterations allows a point to follow the landscape of the function without ever computing actual
gradients. Two levels of approximation are happening in Equation5, the first one being that ĝ(x)
itself is an unbiased estimation of the KDE f̂kh(x). The second one is the gradient estimation of the
KDE, namely the ∇̂f̂kh , which is unbiased with respect to the gradient of a smoothed version of f̂kh .
With that, we can arrive at a new update rule for mean-shifting:

x
(l+1)
i = x

(l)
i + η

∇̂f̂kh(x
(l)
i )

Re
(
ĝ(x

(l)
i )
) ∀i ∈ {1 . . . n} with x

(0)
i = xi ∀xi ∈ D (6)

Here, η is the learning rate, since the core characteristic of zeroth order optimization is that it
only requires evaluating function values (in the context of KDE, the f̂kh), it is worth noting that
other, potentially more advanced, zeroth order gradient estimator [50; 12] can be used as drop-in
replacement in RFMS which can lead to further variance reduction in gradient estimation and faster
convergence.

Complexity & Scalability: Essentially, RFMS estimates the mean-shift update via two density
estimations; as such, by using Re(ĝ), the cost of RFMS per iteration becomes constant per data point
and scales linearly in the size of D. One other cost of RFMS comes from the number of random
features used in ϕkh , making the final time complexity O(nD) for RFMS in contrast to the O(n2d)
complexity of standard mean-shift algorithm (both in the gradient ascent form and fixed-point iteration
form). In situations where the dataset is very small, since D is typically larger than d, standard
mean-shift can potentially be faster than RFMS. However, in practical settings, RFMS is much more
suited for scaling to larger tasks. In Fig. 2, we empirically demonstrate the scalability of RFMS on
randomly generated 2D data, showing a minimal increase in cost (time per iteration) when compared
to standard mean-shift algorithms. RFMS inherits the standard RFF trade-off between efficiency and
approximation quality as D increases, but this approximation is widely accepted because it replaces
quadratic kernel computations with simple feature inner products and yields major scalability gains
in large-n settings.

5 ESTIMATION AND CONVERGENCE BOUNDS

Re(ĝ) serves as a surrogate of the actual KDE function f̂kh . The quality of RFMS largely depends
on how well it approximates KDE. In this section, we first establish an error bound on estimating
f̂kh with Re(ĝ). Then, we show conditions under which the modes of the f̂kh and Re(ĝ) are close
and bounded. Lastly, utilizing existing results regarding zeroth-order optimization, we show the
convergence of RFMS to points near the modes of f̂kh .

Error bound on estimating f̂kh(x) with ĝ(x): The goal here is to give a bound on the error of
estimating KDE value with ĝ. That is, we want to bound

∣∣∣ĝ(x)− f̂kh(x)
∣∣∣. By applying Hoeffding’s

inequality, we can derive the following bound:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 1 For any point x ∈ Rd, chose any δ ∈ (0, 1), with probability at least 1− δ:∣∣∣ĝ(x)− f̂kh(x)
∣∣∣ ≤ 4

c

√
1

2D
ln

4

δ
(See Appendix F for the proof.) (7)

Furthermore, since the ĝ(x) concentrates around a real number, the complex part of ĝ(x) contribute
only variance, so if KDE is approximated via Re (ĝ(x)), the bound can be further reduced to
2
c

√
1
2D ln 4

δ . For the remainder of this section, we will only consider the real part of ĝ(x). Extending
classicial results on random feature method [65], we then extend Theorem1 to a uniform convergence
bound:

Theorem 2 Let X be a compact set over Rd such that D ⊂ X . Denote diam(X ) the diameter of X .
Then, for error tolerance ϵ, the following bound holds:

Pr

(
sup
x⊂X

∣∣∣Re (ĝ(x))− f̂kh(x)
∣∣∣ ≥ ϵ

)
≤ 28

(
c
√
d diam(X )

hϵ

)2

exp

(
− Dϵ2

c24(d+ 2)

)
(See Appendix G for the proof.)

(8)

The above yields a uniform additive bound for approximating KDE via RFF. The primary reason for
providing an additive error bound instead of a relative error bound is that the density can be arbitrarily
close to 0 in low-density regions, hence a relative error bound over the entire space is generally
ill-posed unless one restricts to regions with meaningful density values [10; 43]. If we pose constrain
to a subset S ∈ Rd such that S =

{
x : f̂kh(x) ≥ τ

}
, our uniform additive error bound immediately

implies a relative bound: supx∈S
∣∣∣(Re (ĝ(x))− f̂kh(x)

)
/f̂kh(x)

∣∣∣ ≥ ϵ
τ .

Mode Stabillity: In RFMS, we use Re (ĝ) as an surrogate of the KDE f̂kh . Therefore, for mode-
seeking purposes, we would like to show that the modes of f̂kh and Re (ĝ) are close. To achieve this,
we first demonstrate the point-wise closeness of the gradient and the Hessian.

Theorem 3 C is a universal constant, for any point x ∈ Rd, chose any δ ∈ (0, 1), with probability
at least 1− δ:∥∥∥∇Re (ĝ(x))−∇f̂kh(x)

∥∥∥ ≤ 1

nc

(
8Cen

√
d ln(2/δ)

Dh
+

√
8Cen2d ln(2/δ)

Dh2

)
(See Appendix H for the proof.)

(9)

Theorem 4 For any point x ∈ Rd, chose any δ ∈ (0, 1), with probability at least 1− δ:∥∥∥∇2 Re (ĝ(x))−∇2f̂kh(x)
∥∥∥
F
≤ 1

nc

8eCnd ln(2/δ)

Dh2
+

√
8eCn2d

√
d(d+ 2) ln(2/δ)

Dh4


(See Appendix I for the proof.)

(10)

Then, assume f̂kh is a Morse function (a function with non-degenerate critical points). Denote Lip(·)
the Lipschitz constant of a function, and λmin(·) the smallest eigenvalue of a square matrix. We can
then establish the conditions regarding the closeness between their critical points (modes):

Theorem 5 Let x∗ be any critical point of f̂kh , define: α =
Lip(∇2 Re(ĝ))ϵ1

(λmin(∇2f̂kh
(x∗))−ϵ2)

2 . If : (1). Chose

ϵ2 ≤ λmin

(
∇2f̂kh(x

∗)
)

. (2). Chose ϵ1 such that α ≤ 1
2 . (3).

∥∥∥∇Re (ĝ(x))−∇f̂kh(x)
∥∥∥ ≤ ϵ1

and
∥∥∥∇2 Re (ĝ(x))−∇2f̂kh(x)

∥∥∥
F
≤ ϵ2 both holds with probability at least 1 − δ/2. Then, with

probability at least 1− δ, there is only one critical point x̂∗ of Re (ĝ) such that:

x̂∗ ∈ B

x∗,
ϵ1

λmin

(
∇2f̂kh(x

∗)
)
− ϵ2

 (See Appendix J for the proof.) (11)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

This result enables the quantification of how much each mode shifts between the KDE f̂kh and
the random feature approximated KDE Re (ĝ). Since we can make ϵ1 and ϵ2 arbitrarily small by
increasing D (see theorem 3 and theorem 4), with properly chosen ϵ1 and ϵ2, the mode change can be
well controlled, hence making Re (ĝ) a good surrogate for mode-seeking. Our gradient/Hessian and
mode-closeness guarantees (Theorems 3–5) imply that the true modes are preserved and can shift
only by a small amount under the random-feature approximation. Any additional modes, if they occur,
must arise from minor oscillations of the approximated density in low-density regions; such minor
oscillations are typically negligible for mode-seeking and do not affect the algorithm’s behavior. To
empirically substantiate these claims, Appendix B presents synthetic 1D and 2D experiments that
visualize and compare the random-feature density approximation against the exact KDE surface. The
results are consistent with the theory.

Convergence of RFMS: Recall the RFMS iteration in equation 6, the algorithm can be interpreted as
running zeroth-order gradient ascent on Re (ĝ) with decaying step-size. This interpretation allows us
to analyze the convergence of RFMS with existing results from zeroth-order optimization literature.

Theorem 6 Suppose a point x ∈ Rd has a local mode x̂∗ of Re (ĝ) with Łojasiewicz exponent θ. Let
l∗ ∈ {0 · · ·T} be the iteration index such that Eu∼N (0,Id)

∥∥∇Re
(
ĝ
(
x(l)
))∥∥2 is the smallest. Then:

Eu∼N (0,Id)

[∥∥∥x̂∗ − x(l∗)
∥∥∥2] ≤ O(( 1√

T
+ µ2d2

)1/2θ
)

(See Appendix K for the proof.) (12)

Combined with Theorem 5, the above result allows one to quantify how close the solution returned
by RFMS is to an actual mode of the KDE. We believe this “kernel approximation + mode stability +
zeroth-order optimization” synthesis is nontrivial and substantial, because it directly addresses what
matters for mean-shift: not just approximating the kernel function, but preserving the mode structure
that defines clusters.

6 IMPLEMENTATION DETAIL

The pseudocode for RFMS is presented in Alg. 1. It takes in a set of points in Rd and outputs the
shifted version of those points also in Rd. We provide additional details on RFMS to enhance its
efficiency and extend it to applications that require a blurring process.

Algorithm 1: Random Feature mean-shift (RFMS)
Data: Dataset D, bandwidth h, smoothing parameter µ, Learning rate η, number of iteration T ,

RFF dimension D
1 ϕkh ← generate random feature mapping for gaussian kernel with band width h via QMC;
2 ei ← ϕkh(xi) ∀xi ∈ D; /*Encode each data point into*/
3 Φ← 1

nc

∑n
i=1 ei; /*Define Φ to be used in ĝ(x)*/

4 x
(0)
i ← xi ∀xi ∈ D; /*Initial position*/

5 for l = 0, 1, 2, 3 . . . T do
6 for each x

(l)
i do

7 u← N (0, Id) ; /*Sample random ascent direction*/

8 x
(l+1)
i ← x

(l)
i + η

((
∇̂f̂kh

(
x
(l)
i

))
/Re

(
ĝ
(
x
(l)
i

)))
; /*Update position*/

9 end
10 if Blurring then
11 Φ← 1

nc

∑n
i=1 e

(l+1)
i ; /*Update Φ to reflect new density function after shifting*/

12 end
13 end
14 return {x(T )

i }; /*New points after mean-shift*/

Construct Random Feature Mapping using Quasi Monte-Carlo: We use the random feature
method in equation 3 for kernel approximation. As discussed previously, one core challenge here is

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

to reduce the number of features used while still providing a good approximation; in other words,
how to make D as small as possible while still providing a high-quality approximation. Since
evaluating a shift-invariant kernel is essentially the same as evaluating an integral associated with
the kernel(Bochner’s Theorem [66]), one prominent solution is to incorporate Quasi Monte-Carlo
(QMC) techniques for numerical integration into the random feature framework [36; 76]. QMC uses
low-discrepancy sequences (e.g., Sobol, Halton, or Faure sequences) to generate random features that
cover the space more uniformly. To put it simply, instead of sampling frequencies ω ∼ N

(
0, 1

h2 Id
)
,

we can improve RFMS by sample ω from Halton sequence and apply inverse cumulative distribution
function to move them into the correct distribution. The intuition behind QMC is that well-distributed
deterministic sampling can outperform random sampling in integration and approximation tasks. We
demonstrate the improvement of QMC In Fig. 3 where we generate random 2D points and compute
pairwise kernel values with kh, ϕkh constructed with Monte-Carlo, and ϕkh constructed use QMC.
As shown, with the same D, QMC can produce much higher-quality approximations, especially when
the actual kernel value is small. The use of QMC allows us to reduce D, hence further improving the
computational efficiency of RFMS.

Non-blurring vs. Blurring mean-shift: In non-blurring setting, each point climbing a hill (mode)

based on the fixed landscape: x(l+1) =
∑n

i=1 xikh(x
(l)−xi)∑n

i=1 kh(x
(l)−xi)

. The landscape is fixed in the sense that
kernels are computed with unshifted points. However, in many application scenarios such as image
smoothing [15], data consolidation [7], or structure-preserving denoising [34], blurring mean-shift:

x(l+1) =
∑n

i=1 xikh(x
(l)−x(l)

i )∑n
i=1 kh(x

(l)−x(l)
i )

is preferred for its faster convergence due to data contraction. This

blurring process can be easily integrated into RFMS. Simply view the blurring as gradient ascent over
a new KDE based on shifted points at every iteration. We can update Φ at the end of every iteration,
so the Re(ĝ(x)) would produce an estimated KDE value over shifted points.

Representing shift via element-wise multiplication: Alg. 1 requires going back and forth between
Rd and Cd. However, with the help of complex number properties, it is possible to run RFMS entirely
on the encoded version of the data points. Consider ϕkh the encoding function, we can then represent
translation(shift) in Rd via element-wise multiplication in Cd based on the property that:

ϕkh(x+ x′) =
D√
D
ϕkh(x)⊗ ϕkh(x

′) ∀x, x′ ∈ Rd (See Appendix L for the proof). (13)

Where⊗ denotes element-wise multiplication. This is the primary reason we chose to use the complex
version of the random feature instead of the real-valued version, as the real-valued version is unable
to achieve the same results due to the periodic nature of the cosine function. In this way, the original
data can be discarded after the encoding, and subsequent operations can be performed exclusively on
the encoded version of the data:

e
(l+1)
i =

D√
D
e
(l)
i ⊗ ϕkh

(
η
∇̂f̂kh(x(l))

Re
(
ĝ(x(l))

)) (14)

The capability of updating encodings in place is appealing as it further simplifies the algorithm.
Although instead of shifted points, the algorithm will give {e(T )

i } with pairwise inner products
approximating kh over shifted points. Since there exists a one-to-one correspondence between kernel
value and distance, this is sufficient for any subsequent kernel or distance-based algorithms.

7 EXPERIMENTS

We verify the effectiveness and applicability of RFMS, we first directly inspect the mode-seeking
behavior of RFMS using randomly synthesized clusters of different variance and cluster shape. The
data points at different iterations are visualized and shown in Figure 4. As demonstrated, RFMS
indeed achieves the intended mode-seeking functionality. It is also worth noting that the observations
here closely match the theoretical insights we provided in Section 5. With a relatively small D = 200,
we observe the points converge to a point very close to the actual modes (Theorem 5). Since directly
evaluating mode-seeking algorithms is difficult, we instead apply RFMS in two applications where
mean-shift algorithms are often applied - (1). In section 7.1, the RFMS algorithm is evaluated
against other mean-shift algorithms in the context of clustering. We report clustering quality and
time consumption of different methods. (2). In section 7.2, we apply RFMS to pixel-level image
segmentation, a practical area of interest in computer vision. We use QMC for both experiments.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Trajectory Visualization of RFMS at T = {0, 30, 100} and D = 200 on three separate
examples with varying variance and cluster shape. Red points mark actual modes of clusters.

Figure 5: Comparison of different mean-shift algorithms in terms of time (measured in seconds in
log scale) and normalized mutual information(NMI).

7.1 MEAN-SHIFT CLUSTERING

Mean-Shift algorithms are routinely used as clustering algorithms. It is particularly useful as it
does not require the number of clusters to be predefined and can discover arbitrarily shaped clusters,
given cluster forms a density peak. RMFS, as an efficient approximator of the classical mean-shift
formulation, can also be used in this way. Here, we compare RFMS against other types of mean-shift
algorithms: (MS).Fixed point iteration [9; 47; 3; 5]. (GMS). Gradient ascent over KDE [32; 20].
(BMS). Blurring mean-shift [9; 28; 71]. (MS++).Grid-based hashing [38]. Points that converge
to the same mode are considered a cluster. After applying mean-shift, the connected component
algorithm [8] is used to assign data points into different clusters. We conduct experiments on eight
clustering benchmarking datasets from Fänti et al. [18]. We use T = 100 across all methods and
D = 300 for RFMS. Each experiment was run 5 times, and we report the mean and standard
deviation. The main clustering results are presented in Figure 5. Another huge advantage RFMS has
is that its computational complexity scales well with d, the dimension of the data. The same is not
true for hashing-based methods like MS++. To verify this, we conduct additional experiments on
higher-dimensional real datasets [19; 40; 4]. The NMI and time results are shown in Table 1.

Results: We observe that RFMS can produce nearly optimal clustering results (on average 0.03
NMI drop-off compared with best NMI on each dataset) while being significantly more efficient
than conventional mean-shift algorithms (MS, BMS, and GMS), with up to a 12x speed-up. We also
observe that the efficiency benefit becomes more significant as the dataset grows larger, which is
due to the asymptotic complexity improvement of RFMS, thereby verifying its scalability. Despite
RFMS being slightly slower than MS++ (On average, 5.6s slower), RFMS produced better clustering
quality in 6 out of 8 datasets tested in terms of normalized mutual information. In Table 1, on
additional datasets, with increasing ambient dimension d, the efficiency of MS++ drops significantly.
Particularly, when d = 7(WirelessLocalization dataset), RFMS is over 70x faster than MS++. On the
WallRobots dataset, where both d and n are large, RFMS show the overall best efficiency performance.
The results above demonstrate the good scalability and mode-seeking quality of RFMS in comparison
with previous mean-shift approaches.

7.2 PIXEL-LEVEL IMAGE SEGMENTATION

Mean-shift is also a popular vision algorithm commonly used for pixel-level segmenta-
tion [15; 38]. It is useful in generating initial region proposals or superpixels for deep
semantic segmentation networks [55; 6; 45; 59; 77; 80]. Adapting a similar evalua-
tion setup as MS++ [38], we conduct experiments on the Berkeley Segmentation Dataset
Benchmark (BSDS500) [56], which contains 500 images with human-labelled segments.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Method WallRobot UserKnowledge WirelessLocalization
d = 4, n = 5456, D = 2000 d = 5, n = 403, D = 500 d = 7, n = 2000, D = 750

NMI Time(s) NMI Time(s) NMI Time(s)
MS 33.8 ± 0.0 32.9 ± 2.8 34.3 ± 0.0 0.2 ± 0.0 74.5 ± 0.0 4.5 ± 0.6

MS++ 33.5 ± 0.0 27.7 ± 1.2 32.6 ± 0.0 8.6 ± 0.5 70.8 ± 0.0 499.8 ± 129.5
RFMS 31.4 ± 0.7 9.5 ± 0.3 33.6 ± 1.7 2.8 ± 0.1 71.1 ± 2.9 6.9 ± 1.5

Table 1: Comparison of different mean-shift algorithms on additional higher-dimensional real datasets.

Figure 6: Comparison of different mean-shift
image segmentation algorithms in terms of
time and Fowlkes-Mallows Score(FM). Ex-
ample segmented images can be found in Ap-
pendix O.

Each image is processed into a dataset containing
154401 three-dimensional points representing pixels
in LAB color space. In addition to MS, BMS, and
MS++ baselines, we also include QuickShift [69];
another popular segmentation algorithm based on
mean-shift that jointly considers spatial and color
features. We use the blurring version of RFMS. Due
to the inefficiency of the conventional mean-shift
algorithm, MS and BMS were run on images 1/36 of
the original size, all other methods were run on full
resolution. For RFMS, we set D = 10. All methods
were run until convergence or a maximum of 100
iterations.

Results: We observe that RFMS, MS++, MS, and
BMS all perform equally well on segmentation tasks.
Despite MS and BMS being run on lower-resolution sampled images, RFMS still achieves 3x speedup
when compared with MS and BMS, and 2x speedup when compared to QuickShift. In contrast to the
clustering experiments, we also observed that RFMS is slightly faster than MS++. This is due to the
fact that the MS++ algorithm does not scale well to higher-dimensional input because the number of
neighboring hypercubes increases exponentially with dimensionality. RFMS, however, is not affected
by the dimension of the data.

Additional information: Full experimental details regarding baseline algorithms, important hyperpa-
rameters, and additional results can be found in Appendix N and O. We also provide a comprehensive
ablation study regarding the sensitivity of RFMS hyperparameters (D,T, h, η, µ) and the effects of
using MC and QMC sampling for RFMS in Appendix M. Furthermore, we also provided useful
discussions on the significance of mean-shift algorithms, limitations & future works of RFMS in
Appendix C and D.

8 CONCLUSION

Mean-shift is the de facto algorithm for mode-seeking - a fundamental procedure in many areas. In
this paper, we propose Random Feature mean-shift (RFMS) for mode-seeking over kernel density
estimation. Built on top of Random Feature method and zeroth-order optimization, RFMS is an
asymptotic complexity improvement over the classical mean-shift algorithm. Theoretically, we show
that the modes RFMS produces are close to the actual modes of the kernel density estimation, making
RFMS an effective and efficient mode-seeking algorithm. Rather than presenting standard RFF
concentration bounds, we develop a complete pipeline tailored to mode seeking. The key significance
and novelty here is connecting random-feature approximation to the preservation of modes and
mode-seeking dynamics, which, to our knowledge, is not addressed by prior RFF analyses that focus
on kernel/value approximation. Empirically, RFMS matches the best clustering NMI within 0.03
while delivering up to 12× speedups. Similarly, on BSDS500, it attains 2–3× speedup compared
to the baselines. This advancement broadens the practical applicability of mean-shift algorithms to
domains previously limited by high computational demands.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

[1] Ery Arias-Castro, David Mason, and Bruno Pelletier. On the estimation of the gradient lines of
a density and the consistency of the mean-shift algorithm. The Journal of Machine Learning
Research, 17(1):1487–1514, 2016.

[2] Siavash Arjomand Bigdeli, Matthias Zwicker, Paolo Favaro, and Meiguang Jin. Deep mean-shift
priors for image restoration. Advances in neural information processing systems, 30, 2017.

[3] Gaël Beck, Tarn Duong, Mustapha Lebbah, Hanane Azzag, and Christophe Cérin. A distributed
approximate nearest neighbors algorithm for efficient large scale mean shift clustering. Journal
of Parallel and Distributed Computing, 134:128–139, 2019.

[4] Rajen Bhatt. Wireless Indoor Localization. UCI Machine Learning Repository, 2017. DOI:
https://doi.org/10.24432/C51880.

[5] Claude Cariou, Steven Le Moan, and Kacem Chehdi. A novel mean-shift algorithm for data
clustering. IEEE Access, 10:14575–14585, 2022.

[6] Joao Carreira and Cristian Sminchisescu. Cpmc: Automatic object segmentation using con-
strained parametric min-cuts. IEEE transactions on pattern analysis and machine intelligence,
34(7):1312–1328, 2011.

[7] Miguel A Carreira-Perpinán. Fast nonparametric clustering with gaussian blurring mean-shift.
In Proceedings of the 23rd international conference on Machine learning, pages 153–160, 2006.

[8] Miguel A Carreira-Perpinán. A review of mean-shift algorithms for clustering. arXiv preprint
arXiv:1503.00687, 2015.

[9] Saptarshi Chakraborty, Debolina Paul, and Swagatam Das. Automated clustering of high-
dimensional data with a feature weighted mean shift algorithm. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pages 6930–6938, 2021.

[10] Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high
dimensions. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 1032–1043. IEEE, 2017.

[11] Frédéric Chazal, Leonidas J Guibas, Steve Y Oudot, and Primoz Skraba. Persistence-based
clustering in riemannian manifolds. Journal of the ACM (JACM), 60(6):1–38, 2013.

[12] Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, and David Cox. Zo-
adamm: Zeroth-order adaptive momentum method for black-box optimization. Advances in
neural information processing systems, 32, 2019.

[13] Yizong Cheng. Mean shift, mode seeking, and clustering. IEEE transactions on pattern analysis
and machine intelligence, 17(8):790–799, 1995.

[14] Sua Choi, Dahyun Kang, and Minsu Cho. Contrastive mean-shift learning for generalized
category discovery. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 23094–23104, 2024.

[15] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space analysis.
IEEE Transactions on pattern analysis and machine intelligence, 24(5):603–619, 2002.

[16] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Real-time tracking of non-rigid objects
using mean shift. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition.
CVPR 2000 (Cat. No. PR00662), volume 2, pages 142–149. IEEE, 2000.

[17] John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61(5):2788–2806, 2015.

[18] Pasi Fränti and Sami Sieranoja. K-means properties on six clustering benchmark datasets.
Applied intelligence, 48:4743–4759, 2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[19] Veloso Marcus Freire, Ananda and Guilherme Barreto. Wall-Following Robot Navigation Data.
UCI Machine Learning Repository, 2009. DOI: https://doi.org/10.24432/C57C8W.

[20] Keinosuke Fukunaga and Larry Hostetler. The estimation of the gradient of a density function,
with applications in pattern recognition. IEEE Transactions on information theory, 21(1):32–40,
1975.

[21] Joseph A Gallego, Juan F Osorio, and Fabio A Gonzalez. Fast kernel density estimation with
density matrices and random fourier features. In Ibero-American Conference on Artificial
Intelligence, pages 160–172. Springer, 2022.

[22] Ross W Gayler. Vector symbolic architectures answer jackendoff’s challenges for cognitive
neuroscience. arXiv preprint cs/0412059, 2004.

[23] Lulu Ge and Keshab K Parhi. Classification using hyperdimensional computing: A review.
IEEE Circuits and Systems Magazine, 20(2):30–47, 2020.

[24] Lulu Ge and Keshab K Parhi. Robust clustering using hyperdimensional computing. IEEE
Open Journal of Circuits and Systems, 5:102–116, 2024.

[25] Georgescu, Shimshoni, and Meer. Mean shift based clustering in high dimensions: A texture
classification example. In Proceedings Ninth IEEE International Conference on Computer
Vision, pages 456–463. IEEE, 2003.

[26] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM journal on optimization, 23(4):2341–2368, 2013.

[27] Leslie Greengard and John Strain. The fast gauss transform. SIAM Journal on Scientific and
Statistical Computing, 12(1):79–94, 1991.

[28] Carlo Grillenzoni. Design of blurring mean-shift algorithms for data classification. Journal of
Classification, 33(2):262–281, 2016.

[29] Victor Guillemin and Alan Pollack. Differential topology, volume 370. American Mathematical
Soc., 2010.

[30] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array
programming with numpy. Nature, 585(7825):357–362, 2020.

[31] Alejandro Hernández-Cano, Cheng Zhuo, Xunzhao Yin, and Mohsen Imani. Reghd: Robust
and efficient regression in hyper-dimensional learning system. In 2021 58th ACM/IEEE Design
Automation Conference (DAC), pages 7–12. IEEE, 2021.

[32] Alexander Hinneburg and Hans-Henning Gabriel. Denclue 2.0: Fast clustering based on kernel
density estimation. In International symposium on intelligent data analysis, pages 70–80.
Springer, 2007.

[33] Michael Hintermüller. Semismooth newton methods and applications. Department of Mathe-
matics, Humboldt-University of Berlin, 2010.

[34] Guofei Hu, Qunsheng Peng, and A Robin Forrest. Mean shift denoising of point-sampled
surfaces. The Visual Computer, 22:147–157, 2006.

[35] Miaoqing Huang, Liang Men, and Chenggang Lai. Accelerating mean shift segmentation
algorithm on hybrid cpu/gpu platforms. Modern Accelerator Technologies for Geographic
Information Science, pages 157–166, 2013.

[36] Zhen Huang, Jiajin Sun, and Yian Huang. Quasi-monte carlo features for kernel approximation.
In Forty-first International Conference on Machine Learning, 2024.

[37] Zhenyang Hui, Shuanggen Jin, Yuanping Xia, Yunju Nie, Xiaowei Xie, and Na Li. A mean
shift segmentation morphological filter for airborne lidar dtm extraction under forest canopy.
Optics & Laser Technology, 136:106728, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[38] J Jang and H MeanShift+ Jiang. Extremely fast mode-seeking with applications to segmentation
and object tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Nashville, TN, USA, pages 20–25, 2021.

[39] Jennifer Jang and Heinrich Jiang. Meanshift++: Extremely fast mode-seeking with applications
to segmentation and object tracking. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4102–4113, 2021.

[40] Colak Ilhami Kahraman, Hamdi and Seref Sagiroglu. User Knowledge Modeling. UCI Machine
Learning Repository, 2009. DOI: https://doi.org/10.24432/C5231X.

[41] Pentti Kanerva. Hyperdimensional computing: An introduction to computing in distributed
representation with high-dimensional random vectors. Cognitive computation, 1:139–159, 2009.

[42] Leonid Vitalevich Kantorovich and Gleb Pavlovich Akilov. Functional analysis. Elsevier, 2014.

[43] Matti Karppa, Martin Aumüller, and Rasmus Pagh. Deann: Speeding up kernel-density
estimation using approximate nearest neighbor search. In International Conference on Artificial
Intelligence and Statistics, pages 3108–3137. PMLR, 2022.

[44] Soroush Abbasi Koohpayegani, Ajinkya Tejankar, and Hamed Pirsiavash. Mean shift for self-
supervised learning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 10326–10335, 2021.

[45] Fengkai Lang, Jie Yang, Shiyong Yan, and Fachao Qin. Superpixel segmentation of polari-
metric synthetic aperture radar (sar) images based on generalized mean shift. Remote Sensing,
10(10):1592, 2018.

[46] Samuel Lanthaler and Nicholas H Nelsen. Error bounds for learning with vector-valued random
features. Advances in Neural Information Processing Systems, 36:71834–71861, 2023.

[47] Itshak Lapidot. Stochastic mean-shift clustering. arXiv preprint arXiv:2312.15684, 2023.

[48] Dongryeol Lee, Alexander G Gray, and Andrew W Moore. Dual-tree fast gauss transforms.
arXiv preprint arXiv:1102.2878, 2011.

[49] Jasper CH Lee, Jerry Li, Christopher Musco, Jeff M Phillips, and Wai Ming Tai. Finding the
mode of a kernel density estimate. arXiv preprint arXiv:1912.07673, 2019.

[50] Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signsgd via zeroth-order oracle. In
International conference on learning representations, 2019.

[51] Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Signal Processing Magazine, 37(5):43–54,
2020.

[52] Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
order stochastic variance reduction for nonconvex optimization. Advances in neural information
processing systems, 31, 2018.

[53] Yangxiao Lu, Yuqiao Chen, Nicholas Ruozzi, and Yu Xiang. Mean shift mask transformer for
unseen object instance segmentation. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 2760–2766. IEEE, 2024.

[54] Xinyu Luo, Christopher Musco, and Cas Widdershoven. Dimensionality reduction for general
kde mode finding. In International Conference on Machine Learning, pages 23067–23082.
PMLR, 2023.

[55] Tomasz Malisiewicz and Alexei A Efros. Improving spatial support for objects via multiple
segmentations. 2007.

[56] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics.
In Proc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423, July 2001.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

[57] Nicholas Metropolis. The monte carlo method. Journal of the American statistical association,
44(247):335–341, 1949.

[58] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

[59] Tsz Ching Ng, Siu Kai Choy, Shu Yan Lam, and Kwok Wai Yu. Fuzzy superpixel-based image
segmentation. Pattern Recognition, 134:109045, 2023.

[60] James M Ortega. The newton-kantorovich theorem. The American Mathematical Monthly,
75(6):658–660, 1968.

[61] Emanuel Parzen. On estimation of a probability density function and mode. The annals of
mathematical statistics, 33(3):1065–1076, 1962.

[62] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

[63] Jeff M Phillips and Wai Ming Tai. Near-optimal coresets of kernel density estimates. Discrete
& Computational Geometry, 63(4):867–887, 2020.

[64] Tony A Plate. Holographic Reduced Representation: Distributed representation for cognitive
structures, volume 150. CSLI Publications Stanford, 2003.

[65] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances
in neural information processing systems, 20, 2007.

[66] Walter Rudin. Fourier analysis on groups. Courier Dover Publications, 2017.

[67] Sahand Salamat, Mohsen Imani, Behnam Khaleghi, and Tajana Rosing. F5-hd: Fast flexible
fpga-based framework for refreshing hyperdimensional computing. In Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages 53–62,
2019.

[68] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François Boulogne,
Joshua D Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu. scikit-image: image
processing in python. PeerJ, 2:e453, 2014.

[69] Andrea Vedaldi and Stefano Soatto. Quick shift and kernel methods for mode seeking. In
Computer Vision–ECCV 2008: 10th European Conference on Computer Vision, Marseille,
France, October 12-18, 2008, Proceedings, Part IV 10, pages 705–718. Springer, 2008.

[70] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

[71] Weiran Wang and Miguel A Carreira-Perpinán. Manifold blurring mean shift algorithms for
manifold denoising. In 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 1759–1766. IEEE, 2010.

[72] Chunxia Xiao and Meng Liu. Efficient mean-shift clustering using gaussian kd-tree. In
Computer Graphics Forum, volume 29, pages 2065–2073. Wiley Online Library, 2010.

[73] Yang, Duraiswami, and Gumerov. Improved fast gauss transform and efficient kernel density
estimation. In Proceedings ninth IEEE international conference on computer vision, pages
664–671. IEEE, 2003.

[74] Changjiang Yang, Ramani Duraiswami, and Larry Davis. Efficient mean-shift tracking via a
new similarity measure. In 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 1, pages 176–183. IEEE, 2005.

[75] Jiawei Yang, Susanto Rahardja, and Pasi Fränti. Mean-shift outlier detection and filtering.
Pattern Recognition, 115:107874, 2021.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

[76] Jiyan Yang, Vikas Sindhwani, Haim Avron, and Michael Mahoney. Quasi-monte carlo feature
maps for shift-invariant kernels. In International Conference on Machine Learning, pages
485–493. PMLR, 2014.

[77] Xujiong Ye, Gareth Beddoe, and Greg Slabaugh. Automatic graph cut segmentation of lesions in
ct using mean shift superpixels. International journal of biomedical imaging, 2010(1):983963,
2010.

[78] Felix Xinnan X Yu, Ananda Theertha Suresh, Krzysztof M Choromanski, Daniel N Holtmann-
Rice, and Sanjiv Kumar. Orthogonal random features. Advances in neural information process-
ing systems, 29, 2016.

[79] Tianyang Yu, Bi Wu, Ke Chen, Gong Zhang, and Weiqiang Liu. Fully learnable hyperdi-
mensional computing framework with ultratiny accelerator for edge-side applications. IEEE
Transactions on Computers, 73(2):574–585, 2023.

[80] Yong-mei Zhou, Sheng-yi Jiang, and Mei-lin Yin. A region-based image segmentation method
with mean-shift clustering algorithm. In 2008 Fifth International Conference on Fuzzy Systems
and Knowledge Discovery, volume 2, pages 366–370, 2008.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The appendix here provides additional details for the ICLR 2026 submission, titled “Random Feature
Mean-Sift”. The appendix is organized as follows:

• A - List of Notation

• B - RFMS Density Estimation Visualization

• C - Discussion

• D - Limitation & Future Work

• E. Proof of Equation 4

• F - Proof of Theorem 1

• G - Proof of Theorem 2

• H - Proof of Theorem 3

• I - Proof of Theorem 4

• J - Proof of Theorem 5

• K - Proof of Theorem 6

• L - Proof of Equation 13

• M - Ablation Study

• N - Additional Details on Clustering Experiments

• O - Additional Details on Image Segmentation Experiments

• P - Reproducibility / Code Availability

• Q - LLM Usage

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A LIST OF NOTATION

We hereby provide a list of notations used in this paper and accompanying proofs:

Symbol Meaning

d, D Data dimension, number of random feature
C Universal constant
x data point in Rd
D Dataset
n Number of data points in D
k Positive symmetric kernel function.
h Gaussian kernel bandwidth
kh Gaussian kernel of bandwidth h
f Data generating density function for D
f̂kh Kernel density estimation of f using kh
c Normalizing constant making sure the integral of f̂kh is 1

x
(l)
i Point xi aftter l iterations of mean-shift

ϕkh Random Feature transformation for kernel kh
∇f̂kh , ∇̂f̂kh Gradient and Estimated gradient of KED

Φ Summation of random feature transformed points
ĝ Random Feature estimation of KDE
ω Frequencies for constructing Random Feature Mapping
T Total number if iteration
η Learning rate for gradient ascent
µ Smoothing parameter in zeroth-order optimization
j Imaginary unit
X Compact set over Rd

Lip(·) Lipschitz constant of a function
λmin(·) Smallest eigenvalue of a square matrix
B(x, r) Closed ball centered at x with radius r

θ Łojasiewicz exponent
∥ · ∥ L2 norm
∥ · ∥ψ1

Sub-exponential Orlicz norm
∥ · ∥F Frobenius norm
∥ · ∥op Operator norm

Table 2: List of notations.

B RFMS DENSITY ESTIMATION VISUALIZATION

This section provides a qualitative sanity check of the random-feature density approximation used by
RFMS. While Theorems 3–5 establish that the approximation preserves mode locations up to a small
perturbation (and that any spurious modes must be confined to low-density regions), visualizing the
estimated density surfaces offers an intuitive confirmation of these claims.

Setup: We generate synthetic 1D and 2D mixtures of Gaussians with multiple separated (and mildly
overlapping) components, so that the ground-truth KDE exhibits several distinct modes. For each
dataset, we compute (i) the exact Gaussian KDE and (ii) the RFF density approximation obtained
from the same kernel bandwidth but replacing the kernel evaluation with a finite-dimensional random-
feature map of dimension D. We visualize the resulting density functions on a uniform grid (line plot
in 1D; 3D surface and heatmap in 2D). The results are shown in Figure 7.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 7: Density visualization on synthetic 1D and 2D points using Gaussian KDE and random
feature density estimation. (Top) Actual and RFF approximated density function using 800 1D points
with 3 clusters and different variances. (Middle) Actual and RFF approximated density function
using 2000 2D points with 2 clusters and different variances. (Bottom) Heatmap of 2D examples.

Observations: Across both 1D and 2D examples, the RFMS desnity approximation accurately
reproduces the dominant basins of attraction and preserves the number and locations of the high-
density modes. Small local discrepancies mostly visible in the tails where the true density is near
zero. In these low-density regions, the RFMS surface may exhibit mild ripples; consistent with our
theory, such oscillations can introduce visually small, isolated extrema that do not correspond to
meaningful modes and do not affect mode-seeking trajectories initialized in moderate-to-high density
regions. As D increases, the RFMS surface becomes progressively smoother and converges visually
to the KDE surface: peak locations stabilize, and tail oscillations diminish. This qualitative trend
aligns with the approximation guarantees, where the gradient/Hessian error decreases with larger D,
implying improved stability of critical points and their local geometry. Overall, these visualizations
support the theoretical guarantees that RFMS preserves the relevant mode structure of the KDE and
that any approximation-induced artifacts are limited to low-density regions where they have minimal
impact on the practical mode-seeking behavior.

C DISCUSSION

C.1 COMPARISON WITH OTHER FAST KDE APPROACHES

A rich body of literature accelerates KDE through techniques such as coresets, locality sensitive
hashing (LSH), and specialized data structures (e.g., space partitioning) [63; 10; 43; 27; 73; 39; 48].
Our focus here is different in that we aim for an end-to-end mode-seeking algorithm whose per-
iteration cost is linear in n, without discretizing the domain or relying on search structures that
can weaken in higher dimensions (e.g., tree, grid–style space partitions, or fast Gauss transform-
based approaches [27; 73; 39; 48] whose cost grows rapidly with ambient data dimension). More
importantly, those prior methods primarily target fast evaluation of KDE at a query point, whereas
our analysis is designed to support mode-seeking correctness: we bound how the modes of the
approximate KDE move relative to true KDE modes (Theorems 3–5) and prove convergence of
a stochastic/ascent-style iteration to a neighborhood of those modes (Theorem 6). Propagating
RFF-based KDE approximation error through to mode stability and tracking guarantees is a central

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

contribution of our work. We also note a compatibility issue with blurring mean shift: when
points move each iteration, data-structure or coreset-based accelerations may require rebuilding or
substantial updates, potentially eroding their efficiency. In contrast, RFMS only updates and sums the
evolving feature encodings, which remains inexpensive and highly parallelizable. Overall, we view
RFMS as a complementary point in the broader design space of fast KDE approximations, alongside
coresets, LSH, and partitioning methods. Distinguished by RFMS’s simplicity in computation and a
well-established RFF theoretical foundation.

C.2 COMPATIBLE KERNEL FUNCTIONS

We note that the class of shift-invariant kernels is extensive — including Gaussian, Laplacian, Cauchy,
Matérn, and other widely used non-negative similarity measurements. Furthermore, RFMS is not
restricted to Fourier-based kernels. It can accommodate other random feature constructions, such as
Polynomial kernels via random Maclaurin expansions or dot-product kernels. In this sense, RFMS is
a general mode-seeking framework over random feature approximated kernel densities, and is not
inherently limited to any particular kernels.

C.3 BOUNDS TIGHTNESS

Theorem 1 attains the canonical Monte Carlo RFF rate where the KDE approximation error decays as
O(1/

√
D) [65] in the number of features D. This dependence is standard (and essentially optimal)

for vanilla i.i.d. feature sampling. Theorems 3-4 extend the same O(1/
√
D) dependence to the

gradient and Hessian. The extra factors are the usual cost of controlling the derivatives uniformly, not
a deterioration in the RFF sampling rate. We note that the constants in the bounds can be conservative
due to the use of Hoeffding-type inequality arguments, but the rates in D are the key notion of
tightness here and are sufficient for our mode-tracking guarantees. Practically, this yields a clean
accuracy-efficiency knob; the RFF-KDE is unbiased w.r.t. feature randomness, so increasing D
reduces variance and improves approximation, while runtime scales roughly linearly in D and T .
Thus, the approximation can be made arbitrarily tight by choosing D large enough.

C.4 RELATION TO HDC/VSA

Hyperdimensional computing (HDC)—also known as Vector Symbolic Architecture (VSA)— is
a class of computational models that represent and manipulate structured information using high-
dimensional vectors. The characteristic of VSA/HDC is that it first encodes data as high-dimensional
vectors and operates on encoded data using a set of simple algebraic operations that are efficient
and highly parallelizable [41; 64]. HDC is connected to theoretical neuroscience as its mathematical
framework closely resembles models of neural coding in the brain [22]. As a result, various machine
learning algorithms based on HDC/VSA have been proposed, such as classification [23], cluster-
ing [24], and regression [31]. However, there is a lack of density-based analysis methods in existing
HDC/VSA literature. The notion of high-dimensional, distributed, and compositional representation
of HDC/VSA aligns closely with RFMS. In that sense, RFMS can be viewed functionally as an
HDC/VSA algorithm, therefore filling in the gap between HDC/VSA and density-based analysis.
Furthermore, HDC/VSA has also been extensively studied, especially within the hardware community.
Various types of accelerators [79; 67] have been proposed for HDC/VSA workloads. This explicit
connection between RFMS and HDC/VSA, and their computational similarity, can potentially lead to
the use of existing HDC/VSA accelerators for RFMS, providing practical benefits.

C.5 SIGNIFICANCE OF MEAN-SHIFT ALGORITHMS

Mean-Shift, as a geometry-respecting procedure, is broadly useful across machine learning and data
analysis, some notable examples including vision, anomaly detection, self-supervised learning and
more [38; 44; 75]. Despite known limitations such as bandwidth sensitivity and the applicability
in high-dimensional data, mean-shift remains meaningful because it is often used as an algorithmic
primitive and is still being actively used by recent research [2; 53; 44]. Furthermore, the regimes
where mean-shift performs well are well understood [25; 15], and our approach provides a faithful

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

approximation with asymptotic complexity improvements, making it desirable for many existing and
emerging applications.

D LIMITATION & FUTURE WORK

D.1 MORSE FUNCTION ASSUMPTION

In Theorem 5, our results regarding the stability of critical points have the assumption that the KDE
is a Morse function, meaning a smooth function with non-degenerate critical points. This is, in fact, a
standard assumption in density-based mode analysis [1; 11]. Moreover, the general body of literature
regarding the mean-shift algorithm assumes that gradient ascent on a KDE surface is well-behaved.
This implicitly assumes the density function has isolated, non-degenerate modes, aligning with the
Morse function.

D.2 SEMANTIC SEGMENTATION

In the context of image processing, mean-shift is a non-parametric unsupervised algorithm based on
low-level features such as color and/or spatial proximity. It operates on the pixel level and groups
pixels based on local density in a feature space, not on high-level semantic categories. Consequently,
mean-shift can segment coherent regions but cannot segment regions based on semantic information.
Despite its limitations, mean-shift can still be helpful in roles like generating superpixels or region
proposals, which can be a key step in semantic segmentation with deep neural networks [55; 6; 45;
59; 77].

D.3 MODE-SEEKING FOR HIGH-DIMENSIONAL DATA

In the high-dimensional regime, both RFMS and classical mean shift (or any KDE-based method)
are fundamentally limited by the curse of dimensionality. Our goal here is not to fix this statistical
issue, but to provide a computationally scalable approximation to classical mean-shift in regimes
where it is still used, which leads to substantial runtime gains in large n settings for the low-to-
moderate dimensional data. Despite this limitation, it remains useful and a powerful primitive in many
applications [38; 44; 75; 2; 53; 44; 14]. We believe RFMS can be incorporated with other methods
(e.g., dimensionality reduction methods such as in [54; 49]) and be explored in higher-dimensional
regimes. Our present goal, however, is to lay the theoretical foundations and analyze frameworks for
this sampling-based mean-shift estimator to support any future extensions.

D.4 FUTURE WORK

The primary aim of this paper is to establish the algorithmic and theoretical foundation of RFMS.
We view this work as a principled first step toward scalable, kernel-based mode-seeking for domains
such as tracking and point cloud, as these applications have been addressed by inefficient forms of
mean-shift [37]. RFMS is also designed to be modular and extensible: different random-feature maps
and zeroth-order gradient strategies can be used depending on the application. We believe RFMS can
be incorporated into other learning pipelines (e.g., deep neural networks) [2; 53; 44]. It is also well
known that the mean-shift algorithms work best in a low-to-moderate dimension regime, as kernel
density estimation suffers from the curse of dimensionality [25]. As a potential future direction, we
would also like to extend RFMS into high-dimensional regimes [10; 9]. In any case, this paper can
serve as a theoretical foundation for this sampling-based mean-shift estimator in support of any future
extensions.

E PROOF OF EQUATION 4

Proof. Want to show ĝ(x) is an unbiased estimation of the kernel density estimation f̂(x) with
respect to the randomness in ω ∼ N

(
0, 1

h2 Id
)
. Recall the definition of ϕkh :

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

ϕkh =
1√
D

[
ej(ω

T
1 x)ej(ω

T
2 x)ej(ω

T
3 x) . . . ej(ω

T
Dx)
]

(15)

We start by showing that the complex inner products between encodings produced by ϕkh are an
unbiased estimation of the kernel function kh. For any x, x′ ∈ Rd, the results follow directly after
linearity of expectation and Bochner’s theorem:

Eω∼N(0, 1
h2 Id) [⟨ϕkh(x), ϕkh(x

′)⟩]

= Eω∼N(0, 1
h2 Id)

[
1

D

D∑
k=1

ej(ω
T
k x)ej(ω

T
k x

′)

]
= Eω∼N(0, 1

h2 Id)

[
ej(ωT x)ej(ω

T x′)
]

= Eω∼N(0, 1
h2 Id)

[
ejω

T (x′−x)
]

=

∫
Rd

p(ω)ejω·(x
′−x)dω

= kh(x
′, x) = kh(x, x

′)

(16)

Recall that Φ = 1
nc

∑n
i=1 ϕkh(xi)∀xi ∈ D and ĝ(x) = ⟨ϕkh(x),Φ⟩, so:

Eω∼N(0, 1
h2 Id) [⟨ϕkh(x),Φ⟩]

= Eω∼N(0, 1
h2 Id)

[
ϕkh(x) ·

(
1

nc

n∑
i=1

ϕkh(xi)

)]

= Eω∼N(0, 1
h2 Id)

[
1

nc

n∑
i=1

(
ϕkh(x) · ϕkh(xi)

)]

=
1

nc

n∑
i=1

kkh(x, xi) = f̂kh(x)

(17)

■

F PROOF OF THEOREM 1

Proof. First expand
∣∣∣ĝ(x)− f̂kh(x)

∣∣∣:
∣∣∣ĝ(x)− f̂kh(x)

∣∣∣ = ∣∣∣∣∣⟨ϕkh(x),Φ⟩ − 1

nc

n∑
i=1

kh (x, xi)

∣∣∣∣∣
=

∣∣∣∣∣
〈
ϕkh(x),

1

nc

n∑
i=1

ϕkh(xi)

〉
− 1

nc

n∑
i=1

kh (x, xi)

∣∣∣∣∣
=

∣∣∣∣∣ 1nc
n∑
i=1

⟨ϕkh(x), ϕkh(xi)⟩ −
1

nc

n∑
i=1

kh (x, xi)

∣∣∣∣∣
=

1

nc

∣∣∣∣∣
n∑
i=1

⟨ϕkh(x), ϕkh(xi)⟩ −
n∑
i=1

kh (x, xi)

∣∣∣∣∣
=

1

nc

∣∣∣∣∣
n∑
i=1

1

D

D∑
k=1

ejω
T
k (xi−x) −

n∑
i=1

kh (x, xi)

∣∣∣∣∣

(18)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We define an estimator:

Zk =

n∑
i=1

ejω
T
k (xi−x) (19)

Since Random Feature is unbiased for approximating individual kernel values, we know that:

Eω∼N(0, 1
h2 Id) [Zk] =

n∑
i=1

kh (x, xi) (20)

Since the sampling of random features ω in the construction of ϕkh is uniform i.i.d., the approximation
is an average of i.i.d. complex-valued random variables Zk, with expectation equal to the target
kernel sum. Split Zk into real and imaginary parts using sine and cosine:

Zk = Ak + jBk where: Ak =

n∑
i=1

cos
(
ωTk (xi − x)

)
, Bk =

n∑
i=1

sin
(
ωTk (xi − x)

)
(21)

Since sine and cosine functions are bounded between [−1, 1], it is clear that Ak, Bk ∈ [−n, n], which
is bounded. Use Hoeffding’s inequality for both Ak and Bk. Chase any δ ∈ (0, 1) with probability if
at least 1− δ/2:

∣∣∣∣∣ 1D
D∑
k=1

Ak − Eω∼N(0, 1
h2 Id) [Ak]

∣∣∣∣∣ ≤ 2n

√
1

2D
ln

4

δ∣∣∣∣∣ 1D
D∑
k=1

Bk − Eω∼N(0, 1
h2 Id) [Bk]

∣∣∣∣∣ ≤ 2n

√
1

2D
ln

4

δ

(22)

Since kh is real valued, meaning Eω∼N(0, 1
h2 Id) [Bk] = 0, so E [Ak] = Eω∼N(0, 1

h2 Id) [Zk] =∑n
i=1 kh (x, xi). Recall that for complex number Zk, |Zk| =

√
A2
K +B2

K ≤ |Ak|+ |Bk|, and the
probability of both the imaginary and real inequality holds is (1− δ/2)2 > 1− δ, so:

∣∣∣∣∣ 1D
D∑
k=1

Zk −
n∑
i=1

kh(x, x
′)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1D

D∑
k=1

Ak −
n∑
i=1

kh (x, xi)

∣∣∣∣∣+
∣∣∣∣∣ 1D

D∑
k=1

Bk

∣∣∣∣∣
≤ 4n

√
1

2D
ln

4

δ

(23)

Finally:

∣∣∣ĝ(x)− f̂kh(x)
∣∣∣ = 1

nc

∣∣∣∣∣ 1D
D∑
k=1

Zk −
n∑
i=1

kh(x, x
′)

∣∣∣∣∣
≤ 4

c

√
1

2D
ln

4

δ
With probability at least 1− δ

(24)

■

So, for any δ ∈ (0, 1), with probability at least 1 − δ, the above error bound holds. Additionally,
suppose KED are estimated via Re (ĝ(x)). In that case, there will be no additional variance from the

imaginary part, further reducing the bound to 2
c

√
1
2D ln 4

δ .

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G PROOF OF THEOREM 2

Proof. Let X be a compact set over Rd such that D ⊂ X . The goal is to extend Theorem 1 to a
uniform convergence statement over the entire X .

sup
x⊂X

∣∣∣(Re (ĝ(x))− f̂kh(x)
)∣∣∣ = sup

x⊂X

∣∣∣∣∣ 1nc
∣∣∣∣∣
n∑
i=1

Re (⟨ϕkh(x), ϕkh(xi)⟩)−
n∑
i=1

kh (x, xi)

∣∣∣∣∣
∣∣∣∣∣

≤ 1

c
sup
x,y⊂X

||Re (⟨ϕkh(x), ϕkh(y)⟩)− kh (x, y)||
(25)

Ignoring the constant 1c for now, the remaining is the uniform convergence of random Fourier features,
which has been studied by Rahimi and Recht [65], for an error tolerance epsilon ϵ:

Pr

(
sup
x,y⊂X

||Re (⟨ϕkh(x), ϕkh(y)⟩)− kh (x, y)|| ≥ ϵ

)

≤ 28


√
Eω∼N(0, 1

h2 Id) [⟨ω, ω⟩] diam(X )

ϵ

2

exp

(
− Dϵ2

4(d+ 2)

) (26)

Next, solve
√
Eω∼N(0, 1

h2 Id) [⟨ω, ω⟩]:

√
Eω∼N(0, 1

h2 Id) [⟨ω, ω⟩] =
√

d

h2
=

√
d

h
(27)

Putting everything back together:

Pr

(
sup
x⊂X

∣∣∣Re (ĝ(x))− f̂kh(x)
∣∣∣ ≥ ϵ

)
≤ 28

(
c
√
d diam(X )

hϵ

)2

exp

(
− Dϵ2

c24(d+ 2)

)
(28)

■

H PROOF OF THEOREM 3

Proof. Here, we would like to show a bound between the gradient of the Random Feature approxi-
mated KDE and the gradient of the actual KDE. Specifically, since we are using real-valued version
of ĝ(x), we what to show a bound on

∥∥∥∇Re (ĝ(x))−∇f̂kh(x)
∥∥∥. We first expand:

∥∥∥∇Re (ĝ(x))−∇f̂kh(x)
∥∥∥ =

1

nc

∥∥∥∥∥
n∑
i=1

1

D

D∑
k=1

∇Re
(
ejω

T
k (xi−x)

)
−

n∑
i=1

∇kh (x, xi)

∥∥∥∥∥
=

1

nc

∥∥∥∥∥ 1

D

D∑
k=1

n∑
i=1

∇ cos(ωTk (xi − x))−
n∑
i=1

∇kh (x, xi)

∥∥∥∥∥
(29)

We define an estimator:

Zk =

n∑
i=1

∇ cos(ωTk (xi − x)) (30)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Since Differentiation commutes with expectation:

Eω∼N(0, 1
h2 Id) [Zk] = ∇Eω∼N(0, 1

h2 Id)

[
n∑
i=1

cos(ωTk (xi − x))

]
=

n∑
i=1

∇kh (x, xi) (31)

To bound the deviation of Zk from its expectation, we apply Bernstein’s inequality:

Zk =

n∑
i=1

sin
(
ωTk (xi − x)

)
ωk (32)

However, since ω ∼ N
(
0, 1

h2 Id
)

is unbounded, random variable Zk is also unbounded, so the
standard Bernstein inequality does not apply. However, notice that the ω is sub-exponential, we apply
the Bernstein inequality for a tail-heavy random variable.

Consider the version of Bernstein inequality presented by Lanthaler et al. [46] which states: Let
Z be a sub-exponential random variable in a separable Hilbert space, choose any δ ∈ (0, 1), with
probability at least 1− δ, the following holds:

∥∥∥∥∥ 1

D

D∑
k=1

Zk − Eω∼N(0, 1
h2 Id) [Zk]

∥∥∥∥∥ ≤ 2b ln(2/δ)

D
+

√
2σ2 ln(2/δ)

D
(33)

Where:

σ2 = 4e

√
Eω∼N(0, 1

h2 Id)

[
∥Zk − Eω∼N(0, 1

h2 Id) [Zk] ∥
2
]
∥Zk∥ψ1 and b = 4e∥Zk∥ψ1 (34)

∥ · ∥ψ1
denotes sub-exponential Orlicz norm. Since Rd is a separable Hilbert space, it is directly

applicable here. First bounding:

Eω∼N(0, 1
h2 Id)

[∥∥∥Zk − Eω∼N(0, 1
h2 Id) [Zk]

∥∥∥2]
= Eω∼N(0, 1

h2 Id)
[
∥Zk∥2

]
− ∥Eω∼N(0, 1

h2 Id)[Zk]∥
2

≤ Eω∼N(0, 1
h2 Id)

[
∥Zk∥2

] (35)

Since the sine function is bounded:

∥Zk∥ ≤ n∥ωk∥ (36)

Recall that ωk are drawn from N
(
0, 1

h2 Id
)
, so:

Eω∼N(0, 1
h2 Id)

[
∥Zk∥2

]
≤ n2Eω∼N(0, 1

h2 Id)
[
∥ωk∥2

]
≤ n2d

h2
(37)

Now bounding ∥Zk∥ψ1 :

∥Zk∥ψ1 = ∥∥Zk∥∥ψ1 ≤ ∥n∥ωk∥∥ψ1 = n∥∥ωk∥∥ψ1 = n∥ωk∥ψ1 =
n

h
∥z∥ψ1 (38)

Where z ∼ N (0, I). We know that [70]:

∥z∥ψ1 ≤ C
√
d (39)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Where C is a universal constant, so:

∥Zk∥ψ1 ≤
Cn
√
d

h
(40)

Which means:

σ2 ≤ 4eCn2d

h2
and b ≤ 4eCn

√
d

h
(41)

We can bound the deviation of Zk from its expectation:

∥∥∥∥∥ 1

D

D∑
k=1

Zk − Eω∼N(0, 1
h2 Id) [Zk]

∥∥∥∥∥ ≤ 8Cen
√
d ln(2/δ)

Dh
+

√
8Cen2d ln(2/δ)

Dh2
(42)

The above holds with probability at least 1− δ. And finally, also with probability at least 1− δ:

∥∥∥∇Re (ĝ(x))−∇f̂kh(x)
∥∥∥ ≤ 1

nc

(
8Cen

√
d ln(2/δ)

Dh
+

√
8Cen2d ln(2/δ)

Dh2

)
(43)

■

I PROOF OF THEOREM 4

Proof. We also want to bound the Frobenius norm of the difference between the Hessian:

∥∥∥∇2 Re (ĝ(x))−∇2f̂kh(x)
∥∥∥
F
=

1

nc

∥∥∥∥∥ 1

D

D∑
k=1

n∑
i=1

∇2 cos(ωTk (xi − x))−
n∑
i=1

∇2kh (x, xi)

∥∥∥∥∥
F
(44)

Define an estimator:

Zk =

n∑
i=1

∇2 cos(ωTk (xi − x)) (45)

Again, because differentiation commutes with expectation, know that:

Eω∼N(0, 1
h2 Id) [Zk] = ∇

2Eω∼N(0, 1
h2 Id)

[
n∑
i=1

cos(ωTk (xi − x))

]
=

n∑
i=1

∇2kh (x, xi)

(46)

Use the proving technique as seen in the proof of Theorem 3. We start by bounding σ2 and b:

Zk =

n∑
i=1

− cos
(
ωTk (xi − x)

)
ωkω

T
k (47)

Then:

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Eω∼N(0, 1
h2 Id)

[∥∥∥Zk − Eω∼N(0, 1
h2 Id) [Zk]

∥∥∥2
F

]
= Eω∼N(0, 1

h2 Id)
[
∥Zk∥2F

]
− ∥Eω∼N(0, 1

h2 Id)[Zk]∥
2
F

≤ Eω∼N(0, 1
h2 Id)

[
∥Zk∥2F

] (48)

Since the cosine function is bounded:

∥Zk∥F ≤ n∥ωkωTk ∥F (49)

Recall that ωk are drawn from N
(
0, 1

h2 Id
)
, so:

Eω∼N(0, 1
h2 Id)

[
∥Zk∥2F

]
≤ n2Eω∼N(0, 1

h2 Id)
[
∥ωkωTk ∥2F

]
≤ n2d(d+ 2)

h4
(50)

Now bounding ∥Zk∥ψ1 :

∥Zk∥ψ1 = ∥∥Zk∥F ∥ψ1 ≤ ∥n∥ωkωTk ∥F ∥ψ1 = n∥∥ωkωTk ∥F ∥ψ1 = n∥ωkωTk ∥ψ1 ≤
Cnd

h2
(51)

Which means:

σ2 ≤
4eCn2d

√
d(d+ 2)

h4
and b ≤ 4eCnd

h2
(52)

Bound the deviation of Zk from its expectation:

∥∥∥∥∥ 1

D

D∑
k=1

Zk − Eω∼N(0, 1
h2 Id) [Zk]

∥∥∥∥∥
F

≤ 8eCnd ln(2/δ)

Dh2
+

√
8eCn2d

√
d(d+ 2) ln(2/δ)

Dh4
(53)

The above holds with probability at least 1− δ. And finally, also with probability at least 1− δ:

∥∥∥∇2 Re (ĝ(x))−∇2f̂kh(x)
∥∥∥
F
≤ 1

nc

8eCnd ln(2/δ)

Dh2
+

√
8eCn2d

√
d(d+ 2) ln(2/δ)

Dh4

 (54)

■

J PROOF OF THEOREM 5

Proof. The aim here is to show the critical points between Re (ĝ) and f̂kh are close under a mild
assumption. Assume f̂kh is a Morse function, i.e., a smooth function with non-degenerate critical
points [29], let x∗ be any critical point of f̂kh , we have:

∇fkh (x∗) = 0 and ∇2fkh (x
∗) is invertible with all positive eigenvalues (55)

In Theorem 3 and 4, we have shown that Re (ĝ) and f̂kh , are point-wise close in terms of their
gradient and hessian for all x ∈ Rd, suppose:

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

∥∇Re (ĝ(x))−∇fkh(x)∥ ≤ ϵ1 With probability at least 1− δ/2∥∥∇2 Re (ĝ(x))−∇2fkh(x)
∥∥
F
≤ ϵ2 With probability at least 1− δ/2

(56)

Where ϵ1, ϵ2 can be made arbitrarily small by increasing D (see Theorem 3 and Theorem 4).

We’re looking for x̂∗ near x∗ such that:

∇Re (ĝ(x̂∗)) = 0 (57)

x̂∗ can be found via Newton iteration:

T (x) = x−
[
∇2 Re (ĝ(x))

]−1∇Re (ĝ(x)) (58)

Start at x∗, we can show the distance between x∗ and x̂∗ using Newton–Kantorovich theorem [42],
which gives the optimality and convergence result of Newton’s Method.

We first bound the gradient residual at x∗:

∥∇Re (ĝ(x∗))∥ =
∥∥∥∇Re (ĝ(x∗))−∇f̂kh(x∗)

∥∥∥ ≤ ϵ1 (59)

Then, show the invertibility of ∇2 Re(ĝ(x∗)) by showing all its eigenvalue are positive. Let λmin(·)
denote the smallest eigenvalue of a matrix, by Weyl’s inequality:

∣∣∣λmin (∇2 Re(ĝ(x∗))
)
− λmin

(
∇2f̂kh(x

∗)
)∣∣∣

≤
∥∥∇2 Re (ĝ(x∗))−∇2fkh(x

∗)
∥∥
op

≤
∥∥∇2 Re (ĝ(x∗))−∇2fkh(x

∗)
∥∥
F

≤ ϵ2

(60)

Which implies:

λmin
(
∇2 Re(ĝ(x∗))

)
≥ λmin

(
∇2f̂kh(x

∗)
)
− ϵ2 (61)

This means, in order for ∇2 Re(ĝ(x∗)) to be invertible, simply chose ϵ2 ≤ λmin

(
∇2f̂kh(x

∗)
)

.

Further more we can bound the operator norm of
[
∇2 Re(ĝ(x∗))

]−1
:

∥∥∥[∇2 Re(ĝ(x∗))
]−1
∥∥∥
op
≤ 1

λmin (∇2 Re(ĝ(x∗)))
≤ 1

λmin

(
∇2f̂kh(x

∗)
)
− ϵ2

(62)

Since we successfully bounded the operator norm, we also know that:∥∥∥[∇2 Re (ĝ(x∗))
]−1∇Re (ĝ(x∗))

∥∥∥ ≤ ϵ1

λmin

(
∇2f̂kh(x

∗)
)
− ϵ2

(63)

Define:

α =
Lip

(
∇2 Re (ĝ)

)
ϵ1(

λmin

(
∇2f̂kh(x

∗)
)
− ϵ2

)2 (64)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

If α < 1
2 , Newton–Kantorovich theorem [60; 33] states that:

x̂∗ ∈ B

x∗,
ϵ1

λmin

(
∇2f̂kh(x

∗)
)
− ϵ2

 (65)

B(x, r) means a closed ball centered at x with radius r, and x̂∗ is the only critical point in the region.

Overall, what this means is that for any critical point x∗ of f̂kh , if we choose:

1. ϵ2 ≤ λmin

(
∇2f̂kh(x

∗)
)

2. ϵ1 such that α ≤ 1
2

3. ∥∇Re (ĝ(x))−∇fkh(x)∥ ≤ ϵ1 and
∥∥∇2 Re (ĝ(x))−∇2fkh(x)

∥∥
F
≤ ϵ2 both holds with

probability at least 1− δ/2.

Then, with probability least 1 − δ, there is only one critical point x̂∗ of Re (ĝ) such that: x̂∗ ∈

B

(
x∗, ϵ1

λmin(∇2f̂kh
(x∗))−ϵ2

)
.

■

K PROOF OF THEOREM 6

The convergence of zeroth-order gradient methods using two-point gradient estimation over noncon-
vex but L-smooth function is established by Nesterov and Spokoiny [58], who showed the method
converges to approximate stationary points at a sublinear rate. Specifically, in our case, with decaying
step-size, the average squared gradient norm satisfies:

min
0≤l<T

Eu∼N (0,Id)

∥∥∥∇Re
(
ĝ
(
x(l)
))∥∥∥2 = O

(
1√
T

+ µ2d2
)

(66)

The second term comes from the fact that gradient estimation is biased (due to the smoothing
parameter µ) but close to the real gradient. We can further derive a bound to quantify the result
of zero-th order gradient ascent over Re (ĝ): Let l∗ ∈ {0 · · ·T} be the iteration index such that
Eu∼N (0,Id)

∥∥∇Re
(
ĝ
(
x(l)
))∥∥2 is the smallest. Since Re (ĝ) is real analytical, it satisfies Łojasiewicz

inequality around a local mode x̂∗:

Re (ĝ (x̂∗))− Re
(
ĝ
(
x(l∗)

))
≤ O

(∥∥∥∇Re
(
ĝ
(
x(l∗)

))∥∥∥2/2θ) (67)

Where θ is the Łojasiewicz exponent. Combine with the descent lemma:

1

2Lip (∇Re (ĝ))

∥∥∥x̂∗ − x(l∗)
∥∥∥2 ≤ Re (ĝ (x̂∗))−Re

(
ĝ
(
x(l∗)

))
≤ O

(∥∥∥∇Re
(
ĝ
(
x(l∗)

))∥∥∥2/2θ)
(68)

Taking the expectation on both sides yields:

Eu∼N (0,Id)

[∥∥∥x̂∗ − x(l∗)
∥∥∥2] ≤ O(( 1√

T
+ µ2d2

)1/2θ
)

(69)

■

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

L PROOF OF EQUATION 13

Proof. Want to show that ϕkh(x+ x′) = D√
D
ϕkh(x)⊗ ϕkh(x

′) ∀x, x′ ∈ Cd. Recall that ϕ(.) is:

ϕkh(x) =
1√
D

[
ej(ω

T
1 x)ej(ω

T
2 x)ej(ω

T
3 x) . . . ej(ω

T
Dx)
]

(70)

So:
D√
D
ϕkh(x)⊗ ϕkh(x

′) =
D√
D

1√
D

[
ej(ω

T
1 x)ej(ω

T
2 x)ej(ω

T
3 x) . . . ej(ω

T
Dx)
]

⊗ 1√
D

[
ej(ω

T
1 x

′)ej(ω
T
2 x

′)ej(ω
T
3 x

′) . . . ej(ω
T
Dx

′)
]

=
D√
D

1

D

[
ej(ω

T
1 x)ej(ω

T
1 x

′) . . . ej(ω
T
Dx)ej(ω

T
Dx

′)
]

=
D√
D

1

D

[
ej(ω

T
1 (x+x′)) . . . ej(ω

T
D(x+x′))

]
=

1√
D

[
ej(ω

T
1 (x+x′)) . . . ej(ω

T
D(x+x′))

]
= ϕkh(x+ x′)

(71)

■

M ABLATION STUDY

M.1 HYPERPARAMETER SENSITIVITY

Here, we provide a sensitivity analysis on important RFMS hyperparameters, including the mapped
dimension(d), number of iterations (T ), kernel bandwidth(h), learning rate(η), and smoothing
parameter(µ). Experimental results here are done on S4 dataset. Unless specified in the table below,
we use the default D = 500, T = 100, h = 0.2, η = 0.003, µ = 5e− 4.

S4 dataset D = 50 D = 100 D = 200 D = 300 D = 500
NMI 64 67 68 69 69

Time(s) 1.7 2.7 6.2 10.3 17.8

S4 dataset T = 10 T = 50 T = 100 T = 150 T = 200
NMI 0 35 70 70 71

Time(s) 2.1 8.6 17.4 25.8 33.7

S4 dataset h = 0.05 h = 0.1 h = 0.2 h = 0.4 h = 0.8
NMI 50 62 67 10 0

S4 dataset η = 0.00075 η = 0.0015 η = 0.003 η = 0.006 η = 0.1
NMI 49 54 69 71 28

S4 dataset µ = 5e− 6 µ = 5e− 5 µ = 5e− 4 µ = 5e− 3 µ = 1
NMI 69 70 70 64 5

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

We introduce η as a step-size parameter so the mean-shift update matches the familiar gradient ascent
form. This also lets us control how far we move each iteration. In practice, the kernel affects the
scale of the update through bandwidth, and η provides a convenient way to absorb/adjust that step
magnitude and to improve stability under approximation/zeroth-order noise.

Among the hyperparameters, only D and T will affect the runtime of the algorithm. As claimed in
the paper, runtime scales linearly in both T and D. Larger T and D will almost certainly produce
better results, which aligns with Theorems 5 and 6 in the paper that quantify the closeness between
the result returned by RFMS and actual modes of KDE. RFMS can be sensitive to h, η, µ. Similar to
many machine learning approaches, those hyperparameters need to be chosen empirically based on
the on-hand data. The advantage of RFMS is that it allows for much faster hyperparameter-tuning
due the the algorithm’s efficiency.

M.2 MONTE-CARLO(MC) VS. QUASI MONTE-CARLO(QMC)

Here, we add additional experiments to disentangle the effect of Monte-Carlo sampling (MC) and
Quasi Monte-Carlo sampling (QMC) in RFMS at varying D, better NMI are highlighted:

NMI (D = 50) a1 a2 a3 unbalance s1 s2 s3 s4
MC 0.83 0.86 0.85 0.98 0.92 0.86 0.67 0.65

QMC 0.85 0.86 0.86 0.98 0.94 0.87 0.71 0.66

NMI (D = 100) a1 a2 a3 unbalance s1 s2 s3 s4
MC 0.87 0.87 0.89 0.98 0.96 0.89 0.7 0.64

QMC 0.89 0.89 0.90 0.98 0.96 0.91 0.74 0.68

NMI (D = 200) a1 a2 a3 unbalance s1 s2 s3 s4
MC 0.89 0.91 0.92 0.98 0.97 0.91 0.74 0.63

QMC 0.92 0.93 0.94 0.98 0.98 0.93 0.74 0.68

NMI (D = 300) a1 a2 a3 unbalance s1 s2 s3 s4
MC 0.92 0.94 0.95 0.98 0.98 0.92 0.75 0.68

QMC 0.95 0.97 0.96 0.98 0.98 0.93 0.76 0.69

At the same D, QMC shows a consistent improvement over MC sampling as expected.

N ADDITIONAL DETAILS ON CLUSTERING EXPERIMENTS

All clustering experiments were run on an Intel i5-11400 CPU. All algorithms are implemented in
Python and use the NumPy [30] library. We provide further details on the clustering experiments
below. For the cluster assignment after mean-shift, we construct a graph over shifted data points where
an edge exists between x and x′ if kh(x, x′) > 0.9 and run the connected component algorithm.

N.1 DIFFERENT MEAN-SHIFT ALGORITHMS

Gradient mean-shift(GMS):

x(l+1) = x(l) + η
∇fkh(x(l))

fkh(x
(l))

(72)

Fixed-point iteration mean-shift(MS):

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

x(l+1) =

∑n
i=1 kh

(
xi − x(l)

)
xi∑n

i=1 kh
(
xi − x(l)

) (73)

Blurring mean-shift(BMS):

x(l+1) =

∑n
i=1 kh

(
x
(l)
i − x(l)

)
x
(l)
i∑n

i=1 kh

(
x
(l)
i − x(l)

) (74)

For MS++, we refer the readers to the original paper by Jiang et al. [38] for a more detailed discussion.

N.2 DATASET DETAILS

a1 a2 a3 unbalance s1 s2 s3 s4
n 3000 5250 7500 6500 5000 5000 5000 5000

# Cluster 20 35 50 8 15 15 15 15
d 2 2 2 2 2 2 2 2

WallRobot UserKnowledge WirelessLocalization
n 5456 403 2000

# Cluster 4 4 4
d 4 5 7

Table 3: Dataset information for clustering experiments.

N.3 HYPERPARAMETER INFORMATION

We fix the number of iterations across all methods. Parameters such as h, µ, η are chosen impiricially.
For RFMS, D is chosen to be as small as possible while not degrading the result significantly.

a1 a2 a3 unbalance s1 s2 s3 s4
Random Feature dimension D 300 300 300 300 300 300 300 300

Bandwidth h 0.1 0.1 0.1 0.5 0.2 0.2 0.2 0.2
Iteration T 100 100 100 100 100 100 100 100

Smoothing parameter µ 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4
Learning rate η 1e-3 1e-3 1e-3 1e-3 3e-3 3e-3 3e-3 3e-3

WallRobot UserKnowledge WirelessLocalization
Random Feature dimension D 500 2000 750

Bandwidth h 0.2 0.5 0.7
Iteration T 100 100 100

Smoothing parameter µ 5e-4 5e-4 5e-4
Learning rate η 1e-2 3e-2 5e-2

Table 4: RFMS hyperparameters.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

a1 a2 a3 unbalance s1 s2 s3 s4
Bandwidth 0.15 0.15 0.15 0.3 0.15 0.15 0.15 0.15

WallRobot UserKnowledge WirelessLocalization
Bandwidth 0.2 0.5 0.5

Table 5: MS++ hyperparameter.

For MS, GMS, and BMS, we use the same hyperparameter whenever applicable.

N.4 ADDITIONAL EXPERIMENTAL RESULTS

Figure 8: Adjusted mutual information(AMI), Rand Score(RS) and Adjusted Rand Score(ARS)

Metric Method a1 a2 a3 unbalance s1 s2 s3 s4

AMI

RFMS 0.93 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.93 ± 0.01 0.75 ± 0.01 0.66 ± 0.03
GMS 0.97 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.94 ± 0.00 0.78 ± 0.00 0.68 ± 0.00
MS 0.96 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.95 ± 0.00 0.79 ± 0.00 0.72 ± 0.00
BMS 0.96 ± 0.00 0.97 ± 0.00 0.92 ± 0.00 0.82 ± 0.00 0.90 ± 0.00 0.90 ± 0.00 0.73 ± 0.00 0.69 ± 0.00
MS++ 0.89 ± 0.00 0.86 ± 0.00 0.83 ± 0.00 0.99 ± 0.00 0.95 ± 0.00 0.84 ± 0.00 0.73 ± 0.00 0.68 ± 0.00

NMI

RFMS 0.94 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.93 ± 0.01 0.75 ± 0.01 0.67 ± 0.03
GMS 0.97 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.95 ± 0.00 0.78 ± 0.00 0.69 ± 0.00
MS 0.96 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.95 ± 0.00 0.79 ± 0.00 0.72 ± 0.00
BMS 0.96 ± 0.00 0.97 ± 0.00 0.92 ± 0.00 0.82 ± 0.00 0.90 ± 0.00 0.90 ± 0.00 0.73 ± 0.00 0.69 ± 0.00
MS++ 0.89 ± 0.00 0.87 ± 0.00 0.84 ± 0.00 0.99 ± 0.00 0.95 ± 0.00 0.84 ± 0.00 0.74 ± 0.00 0.69 ± 0.00

ARS

RFMS 0.91 ± 0.02 0.93 ± 0.01 0.92 ± 0.04 1.00 ± 0.00 0.98 ± 0.01 0.91 ± 0.02 0.60 ± 0.02 0.47 ± 0.09
GMS 0.96 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.94 ± 0.00 0.67 ± 0.00 0.51 ± 0.00
MS 0.95 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.94 ± 0.00 0.71 ± 0.00 0.63 ± 0.00
BMS 0.92 ± 0.00 0.88 ± 0.00 0.66 ± 0.00 0.61 ± 0.00 0.72 ± 0.00 0.74 ± 0.00 0.51 ± 0.00 0.54 ± 0.00
MS++ 0.71 ± 0.00 0.55 ± 0.00 0.45 ± 0.00 1.00 ± 0.00 0.87 ± 0.00 0.65 ± 0.00 0.57 ± 0.00 0.53 ± 0.00

RS

RFMS 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.94 ± 0.01 0.91 ± 0.03
GMS 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.95 ± 0.00 0.92 ± 0.00
MS 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.96 ± 0.00 0.95 ± 0.00
BMS 0.99 ± 0.00 0.99 ± 0.00 0.98 ± 0.00 0.81 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.91 ± 0.00 0.93 ± 0.00
MS++ 0.96 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 0.98 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00

Time(s)

RFMS 4.44 ± 0.05 8.36 ± 0.07 12.71 ± 0.17 10.63 ± 0.12 7.80 ± 0.14 7.71 ± 0.12 8.03 ± 0.10 7.93 ± 0.15
GMS 30.24 ± 0.54 88.36 ± 4.21 175.98 ± 8.26 136.82 ± 2.19 75.12 ± 0.29 75.42 ± 0.47 76.82 ± 4.22 79.19 ± 3.96
MS 16.98 ± 0.24 50.31 ± 2.04 93.03 ± 1.65 68.54 ± 0.36 45.21 ± 0.93 45.63 ± 0.74 45.80 ± 1.46 44.96 ± 0.34
BMS 17.28 ± 0.24 47.16 ± 0.29 84.12 ± 0.51 68.34 ± 0.09 42.9 ± 0.24 43.21 ± 0.05 43.56 ± 0.04 43.37 ± 0.12
MS++ 1.48 ± 0.05 2.70 ± 0.05 4.17 ± 0.12 4.10 ± 0.09 2.54 ± 0.02 2.63 ± 0.07 2.61 ± 0.07 2.61 ± 0.04

Table 6: Full clustering experimental results in table format under different metrics.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

O ADDITIONAL DETAILS ON IMAGE SEGMENTATION EXPERIMENTS

Segmentation experiments were run on an Intel i5-11400 CPU. RFMS, MS, BMS, and MS++ are
implemented in Python using the Numpy [30] library. QuickShift implementation comes from the
Scikit-Image library [68]. Since RFMS, MS, and BMS might produce noisy clustering, we divide
LAB color space into hypercubes of side length 100 after shifting for clustering assignment. For
RFMS, we use D = 10, µ = 0.1 and η = 30. RFMS, MS, and BMS use h = 25 whereas bandwidth
for MS++ and Quickshift is 30 and 20, respectively.

O.1 EXAMPLE SEGMENTATION RESULTS

Figure 9: Visualization of segmentation result using different mean-shift based algorithms on
BSDS500 dataset. Pixels belonging to the same cluster are marked with the same color.

O.2 ADDITIONAL EXPERIMENTAL RESULT

Figure 10: Adjusted Rand Score(ARS)

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

FM (Fowlkes-Mallows score)
RFMS MS++ Quickshift MS BMS
0.54 0.56 0.42 0.54 0.54

ARS (Adjusted Rand Index)
RFMS MS++ Quickshift MS BMS
0.27 0.27 0.25 0.19 0.21

Time(s)
RFMS MS++ Quickshift MS BMS

5000.11 5111.94 10557.48 15703.66 15019.48

Table 7: Full image segmentation experimental results in table format under different metrics.

P REPRODUCIBILITY / CODE AVAILABILITY

We value the availability and reproducibility of our work. The code and all the hyperparameters used
in the experiment section are supplied as part of the supplemental material. We will also make our
code publicly available upon acceptance of the paper.

Q LLM USAGE

Large Language Models (LLMs) were used during the preparation of this paper for assistance. Usage
includes grammar, phrasing correction, polishing writing, and searching for or discovering related
papers. All ideation, algorithms, technical novelties, and details are done by the authors. All LLM
outputs were carefully reviewed and validated before inclusion in the manuscript.

34


	Introduction
	Related Works
	Notation and Preliminaries
	Random Feature mean-shift (RFMS)
	Estimation and Convergence Bounds
	Implementation Detail
	Experiments
	Mean-Shift Clustering
	Pixel-Level Image Segmentation

	Conclusion
	List of Notation
	RFMS Density Estimation Visualization
	Discussion
	Comparison with other fast KDE approaches
	Compatible kernel functions
	Bounds tightness
	Relation to HDC/VSA
	Significance of Mean-Shift Algorithms

	Limitation & Future Work
	Morse function assumption
	Semantic Segmentation
	Mode-seeking for high-dimensional data
	Future Work

	Proof of Equation  4
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Equation  13
	Ablation Study
	Hyperparameter Sensitivity
	Monte-Carlo(MC) vs. Quasi Monte-Carlo(QMC)

	Additional Details on Clustering Experiments
	Different mean-shift Algorithms
	Dataset Details
	Hyperparameter Information
	Additional Experimental Results

	Additional Details on Image Segmentation Experiments
	Example Segmentation Results
	Additional Experimental Result

	Reproducibility / Code Availability
	LLM Usage

