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Abstract

We present CLUSTSEG, a general, transformer-
based framework that tackles different image seg-
mentation tasks (i.e., superpixel, semantic, ins-
tance, and panoptic) through a unified, neural clus-
tering scheme. Regarding queries as cluster centers,
CLUSTSEG is innovative in two aspects: @ cluster
centers are initialized in heterogeneous ways so as
to pointedly address task-specific demands (e.g.,
instance- or category-level distinctiveness), yet
without modifying the architecture; and @ pixel-
cluster assignment, formalized in a cross-attention
fashion, is alternated with cluster center update, yet
without learning additional parameters. These in-
novations closely link CLUSTSEG to EM cluster-
ing and make it a transparent and powerful frame-
work that yields superior results across the above
segmentation tasks.

1. Introduction

Image segmentation aims at partitioning pixels into groups.
Different notions of pixel groups lead to different types of
segmentation tasks. For example, superpixel segmentation
groups perceptually similar and spatially coherent pixels to-
gether. Semantic and instance segmentation interpret pixel
groups based on semantic and instance relations respectively.
Panoptic segmentation (Kirillov et al., 2019b) not only dis-
tinguishes pixels for countable things (e.g., dog, car) at the
instance level, but merges pixels of amorphous and uncount-
able stuff regions (e.g., sky, grassland) at the semantic level.

These segmentation tasks are traditionally resolved by dif-
ferent technical protocols, e.g., per-pixel classification for
semantic segmentation, detect-then-segment for instance
segmentation, and proxy task learning for panoptic segmenta-
tion. As a result, the developed segmentation solutions are

'Rochester Institute of Technology *ETH Zurich *Zhejiang
University. Correspondence to: Wenguan Wang <wenguan-
wang.ai @gmail.com>, Dongfang Liu <dongfang.liu@rit.edu>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Superpixel Semantic Instance Pavnoptic

93.0 514 46.7 54.1
54.5 47.9 56.3
95.7 57.4 494 59.0

SOTA Specialized Segmentation Architectures:
mm | NS-Net = Segformer == SOLQ

Universal Segmentation Architectures:
mm CLUSTSEG (ours) == Mask2Former

CMT-Deeplab

Figure 1. CLUSTSEG unifies four segmentation tasks (i.e., super-
pixel, semantic, instance, and panoptic) from the clustering view,
and greatly suppresses existing specialized and unified models.

highly task-specialized, and research endeavors are diffused.

To advance the segmentation field in synergy, a paradigm
shift from task-specialized network architectures towards a
universal framework is needed. In an effort to embrace this
shift, we propose CLUSTSEG which unifies four segmenta-
tion tasks viz. superpixel, semantic, instance, and panoptic
segmentation, from the clustering perspective using trans-
formers. The idea of segment-by-clustering — clustering
pixels with similar attributes together to form segmentation
masks —has along history (Coleman & Andrews, 1979), yet
gets largely overlooked nowadays. By revisiting this classic
idea and recasting the cross-attention function as an EM clus-
tering calculator, CLUSTSEG sticks the principle of pixel clus-
tering through several innovative algorithmic designs, out-
performing existing specialized and unified models (Fig. 1).

Concretely, our innovations are centred around two aspects
and respect some critical rules of iterative/EM clustering:

@ Cluster center initialization: By resorting to the cross-
attention for pixel-cluster assignment, the queries in trans-
formers are deemed as cluster centers. From the clustering
standpoint, the choice of initial centers is of great impor-
tance. However, existing transformer-based segmenters sim-
ply learn the queries in a fully parametric manner. By res-
pecting task-specific natures, CLUSTSEG implants concrete
meanings to queries: for semantic/stuff segmentation, they
are invented as class centers (as the semantic membership is
defined on the category level), whereas queries for superpix-
els/instances/things are emerged purely from the individual
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input image (as the target tasks are scene-/instance-specific).
This smart query-initialization scheme, called dreamy-start,
boosts pixel grouping with more informative seeds, as well
as allows CLUSTSEG to accommodate the heterogeneous
properties of different tasks into one single architecture.

@ Iterative clustering and center update: To approximate
the optimal clustering, EM iteratively alters cluster member-
ship and centers. But current transformer-based segmenters
only update the query centers via a few cross-attention based
decoders (typically six (Cheng et al., 2021)). Given the suc-
cess of EM clustering, we devise recurrent cross-attention
that repeatedly alters cross-attention computation (for pixel-
cluster assignment) and attention-based feature aggregation
(for center update). By embedding such nonparametric re-
current mechanism, CLUSTSEG fully explores the power of
iterative clustering in pixel grouping, without additional learn-
able parameters and discernible inference speed reduction.

Taking these innovations together, CLUSTSEG becomes a
general, flexible, and transparent framework for image seg-
mentation. Unlike prior mask-classification based universal
segmenters (Zhang et al., 2021; Cheng et al., 2021; 2022a),
our CLUSTSEG acknowledges the fundamental principle of
segment-by-clustering. There are a few clustering based seg-
mentation networks (Kong & Fowlkes, 2018; Neven et al.,
2019; Yu et al., 2022a;b) — their successes, though limited
in their specific targeting tasks, shed light on the potential
of unifying image segmentation as pixel clustering. CLUST-
SEG, for the first time, shows impressive performance on
four core segmentation tasks. In particular, CLUSTSEG sets
tantalizing records of §9.0 PQ on COCO panoptic segmen-
tation (Kirillov et al., 2019b), 49.1 AP on COCO instance
segmentation (Lin et al., 2014), and 57.4 mIoU on ADE20K
semantic segmentation (Zhou et al., 2017), and reports the
best ASA and CO curves on BSDS500 superpixel segmen-
tation (Arbelaez et al., 2011).

2. Related Work

Semantic Segmentation interprets high-level semantic con-
cepts of visual stimuli by grouping pixels into different se-
mantic units. Since the proposal of fully convolutional net-
works (FCNs) (Long et al., 2015), continuous endeavors
have been devoted to the design of more powerful FCN-like
models, by e.g., aggregating context (Ronneberger et al.,
2015; Zheng et al., 2015; Yu & Koltun, 2016), incorporating
neural attention (Harley et al., 2017; Wang et al., 2018; Zhao
et al., 2018; Hu et al., 2018; Fu et al., 2019), conducting
contrastive learning (Wang et al., 2021c), revisiting proto-
type theory (Zheng et al., 2021; Wang et al., 2023), and
adopting generative models (Liang et al., 2022a). Recently,
engagement withadvanced transformer (Vaswani et al., 2017)
architecture attained wide research attention (Xie et al.,
2021; Strudel et al., 2021; Zheng et al., 2021; Zhu et al.,
2021a; Cheng et al., 2021; 2022a; Gu et al., 2022).

Instance Segmentation groups foreground pixels into dif-
ferent object instances. There are three types of solutions: i)
top-down models, built upon a detect-then-segment proto-
col, first detect object bounding boxes and then delineate
an instance mask for each box (He et al., 2017; Chen et al.,
2018a; Huang et al., 2019; Cai & Vasconcelos, 2019; Chen
et al., 2019a); ii) bottom-up models learn instance-specific
pixel embeddings by considering, e.g., instance boundaries
(Kirillov et al., 2017), energy levels (Bai & Urtasun, 2017),
geometric structures (Chen et al., 2019c), and pixel-center
offsets (Zhou et al., 2021), and then merge them as instances;
and iii) single-shot approaches directly predict instance
masks by locations using a set of learnable object queries
(Wang et al., 2020c;d; Fang et al., 2021; Liu et al., 2021a;
Guo et al., 2021; Liu et al., 2021b; Dong et al., 2021; Hu
et al., 2021; Cheng et al., 2022b; Wang et al., 2022; Liu
et al., 2023).

Panoptic Segmentation seeks for holistic scene understand-
ing, in terms of the semantic relation between background
stuff pixels and the instance membership between fore-
ground thing pixels. Starting from the pioneering work (Kir-
illov et al., 2019b), prevalent solutions (Kirillov et al., 2019a;
Xiong et al., 2019; Li et al., 2019; Liu et al., 2019; Lazarow
et al., 2020; Li et al., 2020; Wang et al., 2020a) decompose
the problem into various manageable proxy tasks, includ-
ing box detection, box-based segmentation, and thing-stuff
merging. Later, DETR (Carion et al., 2020) and Panoptic
FCN (Li et al., 2021) led a shift towards end-to-end panoptic
segmentation (Cheng et al., 2020; Wang et al., 2020b; 2021b;
Yu et al., 2022a;b). These compact panoptic architectures
show the promise of unifying semantic and instance seg-
mentation, but are usually sub-optimal compared with spe-
cialized models. This calls for endeavor of more powerful
universal algorithms for segmentation.

Superpixel Segmentation is to give a concise image repre-
sentation by grouping pixels into perceptually meaningful
small patches (i.e., superpixel). Superpixel segmentation
is an active research area in the pre-deep learning era; see
(Stutz et al., 2018) for a thorough survey. Recently, some
approaches are developed to harness neural networks to fa-
cilitate superpixel segmentation (Jampani et al., 2018; Yang
et al., 2020; Zhu et al., 2021b). For instance, Tu et al. (2018)
make use of deep learning techniques to learn a superpixel-
friendly embedding space; Yang et al. (2020) adopt a FCN
to directly predict association scores between pixels and
regular grid cells for grid-based superpixel creation.

Universal Image Segmentation pursues a unified architec-
ture for tackling different segmentation tasks. Existing task-
specific segmentation models, though advancing the perfor-
mance in their individual tasks, lack flexibility to generalize
to other tasks and cause duplicate research effort. Zhang
et al. (2021) initiate the attempt to unify segmentation by
dynamic kernel learning. More recently, Cheng et al. (2021;
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2022a) formulate different tasks within a mask-classification
scheme, using a transformer decoder with object queries.
Compared with these pioneers, CLUSTSEG is i) more frans-
parent and insightful — it explicitly acknowledges the fun-
damental and easy-to-understand principle of segment-by-
clustering; ii) more versatile — it handles more segmentation
tasks unanimously; iii) more flexible — it respects, instead of
ignoring, the divergent characters of different segmentation
tasks; and iv) more powerful — it leads by large margins.

Segmentation-by-Clustering, a once popular paradigm, re-
ceived far less attention nowadays. Recent investigations of
such paradigm are primarily made around bottom-up ins-
tance segmentation (Kong & Fowlkes, 2018; Neven et al.,
2019), where the clustering is adopted as a post-processing
step after learning an instance-aware pixel embedding space.
More recently, Yu et al. (2022a;b) build end-to-end, clus-
tering based panoptic systems by reformulating the cross-
attention as a clustering solver. In this work, we further ad-
vance this research line for the development of universal im-
age segmentation. With the innovations in task-specific clus-
ter center initialization and nonparametric recurrent cross-
attention, CLUSTSEG better adheres to the nature of clus-
tering and elaborately deals with the heterogeneity across
different segmentation tasks using the same architecture.

3. Methodology

3.1. Notation and Preliminary

Problem Statement. Image segmentation seeks to partition
an image I € R™>3 into a set of K meaningful segments:

segment(1) = {M;, € {0, 1} K (1)

where M (i) denotes if pixel i€ I'is (1) or not (0) a member
of segment . Different segmentation tasks find the segments
according to, for example, semantics, instance membership,
or low-level attributes. Also, the number of segments, K, is
different for different tasks:In superpixel segmentation, Kisa
pre-determined arbitrary value, i.e., compress I into K super-
pixels; In semantic segmentation, K is fixed as the length of a
pre-given list of semantic tags; In instance and panoptic seg-
mentation, K varies across images and needs to be inferred,
as the number of object instances presented in an image is
unknown. Some segmentation tasks require explaining the se-
mantics of segments; related symbols are omitted for clarity.

Unifying Segmentation as Clustering. Eq. 1 reveals that,
though differing in the definition of a “meaningful segment”,
segmentation tasks can be essentially viewed as a pixel clus-
tering process: the binary segment mask, i.e., My, is the pixel
assignment matrix w.r.t. k*" cluster. With this insight, CLUST-
SEG advocates unifying segmentation as clustering. Note
that recent mask-classification-based universal segmenters
(Cheng et al., 2021; 2022a) do not knowledge the rule of clu-
stering. As the segment masks are the outcome of clustering,

the viewpoint of segment-by-clustering is more insightful and
aclose scrutiny of classical clustering algorithms is needed.

EM Clustering. As a general family of iterative clustering,
EM clustering makes K-way clustering of a D-dimensional
setof L data points X=[z; - - -; & y] € RV*P by solving:

max Tr(MTCX'"), st. 1xM =1y.
a7 ) st kM =1n. ()
Here C = [c1; - - -; ci] € RE*P is the cluster center matrix

and cj, € RP is k* cluster center; M = [my;--;my]|' €
REXN is the cluster assignment matrix and m,, € {0, 1} ¥ is
the one-hot assignment vector of &, ; 1 k is a K~-dimensional
all-ones vector. Principally, EM clustering works as follows:
@ Cluster center initialization: EM clustering starts with
initial estimates for K cluster centers C(®) = [cgo); e c(KO)].
@ Iterative clustering and center update: EM clustering
proceeds by alternating between two steps:

* Clustering (Expectation) Step “softly” assigns each data

samples to the K clusters:

M® = softmaxg (CHXT) e [0,1]fN, (3)

where M ®) denotes the clustering probability matrix.
* Update (Maximization) Step recalculate each cluster center
from the data according to their membership weights:

C(t-‘rl) — M(t)X e RKXD. 4)

Apparently, the “’hard” sample-to-cluster assignment can be
given as: M = one-hot (argmaxy(M)).

Cross-Attention for Clustering. Inspired by DETR (Car-
ion et al., 2020), recent end-to-end panoptic systems (Wang
et al., 2021b; Zhang et al., 2021; Cheng et al., 2021; Li et al.,
2022) are build upon a query-based scheme: a set of K
queries C = [cy; - - -; cx| € REXD are learned and updated
by a stack of transformer decoders for mask decoding. Here
“C” isreused; we will relate queries with cluster centers later.
Specifically, at each decoder, the cross-attention is adopted
to adaptively aggregate pixel features to update the queries:

C « C + softmaxyw (Q° (K ")VI, %)

where Qe REXD VIc RHWXD iCIc RHWXD are linearly
projected features for query, key, and value; superscripts “C”
and “I” indicate the feature projected from the query and im-
age features, respectively. Inspired by (Yu et al., 2022a;b),
we reinterpret the cross-attention as a clustering solver by
treating queries as cluster centers, and applying softmax on
the query dimension (K) instead of image resolution (HW):

C + C + softmaxy (Q°(K) ") V1, (6)

3.2. CLUSTSEG

CLUSTSEG is built on the principle of segment-by-clustering:
the segment masks { My, } in Eq. 1 correspond to the cluster-
ing assignment matrix M in Eq. 2. Clustering can be further
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Figure 2. Dreamy-Start for query initialization. (a) To respect the cross-scene semantically consistent nature of semantic/stuff segmentation,
the quries/seeds are initialized as class centers (Eq. 7). (b) To meet the instance-aware demand of instance/thing segmentation, the initial seeds
are emerged from the inputimage (Eq. 8). (c) To generate varying number of superpixels, the seeds are initialized from image grids (Eq. 9).

solved in a cross-attention form: the pixel-query affinities
QC(K")" inEq. 6 correspond to the clustering assignment
probabilities C“’ X "in Eq. 3. In addition, with the close look
at EM clustering (¢f. @@ in §3.1), two inherent defects of
existing query-based segmentation models can be identified:

* Due to the stochastic nature, EM clustering is highly sensi-
tive to the selection of initial centers (cf. @) (Celebi et al.,
2013). To alleviate the effects of initial starting condi-
tions, many initialization methods such as Forgy (randomly
choose K data samples as the initial centers) (Hamerly &
Elkan, 2002) are proposed. However, existing segmenters
simply learn queries/centers in a fully parametric manner,
without any particular procedure of center initialization.

* EM clustering provably converges to a local optimum (Vat-
tani, 2009). However, it needs a sufficient number of itera-
tions to do so (¢f. @). Considering the computational cost
and model size, existing segmenters only employ a few
cross-attention based decoders (typically 6 (Cheng et al.,
2021; Yu et al., 2022a;b)), which may not enough to en-
sure convergence from the perspective of EM clustering.

As a universal segmentation architecture, CLUSTSEG har-
nesses the power of recursive clustering to boost pixel group-
ing. It offers two innovative designs to respectively address
the two defects: i) a well-crafted query-initialization scheme
— dreamy-start — for the creation of informative initial clus-
ter centers; and ii) a non-parametric recursive module — re-
current cross-attention — for effective neural clustering.

Let T € RW*P denote the set of D-dimensional pixel em-
beddings of image /. Analogous to EM clustering, CLUST-
SEG first creates a set of K queries C'(0)= [cgo) R cgg)] as
initial cluster centers using dreamy-start. Then, CLUSTSEG
iteratively conducts pixel clustering for mask decoding, by
feeding pixel embeddings I and the initial seeds C'(*) into a

stack of recurrent cross-attention decoders.

Dreamy-Start for Query Initialization. Dreamy-start takes
into account the heterogenous characteristics of different seg-
mentation tasks for the creation of initial seeds C'(?) (Fig. 2):

» Semantic Segmentation groups pixels according to scene-/
instance-agnostic semantic relations. For example, all the
pixels of dogs should be grouped (segmented) into the same
cluster, i.e., dog class, regardless of whether they are from dif-

ferent images/dog instances. Hence, for semantic-aware pixel
clustering, the variance among different instances/scenes
should be ignored. In this regard, we explore global semantic
structures of the entire dataset to find robust initial seeds.
Specifically, during training, we build a memory bank 5B to
store massive pixel samples for approximating the global
data distribution. B consists of K fixed-size, first-in-first-out
queues, i.e., B={By, -, Bk }; By stores numerous pixel
embeddings which are sampled from training images and
belong to class k. The initial query for cluster (class) k is
given as the corresponding “class center’:

(€755 eld)] = FEN([21; -+ 5 2]),

@)
&), = Avg_Pool(By,) € RP,

where Avg_Pool indicates average pooling, FFN is a fully-
connected feed-forward network, and K is set as the size of
semantic vocabulary. In this way, the initial centers explic-
itly summarize the global statistics of the classes, facilitat-
ing scene-agnostic semantic relation based pixel clustering.
Once trained, these initial seeds will be preserved for testing.

» Instance Segmentation groups pixels according to instance-
aware relations — pixels of different dog instances should be
clustered into different groups. Different instances possess
distinctive properties, e.g., color, scale, position, that are
concerning with the local context — the images — that the
instances situated in. It is hard to use a small finite set of
K fixed queries to characterize all the possible instances.
Therefore, unlike previous methods learning K changeless
queries for different images, we derive our initial guess of
instance-aware centers in an image context-adaptive manner:

(&?; . ] = FEN(PE(T)), ®)
where PE denotes position embedding, and K is set as a
constant (i.e., 100) — much larger than the typical number
of object instances in an image. As such, we utilize image-
specific appearance and position cues to estimate content-
adaptive seeds for instance-relation-oriented pixel grouping.
» Panoptic Segmentation groups stuff and thing pixels in
terms of semantic and instance relations respectively. Thus
we respectively adopt the initialization strategies for seman-
tic segmentation and instance segmentation to estimate two
discrete sets of queries for stuff and thing pixel clustering.
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Figure 3. (a) Recurrent Cross-attention instantiates EM clustering for segment-by-clustering. (b) Each Recurrent Cross-attention layer
executes 7' iterations of clustering assignment (E-step) and center update (M-step). (c) Overall architecture of CLUSTSEG.

» Superpixel Segmentation groups together pixels that are
spatially close and perceptually similar. The number of su-
perpixels K is manually specified beforehand and can be ar-
bitrary. We thus initialize the queries from image grids:
[ 9] = FFN(Grid_Sample (PE(I))), (9)
where Grid_Sample ;- (PE(I)) refers to select K position-
embedded pixel features from PE(I) using grid-based sam-
pling. The queries are used to group their surrounding pixels
as superpixels. CLUSTSEG is thus general enough to accom-
modate the classic idea of grid-based clustering (Achanta
et al., 2012; Yang et al., 2020) in superpixel segmentation.

Dreamy-Start renders CLUSTSEG with great flexibility of
addressing task-specific properties without changing net-
work architecture. Through customized initialization, high-
quality cluster seeds are created for better pixel grouping.

Recurrent Cross-Attention for Recursive Clustering. After
Dreamy-Start based cluster center initialization, CLUSTSEG
groups image pixels into K clusters for segmentation, by
resembling the workflow of EM clustering (c¢f. @@ in §3.1).
Given the pixel embeddings I € RW*P and initial centers
C ), the iterative procedure of EM clustering with T'itera-
tions is encapsulated into a Recurrent Cross-Attention layer:

M(t) :softmaXK(QCm(KI)T)v
:M(t)VIERKXD,

E-step:

10
M-step: C+Y (10

where t € {1,---, T}, and M€ [0, 1]*HWis the “soft” clu-
ster assignment matrix (i.e., probability maps of K segments).
Asdefinedin §3.1, Q% R¥*P is the query vector projected
from the center C, and VI, K'e REW*D are the value and
key vectors respectively projected from the image pixel fea-
tures I. Recurrent Cross-Attention iteratively updates cluster
membership M (i.e., E-step) and centers C' (i.e., M-step).
It enjoys a few appealing characteristics (Fig. 3(a-b)):

* Efficient: Compared to the vanilla cross-attention (cf. Eq. 5)
with the computational complexity O(H?W?2D), Recur-
rent Cross-Attentionis O(T K HW D), which is more effi-
cient since ' K<< HW . Note that, during iteration, only Q
needs to be recalculated, while K and Vare only calculated
once — the small superscript (¢) is only added for Q.

* Non-parametric recursive: As the projection weights for
query, key, and value are shared across iteration, Recur-
rent Cross-Attention achieves recursiveness without oc-
curring extra learnable parameters.

* Transparent: Aligning closely with the well-established
EM clustering algorithm, Recurrent Cross-Attention is
crystal-clear and grants CLUSTSEG better transparency.

* Effective: Recurrent Cross-Attention exploits the power of
recursive clustering to progressively decipher the imagery
intricacies. As a result, CLUSTSEG is more likely to
converge to a better configuration of image partition.

We adopt a hierarchy of Recurrent Cross-Attention based
decoders to fully pursue the representational granularity for
more effective pixel clustering:

C!'=C"" 4+ RCross_Attention' T (I'+1, C'*1),  (11)

where I'is the image feature map at H /2! <1/ /2! resolution,
and C' is the cluster center matrix for [** decoder. The multi-
head mechanism and multi-layer perceptron used in standard
transformer decoder are also adopted (but omitted for simpli-
city). The parameters for different Recurrent Cross-Attention
layers, i.e., {RCross,Attentionl}lel, are not shared.

3.3. Implementation Details

Detailed Architecture. CLUSTSEG has four parts (Fig. 3(c)):
* Pixel Encoder extracts multi-scale dense representations
{I,}, for image I. In §4, we test CLUSTSEG on various
CNN-based and vision-transformer backbones.
* Pixel Decoder, placed on the top of the encoder, gradually
recovers finer representations. As in (Yu et al., 2022b;a;
Cheng et al., 2021), we use six axial blocks (Wang et al.,
2020b), one at L level and five at (L—1)*"level.
Recurrent Cross-Attention based Decoder performs itera-
tive clustering for pixel grouping. Each Recurrent Cross-
Attention layer conducts three iterations of clustering, i.e.,
T =3, and six decoders are used: each two is applied to
the pixel decoder at levels L—2, L—1 and L, respectively.
* Dreamy-Start creates informative initial centers for the
first Recurrent Cross-attention based decoder and is cus-
tomized to different tasks. For semantic segmentation and
stuff classes in panoptic segmentation, the seeds are com-
puted from the memory bank during training (cf. Eq. 7)
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Table 1. Quantitative results on COCO Panoptic (Kirillov et al., 2019b) val for panoptic segmentation (see §4.1 for details).

Algorithm H Backbone ‘ Epoch H PQT PQ™ PQt APg:n mloUpant
Panoptic-FPN (Kirillov et al., 2019a) || ResNet-101 20 44.0 52.0 31.9 34.0 51.5
UPSNet (Xiong et al., 2019) || ResNet-101 12 46.2 52.8 36.5 36.3 56.9
Panoptic-Deeplab (Cheng et al., 2020) || Xception-71 12 41.2 44.9 35.7 31.5 55.4
Panoptic-FCN (Li et al., 2021) || ResNet-50 12 44.3 50.0 35.6 35.5 55.0
Max-Deeplab (Wang et al., 2021b) || Max-L 55 51.1 57.0 422 - -
CMT-Deeplab (Yu et al., 2022a) Axial-R104" 55 54.1 58.8 47.1 - -
o e || ResNet-50 | .. || 49.6. 005 S44.005 424055 3951000 608001
- Panoptc Segformer (Lietal 202 | ResNer-1o1t | 2 || 50.60000 5550000 4320000 404i0n 620000
ResNet-50 52.1 +0.15 57.3 0.18 44.0 +£0.16 36.2 +0.15 60.4 0.14
kMaX-Deeplab (Yu et al., 2022b
o (VDeepb (U etal 2020 || ComNexiB! |50 || 562000 62400 468100 422000 65301
ResNet-101 4841096 53310928 40910022 3851095 60.1:020
K-Net (Zh. tal., 2021 36
et (Zhang etal, ) Swin-Lf 5524022 6124005 462:0.09 4581023 644500
| ResNet-50 | || 51.8:001 5771003 4300016 419003 6171020
Mask2Former (Cheng et al., 2022a) ResNet-101 50 5241000 5821016 43.61000 424050 62409
Swin-Bt 563021 6251001 469018 463003 65.1.001
ResNet-50 54341020 6041000 4580023 4221018 638.0.25
ResNet-101 55.3 +0.21 61.3 0.15 46.4 L0.17 43.0 +0.19 64.1 0.25
CLUSTSEG (0urs) 1} hoNeXeBT | 20 || 588.010 645.01 488.0.0 469.01- 66310
Swin-BT 590000 649003 4871010 47di001 66210138

T: backbone pre-trained on ImageNet-22K (Deng et al., 2009); the marker is applicable to other tables.

and stored unchanged once training finished. In other

cases, the seeds are built on-the-fly (c¢f. Eqs. 8 and 9).
Loss Function. CLUSTSEG can be applied to the four seg-
mentation tasks, without architecture change. We opt the
standard loss design in each task setting for training (de-
tails in the supplementary). In addition, recall that Recur-
rent Cross-attention estimates the cluster probability ma-
trix M) at each E-step (cf. Eq. 10); M® can be viewed
as logit maps of K segments. Therefore, the groundtruth
segment masks { M}, } can be directly used to train every
E-step of each Recurrent Cross-attention, leading to inter-
mediate/deep supervision (Lee et al., 2015; Yu et al., 2022b)

4. Experiment

CLUSTSEG is the first framework to support four core seg-
mentation tasks with a single unified architecture. To demon-
strate its broad applicability and wide benefit, we conduct

Extensive experiments: We benchmark it on panoptic (§4.1),
instance (§4.2), semantic (§4.3), and superpixel (§4.4) seg-
mentation, and carry out ablation study (§4.5). We also ap-
proach it on diverse backbones: ResNet (He et al., 2016),
ConvNeXt (Liu et al., 2022), and Swin (Liu et al., 2021c¢).

4.1. Experiment on Panoptic Segmentation

Dataset. We use COCO Panoptic (Kirillov et al., 2019b) —
train2017is adopted for training and val2017 for test.
Training. We set the initial learning rate to le-5, training
epoch to 50, and batch size to 16. We use random scale jitter-
ing with afactorin [0.1, 2.0] and a crop size of 1024 x 1024.

Test. We use one input image scale with shorter side as 800.
Metric. We use PQ (Kirillov et al., 2019b) and also report
PQ™ and PQ®! for “thing” and “stuff” classes, respectively.

For completeness, we involve APJ% . which is AP evaluated

on “thing” classes using instance segmentation annotations,
and mIoUp,,, which is mIoU for semantic segmentation by
merging instance masks from the same category, using the
same model trained for panoptic segmentation task.
Performance Comparison. We compare CLUSTSEG with
two families of state-of-the-art methods: universal approa-
ches (i.e., K-Net (Zhang et al., 2021), Mask2Former (Cheng
et al., 2022a)), and specialized panoptic systems (Kirillov
et al., 2019a; Xiong et al., 2019; Cheng et al., 2020; Li
et al., 2021; Wang et al., 2021b; Zhang et al., 2021; Li et al.,
2022; Yu et al., 2022a). As shown in Table 1, CLUSTSEG
beats all universal rivals, i.e., Mask2Former and K-Net, on
COCO Panoptic val.With ResNet-50/-101, CLUSTSEG out-
performs Mask2Former by 2.3% /2.9% PQ; with Swin-B,
the margin is 2.7 % PQ. Also, CLUSTSEG’s performance is
clearly ahead of K-Net (59.0% vs. 55.2%), even using a
lighter backbone (Swin-B vs. Swin-L). Furthermore, CLUST-
SEG outperforms all the well-established specialist panoptic
algorithms. Notably, it achieves promising gains of 2.6 %/
2.1%/2.0% in terms of PQ/PQ"/PQStagainst kMax-Deeplab
on the top of ConvNeXt-B. Beyond metric PQ, CLUSTSEG
gains superior performance in terms of APE;‘H and mIoU .
In summary, CLUSTSEG, with Swin-B backbone, sets new
records across all the metrics on COCO Panoptic val.

4.2. Experiment on Instance Segmentation

Dataset. As standard, we adopt COCO (Lin et al., 2014) —
train2017 is used for training and test-dev for test.
Training. We set the initial learning rate to le-5, training
epoch to 50, and batch size to 16. We use random scale jitter-
ing witha factorin [0.1, 2.0] and a crop size of 1024 x 1024.
Test. We use one input image scale with shorter side as 800.
Metric. We adopt AP, AP50, AP75, APg, AP/, and APy
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Table 2. Quantitative results on COCO (Lin et al., 2014) test —dev for instance segmentation (see §4.2 for details).

Algorithm || Backbone | Epoch [ AP N AP757 APy AP APt
Mask R-CNN (He et al., 2017) || ResNet-101 12 36.1 57.5 38.6 18.8 39.7 49.5
Cascade MR-CNN (Cai & Vasconcelos, 2019) || ResNet-101 12 37.3 58.2 40.1 19.7 40.6 51.5
HTC (Chen et al., 2019a) || ResNet-101 20 39.6 61.0 42.8 21.3 429 55.0
PointRend (Kirillov et al., 2020) || ResNet-50 12 36.3 56.9 38.7 19.8 39.4 48.5
BlendMask (Chen et al., 2020) || ResNet-101 36 38.4 60.7 41.3 18.2 41.5 53.3
QuerylInst (Fang et al., 2021) || ResNet-101 36 41.0 63.3 44.5 21.7 44.4 60.7
SOLQ (Dong et al., 2021) Swin-Lf 50 46.7 72.7 50.6 29.2 50.1 60.9
R Sparselnst (Cheng etal., 2022b) || ResNetS0 | 36 || 379 592 402 157 394 569
. . . ResNet-50 402019 6151090 437015 217091 43.0.0.19 54.0109
,,,,,,,, ‘ I}/ITX, ],)Eierjl‘ib,(i{u,et,d,l.’,z?z,zt)),  ConvNeXt-BT | ?0, [ 4470024 67550025 481021 25.1u0a7 47.640.23 61.5:001
ResNet-101 40.1 1017 6281003 43.1.019 1871090 427018 588,020
o e @hane el 220l swintt | % a6 677000 496000 243000 495.00 650i0n
ResNet-50 42810035 653,051 46.0.000 2214019 463,05 648,
Mask2Former (Cheng et al., 2022a) || ResNet-101 50 439,019 667017 470019 229050 4771015 66315
Swin-Bf 479019 6891015 51.8:021 299,053 51.5:020 68.5:01s
ResNet-50 4421005 667.007 478.00, 243020 485.05 643502,
. . ResNet-101 45.5:{;‘33 67.8:(\ 21 48.91(\ 24 25~1*U 0] 50.3:1],2’% 66.9i“ 27
CLUSTSEG (0urs) || o oNexeBf | 20 [ 490000 7040020 5270000 300000 52902, 68.6.0
Swin-Bf 49.1 01 703090 529003 301015 53.2.020 684101
Table 3. Quantitative results on ADE20K (Zhou et al., 2017) val 098
for semantic segmentation (see §4.3 for details). CLUSTSEG
Algorithm ‘ ‘ Backbone ‘ Epoch ‘ ‘ mloU? 04 —
FCN (Long et al., 2015) || ResNet-50 50 36.0 ASA SSFCN
DeeplabV3+ (Chen et al., 2018b) || ResNet-50 50 42.7 ——
APCNet (He et al., 2019)|| ResNet-50 100 43.4 oa4 1 LNS
SETR (Zheng et al., 2021)|| ViT-L 100 49.3 o sic
Segmenter (Strudel et al., 2021)|| ViT-L' 100 53.5 042 { . L L
,,,,, Segformer (Xie etal..2021)|[MITBS | 100 || 514 po 20 Mo o ow  ww #superpivel
ResNet-50 48.140.13 ——
| (VarDeeplab (Y et el 202200 comvexeent| 1% (156,21 o5 | Crstseo
ResNet-50 44.6 105 ——
o et 0 lswinL | Y 537,00 co SSFCN
) _ |[ResNet-50 4820 12 =
Mask2Former (Cheng et al., 2022a) Swin-B 100 54500 s | LNS
ResNet-50 50.540.16 SLIC
. nt ~ o1 . . . -
CLUSTSEG (ours) Cor}VNeXt BT| 100 ||57.3401 200 00 w0 o0 w000 Hsuperpixel
Swin-Bf 574

Performance Comparison. Table 2 presents the results
of CLUSTSEG against 11 famous instance segmentation
methods on COCO test-dev. CLUSTSEG shows clear
performance advantages over prior arts. With ResNet-101,
it outperforms the universal counterparts Mask2Former by
1.6% and K-Net by 5.4% in terms of AP. It surpasses all
the specialized competitors, e.g., yielding a significant gain
of 4.0% AP over kMax-Deeplab when using ResNet-50.
Without bells and whistles, CLUSTSEG establishes a new
state-of-the-art on COCO instance segmentation.

4.3. Experiment on Semantic Segmentation

Dataset. We experiment with ADE20K (Zhou et al., 2017),
which includes 20K/2K/3K images for t rain/val/test.
Training. We set the initial learning rate to le-5, training
epoch to 100, and batch size to 16. We use random scale jitter-
ing with a factor in [0.5, 2.0] and a crop size of 640 x 640.

Figure 4. CLUSTSEG reaches the best ASA and CO scores on
BSDS500 (Arbelaez et al., 2011) test, among all the deep learn-
ing based superpixel models (see §4.4 for details).

Test. At the test time, we rescale the shorter side of input
image to 640, without any test-time data augmentation.
Metric. Mean intersection-over-union (mloU) is reported.
Performance Comparison. In Table 3, we further compare
CLUSTSEG with a set of semantic segmentation methods
on ADE20K val. CLUSTSEG yields superior performance.
For example, it outperforms Mask2Former by 2.3% and
2.9% mloU using ResNet-50 and Swin-BT backbones, re-
spectively. Furthermore, CLUSTSEG leads other specialist
semantic segmentation models like Segformer (Xie et al.,
2021), Segmenter (Strudel et al., 2021), and SETR (Zheng
et al., 2021) by large margins. Considering that ADE20K
is challenging and extensively-studied, such improvements
are particularly impressive. In conclusion, CLUSTSEG ranks
top in ADE20K semantic segmentation benchmarking.
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Table 4. A set of ablative studies on COCO Panoptic (Li et al., 2022) val (see §4.5). The adopted designs are marked in red.

- Th ST 3
Algorithm Component ‘ PQT PQ 't PQt Cross-Attention Variant PQt PQ™ PQSY Training Speed Inference Speed
BASELINE 497 555 420 (hour/epoch)} (fps)t

'+ Dreamy-Start only | 51.0 567 43.6  Vanilla(Eq.5) 51.0 56.7 43.6 1.89 5.88

_+ Recurrent Cross-attention only | 53.2° 59.1 449 K-Means (Yu et al., 2022b)|53.4 58.5 453 1.58 7.81

CLUSTSEG (both) 543 604 458 Recurrent (Eq. 11) 543 604 458 1.62 7.59
(a) Key Component Analysis (c) Recurrent Cross-Attention

Instance/Thing Semantic/Stuff 7| p PO™+ POt Training Speed Inference Speed

#  free scene- free scene-  scene- | POt PO™+ PQSY4 Qr PQTT QY (hour/epoch) (fps)T

param. adaptive | param. agnostic adaptive 11538 597 454 1.54 3.08
1 v v 532 59.1 449 21541 602 457 1.59 7.85
2 v v 540 602 452 31543 604 458 1.62 7.59
3 v v 539 595 457 41543 604 458 1.68 7.25
4 7 v 535 593 453 5543 605 458 1.74 6.92
5 v v 543 604 458 6 |544 604 459 1.82 6.54

(b) Dreamy-Start Query-Initialization

4.4. Experiment on Superpixel Segmentation

Dataset. We use BSDS500 (Arbelaez et al., 2011), which
includes 200/100/200 images for train/val/test.
Training. We set the initial learning rate to 1e-4, training itera-
tion to 300K, and batch size to 128. We use random horizontal
and vertical flipping, random scale jittering with a factor in
[0.5,2.0], and a crop size of 480x480 for data augmentation.
We randomly choose the number of superpixels from 50 to
2500. Note that the grid for query generation is automati-
cally adjusted to match the specified number of superpixels.
Test. During inference, we use the original image size.
Metric. We use achievable segmentation accuracy (ASA)
and compactness (CO). ASA is aware of boundary adher-
ence, whereas CO addresses shape regularity.
Performance Comparison. Fig 4 presents comparison re-
sults of superpixel segmentation on BSDS500 test. In
terms of ASA, CLUSTSEG outperforms the classic method
SLIC (Achanta et al., 2012) by a large margin, and also
surpasses recent three deep learning based competitors, i.e.,
SSFCN (Yang et al., 2020) and LNS (Zhu et al., 2021b). In
addition, CLUSTSEG gains high CO score. As seen, CLUST-
SEG performs well on both ASA and CO; this is significant
due to the well-known trade-off between edge-preserving
and compactness (Yang et al., 2020). Our CLUSTSEG
achieves outstanding performance against state-of-the-art
superpixel methods on BSDS500.

4.5. Diagnostic Experiment

In this section, we dive deep into CLUSTSEG by ablating
of its key components on COCO Panoptic (Kirillov et al.,
2019b) val. ResNet-50 is adopted as the backbone. More
experimental results are given in the supplementary.

Key Component Analysis. We first investigate the two ma-
jor ingredients in CLUSTSEG, i.e., Dreamy-Start for query
initialization and Recurrent Cross-Attention, for recursive

(d) Recursive Clustering

clustering. We build BASELINE that learns the initial queries
fully end-to-end and updates them through standard cross-
attention (Eq. 5) based decoders. As reported in Table 4a,
BASELINE gives 49.7% PQ, 55.5% PQ™, and 42.0% PQS.
After applying Dreamy-Start to BASELINE, we observe con-
sistent and notable improvements for both ‘thing’ (55.5% —
56.7% in PQ™) and ‘stuff’ (42.0% — 43.6% in PQ%"), lead-
ing to an increase of overall PQ from 49.7% to 51.0%. This
reveals the critical role of object queries and verifies the
efficacy of our query-initialization strategy, even without ex-
plicitly conducting clustering. Moreover, after introducing
Recurrent Cross-Attention to BASELINE, we obtain signifi-
cant gains of 3.5% PQ, 3.6% PQ™, and 2.9% PQ'. Last,
by unifying the two core techniques together, CLUSTSEG
yields the best performance across all the three metrics.
This suggests that the proposed Dreamy-Start and Recur-
rent Cross-Attention can work collaboratively, and confirms
the effectiveness of our overall algorithmic design.

Dreamy-Start Query-Initialization. We next study the im-
pact of the our Dreamy-Start Query-Initialization scheme.
As summarized in Table 4b, when learning the initial queries
as free parameters as standard (#1), the model obtains 53.2%
PQ, 59.1% PQ™ and 44.9% PQS'. By initializing ‘thing’ cen-
ters in a scene context-adaptive manner (Eq. 8), we observe
a large gain of 1.1% PQ™ (#2). Additionally, with scene-
agnostic initialization of ‘stuff’ centers (Eq. 7), the model
yields a clear boost of PQS! from 44.9% to 45.7% (#3). In
addition, we find that only minor gains are achieved for
PQS!if ‘stuff” centers are also initialized as scene-adaptive
(#4). By customizing initialization strategies for both ‘thing’
and ‘stuff’ centers, Dreamy-Start provides substantial per-
formance improvements across all the metrics (#5).

Recurrent Cross-Attention. We further probe the influence
of our Recurrent Cross-Attention (Eq. 11), by comparing
it with vanilla cross-attention (Eq. 5) and K-Means cross-
attention (Yu et al., 2022b). K-Means cross-attention em-
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ploys Gumbel-Softmax (Jang et al., 2017) for ‘hard’ pixel-
cluster assignment, without any recursive process. As seen
in Table 4c, our Recurrent Cross-Attention is effective — it
improves the vanilla and K-Means by 3.3% PQ and 0.9%
PQ respectively, and efficient — its training and inference
speeds are much faster than the vanilla and comparable to
K -Means, as consistent with our analysis in §3.2.

Recursive Clustering. Last, to gain more insights into recur-
sive clustering, we ablate the effect of iteration number 7" in
Table 4d. We find that the performance gradually improves
from 53.8% PQ to 54.3% PQ when increasing 1" from 1
to 3, but remains unchanged after running more iterations.
Additionally, the speed of training and inference decreases
as T' increases. We therefore set T'=3 by default for a better
trade-off between accuracy and computational cost.

5. Conclusion

In this work, our epistemology is centered on the segment-
by-clustering paradigm, which coins a universal framework,
termed CLUSTSEG, to unify the community of image seg-
mentation and respect the distinctive characteristics of each
sub-task (i.e., superpixel, semantic, instance, and panoptic).
The clustering insight leads us to introduce novel approaches
for task-aware query/center initialization and tailor the cross-
attention mechanism for recursive clustering. Empirical re-
sults suggest that CLUSTSEG achieves superior performance
in all the four sub-tasks. Our research may potentially bene-
fit the broader domain of dense visual prediction as a whole.
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In this document, we provide additional experimental results and analysis, pseudo code, more implementation details and
discussions. It is organized as follows:

* §A: More experimental details
¢ §B: More ablative studies
¢ §C: Pseudo code

¢ §D: More discussions

A. More Experimental Details

We provide more experimental results of CLUSTSEG (with Swin-B backbone) on five datasets: COCO panoptic (Kirillov
et al., 2019b) val for panoptic segmentation in Fig. 7, COCO (Lin et al., 2014) va12017 for instance segmentation
in Fig. 8, ADE20K (Zhou et al., 2017) val for semantic segmentation in Fig. 9, and NYUv2 (Nathan Silberman &
Fergus, 2012) as well as BSDS500 (Arbelaez et al., 2011) for superpixel segmentation in Fig. 5 and Fig. 10. Our results
demonstrate that CLUSTSEG can learn and discover, from the underlying characteristics of the data, the division principle of
pixels, hence yielding strong performance across various core image segmentation tasks.

Implementation Details. CLUSTSEG is implemented in PyTorch. All the backbones are initialized using corresponding
weights pre-trained on ImageNet-1K/-22K (Deng et al., 2009), while the remaining layers are randomly initialized. We
train all our models using AdamW optimizer and cosine annealing learning rate decay policy. For panoptic, instance, and
semantic segmentation, we adopt the default training recipes of MMDetection (Chen et al., 2019b).

A.1. Panoptic Segmentation

Dataset. COCO panoptic (Kirillov et al., 2019b) is considered as a standard benchmark dataset in the field of panoptic
segmentation, providing a rich and diverse set of images for training and evaluation. It is a highly advanced and sophisticated
dataset that utilizes the full spectrum of annotated images from COCO (Lin et al., 2014) dataset. COCO panoptic
encompasses the 80 “thing” categories as well as an additional diligently annotated set of 53 “stuff” categories. To ensure
the integrity and coherence of the dataset, any potential overlapping categories between the two aforementioned tasks are
meticulously resolved. Following the practice of COCO, COCO Panoptic is divided into 115K/5K/20K images for t rain/
val/test split.

Training. Following (Carion et al., 2020; Wang et al., 2021a; Yu et al., 2022b; Cheng et al., 2022a), we set the total number
of cluster seeds (i.e., queries) as 128, in which 75 are for “thing” and 53 are for “stuff”. During training, we optimize the

following objective: A
£Panoptlc _ )\thﬁth + )\stﬁst + Aaux‘caux’ (12)

where £ and £ are loss functions for things and stuff. For a fair comparison, we follow (Yu et al., 2022b; Wang et al.,
2021b) to additionally employ an auxiliary loss that is computed as a weighted summation of four loss terms, i.e., a PQ-style
loss, a mask-ID cross-entropy loss, an instance discrimination loss, and a semantic segmentation loss. We refer to (Wang
etal., 2021b; Yu et al., 2022b) for more details about £2°%. The coefficients A, A% and A\2* are set as: A\ = 5, \* = 3, and
A = 1. In addition, the final “thing” centers are feed into a small FFN for semantic classification, trained with a binary
cross-entropy loss.

Qualitative Results. CLUSTSEG is capable to achieve appealing performance in various challenging scenarios. Specifically,
in the restroom example (see Fig. 7 row #2 col #1 and #2), it perfectly segments the object instances and preserves more
details of backgrounds within a highly intricate indoor scenario; in the zebra example (see Fig. 7 row #5 col #1 and #2),
CLUSTSEG successfully recognizes two distinct zebras with similar patterns as well as the grass backgrounds; in the person
example (see Fig. 7 row #3 col #3 and #4), CLUSTSEG differentiates the person in the dense crowd and identifies the
complex backgrounds.

A.2. Instance Segmentation

Dataset. We use COCO (Lin et al., 2014), the golden-standard dataset for instance segmentation. It has dense annotations
for 80 object categories, including common objects such as people, animals, furniture, vehicles. The images in the dataset
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Figure 5. CLUSTSEG reaches the best ASA and CO scores on NYUv2 (Nathan Silberman & Fergus, 2012) test (see §A.4 for details).

are diverse, covering a wide range of challenging indoor and outdoor scenes. As standard, we use train2017 split (115K
images) for training, val2017 (5K images) for validation, and test-dev (20K images) for testing. All the results in the
main paper are reported for test-dev.

Training. For a fair comparison, we follow the training protocol in (Cheng et al., 2022a): 1) the number of instance centers
is set to 100; 2) a combination of the binary cross-entropy loss and the dice Loss is used as the optimization objective. Their
coefficients are set to 5 and 2, respectively. In addition, the final instance centers are feed into a small FFN for semantic
classification, trained with a binary cross-entropy loss.

Qualitative Results. Consistent to panoptic segmentation, CLUSTSEG also demonstrates strong efficacy in instance
segmentation. For instance, in the elepants example (see Fig. 8 row #5 col #3 and #4), CLUSTSEG successfully separates
apart a group of elephants under significant occlusions and similar appearance; in the river example (see Fig. 8 row #2 col
#3 and #4), CLUSTSEG effectively distinguishes the highly-crowded and occluded person as well.

A.3. Semantic Segmentation

Dataset. ADE20K (Zhou et al., 2017) is a large-scale scene parsing benchmark that covers a wide variety of indoor and
outdoor scenes annotated with 150 semantic categories (e.g., door, cat, sky) . It is divided into 20K/2K/3K images for
train/val/test. The images cover many daily scenes, making it a challenging dataset for semantic segmentation.

Training. In semantic segmentation, the number of cluster seeds is set to the number of semantic categories, i.e., 150 for
ADE20K. We adopt the same loss function as (Zhang et al., 2021; Cheng et al., 2022a; Strudel et al., 2021) by combining
the standard cross-entropy loss with an auxiliary dice loss. By default, the coefficients for the two losses are set to 5 and 1,
respectively.

Qualitative Results. When dealing with both indoor (see Fig. 9 row #1 col #3 and #4) and outdoor (see Fig. 9 row #2 col #3
and #4) scenarios, CLUSTSEG delivers highly accurate results. Especially, for the challenging outdoor settings. CLUSTSEG
can robustly delineate the delicacy of physical complexity across the scenes, where Mask2Former, a recent top-leading
segmentation algorithm, generates a large array of wrongful mask predictions.

A.4. Superpixel Segmentation

Dataset. For superpixel segmentation, we utilize two standard datasets (i.e., BSDS500 (Arbelaez et al., 2011) and
NYUv2 (Nathan Silberman & Fergus, 2012)). BSDS500 contains 500 natural images with pixel-wise semantic annotations.
These image are divided into 200/100/200 for train/val/test. Following (Yang et al., 2020; Tu et al., 2018), we
train our model using the combination of all images in t rain and val, and run evaluation on test. NYUv2 dataset is
originally proposed for indoor scene understanding tasks, which contains 1,449 images with object instance labels. By
removing the unlabelled regions near the image boundary, a subset of 400 test images with size 608 x448 are collected for
superpixel evaluation. As in conventions (Yang et al., 2020), we directly apply the models of SSFCN (Yang et al., 2020),
LNSnet (Zhu et al., 2021b) and our CLUSTSEG trained on BSDS500 to 400 NYUv2 images without any fine-tuning, to test
the generalizability of the learning-based methods.

Training. For superpixel query-initialization, we use a grid sampler to automatically sample a specified number of position-
embedded pixel features as superpixel seeds. The network is trained jointly with the smooth L1 loss, and SLIC loss (Yang
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et al., 2020). They are combined with coefficients of 10 for smooth L1 and 1 for SLIC losses.

Quantitative Results. Fig. 5 provides additional performance comparison of CLUSTSEG against both traditional (i.e., SLIC
(Achanta et al., 2012)) and deep learning-based (i.e., SSFCN (Yang et al., 2020), LNSnet (Zhu et al., 2021b)) superpixel
segmentation algorithms on NYUv2 (Nathan Silberman & Fergus, 2012) test. We can observe that CLUSTSEG consistently
outperforms all the competitors in terms of ASA and CO. This also verifies stronger generalizability of CLUSTSEG over all
the other learning-based competitors.

Qualitative Results. Overall, CLUSTSEG can capture rich details in images and tends to create compact fine-grained results
that closely align with object boundaries (see Fig. 10). Across the different numbers of superpixels (i.e., 200 to 1000),
CLUSTSEG yields stable and impressive performance for various landscapes and objects.

A.5. Failure Case Analysis

As shown in Fig. 11, we summarize the most representative failure cases and draw conclusions regarding their characteristic
patterns that can lead to subpar results. Observedly, our algorithm struggles to separate objects from backgrounds in a
number of incredibly complex scenarios (i.e., highly similar and occluded instances, objects with complex topologies, small
objects, highly deformed objects, and distorted backgrounds). Developing more robust and powerful clustering algorithms
may help alleviate these issues.

B. More Ablative Studies

In this section, we provide more ablative studies regarding Dreamy-Start query-initialization in Algorithm 1 and Recurrent
Cross-Attention for recursive clustering in Algorithm 2.

B.1. Recurrent Cross-Attention

We perform further ablation studies on our non-recurrent cross-attention for the panoptic segmentation task. The results are
summarized in the table below, where PQ (%) is reported. As seen, simply stacking multiple non-recurrent cross-attention
layers cannot achieve similar performance to our recurrent cross-attention with the same number of total iterations. Note that
using multiple non-recurrent cross-attention layers even causes extra learnable parameters. EM is an iterative computational
procedure for progressively estimating the local representatives of data samples in a given embedding space. When using
multiple non-recurrent cross-attention layers, we essentially conduct one-step clustering on different embedding spaces,
since the parameters are not shared among different cross-attention layers. This does not follow the nature of EM clustering,
hence generating inferior results.

Table 5. Ablative study of recurrent cross-Attention vs. non-recurrent cross-attention over ResNet-50 (He et al., 2016) on COCO
Panoptic (Kirillov et al., 2019b) val (see §B.1 for details).

Iteration (T)|Recurrent cross-attention| Multiple non-recurrent|| Additional learnable parameter

1 53.8 53.8 -

2 54.1 53.8 1.3M
3 543 53.9 2.8M
4 54.3 53.9 4.3M
5 54.3 54.0 5. M

B.2. Query Initialization

We report the panoptic segmentation results with more iterations when learning queries as free parameters. As seen in
Tab. 6, when learning initial queries as free parameters, even if using more iterations, performance degradation is still
observed. Actually, the performance of iterative clustering algorithms heavily relies on the selection of initial seeds due to
their stochastic nature (Hamerly & Elkan, 2002; Celebi et al., 2013; Khan & Ahmad, 2004). This issue, called initial starting
conditions, has long been a focus in the field of data clustering. It is commonly recognized that the effect of initial starting
conditions cannot be alleviated by simply using more iterations. And this is why many different initialization methods are
developed for more effective clustering (Khan & Ahmad, 2004).
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Table 6. Ablative study of query initialization over ResNet-50 (He et al., 2016) on COCO Panoptic (Kirillov et al., 2019b) val (see
§B.2 for details).

Method  [Iteration (T)| PQ PQ™ PQ™[AP]? mloUp,

pan
Dreamy-Start 3 543 60.4 458|422 638
Free parameters 3 53.5 59.6 45.1|41.0 60.5
Free parameters 3 53.7 599 453|542 6l.1
Free parameters 3 53.8 60.1 454|416 614

B.3. Deep Supervision

We adopt deep supervision to train every E-step of each recurrent cross-attention. A similar strategy is widely employed
in previous segmentation models and other Transformer counterparts, e.g., Mask2Former (Cheng et al., 2022a), kMaX-
Deeplab (Yu et al., 2022b). We ablate the effect of such a deep supervision strategy for panoptic segmentation in Tab. 7a.
Moreover, we also show the accuracy of segmentation predictions from different iterations of the last recurrent cross-attention
layer in Tab. 7b. We additionally provide visualization of segmentation results in different stages in Fig. 6.

Table 7. Ablative studies of deep supervision over ResNet-50 (He et al., 2016) on COCO Panoptic (Li et al., 2022) val (see §B.3).

NVariant [PQ _PQ™ PQ™ | AP, mloU,,, lteration (M| PQ PQ™ PQ™ | AP} mloUp,
Only final E-step of 1 53.8 59.7 456 | 41.6 63.1
each recurrent cross-attention 330 596 437 417 61.2 2 540 60.1 456 | 419 63.4
Deep supervision 543 604 458 | 42.2 63.8 3 543 604 458 | 422 63.8
(a) Supervision variants (b) Iterations of the last recurrent cross-attention layer
C. Pseudo Code

In this section, we provide pseudo-code of Dreamy-Start query-initialization in Algorithm 1 and Recurrent Cross-Attention
for recursive clustering in Algorithm 2.

D. Discussion

Asset License and Consent. We apply five closed-set image segmentation datasets, i.e., MS COCO (Lin et al., 2014),
MS COCO Panoptic (Kirillov et al., 2019b), ADE20K (Zhou et al., 2017), BSDS500 (Arbelaez et al., 2011) and
NYUv2 (Nathan Silberman & Fergus, 2012) They are all publicly and freely available for academic purposes. We
implement all models with MMDetection (Contributors, 2019), MMSegmentation (Contributors, 2020) and Deeplab2 (Chen
et al., 2017; Wang et al., 2021a; Yu et al., 2022b) codebases. MS COCO (https://cocodataset.org/) is released under a
CC BY 4.0; MS COCO Panoptic (https://github.com/cocodataset/panopticapi) is released under a CC BY 4.0; ADE20K
(https://groups.csail.mit.edu/vision/datasets/ ADE20K/) is released under a CC BSD-3; All assets mentioned above release
annotations obtained from human experts with agreements. MMDetection (https://github.com/open-mmlab/mmdetection),
MMSegmentation (https://github.com/open-mmlab/mmsegmentation) and Deeplab2 codebases (https://github.com/google-
research/deeplab?2) are released under Apache-2.0.

Limitation Analysis. One limitation of our algorithm arises from the extra clustering loops in each training iteration,
as they may reduce the computation efficiency in terms of time complexity. However, in practice, we observe that three
recursive clusterings are sufficient for global model convergence, incurring only a minor computational overhead, i.e.,
5.19% reduction in terms of training speed. We will dedicate ourselves to the development of potent algorithms that are
more efficient and effective.

Broader Impact. This work develops a universal and transparent segmentation framework, which unifies different image
segmentation tasks from a clustering perspective. We devise a novel cluster center initialization scheme as well as a neural
solver for iterative clustering, hence fully exploiting the fundamental principles of recursive clustering for pixel grouping.
Our algorithm has demonstrated its effectiveness over a variety of famous models in four core segmentation tasks (i.e.,
panoptic, instance, semantic, and superpixel segmentation). On the positive side, our approach has the potential to benefit a
wide variety of applications in the real world, such as autonomous vehicles, robot navigation, and medical imaging. On
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Figure 6. Visualization of panoptic segmentation in different stages results on COCO Panoptic (Kirillov et al., 2019b) val with
CLUSTSEG with Swin-B (Liu et al., 2021c) backbone. See §B.3 for details.

the other side, erroneous predictions in real-world applications (i.e., medical imaging analysis and any tasks involving
autonomous vehicles) give rise to concerns about the safety of human beings (Liang et al., 2022b; Cheng et al., 2022c; 2023).
In order to avoid this potentially negative effect on society and the community, we suggest proposing a highly stringent
security protocol in the event that our approach fails to function properly in real-world applications.
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Algorithm 1 Pseudo-code of Dreamy-Start for query initialization in a PyTorch-like style.

won
feats: output feature of backbone, shape: (channels, height, width)

memory: a set of queues storing class—aware pixel embeddings, each has a shape of
num_sp: number of superpixels

FFN: feedforward network, PE: position embedding

nun

# scene-agnostic center initialization (Eqg.7)
def scene_agnostic_initialization (memory) :

mem_feats = Avg Pool (memory)
semantic_centers = FFN (mem_feats)
return semantic_centers

# scene—adaptive center initialization (Eg.8)
def scene_adaptive_initialization(feats):

feats = PE (feats)
instance_centers = FFN(feats)
return instance_centers

# superpixel center initialization (Eg.9)
def superpixel_initialization(feats):

_, H, W = feats.shape
feats = PE(feats)

Grid sampler of num_sp superpixels

= torch.sqgrt (num_sp/H/W)

= torch.linspace (0, W, torch.int (Wxf))

y = torch.linspace (0, H, torch.int (Hxf))

meshx, meshy = torch.meshgrid((x, y))

grid = torch.stack((meshy, meshx), 2).unsqueeze (0)
feats = grid._sample (feats, grid).view(-1, channels)

XoHh ==

superpixel_centers = FFN(feats)

return superpixel_centers

(num_feats,

channels)

Algorithm 2 Pseudo-code of Recurrent Cross-attention for Recursive Clustering in a PyTorch-like style.

nun

feats: output feature of backbone, shape: (batch_size, channels, height, width)
C: cluster centers, shape: (batch_size, num_clusters, dimention)

T: iteration number for recursive clustering
wun

# One-step cross attention in Eqg.10
def recurrent cross_attention_layer(Q, K, V):

# E-step
output = torch.matmul (Q, K.transpose (-2, -1))
M = torch.nn.functional.softmax (output, dim=-2)

# M-step
C = torch.matmul (M, V)
return C

# Recurrent cross-attention in Eq.11
def RCross Attention(feats, C, T):

= nn.Linear (C)

nn.Linear (feats)

= nn.Linear (feats)

= recurrent_cross_attention_layer(Q, K, V)

Q<=0
Il

for _ in range(T-1):
Q = nn.Linear (C)
C = recurrent_cross_attention_layer (Q, K, V)

return C
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Mask2former CLUSTSEG Mask2former CLUSTSEG

Figure 7. Qualitative panoptic segmentation results on COCO panoptic (Kirillov et al., 2019b) val. CLUSTSEG with Swin-B (Liu
et al., 2021c) backbone achieves 59.0% PQ. See §A.1 for details.
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Figure 8. Qualitative instance segmentation results on COCO (Lin et al., 2014) va12017. CLUSTSEG with Swin-B (Liu et al., 2021c)
backbone achieves 49.1% AP. See §A.2 for details.
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Mask2former CLUSTSEG Mask2former CLUSTSEG

Figure 9. Qualitative semantic segmentation results on ADE20K (Zhou et al., 2017) val. CLUSTSEG with Swin-B (Liu et al., 2021c)
backbone achieves 57.4 mloU. See §A.3 for details.
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Image 200 500 1000

Figure 10. Qualitative superpixel segmentation results on BSDS500 (Arbelaez et al., 2011) test. For each test image, we show
segmentation results with three different numbers of superpixels (i.e., 200, 500, and 1000). See §A.4 for details.
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Figure 11. Failure Cases on COCO panoptic (Kirillov et al., 2019b) val. See §A.5 for details.

23



