
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPTIMAL SPARSITY OF MIXTURE-OF-EXPERTS LAN-
GUAGE MODELS FOR REASONING TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Empirical scaling laws have driven the evolution of large language mod-
els (LLMs), yet their coefficients shift whenever the model architecture or
data pipeline changes. Mixture-of-Experts (MoE) models, now standard
in state-of-the-art systems, introduce a new sparsity dimension that current
dense-model frontiers overlook. We investigate how MoE sparsity influences two
distinct capability regimes: memorization skills and reasoning skills. By train-
ing MoE families that vary total parameters, active parameters, and top-k routing
under fixed compute budgets, we disentangle pre-training loss from downstream
accuracy. Our results reveal two principles. First, Active FLOPs: models with
identical training loss but greater active compute achieve higher reasoning accu-
racy. Second, Total tokens per parameter (TPP): memorization tasks improve
with more parameters, while reasoning tasks benefit from optimal TPP, indicat-
ing that reasoning is data-hungry. Neither reinforcement learning post-training
(GRPO) nor increased test-time compute alters these trends. We therefore argue
that optimal MoE sparsity must be determined jointly by active FLOPs and TPP,
revising the classical picture of compute-optimal scaling. All code, data sources,
and logs are released to facilitate reproducibility and future work.

1 INTRODUCTION

The recent evolution of large language models (LLMs) has been driven by empirical scaling laws
(Hestness et al., 2017) that link training loss to model size, dataset size, and compute budget. Kaplan
et al. (2020) showed that these laws hold across seven orders of magnitude, establishing them as a
reliable extrapolation tool for dense Transformers. Subsequent work by Hoffmann et al. (2022)
demonstrated that scaling curves can be inverted to choose the compute-optimal combination of
parameters and tokens for a fixed budget. Together, these results have made scaling analysis a
cornerstone of model planning at both academic and industrial labs.

Yet the coefficients of the scaling laws are not universal. Highly expressive models trained under
different optimizers or architectures often follow the same loss trajectory but diverge substantially
on downstream reasoning benchmarks (Liu et al., 2023a). Brandfonbrener et al. (2025) extend the
classic laws with loss-to-loss prediction, showing that the mapping between training and test dis-
tributions admits its own power law when the distributions differ substantially. These observations
imply that optimal budgets must be re-estimated whenever we modify the model or the data pipeline.

A particularly compelling architectural modification is the Mixture-of-Experts (MoE) paradigm,
offering high capacity at fixed FLOPs by routing each token through a sparse subset of ex-
perts (Shazeer et al., 2017; Lepikhin et al., 2021; Fedus et al., 2021). Modern flagship models, e.g.,
Gemini 2.5 Pro (Gemini Team, 2025), DeepSeek-V3 (DeepSeek-AI, 2025b), and Qwen3 (Qwen
Team, 2025) now rely on MoE as a de facto standard for economical scaling. Abnar et al. (2025)
derive a parameters-vs-FLOPs frontier and locate an optimal sparsity for a given compute budget.
These findings emphasize that the classical dense-model frontier is an incomplete picture, and one
must account for architectural knobs such as MoE sparsity and top-k routing.

Evaluating reasoning performance immediately after pre-training overlooks both the benefits of
post-training adaptation and the leverage of additional test-time compute. Post-training methods
such as GRPO, which use reinforcement signals to encourage coherent chain-of-thought generation,
sharpen a model’s reasoning on complex tasks (OpenAI, 2024b; DeepSeek-AI, 2025a). Beyond

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

these refinements, models can further improve outputs at test time by adopting calibrated decod-
ing strategies that mirror how humans pause to reconsider difficult problems. These test-time ap-
proaches not only boost routine benchmark performance but, when properly tuned, substantially
enhance multi-step mathematical reasoning, demonstrating that adaptive computing at test time is a
powerful complement to both model scale and post-training adaptation.

In this paper, we aim to identify how the optimal sparsity of MoE changes between memorization
skills (TriviaQA, HellaSwag) and reasoning skills (GSM8K, GSM-Plus) tasks. In this work, we
use the term dense models to refer to standard Transformers with a single feed-forward network per
layer. For MoE models, we define sparsity as sparsity = 1 − Top-k

Experts following the convention that
sparsity measures the fraction of inactive parameters. We train families of MoEs varying not only
the total vs. active parameters, but also the number of top-k experts. For each model, we measure
the loss on the pre-training data, the task loss on the downstream benchmarks, and the accuracy on
those benchmarks. This allows us to disentangle the generalization gap between the train vs. test
loss, and the gap between loss vs. accuracy. For both memorization and reasoning benchmarks,
the train loss decreases monotonically with the total parameters count increases. The task loss
and accuracy follow the same monotonic trend as the train loss for memorization benchmarks. In
contrast, for reasoning benchmarks, the task loss and accuracy diverge from this monotonic trend
as the total parameters increase and training loss decreases. We find that changing the k in top-k
routing has a negligible effect if the number of active parameters is kept constant. We also consider
classic generalization-gap controls by sweeping the learning rate and initialization, showing that
their effects align strikingly with the generalization-gap caused by sparsity. This confirms that the
gap between the performance on memorization skills and reasoning skills can be induced not only
by the sparsity of the MoE, but also by classical hyperparameters like learning rate and initialization.
We further investigate whether applying GRPO or additional test-time compute could recover the
degraded reasoning ability of sparser models. Our results show that the gap between memorization
and reasoning performance caused by increased sparsity remains unchanged even after GRPO and
increased test-time compute. This means that finding the optimal sparsity of the MoE during pre-
training is crucial for training a reasoning model under a fixed compute budget.

We characterize these divergences along two key axes: (1) Active FLOPs - downstream reasoning
performance is not determined by training loss alone, but by the number of active FLOPs at both
train and test time; even at identical training loss, models with a larger top-k consistently outperform
smaller ones. (2) Total tokens per parameter (TPP) - reasoning ability peaks around 20 tokens
per parameter, whereas memorization skills are parameter-hungry and improve with lower TPP.
Together, these axes define the compute-optimal sparsity for MoE models.

We further demonstrate that neither reinforcement learning post-training (GRPO) nor additional test-
time compute eliminates this trade-off, highlighting that pre-training sparsity remains the dominant
factor for reasoning ability under fixed budgets.

Together, our findings refine the scaling laws for MoE LLMs: memorization improves with higher
sparsity and more experts whereas reasoning requires a careful balance between active FLOPs and
data-per-parameter, occasionally favoring denser configurations in high-compute regimes.

We release model checkpoints, code, and logs as open-source.

2 BACKGROUND AND RELATED WORK

2.1 MIXTURE OF EXPERTS

MoE Architecture. Mixture-of-Experts (MoE) networks were introduced by (Jacobs et al., 1991;
Jordan & Jacobs, 1994) and later brought to large-scale neural language modeling by Shazeer et al.
(2017). Within the Transformer architecture (Vaswani et al., 2017), MoE layers have proven espe-
cially effective, scaling to hundreds of billions of parameters while maintaining manageable train-
ing costs (Lepikhin et al., 2021; Fedus et al., 2021; Du et al., 2022). In an MoE layer, a learn-
able router assigns each token to a sparse subset of experts. Let x ∈ Rdh be a token representa-
tion and {FFN(x)i}ni=1 the n feed-forward experts. For top-k routing, the router produces scores
s = x⊤Wrouter ∈ Rn, and selects the indices K of the k largest components, then normalizes them:
g(x)i =

exp(si)∑
j∈K exp(sj)

if i ∈ K and g(x)i = 0 otherwise.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The layer output is the weighted sum of the chosen experts: y =
∑n

i=1g(x)i FFN(x)i. Modern
MoE models typically supplement the token-level cross-entropy loss with two auxiliary terms: a
load-balancing loss LLB, which prevents expert collapse (Shazeer et al., 2017), and a router-z loss
LRZ, which penalizes large router logits for better numerical stability and gradient flow (Zoph et al.,
2022). The combined training loss is expressed as L = LCE + αLLB + βLRZ, where α and
β are hyperparameters that control the relative importance of each term in the objective function.
This formulation is widely used in recent MoE-based language models and remains unchanged
throughout the experiments.

2.2 SCALING LAWS OF LLMS

Scaling Laws for MoE. Existing scaling laws demonstrate power-law relationships between
model performance, parameter count, dataset size, and compute budget (Kaplan et al., 2020; Hoff-
mann et al., 2022). Scaling laws for MoE models have similarly explored how total parameter count
and expert granularity jointly affect scaling behavior (Clark et al., 2022; Ludziejewski et al., 2024).
Building on this, Frantar et al. (2024) derived sparsity-aware scaling exponents that bridge dense and
sparse regimes, while Abnar et al. (2025) empirically charted the optimal trade-offs between total
parameters and FLOPs per token in MoE settings. Furthermore, recent analyses indicate that in-
creasing sparsity itself can directly improve loss, highlighting sparsity as a key dimension in scaling
behavior (Kimi Team, 2025).

Task Loss. Since the scaling law for next-token prediction loss does not necessarily align with
downstream task loss, it may not be reliable for predicting benchmark performance (Grattafiori
et al., 2024). Some work has tried to model downstream accuracy with an exponential curve, but
accuracy is only predictable when we average over many tasks and carefully choose which ones to
include (Gadre et al., 2024). Another line of research instead first quantifies how downstream task
loss scales with parameters and data, then converts predicted losses into accuracy estimates, achiev-
ing under two points of absolute error for mid-scale models using minimal extra compute (Bhagia
et al., 2024). Prior work observes that downstream task loss relates to pre-training loss, where the
shifts depend on the minimal achievable losses determined by the intrinsic complexity and distribu-
tional mismatch between the pre-training and downstream datasets (Brandfonbrener et al., 2025).

Skills Adding MoE experts tends to improve memorization skills more than reasoning skills, mo-
tivating new, generalized scaling frameworks that address scaling laws for reasoning performance
(Jelassi et al., 2025). They provide a theoretical explanation for this asymmetry using graph neu-
ral networks. Recent work shows that larger top-k can improve compositional generalization in
MoE models (Zhao et al., 2025a), though such studies do not observe the non-monotonic effect of
sparsity on reasoning performance that we identify. Since scaling laws differ across tasks, the opti-
mal scaling strategy may also vary; for example, knowledge-based QA tasks are “capacity-hungry,”
benefiting more from larger model sizes, whereas code-related tasks are “data-hungry,” benefiting
more from increased training data (Roberts et al., 2025). Complementing these observations, recent
analyses find that models with identical training loss can still exhibit markedly different reasoning
performance (GLM-4.5 Team, 2025), highlighting that reasoning skill depends not only on loss but
also on how compute and data are allocated.

2.3 POST TRAINING AND TEST-TIME COMPUTE (TTC)

Reinforcement Learning (RL) post-training has long been a predominant approach for improving
LLMs. Proximal Policy Optimization (PPO) (Schulman et al., 2017) forms the backbone of RLHF
pipelines, from the original GPT alignment work (Ouyang et al., 2022) to the GPT-4 family of mod-
els (OpenAI, 2024a). More recently, Group Relative Policy Optimization (GRPO) was introduced as
a variant of PPO that replaces the value function baseline with a group-relative advantage estimator,
thereby improving memory efficiency and stabilizing updates; this approach already powers frontier-
scale systems such as DeepSeek-R1, achieving state-of-the-art results on mathematical-reasoning
benchmarks (Shao et al., 2024; DeepSeek-AI, 2025a).

Complementary to these training-time advances, scaling test-time compute (TTC) offers an orthogo-
nal approach. TTC denotes accuracy gains obtained without updating model parameters, simply by
allocating more inference resources, e.g., running longer chains of thought (OpenAI, 2024b; Muen-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

nighoff et al., 2025b), sampling larger candidate pools (Li et al., 2022; Wang et al., 2023; Brown
et al., 2024; Schaeffer et al., 2025), or performing explicit search-and-verify steps (Lightman et al.,
2024; Shinn et al., 2024; Snell et al., 2025; Inoue et al., 2025). Among these, self-consistency, re-
peated sampling with majority-vote aggregation, has emerged as a strong TTC baseline (Wang et al.,
2023).

3 EXPERIMENTS

In this section, we empirically demonstrate the scaling of downstream task performance through a
systematic investigation of memorization and reasoning skills in MoE LLMs.

3.1 EXPERIMENTAL SETUP

We use the Mixtral (Jiang et al., 2024) architecture, a Transformer backbone with RMSNorm (Zhang
& Sennrich, 2019), SwiGLU activations (Shazeer, 2020), and rotary positional embeddings (Su
et al., 2024). Each feed-forward block is a sparsely gated MoE layer, gated by the dropless token-
choice top-k routing (Gale et al., 2023). All models use L = 16 layers, following Muennighoff et al.
(2025a). We sweep three architectural hyperparameters: (i) the model width d ∈ {512, 1024, 2048};
(ii) the number of experts per layer E ∈ {8, 16, 32, 64, 128, 256}; and (iii) the top-k experts per
token k ∈ {2, 4, 8, 16}. Each feed-forward network has a hidden dimension of 2d. When d = 512
and d = 1024, we train every combination of E and k. For d = 2048, we limit the search to
E ≤ 128 due to computational resource constraints.

We train with AdamW (Loshchilov & Hutter, 2019) using a peak learning rate of 4 × 10−4, a 2k-
step linear warm-up followed by cosine decay, and a weight decay of 0.1. Following Xue et al.
(2024) and Zoph et al. (2022), we use the load-balancing and router z-losses by 10−2 and 10−3,
respectively.

Hyperparameter Study. To isolate optimization effects, we reuse the same 125B-token corpus.
For all HP runs, we fix E = 16, k = 2, and train two widths, dmodel ∈{512, 1024}, with the same
FFN expansion factor 2. We vary (i) LM-head initialization schemes, (ii) peak learning rate, and
(iii) AdamW ϵ. Further implementation and environmental details are deferred to Appendix A.3.

Pre-training Datasets. We use a balanced 125B-token mixture consisting of high-quality web
text (43B), mathematics corpora (32B), STEM literature and reference (49B), and code (1B). See
Appendix A.1 for complete statistics.

Evaluation Protocol. We evaluate three capability areas with standard few-shot prompts. Math-
ematical Reasoning: GSM8K (Cobbe et al., 2021) (4-shot) and GSM-Plus (Li et al., 2024) (5-shot
CoT). Reading Comprehension: TriviaQA (Joshi et al., 2017) with 4-shot prompting. Commonsense
Reasoning: HellaSwag (Zellers et al., 2019), each under a 4-shot prompting setup. See Table 3 in
Appendix for further details.

3.2 DOWNSTREAM PERFORMANCE DOES NOT NECESSARILY IMPROVE WITH TOTAL
PARAMETER SIZE

In this section, we examine how the expert sparsity in MoE models affects the relationship between
pre-training loss and downstream performance. We train a series of models with controlled sparsity
levels and measure their performance on the representative downstream tasks. Our analysis shows
that while increasing the total number of parameters reduces pre-training loss, downstream task loss
on mathematical reasoning worsens beyond a certain model size.

Task Loss Computation. Following Brandfonbrener et al. (2025) and Grattafiori et al. (2024), we
compute cross-entropy only over the answer tokens by concatenating the prompt with the ground-
truth answer. For multiple-choice datasets (e.g., HellaSwag, TriviaQA) the target sequence is the
correct answer string, as in Bhagia et al. (2024). For open-ended mathematics datasets such as
GSM8K, and GSM-Plus we likewise compute cross-entropy directly against the ground-truth answer
tokens.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

100 101

Total parameters (B)

1.6

1.7

1.8

1.9

2.0

2.1

Fin
al

 lo
ss

Train Loss

100 101

Total parameters (B)
1.7

1.8

1.9

2.0

2.1

2.2

2.3
Validation Loss

100 101

Total parameters (B)

3.6

3.8

4.0

4.2

4.4

4.6

Ta
sk

 lo
ss

HellaSwag

100 101

Total parameters (B)
1.0

1.1

1.2

1.3

1.4

GSM8K

d= 512,k=2
d= 512,k=4

d= 512,k=8
d= 512,k=16

d=1024,k=2
d=1024,k=4

d=1024,k=8
d=1024,k=16

d=2048,k=2
d=2048,k=4

d=2048,k=8
d=2048,k=16

Figure 1: Although training and validation loss decrease as the total number of parameters
grows, the task loss on GSM8K can sometimes worsen with larger models. Training and valida-
tion losses steadily decrease as total or active parameters increase. The HellaSwag task loss follows
this scaling trend, whereas GSM8K task loss worsens once total parameters exceed a threshold.
Within each fixed top-k group, moving right on the x-axis corresponds to increasing sparsity (be-
cause total experts E increases while k remains fixed), so the right-hand task-loss panels implicitly
reflect the same sparsity ordering shown explicitly in Figure 5.

1.6 1.8 2.0
Final training loss

8

9

10

Ta
sk

 lo
ss

constantly decrease

TriviaQA

1.6 1.8 2.0
Final training loss

3.6

3.8

4.0

4.2

4.4

4.6
HellaSwag

1.6 1.8 2.0
Final training loss

1.0

1.1

1.2

1.3

1.4
begin to increase

GSM8K

1.6 1.8 2.0
Final training loss

1.6

1.7

1.8

1.9

2.0
GSM-Plus

d=512, k=2, A=170M
d=512, k=4, A=220M
d=512, k=8, A=320M

d=512, k=16, A=520M
d=1024, k=2, A=470M
d=1024, k=4, A=670M

d=1024, k=8, A=1.1B
d=1024, k=16, A=1.9B
d=2048, k=2, A=1.5B

d=2048, k=4, A=2.3B
d=2048, k=8, A=3.9B
d=2048, k=16, A=7.1B

Figure 2: For GSM8K and GSM-Plus, once the training loss drops below a certain point,
the task loss starts to increase. Results of scaling total parameters by increasing the number of
experts, with model width and top-k held constant. For TriviaQA and HellaSwag, the task loss falls
monotonically as training loss decreases. By contrast, GSM8K and GSM-Plus show a U-shaped
trend: task loss declines with training loss only until a threshold, beyond which further reductions in
training loss hurt task performance. That threshold moves lower as active parameter count increases,
models with more active parameters achieve a lower optimal task loss. No such active parameters
dependence appears for TriviaQA, HellaSwag.

Training Loss and Validation Loss. Figure 1 presents the training and validation losses when fix-
ing the top-k, MoE layer width constant and increasing only the number of experts (and hence the
total parameter count). As the total parameter count grows, both training and validation losses de-
crease. Therefore, in terms of pre-training loss, increasing total parameters (thereby raising sparsity)
reduces pre-training loss, which is consistent with prior work.

Experiments with Task Loss Next, we examine how the downstream task loss responds to in-
creases in the total parameter count. Figure 2 shows task loss on several benchmarks as we vary
only the number of experts, holding both top-k and each MoE layer widths constant. On TriviaQA
and HellaSwag, lower pre-training loss reduces task loss, indicating that larger total parameter mod-
els yield better results on these datasets. In contrast, for GSM8K and GSM-Plus, further reductions
in pre-training loss do not translate into improved task loss; in some cases, the task loss actually
worsens. These results suggest that, once top-k and layer width are fixed, an optimal number of
experts exists for each task, and adding more beyond that point can harm performance on GSM8K
and GSM-Plus.

Dependence on Active Parameter. Can we avoid a decline in performance as the total number of
experts increases? Figure 2 shows that models with more active parameters begin to overfit at a lower

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1.6 1.8 2.0
Final training loss

0.1

0.2

0.3

0.4
Ac

cu
ra

cy

TriviaQA

1.6 1.8 2.0
Final training loss

0.30

0.35

0.40

0.45

0.50
HellaSwag

1.6 1.8 2.0
Final training loss

0.1

0.2

0.3

GSM8K d= 512,k=2
d= 512,k=4
d= 512,k=8
d= 512,k=16
d=1024,k=2
d=1024,k=4
d=1024,k=8
d=1024,k=16
d=2048,k=2
d=2048,k=4
d=2048,k=8
d=2048,k=16

Figure 3: Downstream accuracy when scaling total parameters via expert count with width
and top-k fixed. TriviaQA and HellaSwag exhibit steadily improving accuracy as pre-training loss
decreases, whereas GSM8K shows a non-monotonic trend: further reductions in pre-training loss
do not always improve accuracy and can even degrade performance.

1.9 2.0 2.1 2.2 2.3 2.4 2.5
Training loss

0.80

0.85

0.90

0.95

1.00

Er
ro

r R
at

e

TriviaQA

1.9 2.0 2.1 2.2 2.3 2.4 2.5
Training loss

0.60

0.63

0.66

0.69

0.72

0.75 HellaSwag

1.9 2.0 2.1 2.2 2.3 2.4 2.5
Training loss

0.72

0.78

0.84

0.90

0.96

1.02
GSM8K

1.9 2.0 2.1 2.2 2.3 2.4 2.5
Training loss

0.84

0.87

0.90

0.93

0.96

0.99

GSM-Plus
Sparsity (1 - TopK / Experts) Sparsity 0.984 Sparsity 0.969 Sparsity 0.938 Sparsity 0.500 Sparsity 0.000

Figure 4: Effect of sparsity on performance across different tasks We vary sparsity (1 - top-
k/Experts) and plot the relationship between pre-training loss and benchmark error rate, including
intermediate checkpoints. For TriviaQA and HellaSwag, the error rate clearly tracks training loss
and is largely insensitive to sparsity. In contrast, reasoning skills exhibit a strong dependence of
error rate on sparsity.

pre-training loss and reach a lower minimum task loss at their optimal expert counts. Consequently,
improving results on GSM8K and GSM-Plus requires tuning not only the total number of experts
but also the top-k size.

Downstream Accuracy. The decline in math-task performance as total parameters increase is
not limited to task loss; it also consistently holds for downstream accuracy (Figure 3). For Trivi-
aQA and HellaSwag, accuracy improves monotonically as training loss decreases. By contrast, on
GSM8K, further reductions in pre-training loss do not always translate to higher accuracy. When
the number of active parameters is held constant, over-optimizing pre-training loss can indeed harm
performance. Figure 4 plots benchmark error rate against pre-training loss, including intermediate
checkpoints. We observe a sparsity dependence for reasoning skills. These results suggest that, for
MoE models, downstream accuracy can deviate from the predictions of conventional scaling laws,
and these deviations may vary across different tasks. This effect persists even when controlling for
optimization hyperparameters such as learning rate (Appendix C.7).

3.3 OPTIMAL SPARSITY FOR ISO-FLOP BUDGETS

We next analyze model quality under a constant compute budget, that is, along IsoFLOP contours
(Hoffmann et al., 2022; Abnar et al., 2025). For a fixed per-token FLOP count, we vary only the
sparsity configuration: the number of experts E and the top-k value, while holding the hidden
dimension and sequence length.

In Figure 5, we show the task-specific optimal sparsity (i.e. 1-TopK/Experts) against model perfor-
mance under a fixed FLOPs budget. Because the dataset size is fixed in our experiments, increasing
the number of active parameters directly increases the training FLOPs. Thus, as the active parame-
ter count grows, the plots implicitly trace how model performance changes with increasing FLOPs.
For memorization benchmarks, lower density (higher sparsity) consistently yields lower task loss
and higher accuracy. This pattern aligns with prior studies showing that, when FLOPs are fixed to
be constant, sparse models outperform denser models on QA tasks (Abnar et al., 2025). By con-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

11/21/41/81/161/321/64
1/128

MoE Density

7.5

8.0

8.5

9.0

9.5

10.0

10.5

Ta
sk

 lo
ss

TriviaQA

11/21/41/81/161/321/64
1/128

MoE Density

3.6

3.8

4.0

4.2

4.4

4.6
HellaSwag

11/21/41/81/161/321/64
1/128

MoE Density

1.0

1.1

1.2

1.3

1.4

GSM8K

11/21/41/81/161/321/64
1/128

MoE Density

1.6

1.7

1.8

1.9

2.0
GSM Plus

27

28

29

210

211

212

Ac
tiv

e
Pa

ra
m

s (
m

illi
on

s)

11/21/41/81/161/321/64
1/128

MoE Density

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

TriviaQA

11/21/41/81/161/321/64
1/128

MoE Density

0.30

0.35

0.40

0.45

0.50
HellaSwag

11/21/41/81/161/321/64
1/128

MoE Density

0.05

0.10

0.15

0.20

0.25

0.30

0.35

GSM8K

11/21/41/81/161/321/64
1/128

MoE Density

0.05

0.10

0.15

0.20

GSM-Plus

27

28

29

210

211

212

Ac
tiv

e
Pa

ra
m

s (
m

illi
on

s)

Figure 5: At fixed active parameter counts, higher sparsity (lower density) consistently im-
proves performance, but at larger active parameter counts, GSM8K and GSM-Plus shift their
optima back toward dense models. Task loss (top row) and Accuracy (bottom row) against the
ratio of active experts k to total experts E for a fixed active parameter budget. In the left two tasks
(TriviaQA, HellaSwag), increasing sparsity consistently lowers task loss and raises accuracy across
all active parameter budgets, in contrast, in the right two tasks (GSM8K, GSM-Plus), once active pa-
rameter counts become large, this trend reverses and denser models begin to outperform their sparser
counterparts. Dashed segments mark the inverse-scaling regime that starts at the black circle; solid
segments show the standard scaling region to the right.

1.7 1.8 1.9
Final training loss

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

 (S
C)

GSM8K (TTC)

1.70 1.75 1.80 1.85 1.90
Final training loss

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

GSM8K (GRPO)

d=1024,k=2
before GRPO

d=1024,k=4
after GRPO

d=1024,k=8 d=1024,k=16

Figure 6: Effect of Test-Time Compute and
GRPO on the loss–accuracy trade-off. Al-
though both methods yield performance im-
provements that scale with model size, the
loss–accuracy trade-off on GSM8K remains.
Left: Final training loss vs accuracy under Test-
Time Compute (Self-Consistency). Right: Fi-
nal training loss vs accuracy after GRPO post-
training.

trast, on mathematical-reasoning benchmarks, denser models outperform their sparser counterparts.
At lower FLOPs, increasing sparsity still reduces loss and improves accuracy; however, once the
FLOPs budget grows, denser models begin to perform better, achieving both lower loss and higher
accuracy. This shift indicates that reasoning skills admit a compute-dependent optimum, rather than
monotonically favoring either sparsity or density.

3.4 TOKENS PER PARAMETER

The Chinchilla scaling law (Hoffmann et al., 2022) establishes that, under a fixed compute budget,
the optimal trade-off between model parameters and training tokens corresponds to approximately
20 tokens per parameter (TPP) for dense models. More recently, Roberts et al. (2025) refined this
view by showing that the optimal TPP ratio is task-dependent: memorization skills benefit from
lower TPP (i.e., more parameters), whereas reasoning skills benefit from higher TPP (i.e., more
data). These findings highlight that TPP should be interpreted not as a universal constant, but as a
task-sensitive scaling variable.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

101 102

TPP

0.1

0.2

0.3

0.4
Ac

cu
ra

cy

TriviaQA

101 102

TPP

0.30

0.35

0.40

0.45

0.50
HellaSwag

101 102

TPP

0.1

0.2

0.3

GSM8K

101 102

TPP

0.05

0.10

0.15

0.20

GSM-Plus

d=512, k=2
d=512, k=4

d=512, k=8
d=512, k=16

d=1024, k=2
d=1024, k=4

d=1024, k=8
d=1024, k=16

d=2048, k=2
d=2048, k=4

d=2048, k=8
d=2048, k=16

Figure 7: Effect of TPP on performance across different tasks. For TriviaQA and HellaSwag,
performance improves as the number of parameters increases. In contrast, for reasoning skills,
performance deteriorates when the number of parameters becomes too large, indicating that there
exists an optimal total tokens per paramete ratio for these tasks. Even at fixed TPP, models with
larger top-k values consistently outperform those with smaller top-k on reasoning tasks.

In our study, although we varied the number of experts while keeping the total FLOPs fixed, this
implicitly altered the TPP measured with respect to total parameters. As shown in Figure 7, this
variation reveals distinct behaviors across task categories. For memorization skills, performance
improves monotonically as TPP decreases, consistent with the “parameter-hungry” characterization
reported by Roberts et al. (2025). For reasoning skills, we observe a non-monotonic trend: accu-
racy peaks near TPP ≈ 20, and degrades when TPP is either too low-when models have too many
parameters relative to tokens-or too high—when models have too few parameters relative to tokens.

Furthermore, our experiments reveal that active compute operationalized through the number of top-
k experts interacts strongly with TPP. Even at fixed TPP, models with larger top-k values consistently
outperform those with smaller top-k on reasoning tasks. This indicates that, in MoE models, rea-
soning ability depends not only on the Total TPP but also on the balance between total and active
parameters. In other words, the discussion of compute-optimal scaling in MoE architectures must
explicitly consider both total parameter count and the number of activated parameters per token. We
further note that depth ablations (Appendix C.6) exhibit the same non-monotonic dependence on
TPP.

3.5 IMPACT OF TTC AND POST-TRAINING ON DOWNSTREAM PERFORMANCE

Test-Time Compute and RL post-training are standard for boosting reasoning on tasks such as
mathematical problem solving. We therefore investigated whether the performance trade-offs ob-
served above persist or shift when applying (a) Test-Time Compute (TTC) and (b) RL post-training
(GRPO). In Test-Time Compute, we evaluated GSM8K(Cobbe et al., 2021) in a zero-shot setting
using Self-Consistency (SC) decoding(Wang et al., 2023), generating 27 independent continuations
per problem and selecting the most frequent answer. In Post-Training, we fine-tuned each model on
the GSM8K training dataset using the GRPO algorithm (Shao et al., 2024). We followed the set-
tings of Zhao et al. (2025b) including reward function and fixed the learning rate constant across all
model configurations. Further details regarding the training setup and hyperparameters are provided
in Appendix A.2.

As illustrated in Figure 6, neither Test-Time Compute nor GRPO mitigates the GSM8K performance
drop that arises when total parameters increase. In other words, although both methods consistently
improve overall performance, they do not eliminate the inverted U-shaped relationship between
training loss and task accuracy.

3.6 CODING TASK ABLATIONS

We evaluate whether the sparsity performance trade offs observed for mathematical reasoning trans-
fer to code generation. Unless otherwise noted, we reuse the same architecture and optimization
hyperparameters as in the experimental setup. Models are trained on a 125B token corpus com-
posed of 95B tokens from Stack-Edu Python (Allal et al., 2025) (high-quality educational Python
code trained for four epochs following Muennighoff et al. (2023)) and 30B tokens from DCLM-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

11/21/41/81/161/321/64
1/128

MoE Density

0.05

0.10

0.15

0.20

0.25

0.30

Ac
cu

ra
cy

TriviaQA

11/21/41/81/161/321/64
1/128

MoE Density

0.300

0.325

0.350

0.375

0.400

0.425

0.450

HellaSwag

11/21/41/81/161/321/64
1/128

MoE Density

0.15

0.20

0.25

0.30

HumanEval

11/21/41/81/161/321/64
1/128

MoE Density

0.15

0.20

0.25

0.30

0.35

0.40

MBPP

27

28

29

210

211

212

Ac
tiv

e
Pa

ra
m

s (
m

illi
on

s)

Figure 8: At fixed active parameter counts, higher sparsity (lower density) consistently im-
proves performance, but at larger active parameter counts, HumanEval and MBPP shift their
optima back toward dense models. Accuracy against the ratio of active experts k to total experts E
for a fixed active parameter budget. In the left two tasks (TriviaQA, HellaSwag), increasing sparsity
consistently raises accuracy across all active parameter budgets, in contrast, in the right two tasks
(HumanEval, MBPP), once active parameter counts become large, this trend reverses and denser
models begin to outperform their sparser counterparts. Dashed segments mark the inverse-scaling
regime that starts at the black circle; solid segments show the standard scaling region to the right.

dedup web text (Zyphra, 2024). We assess pass@1 accuracy on HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021). See Table 3 in Appendix for further details.

Figure 8 summarizes performance as a function of MoE density under matched active compute bud-
gets. As active parameters grow, both HumanEval and MBPP exhibit a clear shift in their optima
toward denser configurations: beyond a task-dependent threshold, further increasing sparsity de-
grades pass@1 despite continued improvements in pre-training loss. This echoes our math findings:
when compute allows large active capacity, denser MoE layers yield better procedural reasoning for
code synthesis, whereas sparser layers are more favorable only in the low-compute regime. Detailed
results for the coding tasks are provided in Appendix C.5.

4 DISCUSSION AND LIMITATIONS

All models are trained on a 125B token corpus, which is Chinchilla-optimal for dense models of
comparable activated size (Hoffmann et al., 2022). Except for the widest d = 2048, top-16 setting,
our runs are in or near the Chinchilla-optimal regime, or fall into the overtraining regime. Recent
frontier models typically train with a fixed token budget (Grattafiori et al., 2024; Qwen Team, 2025),
so holding tokens fixed in our experiments is appropriate. Nevertheless, with larger training corpora,
one could train larger models at higher tokens-per-parameter, potentially shifting the optimal sparsity
toward sparser configurations, even for reasoning skills. We leave this as a direction for future work.

Our study does not attempt to exhaustively explore all architectural and training settings. The design
space of MoE models is vast and it is infeasible to cover every possible combination. Regarding ar-
chitectural choices, we adopted the Mixtral architecture (Jiang et al., 2024) to ensure comparability
with standard dense baselines such as Llama (Touvron et al., 2023a;b; Grattafiori et al., 2024). The
Mixtral architecture differs from recent state-of-the-art models like Qwen3 MoE (Qwen Team, 2025)
primarily in the use of QK-norm however, since we did not observe training instability, QK-norm
was not required in our setting. We also excluded shared experts, as prior work (Muennighoff et al.,
2025a) reports mixed or negative results, and our preliminary tests indicated no meaningful perfor-
mance changes when active and total FLOPs were matched, adding them would only complicate
interpretation. For auxiliary losses such as load-balancing and router z-losses, we followed Muen-
nighoff et al. (2025a). Instead, we focused on a representative but systematic sweep over width,
expert count, and top-k routing, which already reveals new regularities that prior work did not cap-
ture. In particular, we identify an inverted-U relationship between sparsity and reasoning perfor-
mance that contradicts the monotonic trends often assumed in scaling analyses. Intuitively, this
inverted-U behavior can be explained by two compute-related factors. First, reasoning tasks require
substantially higher active compute (i.e., inference FLOPs). Prior work on test-time compute by
Snell et al. (2025) demonstrates that increasing compute directly improves reasoning performance.
In MoE models, raising the top-k increases the number of experts contributing to each token and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

thereby increases available inference compute. Second, reasoning requires high training intensity
per parameter. Under a fixed training budget, increasing sparsity spreads tokens across more experts,
leaving each expert data-starved. While this increased capacity benefits memorization by enlarging
the model’s effective storage, reasoning becomes either data-starved (when TPP is too low) or
under-parameterized (when TPP is too high). These intuitive mechanisms align with the empirical
TPP patterns analyzed in Section 3.4.

5 CONCLUSION

We investigated the optimal sparsity of MoE language models through a large-scale exploration of
Mixtral-style architectures, varying expert count, top-k routing, and width, and evaluating across
pre-training, RL post-training, and test-time compute. Our results reveal two central insights. First,
FLOPs matter: downstream reasoning quality is determined not by pre-training loss alone, but
by the number of active FLOPs at both train and test time. Larger top-k consistently outper-
forms smaller ones even when pre-training loss is matched. Second, TPP matters: the tokens-
per-parameter ratio governs task-specific scaling. Memorization tasks are parameter-hungry and
benefit from sparsity, while reasoning tasks are data-hungry and peak near 20 tokens per parameter,
degrading when TPP becomes too low. Together, these findings refine current scaling practice. Spar-
sity and more experts improve memorization under fixed budgets, but reasoning requires balancing
active FLOPs with TPP. In high-compute regimes, the optimal density depends jointly on compute
and data: with limited data, denser MoE layers preserve reasoning, while with abundant data, greater
sparsity remains advantageous.

6 REPRODUCIBILITY STATEMENT

Due to the anonymity requirements and the design of OpenReview, at the time of ICLR submission,
the following resources are made available to the reviewers. All source codes, including those for
MoE training and evaluation are provided in the supplementary material. The training data used in
this study is publicly available. The model checkpoints are not shared due to their large file sizes,
which makes anonymous sharing infeasible. Similarly, while we plan to release the training logs via
wandb, maintaining anonymity remains a challenge, so they are not included at this stage.

The training setup is described in Section 3.1 and Appendix A, and the evaluation methodology is
provided in Appendix B.

REFERENCES

Samira Abnar, Harshay Shah, Dan Busbridge, Alaaeldin Mohamed Elnouby Ali, Josh Susskind,
and Vimal Thilak. Parameters vs flops: Scaling laws for optimal sparsity for mixture-of-experts
language models. International Conference on Machine Learning, 2025.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlı́ček, Agustı́n Piqueres Lajarı́n, Vaibhav Srivas-
tav, et al. Smollm2: When smol goes big – data-centric training of a small language model.
arXiv:2502.02737, 2025.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models. arXiv:2108.07732, 2021.

Akshita Bhagia, Jiacheng Liu, Alexander Wettig, David Heineman, Oyvind Tafjord, Ananya Harsh
Jha, Luca Soldaini, Noah A. Smith, Dirk Groeneveld, Pang Wei Koh, et al. Establishing task
scaling laws via compute-efficient model ladders. arXiv:2412.04403, 2024.

David Brandfonbrener, Nikhil Anand, Nikhil Vyas, Eran Malach, and Sham M. Kakade. Loss-
to-loss prediction: Scaling laws for all datasets. Transactions on Machine Learning Research,
2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv:2407.21787, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv:2107.03374, 2021.

Aidan Clark, Diego De Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoff-
mann, Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling
laws for routed language models. In International Conference on Machine Learning, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv:2110.14168, 2021.

DeepSeek-AI. DeepSeek-R1: Incentivizing reasoning capability in llms via reinforcement learning.
arXiv:2501.12948, 2025a.

DeepSeek-AI. DeepSeek-V3 technical report. arXiv:2412.19437, 2025b.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. GLaM: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, 2022.

Runa Eschenhagen, Alexander Immer, Richard Turner, Frank Schneider, and Philipp Hennig.
Kronecker-factored approximate curvature for modern neural network architectures. In Advances
in Neural Information Processing Systems, 2023.

William Fedus, Barret Zoph, and Noam M. Shazeer. Switch transformers: Scaling to trillion param-
eter models with simple and efficient sparsity. J. Mach. Learn. Res., 2021.

Elias Frantar, Carlos Riquelme Ruiz, Neil Houlsby, Dan Alistarh, and Utku Evci. Scaling laws for
sparsely-connected foundation models. In International Conference on Learning Representations,
2024.

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Worts-
man, Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, et al. Language models scale
reliably with over-training and on downstream tasks. arXiv:2403.08540, 2024.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. MegaBlocks: Efficient Sparse
Training with Mixture-of-Experts. Proceedings of Machine Learning and Systems, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, et al. The language model evaluation harness,
2024.

Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities. arXiv:2507.06261, 2025.

GLM-4.5 Team. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models.
arXiv:2508.06471, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 herd
of models. arXiv:2407.21783, 2024.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization
with influence functions. arXiv:2308.03296, 2023.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv:1712.00409, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 1997.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. An
empirical analysis of compute-optimal large language model training. In Advances in Neural
Information Processing Systems, 2022.

Yuichi Inoue, Kou Misaki, Yuki Imajuku, So Kuroki, Taishi Nakamura, and Takuya Akiba.
Wider or deeper? scaling llm inference-time compute with adaptive branching tree search.
arXiv:2503.04412, 2025.

Robert A Jacobs, Michael I Jordan, and Andrew G Barto. Task decomposition through competition
in a modular connectionist architecture: The what and where vision tasks. Cognitive science,
1991.

Samy Jelassi, Clara Mohri, David Brandfonbrener, Alex Gu, Nikhil Vyas, Nikhil Anand, David
Alvarez-Melis, Yuanzhi Li, Sham M. Kakade, and Eran Malach. Mixture of parrots: Experts
improve memorization more than reasoning. In International Conference on Learning Represen-
tations, 2025.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv:2401.04088, 2024.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantas-
tic generalization measures and where to find them. In International Conference on Learning
Representations, 2020.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 1994.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (ACL), 2017.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv:2001.08361, 2020.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2017.

Kimi Team. Kimi k2: Open agentic intelligence. arXiv:2507.20534, 2025.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Advances in Neural Information Processing Systems,
2022.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. {GS}hard: Scaling giant models with condi-
tional computation and automatic sharding. In International Conference on Learning Represen-
tations, 2021.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi. GSM-plus: A comprehensive
benchmark for evaluating the robustness of LLMs as mathematical problem solvers. In Proceed-
ings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2024.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. In Advances in Neural Information Processing Systems,
2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In International
Conference on Learning Representations, 2024.

Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better down-
stream: Implicit bias matters for language models. In International Conference on Machine
Learning, 2023a.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and LINGMING ZHANG. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation. In
Advances in Neural Information Processing Systems, 2023b.

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, et al. MobileLLM: Optimizing
sub-billion parameter language models for on-device use cases. In International Conference on
Machine Learning, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Jan Ludziejewski, Jakub Krajewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon
Antoniak, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr Sankowski, et al. Scaling
laws for fine-grained mixture of experts. In International Conference on Machine Learning, 2024.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International Conference on Machine Learning, 2015.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. In Advances in Neural Information Processing Systems, 2023.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Evan Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. OLMoE: Open mixture-of-experts
language models. In International Conference on Learning Representations, 2025a.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv:2501.19393, 2025b.

Team OLMo. 2 OLMo 2 furious. arXiv:2501.00656, 2025.

OpenAI. GPT-4 technical report. arXiv:2303.08774, 2024a.

OpenAI. Openai o1 system card. arXiv:2412.16720, 2024b.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, et al. Training language models to follow
instructions with human feedback. In Advances in Neural Information Processing Systems, 2022.

Qwen Team. Qwen3 technical report. arXiv:2505.09388, 2025.

Nicholas Roberts, Niladri Chatterji, Sharan Narang, Mike Lewis, and Dieuwke Hupkes. Compute
optimal scaling of skills: Knowledge vs reasoning. arXiv:2503.10061, 2025.

Rylan Schaeffer, Joshua Kazdan, John Hughes, Jordan Juravsky, Sara Price, Aengus Lynch, Erik
Jones, Robert Kirk, Azalia Mirhoseini, and Sanmi Koyejo. How do large language monkeys get
their power (laws)? In International Conference on Machine Learning, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, et al. DeepSeekMath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv:2402.03300, 2024.

Noam Shazeer. Glu variants improve transformer. arXiv:2002.05202, 2020.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2017.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflex-
ion: Language agents with verbal reinforcement learning. In Advances in Neural Information
Processing Systems, 2024.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In International Confer-
ence on Learning Representations, 2025.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 2024.

Ryousei Takano, Shinichiro Takizawa, Yusuke Tanimura, Hidemoto Nakada, and Hirotaka Ogawa.
Abci 3.0: Evolution of the leading ai infrastructure in japan. arXiv:2411.09134, 2024.

Gemma Team. Gemma 2: Improving open language models at a practical size. arXiv:2408.00118,
2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and
efficient foundation language models. arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, 2017.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In International Conference on Learning Representations, 2023.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang You.
OpenMoE: An early effort on open mixture-of-experts language models. In International Con-
ference on Machine Learning, 2024.

Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural networks.
In International Conference on Machine Learning, 2021.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. In International Conference on Learning
Representations, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

Biao Zhang and Rico Sennrich. Root Mean Square Layer Normalization. In Advances in Neural
Information Processing Systems, 2019.

Jinze Zhao, Peihao Wang, Junjie Yang, Ruisi Cai, Gaowen Liu, Jayanth Srinivasa, Ramana Rao
Kompella, Yingbin Liang, and Zhangyang Wang. Sparse mixture-of-experts for compo-
sitional generalization: Empirical evidence and theoretical foundations of optimal sparsity.
arXiv:2410.13964, 2025a.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
Echo chamber: Rl post-training amplifies behaviors learned in pretraining. arXiv:2504.07912,
2025b.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer,
and William Fedus. St-moe: Designing stable and transferable sparse expert models.
arXiv:2202.08906, 2022.

Zyphra. dclm-dedup. https://huggingface.co/datasets/Zyphra/dclm-dedup,
2024. Accessed: 2025-05-16.

15

https://huggingface.co/datasets/Zyphra/dclm-dedup

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 1: Breakdown of the 125 B-token pre-training corpus.
Source Type Tokens Corpus Hugging Face or GitLab

High Quality Web

DCLM-Deduped High quality web 33.5B 788.5B Zyphra/dclm-dedup
Flan decontaminated High quality web 9.2B 18.5B allenai/dolmino-mix-1124
WebInstructFull High quality web 14.7M 29.7M TIGER-Lab/WebInstructFull

STEM Literature & Reference

peS2o Academic papers 31.1B 62.9B allenai/dolma
ArXiv STEM papers 11.0B 22.2B allenai/dolma
Wikipedia Encyclopedic 2.3B 4.7B
Wikipedia & Wikibooks Encyclopedic 1.9B 3.9B allenai/dolma
Project Gutenberg Books 2.7B 5.5B allenai/dolma

Mathematics

OpenWebMath Math 6.6B 13.4B allenai/dolma
Algebraic Stack Math 6.6B 13.3B allenai/dolma
FineMath-4+ Math 5.1B 10.3B HuggingFaceTB/finemath
MathPile commercial subset train split Math 4.5B 9.2B GAIR/MathPile Commercial
TinyGSM-MIND Synthetic math 3.4B 6.9B allenai/olmo-mix-1124
OpenMathInstruct-2 Synthetic math 2.6B 5.2B nvidia/OpenMathInstruct-2
MathCoder2 Synthetic Synthetic Math 2.0B 4.1B allenai/olmo-mix-1124
StackMathQA Math 529.6M 1070.0M math-ai/StackMathQA
NaturalReasoning General reasoning 506.0M 1022.2M facebook/natural reasoning
NuminaMath-CoT train split CoT reasoning 221.0M 446.4M AI-MO/NuminaMath-CoT
OpenMathInstruct-1 train split Synthetic math 168.4M 340.2M nvidia/OpenMathInstruct-1
TuluMath Synthetic math 123.9M 250.4M allenai/olmo-mix-1124
Metamath OWM-filtered Math 42.3M 85.4M allenai/olmo-mix-1124
Orca-Math Synthetic math 33.5M 67.7M microsoft/orca-math-word-problems-200k
Dolmino SynthMath Synthetic math 15.7M 31.7M allenai/olmo-mix-1124
GSM8K train split Math 1.4M 2.8M allenai/dolmino-mix-1124
GSM8K train split Math 1.4M 2.8M openai/gsm8k
CodeSearchNet-owmfilter Math 1.1M 2.2M allenai/dolmino-mix-1124

Code

StackExchange CodeText 725.1M 1464.8M allenai/dolmino-mix-1124

Grand total 125.0B 973.4B

A TRAINING SETUP

A.1 PRE-TRAINING DATASET DETAILS

Table 1 details the pre-training corpus: for each subset, it lists the Hugging Face repository, split
identifier, and public URL, alongside the original size and the number of subsampled tokens we used
(125 B tokens in the 99:1 train/validation split, as counted by the llm-jp tokenizer v3 with 99,487
tokens). Thus, the total token budget is fixed in strict accordance with Kaplan’s scaling law (Kaplan
et al., 2020), meaning the observed loss increase (and the accompanying puzzling overfitting that
mirrors behavior recently reported by (OLMo, 2025; OpenAI, 2024a)) cannot be attributed to any
change in data volume.

A.2 POST-TRAINING DETAILS

We use GRPO(Shao et al., 2024) with a batch size of 1024, train for 15 epochs totaling 105 steps,
and truncate prompts and generated sequences to 512 and 1024 tokens respectively. The actor’s
learning rate is fixed at 5 × 10−6; the temperature is set to 1.0, the KL-penalty coefficient to 10−3,
and 5 samples are used per prompt. Optimisation employs Adam with β = (0.9, 0.999), ϵ = 10−8,
and weight decay of 10−2. Following Zhao et al. (2025b), we implemented a code-execution-based
evaluator supporting TinyGSM-style and OpenMathInstruct-1 outputs. For a width of 2048 with 16
or 64 experts, we swept the learning rate (Fig. 9) and subsequently fixed it to 5×10−6 for all GRPO
experiments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 2: Detailed composition of the 125 B-token pre-training corpus without GSM8K and its syn-
thetic variants (used for the ablation in Section C.3). Token counts and raw corpus sizes are listed
for each source, following the same category structure as Table 1.
Source Type Tokens Corpus Hugging Face or GitLab

High Quality Web

DCLM-Deduped High quality web 33.5B 788.5B Zyphra/dclm-dedup
Flan decontaminated High quality web 9.2B 18.5B allenai/dolmino-mix-1124
WebInstructFull High quality web 14.7M 29.7M TIGER-Lab/WebInstructFull

STEM Literature & Reference

peS2o Academic papers 31.1B 62.9B allenai/dolma
ArXiv STEM papers 11.0B 22.2B allenai/dolma
Wikipedia Encyclopedic 2.3B 4.7B
Wikipedia & Wikibooks Encyclopedic 1.9B 3.9B allenai/dolma
Project Gutenberg Books 2.7B 5.5B allenai/dolma

Mathematics

OpenWebMath Math 8.2B 13.4B allenai/dolma
Algebraic Stack Math 8.1B 13.3B allenai/dolma
FineMath-4+ Math 6.3B 10.3B HuggingFaceTB/finemath
MathPile commercial subset train split Math 5.6B 9.2B GAIR/MathPile Commercial
MathCoder2 Synthetic Synthetic Math 2.5B 4.1B allenai/olmo-mix-1124
StackMathQA Math 653.9M 1070.0M math-ai/StackMathQA
NaturalReasoning General reasoning 624.7M 1022.2M facebook/natural reasoning
NuminaMath-CoT train split CoT reasoning 272.8M 446.4M AI-MO/NuminaMath-CoT
TuluMath Synthetic math 153.0M 250.4M allenai/olmo-mix-1124
Metamath OWM-filtered Math 52.2M 85.4M allenai/olmo-mix-1124
Orca-Math Synthetic math 41.4M 67.7M microsoft/orca-math-word-problems-200k
CodeSearchNet-owmfilter Math 1.1M 2.2M allenai/dolmino-mix-1124

Code

StackExchange CodeText 725.1M 1464.8M allenai/dolmino-mix-1124

Grand total 125.0B 961.0B

0 20 40 60 80 100
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
lid

at
io

n
Ac

cu
ra

cy

GSM8K (16 Experts)

0 20 40 60 80 100
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6
GSM8K (32 Experts)

lr 1e-6 lr 2e-6 lr 5e-6 lr 1e-5 lr 2e-5 lr 5e-5

Figure 9: Learning-rate sweep for width = 2048. We varied the number of experts and swept the
learning rate. For both 16 and 32 experts, 5× 10−6 produces the most stable training.

A.3 IMPLEMENTATION & TRAINING ENVIRONMENT

We executed all pre-training runs on the ABCI 3.0 supercomputer (Takano et al., 2024), equipped
with NVIDIA H200 GPUs with board-level power capped at 500 W per GPU. TTC experiments
were conducted on the TSUBAME 4.0 supercomputer at the Global Scientific Information and
Computing Center, Institute of Science Tokyo. They used NVIDIA H100 SXM5 94 GB GPUs
(four GPUs per node) and InfiniBand NDR200 interconnects for inter-node communication.

For pre-training, we extended the Megatron-LM1 codebase to add functionality needed for this study,
with support for pipeline, tensor, and expert parallelism. Reinforcement learning experiments were

1https://github.com/NVIDIA/Megatron-LM

17

https://github.com/NVIDIA/Megatron-LM

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: Evaluation Benchmark Details
Dataset TriviaQA HellaSwag GSM8K GSM-Plus HumanEval HumanEval+ MBPP MBPP+

Task QA MRC Math
Reasoning

Math
Reasoning

Code
Reasoning

Code
Reasoning

Code
Reasoning

Code
Reasoning

Language EN EN EN EN EN EN EN EN
Instances 17,944 10,042 1,319 10,552 164 164 500 378
Few-shot # 4 4 4 (0 for TTC) 5 0 0 3 3
Metric Accuracy Accuracy Accuracy CoT Acc. Pass@1 Pass@1 Pass@1 Pass@1

implemented using GRPO (Shao et al., 2024) on top of the veRL2 framework. Model quality was
assessed using lm-evaluation-harness3 and LargeLanguageMonkeys4.

B EVALUATION SETUP

We evaluate our models using the lm-evaluation-harness framework (Gao et al., 2024) across four
key capability areas. All evaluations employ standard few-shot prompting strategies unless other-
wise specified.

We assess logical reasoning capabilities using Mathematical problem-solving is evaluated using
GSM8K (Cobbe et al., 2021) with 4-shot prompting and GSM-Plus (Li et al., 2024) with 5-shot
CoT prompting. We evaluate comprehension abilities using TriviaQA (Joshi et al., 2017) with 4-shot
prompting. Common sense reasoning is assessed through HellaSwag (Zellers et al., 2019) using 4-
shot prompting setups. Finally, code reasoning capabilities are benchmarked on HumanEval (Chen
et al., 2021) and HumanEval+ (Liu et al., 2023b) with 0-shot prompting and MBPP (Austin et al.,
2021) and MBPP+ (Liu et al., 2023b) with 3-shot prompting, both evaluated using the Pass@1 met-
ric. For Test-Time Compute (TTC) experiments specifically, GSM8K evaluation is conducted under
a zero-shot setting. To accommodate the variety of valid answer formats, we extend the strict match
patterns provided by the lm-evaluation-harness beyond the standard implementation. Our
matching criteria accept both the standard GSM8K format (####) and GSM8K-CoT formats pre-
fixed with “The answer is” or “Answer:”.

Table 3 provides comprehensive details for all evaluation benchmarks.

C ADDITIONAL EXPERIMENTS

C.1 GRPO

Training on MATH 500 Dataset Following the analysis presented in Section 3.5, the inverted U-
shaped relationship between training loss and task accuracy persists even after applying GRPO. To
verify that this phenomenon is not due to performing GRPO on the GSM8K dataset, we conducted
additional GRPO experiments on the MATH 500 dataset (Lightman et al., 2024). As illustrated in
Figure 10, GRPO on the MATH dataset yields consistent results with those obtained on the GSM8K
dataset, confirming that this inverted U-shaped relationship is robust across different GRPO training
datasets.

C.2 TEST-TIME COMPUTE

Evaluation Setup We evaluated both GSM8K(Cobbe et al., 2021) in a purely zero-shot setting
using Self-Consistency (SC) decoding(Wang et al., 2023), generating 27 independent continuations
per problem and selecting the most frequent answer with 128 samples per problem. Specifically, for
each prompt we generated up to 1,024 tokens under temperature 0.6 and nucleus sampling (top-p =
0.95), drawing 128 independent continuations and selecting the most frequent answer.

Zero-shot VS Few-shot To set up Test Time Compute appropriately, we investigate how varying
the number of prompt shots affected each expert’s behavior (Figure 11). Few shot performance is

2https://github.com/volcengine/verl
3https://github.com/EleutherAI/lm-evaluation-harness
4https://github.com/ScalingIntelligence/large_language_monkeys

18

https://github.com/volcengine/verl
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/ScalingIntelligence/large_language_monkeys

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1.70 1.75 1.80 1.85 1.90
Final training loss

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ac
cu

ra
cy

GRPO on GSM8K

1.70 1.75 1.80 1.85 1.90
Final training loss

0.10

0.15

0.20

0.25

0.30

0.35

GRPO on MATH 500

d=1024,k=2
before GRPO

d=1024,k=4
after GRPO

d=1024,k=8 d=1024,k=16

Figure 10: Comparison of GSM8K accuracy for models fine-tuned with GRPO on different
training datasets (left: GSM8K, right: MATH 500). Performance decline is consistently observed
across different training datasets.

20 21 22 23 24 25 26 27

Generation budget

0.10

0.15

0.20

0.25

0.30

Ac
cu

ra
cy

16 Experts

20 21 22 23 24 25 26 27

Generation budget

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

32 Experts

20 21 22 23 24 25 26 27

Generation budget

0.20

0.25

0.30

0.35

0.40

64 Experts

20 21 22 23 24 25 26 27

Generation budget

0.20

0.25

0.30

0.35

0.40

128 Experts

20 21 22 23 24 25 26 27

Generation budget

0.15

0.20

0.25

0.30

0.35

256 Experts

0 shot 2 shot 4 shot 8 shot

Figure 11: GSM8K accuracy of model (d=1024) across different shot counts. Because few shot
performance is unstable and dropped significantly for models with a small number of experts, zero
shot is used for Test-Time Compute.

unstable and dropped significantly for models with a small number of experts, so we use zero shot
inference for Test Time Compute. When few shot chain of thought is used to standardize answer
formats, the provided demonstration steps can be internalized as a fixed reasoning pattern by the
model. As a result, the model’s inherent inference capabilities may not be fully expressed, and its
ability to generalize to novel problems could be hindered (Kojima et al., 2022).

Temperature Figure 12 shows that the inverted U-shaped performance-decline trend holds across
every temperature setting, indicating that sampling temperature does not affect this behavior. This
suggests that, although temperature controls inference randomness, the primary drivers of perfor-
mance decline are inherent to model architecture rather than temperature settings.

Evaluation of Larger Generation Budget We extended the sample size used for Test-Time Com-
pute as described in Section 3.5, generating a larger set of candidate responses. We then measured
the resulting accuracy across different generation budgets to assess how increased sampling influ-
ences performance (Figure 13). For an active parameter count of 8 (top-8), the performance decline
is gradually mitigated, whereas for an active parameter count of 2 (top-2), the decline is instead
amplified, resulting in a more pronounced U-shaped trend. Although increasing the sample count
further may provide additional insights, it remains challenging to identify a consistent mitigation
pattern across all models.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1.75 1.80 1.85 1.90
Final loss

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

Top-2

1.70 1.75 1.80 1.85 1.90
Final loss

0.10

0.15

0.20

0.25

0.30

Top-4

1.70 1.75 1.80 1.85
Final loss

0.10

0.15

0.20

0.25

0.30

Top-8

1.65 1.70 1.75 1.80
Final loss

0.15

0.20

0.25

0.30

Top-16

temp 0 temp 0.2 temp 0.6 temp 1

Figure 12: Comparison of performance decline across different temperature settings (pass@1,
d=1024). A consistent performance decline is observed regardless of temperature, and overall accu-
racy increases as temperature decreases (i.e., approaches greedy).

1.75 1.80 1.85 1.90
Final Loss

0.2

0.3

0.4

Ac
cu

ra
cy

Top-2

1.70 1.75 1.80 1.85 1.90
Final Loss

0.2

0.3

0.4

0.5
Top-4

1.70 1.75 1.80 1.85
Final Loss

0.2

0.3

0.4

0.5
Top-8

1.65 1.70 1.75 1.80
Final Loss

0.20

0.25

0.30

0.35

0.40

0.45

0.50
Top-16

samples
1 2 4 8 16 32 64 128 256 512 1024

Figure 13: Accuracy across generation budgets with increased sample counts. With an active
parameter count of 8 (top 8), the performance decline is gradually alleviated as the budget increases,
whereas with an active parameter count of 2 (top 2), the decline is amplified, resulting in a more
pronounced U shaped trend.

Increasing Top-k During Inference We compared the performance under TTC for model with a
hidden dimension of 2048, 128 experts, and top-2 routing by varying the inference-time top-k pa-
rameter. (Figure 14) Specifically, although doubling top-k sometimes yielded temporary improve-
ments in Pass@1, applying TTC ultimately showed that the original top-2 setting maintained the
highest performance, suggesting that no fundamental performance gain occurs.

C.3 GSM8K OVERFITTING ANALYSIS

To investigate whether our model overfits to GSM8K due to the inclusion of GSM8K training data
and its synthetic derivatives, we conducted an ablation experiment removing major GSM8K-related
datasets from our pre-training corpus as listed in Table 2.

We removed TinyGSM-MIND, both GSM8K train split instances, Dolmino SynthMath,
OpenMathInstruct-1, and OpenMathInstruct-2, which contain either the original GSM8K training
data or synthetic problems derived from it.

The results are shown in Figure 15 and 16. We observe that the trends with respect to sparsity on
GSM8K remain unchanged, both for Pass@1 and TTC metrics. This indicates that while GSM8K
training data and its synthetic derivatives do improve GSM8K scores, they do not alter the underlying
performance trends. However, after post-training, we observe some changes in these trends, which
we leave as future work to investigate further.

C.4 GSM8K PROBLEM ANALYSIS

We investigated whether models with varying numbers of experts exhibit differences in their ability
to solve specific problems on the GSM8K dataset.

Figure 17 shows the results. We observe that different sparsity levels solve different instances of the
problems.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

20 21 22 23 24 25 26 27

Generation Budget
0.0

0.1

0.2

0.3

0.4

Sc
or

e

GSM8K

20 21 22 23 24 25 26 27

Generation Budget

MATH

Top-k during inference
top 2 top 4 top 8 top 16

Figure 14: Increasing the top-k parameter only at inference time does not improve perfor-
mance. Performance comparison under TTC for a Mixture-of-Experts model (hidden dimension
2048, 128 experts, top-2) as the top-k parameter is increased. While doubling k can occasionally
improve Pass@1, applying TTC ultimately shows that the original top-2 configuration delivers the
highest performance.

11/21/41/81/161/321/64
1/128

MoE Density

7.5

8.0

8.5

9.0

9.5

10.0

Ta
sk

 lo
ss

TriviaQA

11/21/41/81/161/321/64
1/128

MoE Density

3.6

3.8

4.0

4.2

4.4

4.6
HellaSwag

11/21/41/81/161/321/64
1/128

MoE Density

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
GSM8K

11/21/41/81/161/321/64
1/128

MoE Density

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3
GSM Plus

27

28

29

210

211

212

Ac
tiv

e
Pa

ra
m

s (
m

illi
on

s)

11/21/41/81/161/321/64
1/128

MoE Density

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

TriviaQA

11/21/41/81/161/321/64
1/128

MoE Density

0.30

0.35

0.40

0.45

0.50
HellaSwag

11/21/41/81/161/321/64
1/128

MoE Density

0.00

0.05

0.10

0.15

0.20

GSM8K

11/21/41/81/161/321/64
1/128

MoE Density

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
GSM-Plus

27

28

29

210

211

212

Ac
tiv

e
Pa

ra
m

s (
m

illi
on

s)

Figure 15: Performance versus MoE density after removing GSM8K-related training data.
Task loss (top) and accuracy (bottom) are plotted against the ratio of active experts k to total experts
E for a fixed active parameter budget. While performance on memorization tasks (TriviaQA, Hel-
laSwag) improves with sparsity, the trend reverses for math reasoning tasks (GSM8K, GSM-Plus)
at larger active parameter counts. Dashed segments mark the inverse-scaling regime.

C.5 DETAILED RESULTS FOR CODING TASKS

This appendix provides detailed results for the coding task ablations, mirroring the analyses for
mathematical reasoning presented in the main text. Specifically, we detail the non-monotonic re-
lationship between scaling and downstream performance, showing how both task loss (Figure 18,
19) and accuracy (Figure 20) can degrade as pre-training loss improves. We then analyze key ar-
chitectural factors, including the impact of MoE sparsity (Figure 21) and the optimal Tokens-per-
Parameter (TPP) ratio (Figure 23). In addition, we report sparsity–accuracy trends for the coding
benchmarks HumanEval+ and MBPP+ (Figure 22).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

1.7 1.8 1.9
Final training loss

0.05

0.10

0.15

0.20

0.25
Ac

cu
ra

cy

GSM8K (Pass@1)

1.7 1.8 1.9
Final training loss

0.2

0.3

0.4

0.5
GSM8K (TTC)

1.7 1.8 1.9
Final training loss

0.1

0.2

0.3

0.4
GSM8K (GRPO)

d=1024,k=4
d=2048,k=2
w GSM8K
wo GSM8K

Figure 16: GSM8K performance without GSM8K-related training data: Pass@1 (left), TTC with
128 budget (center), and after GRPO (right)

d2048_k2_E128

d2048_k2_E64

d2048_k2_E32

d2048_k2_E16

d2048_k2_E8

0250

266

317

325

373

339

0

100

200

300

400

500

600

In
te

rs
ec

tio
n

siz
e

618

42 51 59 61 48 12 10 20 15 17 24 11 15 17 27 4 10 7 14 10 8 14 15 23 20 16 7 19 20 25 60

Figure 17: Analysis of solvable problems across different numbers of experts on GSM8K. This
graph displays the number of problems that were commonly solvable or unsolvable across models
with varying numbers of experts.

C.6 ABLATION ON DEPTH

We conducted additional experiments using a 32 layer architecture. Motivated by prior reports
suggesting that increased depth can improve performance (Liu et al., 2024; Team, 2024; Ye et al.,
2025), we evaluated whether deeper models exhibit similar trends in our setting. For the 32 layer
configuration, we observed that the results align with the patterns discussed in the previous section,
when analyzed through the lens of TPP, the behavior remains consistent with our earlier findings.

C.7 INFLUENCE OF OPTIMIZATION HYPERPARAMETER

Thus far, we have demonstrated that the structure of the model, particularly the degree of sparsity,
can lead to differences in reasoning performance on downstream tasks, even when the models con-
verge to the same training loss. Such differences are similar to generalization, in which a model’s
behavior on unseen data reflects implicit inductive biases rather than mere fit to the training data.
Studies on neural network generalization have long recognized that not only architectural choices,
but also optimization dynamics (i.e., differences in hyperparameter settings, regularization schemes,
and optimizer algorithms), play an important role in shaping these inductive biases. Motivated by
this insight, we examine the learning-rate scale, which is critical to generalization (Keskar et al.,
2017; Li et al., 2019; Yang & Hu, 2021). Our goal is to investigate how these choices influence the
model’s ability to transfer to downstream tasks, beyond what is captured by pre-training loss alone.

Figure 25 illustrates our empirical findings, obtained using a MoE architecture with 16 experts.
While memorization skills remains largely invariant to these hyperparameters, reasoning skills are
sensitive to the learning rates: when models converge to the same training loss, trainings with
lower learning rates and smaller initialization scales yield superior downstream accuracy. These
observations carry an important implication. Studies on generalization in large-scale language mod-
els should incorporate rigorous reasoning benchmarks rather than relying solely on validation loss

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

100 101

Total parameters (B)
1.0

1.1

1.2

1.3

1.4

1.5

Fin
al

 lo
ss

Train Loss

100 101

Total parameters (B)

1.2

1.3

1.4

1.5
Validation Loss

100 101

Total parameters (B)

3.8

4.0

4.2

4.4

4.6

Ta
sk

 lo
ss

HellaSwag

100 101

Total parameters (B)

0.85

0.90

0.95

HumanEval

d= 512,k=2
d= 512,k=4

d= 512,k=8
d= 512,k=16

d=1024,k=2
d=1024,k=4

d=1024,k=8
d=1024,k=16

d=2048,k=2
d=2048,k=4

d=2048,k=8
d=2048,k=16

Figure 18: Although training and validation losses generally decrease as the total number of
parameters increases, validation loss for the largest models does not fully converge. HellaSwag
task loss follows this favorable scaling trend, but HumanEval task loss sometimes worsens once the
total number of parameters exceeds a certain threshold.

1.0 1.2 1.4
Final training loss

7.0

7.5

8.0

8.5

9.0

Ta
sk

 lo
ss constantly decrease

TriviaQA

1.0 1.2 1.4
Final training loss

3.8

4.0

4.2

4.4

4.6
HellaSwag

1.0 1.2 1.4
Final training loss

0.85

0.90

0.95
begin to increase

HumanEval

1.0 1.2 1.4
Final training loss

1.30

1.35

1.40

1.45

1.50

MBPP

d=512, k=2, A=170M
d=512, k=4, A=220M
d=512, k=8, A=320M

d=512, k=16, A=520M
d=1024, k=2, A=470M
d=1024, k=4, A=670M

d=1024, k=8, A=1.1B
d=1024, k=16, A=1.9B
d=2048, k=2, A=1.5B

d=2048, k=4, A=2.3B
d=2048, k=8, A=3.9B
d=2048, k=16, A=7.1B

Figure 19: For HumanEval and MBPP, once the training loss drops below a certain point,
the task loss starts to increase. Results of scaling total parameters by increasing the number of
experts, with model width and top-k held constant. For TriviaQA, HellaSwag, and task loss falls
monotonically as training loss decreases. By contrast, HumanEval and MBPP show a U-shaped
trend: task loss declines with training loss only until a threshold, beyond which further reductions
in training loss hurt task performance.

curves or standard QA tasks to fully capture the impact of optimization-induced implicit biases. This
enables a more precise analysis on the generalization of LLMs.

C.8 ABLATION ON TOKEN BUDGET

To validate our choice of the 125B token budget used in the main experiments, we conducted a
preliminary ablation study scaling the training duration to 1T tokens. We compared the baseline
model trained on 125B tokens against a model trained on 1T tokens. The training corpus for the
1T run was constructed by upsampling the 973.4B token dataset (Table 1) via random sampling to
reach the 1T target. For this experiment, we used a model configuration with width d = 2048, 16
experts (E = 16), and top-2 routing (k = 2). Hyperparameters followed the settings described in
Section 3.1, with the exception of the learning rate schedule, where the cosine decay was stretched
to accommodate the 1T token duration.

The results are presented in Table 4. Since the extended 1T corpus is predominantly composed of
general web text, which serves as a rich source of world knowledge, memorization-intensive tasks
such as TriviaQA and HellaSwag exhibited significant performance gains. Conversely, reasoning
tasks (GSM8K and GSM-Plus) showed comparatively marginal improvements. We attribute this
discrepancy to the scarcity of high-quality mathematics and reasoning corpora available in the open
source at the time of experimentation; simply scaling up the volume of general web text contributes
minimally to reasoning capabilities. Therefore, extending the training to 1T tokens significantly
increases computational costs without yielding proportional gains in reasoning performance, justi-
fying our adoption of the 125B token budget to prioritize examining architectural trade-offs.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

1.0 1.2 1.4
Final training loss

0.1

0.2

0.3

Ac
cu

ra
cy

TriviaQA

1.0 1.2 1.4
Final training loss

0.30

0.35

0.40

0.45

HellaSwag

1.0 1.2 1.4
Final training loss

0.15

0.20

0.25

0.30

HumanEval d= 512,k=2
d= 512,k=4
d= 512,k=8
d= 512,k=16
d=1024,k=2
d=1024,k=4
d=1024,k=8
d=1024,k=16
d=2048,k=2
d=2048,k=4
d=2048,k=8
d=2048,k=16

Figure 20: Downstream accuracy when scaling total parameters via expert count with width
and top-k fixed. TriviaQA and HellaSwag exhibit steadily improving accuracy as pre-training loss
decreases, whereas HumanEval shows a non-monotonic trend: further reductions in pre-training loss
do not always improve accuracy and can even degrade performance.

11/21/41/81/161/321/64
1/128

MoE Density

7.0

7.5

8.0

8.5

9.0

Ta
sk

 lo
ss

TriviaQA

11/21/41/81/161/321/64
1/128

MoE Density

3.8

4.0

4.2

4.4

4.6

HellaSwag

11/21/41/81/161/321/64
1/128

MoE Density

0.825

0.850

0.875

0.900

0.925

0.950

0.975

HumanEval

11/21/41/81/161/321/64
1/128

MoE Density

1.30

1.35

1.40

1.45

1.50

MBPP

27

28

29

210

211

212

Ac
tiv

e
Pa

ra
m

s (
m

illi
on

s)

Figure 21: At fixed active parameter counts, higher sparsity (lower density) consistently im-
proves performance, but at larger active parameter counts, HumanEval and MBPP shift their
optima back toward dense models. Task loss against the ratio of active experts k to total experts E
for a fixed active parameter budget. In the left two tasks (TriviaQA, HellaSwag), increasing sparsity
consistently lowers task loss across all active parameter budgets, in contrast, in the right two tasks
(HumanEval, MBPP), once active parameter counts become large, this trend reverses and denser
models begin to outperform their sparser counterparts. Dashed segments mark the inverse-scaling
regime that starts at the black circle; solid segments show the standard scaling region to the right.

D THE USE OF LARGE LANGUAGE MODELS

Use of Large Language Models (LLMs). In preparing this paper, we used large language models
only for minor editing tasks, such as improving grammar and clarity of exposition. LLMs did
not contribute to the research ideas, methodology, experiments, or analysis, and thus played no
substantive role in the scientific contributions of this work.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

11/21/41/81/161/321/64
1/128

MoE Density

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Ac
cu

ra
cy

HumanEval+

11/21/41/81/161/321/64
1/128

MoE Density

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
MBPP+

27

28

29

210

211

212

Ac
tiv

e
Pa

ra
m

s (
m

illi
on

s)

Figure 22: At fixed active parameter counts, higher sparsity (lower density) consistently im-
proves performance, but at larger active parameter counts, HumanEval+ and MBPP+ shift
their optima back toward dense models. Accuracy against the ratio of active experts k to total ex-
perts E for a fixed active parameter budget. Once active parameter counts become large, this trend
reverses and denser models begin to outperform their sparser counterparts. Dashed segments mark
the inverse-scaling regime that starts at the black circle; solid segments show the standard scaling
region to the right.

101 102

TPP

0.1

0.2

0.3

Ac
cu

ra
cy

TriviaQA

101 102

TPP

0.30

0.35

0.40

0.45
HellaSwag

101 102

TPP

0.15

0.20

0.25

0.30

HumanEval

101 102

TPP

0.2

0.3

0.4
MBPP

d=512, k=2
d=512, k=4

d=512, k=8
d=512, k=16

d=1024, k=2
d=1024, k=4

d=1024, k=8
d=1024, k=16

d=2048, k=2
d=2048, k=4

d=2048, k=8
d=2048, k=16

Figure 23: Effect of TPP on performance across different tasks. For TriviaQA and HellaSwag,
performance improves as the number of parameters increases. In contrast, for reasoning-intensive
tasks such as HumanEval and MBPP, performance deteriorates when the number of parameters
becomes too large, indicating that there exists an optimal data to parameter ratio for these tasks.

101 102

TPP

0.2

0.3

0.4

Ac
cu

ra
cy

TriviaQA

101 102

TPP

0.35

0.40

0.45

0.50
HellaSwag

101 102

TPP

0.1

0.2

0.3

GSM8K

101 102

TPP
0.05

0.10

0.15

0.20

GSM-Plus

d=1024, k=2, L=16
d=2048, k=2, L=16
d=1024, k=2, L=32

d=1024, k=4, L=16
d=2048, k=4, L=16
d=1024, k=4, L=32

d=1024, k=8, L=16
d=2048, k=8, L=16
d=1024, k=8, L=32

d=1024, k=16, L=16
d=2048, k=16, L=16

Figure 24: Effect of model depth on TPP-performance trade-offs.

Table 4: Performance comparison between models trained on 125B tokens versus 1T tokens.
The model configuration is fixed at d = 2048, E = 16, and k = 2.

Token Budget TriviaQA HellaSwag GSM8K GSM-Plus
125B 0.279 0.426 0.318 0.188
1T 0.535 0.538 0.363 0.214

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

1.9 2.1 2.3 2.5
Training loss

0.00

0.05

0.10

0.15

0.20

Ac
cu

ra
cy

TriviaQA

1.9 2.1 2.3 2.5
Training loss

0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40

HellaSwag

1.9 2.1 2.3 2.5
Training loss

0.0

0.1

0.2

0.3
GSM8K

1.9 2.1 2.3 2.5
Training loss

0.00

0.05

0.10

0.15

GSM-Plus

1.9 2.1 2.3 2.5
Training loss

10 1

100

101

102

103

104

Cu
rv

at
ur

e
M

ax
 E

ig
en

Max Eigen (Linear Layer)

LR = 6.4e-3 LR = 3.2e-3 LR = 1.6e-3 LR = 8e-4 LR = 4e-4 LR = 2e-4

Figure 25: For reasoning skills, the relationship between training loss and downstream per-
formance is dependent on the choice of optimization hyperparameters. The learning rate also
impacts downstream accuracy. For the maximum eigenvalue, we evaluated the maximum eigenvalue
of fisher information matrix under a K-FAC approximation (Martens & Grosse, 2015; Eschenhagen
et al., 2023). Following (Grosse et al., 2023), we calculate the maximum eigenvalues only for
linear layers. We find that higher learning rates lead to a lower maximum eigenvalue, which is
consistent with existing research indicating that convergence to flatter minima improves generaliza-
tion (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017; Jiang et al., 2020).

26

	Introduction
	Background and Related Work
	Mixture of Experts
	Scaling Laws of LLMs
	Post Training and Test-Time Compute (TTC)

	Experiments
	Experimental Setup
	Downstream Performance Does Not Necessarily Improve with Total Parameter Size
	Optimal Sparsity for Iso-FLOP Budgets
	Tokens per parameter
	Impact of TTC and Post-Training on Downstream Performance
	Coding Task Ablations

	Discussion and Limitations
	Conclusion
	Reproducibility statement
	Training Setup
	Pre-training Dataset Details
	Post-Training Details
	Implementation & Training Environment

	Evaluation Setup
	Additional Experiments
	GRPO
	Test-Time Compute
	GSM8K Overfitting Analysis
	GSM8K Problem Analysis
	Detailed Results for Coding Tasks
	Ablation on Depth
	Influence of Optimization Hyperparameter
	Ablation on token budget

	The Use of Large Language Models

