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Abstract

Designing neural networks within a Hamiltonian framework offers a principled
way to ensure that conservation laws are respected in physical systems. While
promising, these capabilities have been largely limited to discrete, analytically
solvable systems. In contrast, many physical phenomena are governed by PDEs,
which govern infinite-dimensional fields through Hamiltonian functionals and their
functional derivatives. Building on prior work, we represent the Hamiltonian
functional as a kernel integral parameterized by a neural field, enabling learnable
function-to-scalar mappings and the use of automatic differentiation to calculate
functional derivatives. This allows for an extension of Hamiltonian mechanics to
neural PDE solvers by predicting a functional and learning in the gradient domain.
We show that the resulting Hamiltonian Neural Solver (HNS) can be an effective
surrogate model through improved stability and conserving energy-like quantities
across 1D and 2D PDEs. This ability to respect conservation laws also allows HNS
models to better generalize to longer time horizons or unseen initial conditions.

1 Introduction

Physics is remarkably complex; a set of governing laws can produce endlessly diverse and interesting
phenomena. In an effort to unify governing laws, Hamiltonian mechanics describes physical phe-
nomena under the Principle of Least Action, whereby the trajectory of a system evolves because it
has locally the least action. Remarkably, the minimization of action can derive nearly all physical
phenomena, from kinematics to quantum mechanics, suggesting an underlying, fundamental property
of nature. Rather than describing physics through forces and masses, such as in Newtonian mechanics,
using energy and symmetries allows for an elegant and unifying perspective of physical systems.

Despite the long history of Hamiltonian mechanics, most current numerical and neural PDE solvers
operate within a Newtonian framework. This has been very successful; forces and masses are easy
to intuitively understand, and both numerical and neural solvers have found important, practical
uses. However, motivated by natural conservation laws and symmetries that arise from Hamiltonian
mechanics, we seek to investigate neural PDE solvers that operate in this framework. We find that the
Hamiltonian framework brings inductive biases that improve model performance, especially when
conserving energy-like quantities.

Extending Hamiltonian mechanics to neural PDE solvers requires both theoretical and implementation
insights. In particular, most PDEs are used to describe continuum systems (fluids, waves, elastic
bodies, etc.); as such, infinite-dimensional Hamiltonian mechanics are needed. In this setup, the
Hamiltonian is defined as a functional that maps from input fields to a scalar, often interpreted as
the energy of the system. The variational or functional derivative of the Hamiltonian then contains
dynamical information that evolves the system. This introduces interesting modeling challenges; in
particular, the need to approximate infinite-dimensional to scalar mappings and for the approximation
to have functional derivatives.
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In this paper, we consider models based on a learnable kernel integral, a framework that can provably
approximate linear functionals and implicitly learn functional derivatives. Through automatic dif-
ferentiation, functional derivatives can be obtained and optimized in a Hamiltonian framework to
predict future PDE states. This allows the development of Hamiltonian Neural Solvers (HNS), which
we evaluate on three PDE systems and find both high accuracy and generalization capabilities, which
we hypothesize arise from inductive biases to conserve energy. Code and datasets for this work are
released at https://github. com/anthonyzhou-1/hamiltonian_pdes,

2 Background

Hamiltonian Mechanics Hamiltonian mechanics is usually introduced in the discrete setting,
where there are a set of n bodies, each with a position and momentum. Therefore, the state of the
system can be described by 2n quantities, usually assembled into a position and momentum vector
q,p € R". In the discrete case, the Hamiltonian {#(q, p) : R>® — R} is a function that takes
two vectors and returns a scalar H, usually interpreted as the energy or another conserved quantity.
Evolving the system in time is done through Hamilton’s equations, often expressed in terms of the
symplectic matrix J and state vector u:

d  odp’ dt  dq dt

Hamilton’s Equations Symplectic Form
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Derivatives can be evaluated from vector calculus identities; for clarity we consider the state vector u

with 2n components and write 3% = [t dun] and V,H = [g—ﬁ, ce Bi?:n ].

Infinite-Dimensional Systems Many PDEs describe continuum systems, such as waves, fluids,
and elastic bodies, where the positions and momenta of discrete bodies are not well defined. Despite
this change, continuum systems can still conserve energy and be viewed in a Hamiltonian framework.
Firstly, finite-dimensional vectors q,p € R™ become generalized to functions u(z,t) defined on
continuously varying coordinates = € {2 and at a time ¢. The function v € F(€2) describes the state
of the system by assigning a scalar or vector for each coordinate (such as velocity, pressure, etc.).
Secondly, the Hamiltonian is generalized from a function {#(q, p) : R*® — R} to a functional
{H[u] : F(2) — R} that returns a scalar given an input function. Lastly, the symplectic matrix
J generalizes to a linear operator 7, and the gradient V,, becomes the variational or functional
derivative % € F(). This leads to Hamilton’s equations for infinite-dimensional systems, where
€ € F(Q) is an arbitrary test function [1]:
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Hamilton’s Equations Functional Derivative

From this background we can see why neural networks are a natural choice for modeling discrete
Hamiltonian systems; in this setting, the Hamiltonian is a function and its gradient is naturally
calculated with automatic differentiation. In the infinite-dimensional setting, learning the Hamiltonian
functional from data becomes less obvious.

3 Functional Approximation

Theory The development of functional approximators [2H5] can be seen a result of the Riesz
representation theorem, a fundamental result in functional analysis [6]. We give some intuition here,
but provide a full proof of linear functional approximation in Appendix [C.1] We start by observing
that a functional can be equivalent to the inner product over suitable functions:

Theorem 3.1 (Riesz representation theorem). Let H be a Hilbert space whose inner product {(x,y)
is defined. For every continuous linear functional ¢ € H* there exists a unique function f, € H,
called the Riesz representation of @, such that:

olz] =z, fp) forallz € H. 3)
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Immediately, we can see that the Hamiltonian 7 [u] can potentially be expressed as an inner product
(u, kg) over the input function u and a learnable function x¢. This changes the problem of approxi-
mating a functional to the problem of approximating a function, which neural networks can readily
achieve through universal approximation theorems [7, 18]

A common inner product for arbitrary functions u, v in a Hilbert space H involves an integral:
(u,v) = [, u(x)v(x)dz. One can check that this satisfies the basic properties of inner products
and is also valid for vector-valued functions u,v. Based on this formulation, functionals can be
parameterized by an Integral Kernel Functional (IKF):

Holu) :/Q/@'g(x)u(x)dm “)

In this form, we observe a connection between the integral kernel functional and the integral kernel
operator that neural operators are built on [9]. Specifically, the integral kernel operator is given by:

Ko(u)(z) = / o (2, ) u(y)dy 5)

Q

where a learnable operator Ky acting on an input function u(x) € U produces an output function
K(v)(z) € V for Banach spaces U, V; this expression is equivalent to the IKF when evaluated at a
single point z. We can make a similar modification to neural operators where the kernel is allowed to
be nonlinear by giving function values as input: k¢ (z,y, u(z), u(y)). In our setting, we can adopt a
nonlinear kernel by allowing the kernel to change based on the input function: kg (x, u(x)).

One shortcoming of this framework is that the approximation of nonlinear functionals is not proven.
Most Hamiltonians are nonlinear with respect to u, however, we empirically find that the proposed
architecture can still approximate nonlinear functionals by using a nonlinear kernel kg (z, u(z)).
There are some potential hypotheses for this. The Riesz representation theorem is a strong statement,
implying that for linear functionals, there is a single, unique kg € H that can be used with any v € H
to approximate #[u]. In deep learning we are less constrained; we can potentially allow xg(u) to
depend on u and even relax the uniqueness of kg to still be able to approximate H[u]. Furthermore,
under assumptions of regularity and compact support, for arbitrary functionals H we can always

show that a function f € H exists such that H[u] = (u, f) by constructing f = ?[u] u, with the

[Tull3

norm: ||ullz = y/ [ u(z)?da.

Implementation There are two main implementation choices: approximating the integral and
parameterizing the kernel. The integral can be approximated by a Riemann sum:

Holu] = /Qf@g(x,u(x))u(x)da: A Z ko(x;, u(x;))u(a;) u; Ax (6)

with quadrature weights 1;. Interestingly, the full Riemann sum can be computed since the sum is
only calculated once; in neural operator literature, approximating the integral with a full Riemann
sum is usually too costly since the sum is evaluated for every query point. This results in approaches
that truncate the sum [10H12] or represent it in Fourier space through the convolution theorem [[13].
In our implementation, we evaluate different quadratures but find that the trapezoidal rule is enough
to accurately estimate the integral.

To parameterize the kernel, we take the perspective from the Riesz representation theorem. In the
linear case, the kernel is simply a function k¢ () € H that maps input coordinates to values in the
codomain. This is exactly what a neural field is; therefore, we can inherit the substantial prior work
on neural fields [[14] to effectively parameterize ~g.

One useful concept is the conditional neural field. In particular, the nonlinear kernel k¢ (z, u(z)) can
be seen as a conditional neural field whereby the kernel output changes based on the input function
u(x). This concept can also be further extended to distinguish between local and global conditioning
[15]]; in neural field literature, the field can be conditioned on local information u; = wu(x;) or global
information u = [u(xg), . . ., u(x,)]. Conditioning mechanisms can also be implemented in various
ways. In the simplest case, the conditional information w; or u is concatenated to the input coordinate
z [L6H18]], however, we adopt a approach based on Feature-wise Linear Modulation (FiLM) [[19].
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Figure 1: Left: The functional H[u] is approximated by an integral kernel functional (IKF). The
integral is further approximated by a Riemann sum with a learnable kernel x¢. Right: The kernel can
be parameterized with various architectures and conditioning mechanisms. A local, FiLM-conditioned
SIREN kernel is shown, where each SIREN layer has a dedicated FiLM network to produce scale and
shift parameters. The output z; is for a single point ;, which needs to be calculated Vi = {1,...,n}

Beyond conditioning mechanisms, an important consideration is the architecture of the kernel itself.
A powerful neural field architecture is the sinusoidal representation network or SIREN [20]]. SIRENs
have shown good performance not only in fitting a neural field x¢, but also in accurately representing

gradients V kg, which may help in fitting the functional derivative §H /du. With these architectural

@

choices, a layer of the kernel x,” with local conditioning can be written as:

1 l . l
/ié )(mi, ;) = 'yé )(ui)sm(Waci +b)+ Bé )(ul) @)
where fyél) and Bél) are the FiLM scale and shift networks at layer [. Each SIREN layer has its own
FiLM network and each FiLM network can also have multiple layers. Inputs x;, u; can optionally
be lifted and the output z; can be projected back to the function dimension. Given the hierarchical
nature of the proposed implementation, we also illustrate the architecture in Figure[T]

A final consideration during implementation is batching. The layer update in Equation[7is written in
pointwise form, but we can observe that the computation does not depend on other points {(x;, u;) :
j # i}, and the weights are shared between points. Therefore, the forward and backward pass
for each point can be done in parallel; in practice, the spatial dimension is reshaped into the batch
dimension for efficient training and inference.

Hamiltonian Neural Solvers So far, integral kernel functionals are largely agnostic to the down-
stream task, only requiring that the input function u be discretized at a set of points (x;, u;). To use
functional approximators as a PDE solver, we introduce the Hamiltonian Neural Solver (HNS). The
time evolution of PDEs can be described by Hamilton’s equations, which depend on the operator
J and the functional derivative 6 /du. In Hamiltonian PDE systems, 7 is analytically derived or
can be looked up, is guaranteed to be linear, and is usually simple. A common example in 1D is
J = 0;. Therefore, we choose to approximate 7 with a finite difference scheme, although it can
also be learned with a neural operator. Lastly, we find that 67{/du can be computed directly with
automatic differentiation. This is empirically shown in Section .1 but one way to see this is by
considering the linear IKF. The gradient Vy >, ko(x;)u; iz = [kg(x1), ..., Ko(zn)],uptoa
constant factor, which is the discretization of the learned function x¢(x). In thls case, the functional
derivative is approximated by an arbitrary function, which is the desired behavior.

Within this framework, the training is described
in Algorithm[I] For Hamiltonian systems, we
assume knowledge of the analytical form of ‘H
and H /du, and labels for §H /du or du/dt can
be calculated from training data using numer-
ical schemes. The training loss can either be
evaluated in the functional form 6Hg/du or the
temporal form 7 (§Hg/0u); we implement the
former since it more directly optimizes kyg.

Algorithm 1 Training a HNS
repeat
HG <~ Z?::l Hg(.ﬂfi, ui)ui /,LiAJZ
% + autograd(Hg, u)
= ||22e — 8|12 or |7 (%ie) — 4
9 <+ Update(0, Vo L)
until converged

A

During inference, the current state u‘ and coordinates x are used in a forward pass to comdpute Ho.
A backward pass is then used to calculate §7Hg / du; using the operator 7, a prediction for G| =

J ( 97 ) i calculated. The estimated derivative 3% is used to update the state u**! = ODEmt( b duy

usmg a numerical integrator. In our 1mplementat10n we use a 2nd-order Adams-Bashforth method.



Base 00D (¢; € [1,3)) Disc. (z; € [-2,2])

Metric MLP  FNO IKF | MLP ENO IKF |MLP FNO IKF
Filu] 247e-5 2.76e-4 3.00e-16 | 0.046 0268 2.13e-7 | 493 497 0.737
§F/6u 0083 0066  1.15e-3 | 0.114 0.122 1.15e-3 | 2.64 270 0.077
Fot[u] 0029 0016 205e-3 | 6709 6493 2908 | 381 322 554

0Fni/0u 1.33 2.10 0.045 1730 1723 1079 92.1 881 355

Table 1: Validation MSE is reported across different experiments with linear and nonlinear functionals.
Errors are calculated in the scalar F[u] and gradient domains 6. /du to evaluate performance in
fitting functionals and implicitly learning functional derivatives. Additionally, generalization to OOD
inputs and unseen discretizations are evaluated. Parameter counts are: MLP (7.5K), FNO (10.9K) and
IKF (4.3K); each experiment is repeated 6 times and errors are reported as the average across seeds.

4 Experiments

4.1 Toy Examples

To better understand and situate integral kernel functionals, we examine their ability to model
simple, analytically constructed functionals and compare their performance to other architectures.
The experimental setup is as follows: given a functional F[u], random polynomials u(z) = coa? +
c1xP~ 4. . +cp_12+c, are generated by uniformly sampling {c; € [a,b] : i = 0,. .., p}. Therefore,
the dataset consists of IV pairs of polynomials and evaluated functionals (u"(z), F[u™(z)]) for
n=1,..., N. In practice, each function v" () is discretized at a set of points {x; : i = 1,..., M},
such that it is represented as u” = [u"(x1),...,u"(z)], and F[u"] remains a scalar.

. . . xT . .
We consider two cases: a linear functional F;[u] = fwlM u(x) * x2dz and a nonlinear functional

Frulu] = f;lM (u(z))3dz. In both cases, constructed polynomials u™ () can be substituted and the
definite integral can be analytically solved to use as training labels. Additionally, the functional
derivatives are % = 22 and % = 3u?, which are used to evaluate the gradient performance of
models. We restrict the degree of u"(x) to p = 2 and sample ¢; € [—1,1]; 100 training and 10
validation samples are generated for each case. Coordinates x; are uniformly spaced on the domain
[—1,1] with M = 100 points.

Two baselines are considered: (1) a MLP that takes concatenated inputs [x, u] € R?* and projects
to an output Fy € R through hidden layers, and (2) a FNO with mean-pooling at the final layer to
evaluate an operator baseline. The FNO baseline takes inputs with spatial and channel dimensions, or
stacked inputs [x, u] € RM*2 and projects to an output field z € RM, which is then pooled to 5y € R.
For simplicity, the integral kernel functional (IKF) is used with a local MLP kernel and is linear for
F; and nonlinear for F,,;. In the nonlinear case, FiLM is not used and [x;, u;] € R? is concatenated as

input to kg. Lastly, models are trained with the loss £ = Ziv:l [|Flu™(z)] — Fo(u™,x)||3; training
is supervised with the functional to evaluate if models can implicitly learn accurate derivatives.

To further evaluate generalization, after training we consider two cases: (1) OOD, where validation in-
puts u(z) are sampled with polynomial coefficients ¢; € [1, 3] to model out-of-distribution functions,
(2) Disc., where validation inputs u(z) are uniformly discretized on a larger domain x; € [—2, 2]
with a larger Az, while keeping M = 100. In each experiment, validation errors are reported with

the metric & S0 || F[u"] — Fo(u®,x)|[3 or & SN (|22 — autograd(Fy, u™)||3 to measure

performance in fitting functionals and learning accurate functional derivatives.

Results are given in Table[T} We observe that architectures based on an integral kernel can accurately
represent functionals and their derivatives, outperforming other architectures. Despite only training on
scalars F[u], IKFs can implicitly learn the correct functional derivatives, as plotted in Figure[2] This is
new; even on toy problems, traditional architectures do not have well-behaved functional derivatives,
as such, learning in the gradient domain for Hamiltonian systems would not be possible. Although
the gradient performance is poor, conventional architectures can still fit functionals and the MSE for
validation samples within the training distribution (Base) is low. When considering generalization
performance, IKFs can readily generalize to unseen input functions as well as unseen discretizations
in the linear case. This empirically observed generalization is theoretically motivated; the Riesz
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Figure 2: After training to regress F[u], the gradients of the network with respect to an input function
u are plotted for different models. Left, A: Neural functionals are able to accurately model derivatives,
even on unseen discretizations, whereas other architectures fail even on their training distribution.
Right, B: Nonlinear functionals have more complex derivatives that change with input functions u. In
this instance, a quartic function is learned and the model extrapolates to unseen discretizations.

representation theorem guarantees that a single kernel ¢y can represent a linear functional F; for all
possible input functions u(x) (e.g., polynomial, exponential, etc.). Generalization performance with
nonlinear functionals is more challenging, as larger polynomial coefficients c¢; and larger coordinates
x; can quickly increase F,[u(x)] due to large exponents. Despite this, IKFs still outperform other
architectures in these domains, and learn accurate nonlinear functionals and their derivatives for
samples within distribution.

4.2 1D Advection and KdV Equations

Formulation To evaluate the Hamiltonian Neural Solver (HNS) on PDE problems, we consider the
1D Advection and the 1D Korteweg—De Vries (KdV) equation. The Hamiltonians for each PDE are
given as [21,22]]:

1 1 0%u
Hadolu] = / —5(u(@)’dz,  Hpaolu] = / — = (u(@))? = u(z) 5 (x)de, ®)

Given an initial state u°, the Hamiltonian for each PDE is conserved over time (i.e., H[u!] = H[u"]).
For both PDEs, the operator 7 is defined as d,. We can check that Hamilton’s equations hold for the
1D Advection equation:

OHadv 0Hadv,  Ou _ du
ou = —u(z), J( ou )= dr  dt ©

which recovers the correct PDE for 1D Advection. A similar calculation can be done to recover
the PDE for the 1D KdV equation (u; + utuy; + uzz, = 0) from Hamilton’s equations by using

‘”’g% = —%uQ — ug,. Therefore, given a training dataset of spatiotemporal PDE data, the labels
OH

5. can be computed using finite differences at every timestep ¢. The gradients of the HNS network
Vu(Ho(x,u')) are then fitted to these labels.

Evaluation Data for the 1D Advection and KdV equations are generated from a numerical solver
using random initial conditions [23} 24]]:

J
ul(x) = ;Ai * sin(%li% + ¢i) (10)

where L is the length of the domain, 4; € [-0.5,0.5], ; € {1,2,3}, and ¢; € [0,27]; J = 5 for
Advection and J = 10 for KdV. The Advection equation is solved on a uniform domain z; € [0, 16]
with n, = 128 and the KdV equation is solved on a domain z; € [0, 100] with n, = 256. Both
equations have periodic boundary conditions. For the Advection equation, 1024/256 samples are
generated for train/validation, and for the KdV equation, 2048/256 samples are generated. To evaluate
temporal extrapolation, the training dataset is truncated to a shorter time horizon. For the Advection
equation, it is solved from ¢t = Os to ¢t = 4s during training (n; = 200) and evaluated from ¢ = Os to
t = 20s during validation (n, = 1000); a similar scenario is constructed for the KdV equation with
t = 0s to t = 25s for training (n; = 50) and ¢ = 0s to t = 100s for validation (n; = 200).
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Adv KdVv L0 7
Metric:  Roll. Err. | Corr. Time 1 I NS | /I
FNO 0.83+017  68.0+105 o NN ’
Unet 0.40+0.29 134.0+10.6 . o] 7
FNO( d“) 0.048+0.007  77.6+36 " ! =
Unet( jlu) 0.057+0.024 113.3+15.0 T W0 W0 80 100 % 010 150 200
HNS © 0.0039-0.0008 151.1+30  Tue o= FNO - Unet -—- HNS

Table 2: Results for 1D PDEs. Parame- Figure 3: Hamiltonians for Adv and KdV for predicted
ter counts are: FNO (65K), Unet (65K), trajectories, plotted over time. FNO and Unet models are
HNS (32K) for Adv, and FNO (135K), shown with their du/dt variants. HNS can better conserve
Unet (146K), HNS (87K) for KdV. Hamiltonians and remain stable over time.

Two baselines are considered, a FNO [13]] and a Unet [25] model. Additionally, the HNS model is
used with a nonlinear, FiLM-conditioned SIREN kernel Global conditioning is used in the KdV

experiments by calculating the scale/shift parameters as fy =[v, () (u')]; and ﬁl-(l) = [Bél) (u')];; the
global FILM networks are each parameterized by a shallow, 1D CNN We find that global conditioning
is needed in more complex PDE:s since the kernel output z; = ky(-) can depend on more than just u;
at a given point x;. In particular, the Hamiltonian for the KdV equation has a u,, term that requires
non-local knowledge of u'. Lastly, to ensure a fair comparison, we also train variants of the FNO
and Unet baselines that predict temporal derivatives du/dt [26]], as opposed to the usual variants that
predict u’*!; these use the same numerical integrator during inference as the HNS model.

The metrics that are reported are the rollout error = 7 ZtT 1 £(u’,u}), and the correlation time =

[lu

max(t) s.t. C(u’,u}) > 0.8. The loss used is a relative L2 loss, or £(u’, u})) = V‘ﬁ%“ and the

correlation criterion C is the Pearson correlation. Rollout error is used to measure the accuracy of
the predicted trajectory; for chaotic dynamics, rollout error is often skewed after autoregressive drift,
therefore correlation time measures the portion of the trajectory that is accurate. Each metric is
averaged over the validation set and the mean and standard deviation over six seeds is reported in
Table Furthermore, given a predicted trajectory [ug, .. ., uGT} from a model, we can examine its

Hamiltonian at each timestep and plot the scalar value H[u}] over time, shown in Figure

We observe that the proposed HNS model is able to outperform current baselines, both on quantitative
metrics and when conserving Hamiltonians over time. HNS is also efficient, capable of achieving
better performance with nearly half the parameters of baseline models due to sharing weights between
input points z;, u;. Furthermore, despite training on a shorter time horizon, HNS can extrapolate and
remain stable in longer prediction horizons. This is more pronounced in the KdV equation, where
initial states are smoother than later, more chaotic states. An example trajectory is shown in Figure 5]
where the baselines struggle to predict later states since these are not seen during training.

4.3 2D Shallow Water Equations

Formulation To evaluate HNS on a more complex system, we consider the 2D Shallow Water
Equations (SWE). These equations are an approximation of the Navier-Stokes equations when the
horizontal length scale is much larger than the vertical length scale. We consider its conservative
form, which is often used as a simple model for atmosphere or ocean dynamics.

For vector-valued functions u(x,y) € R, the operator J becomes a d x d matrix of operators. For
the 2D Shallow Water Equations, the operator matrix J is given by [27H29]:

0 —q O v v
Jz[q 0 547 qzax—ay (11)
0r 0y O Yy z
where ¢ is the vorticity. The Hamiltonian for this system is:
1 1
Hlu] = Hlvs, vy, h] = / Sh(0? +2) + 5 gh*dA (12)
Q

where g is the gravitational constant and the velocities and height v, vy, h are usually defined on
a grid (i.e., v; = vgy(z;,y;)). One can verify Hamilton’s equations and that J % recovers the 2D
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Table 3: Rollout errors for 2D SWE. T e B s T

. Time step Time step

Parameter counts are: FNO/PINO — True FNO === PINO === Unet === Transolver === HNS

(7M), Transolver (4M), Unet (3M),

HNS (3M). Models are evaluated on  Figure 4: Hamiltonians for Sines and Pulse ICs, plotted
in-distribution ICs (Sines) or out-of- over time. Despite potentially larger rollout errors, HNS can
distribution ICs (Pulse). better conserve the Hamiltonian of predicted solutions.

Shallow Water Equations:

Oth+ V- (vh) =0, v +v-Vv=—gVh (13)

Evaluation Data for the 2D SWE system is generated from PyClaw [30H32] using random sinu-
soidal initial conditions (Sines) for the height:

2mm; x x 27T x Y

L. L,

J
RO (z,y) = H + ZAi * sin(

i=1

+ &) (14)

with initial velocities set to zero. Constants are randomly sampled from A; € [-0.1,0.1], m;,n; €
{1,2,3}, and ¢; € [0,27] with J =5, H = 1,and L, = L,, = 2. The domain is (z;,y;) € [-1,1]?
with n, = n, = 128; each sample has n; = 100 timesteps from ¢ = 0s to t = 2s. The gravitational
constant is set to g = 1; 256 samples are generated for training and 64 samples are generated for
validation. Periodic boundary conditions are used. To evaluate model generalization, we generate an
additional test set of 64 samples with a random Gaussian pulse as initial conditions (Pulse). The initial
height is set to an isotropic Gaussian centered at the origin with random covariance o € [0.1,0.5]
and the height is scaled to be between [1, 1.5]; initial velocities are zero. The domain, BCs, and
discretizations remain the same.

We consider benchmarking against Unet and FNO models, as well as PINO [33] and Transolver
[34] models to compare against a physics-informed method and a newer attention-based surrogate.
We instantiate the HN'S model with a global, FiLM-conditioned SIREN kernel. Validation rollout
errors for in-distribution ICs (Sines) and out-of-distribution ICs (Pulse) are given in TableE], where
means and standard deviations are calculated over three seeds. Additionally, the Hamiltonian over
time for model rollouts are plotted in Figure[d] The derivative variants of baselines did not train
stably, possibly due to sharp gradients that develop in the absence of viscosity, and are not reported.
Additionally, the baselines are trained with the benefit of normalization, as the height channel has
a different scale than the velocity channels; however, since the Hamiltonian is not invariant under
scaling and shifting, normalization was not performed for the HNS model.

For test samples within the training distribution (Sines), conventional neural surrogates are able
to perform well and achieve low loss, and HNS is on-par with these models. Adding a physics-
informed loss in PINO only marginally increases the performance of FNO, which is consistent with
its interpretation as a soft regularizer. When looking at the Hamiltonian of predicted solutions, we
find that HNS can predict solutions that better conserve physical invariances. We validate this in
Appendix [B.T| by calculating the error of the Hamiltonian of predicted trajectories across different
experiments. This ability to conserve the Hamiltonian helps HNS to generalize to unseen initial
conditions, and it achieves better performance on the Gaussian Pulse test set. Interestingly, it also
conserves the Hamiltonian on out-of-distribution inputs, suggesting a strong inductive bias in the
model. To understand what mechanisms enable energy conservation, we also ablate different methods
within HNS to understand their contributions, shown in Appendix [B.1] Lastly, to visualize model
performance, predicted trajectories of Sines and Pulse ICs are shown in Figures[6and[7]



5 Related Works

Hamiltonian Neural Networks Original work on Hamiltonian Neural Networks (HNNs) [35136]
established them as a promising architecture to respect physical laws, while later work improved their
performance [37-41]], investigated the mechanisms behind HNNs [42], or used HNNSs in different
applications [43145]]. A closely related set of works develop neural networks in a Lagrangian
framework [46, 47]], which also preserve learned energies. More broadly, learning an energy and
optimizing its gradient is an established framework in ML-based molecular dynamics simulation [48-
52]. Despite research in this area, no prior works have considered learning with infinite-dimensional
Hamiltonian systems and most HNNs have only been demonstrated in simple, particle-based systems.

Functional Approximation While uncommon, there are prior works that investigate learning
infinite-dimensional to scalar/vector maps. Most methods are based on a kernel integral and are
used to fit functionals [2]], construct functional autoencoders [4], model parameter-to-observable
maps [3]], or build infinite-dimensional discriminators for generative modeling [5]. The use of a
kernel integral to model a functional is also well studied in machine learning for DFT, since the
Hohenberg-Kohn Theorems guarantee that the total energy is the integral of an unknown function of
electron density [53-55]]. Lastly, a separate approach considers modeling functionals through the
cylindrical approximation, rather than a kernel integral [56].

Neural PDE Solvers Neural PDE solvers are a growing field, with many works proposing ar-
chitectures to improve model accuracy [57, 134} 158]], generalizability [S9H61]], or stability [62H635]].
Specific to our work, many PDE solvers have also employed physics-based prior knowledge to
improve model performance and adherence to governing laws. The most straightforward approach is
to use physics-informed losses [66} 133} |67]], but another, more fundamental approach is to enforce
physical symmetries and equivariances in the network itself [68-72]. Interestingly, by Noether’s
theorem, every symmetry has an associated conservation law, which HNS relies on as an inductive
bias; through this lens the current work is another way of softly enforcing symmetries in predictions.

6 Conclusion

Limitations Despite an interesting theoretical basis and its novelty, Hamiltonian Neural Solvers
have limitations that we hope future work can address. Firstly, the theory for nonlinear functionals
is underdeveloped. There is also additional overhead during inference to backpropagate through
the network and evaluate the linear operator 7. Scalability is also a concern due to the reliance on
numerical quadratures. This increase in runtime is quantified in Appendix [B.2]

Additionally, implementing [/ without a neural operator may require care to avoid numerical errors;
this is further discussed in Appendix Furthermore, HNS is only applicable to Hamiltonian
systems; this would exclude systems with dissipation, although modifications exist to extend Hamil-
tonian mechanics to non-conservative systems [7/3-76]. Even for conservative PDEs, implementing a
Hamiltonian structure is not as straightforward as training a neural solver with next-step prediction.
Lastly, while not a limitation, an interesting observation is that introducing a loss on H[u’] — H[u}]
harms HNS performance; we hypothesize that since the Hamiltonian is conserved over time, learning
the identity mapping is the easiest way to minimize this error and thus degrades model training.

Outlook In this work, we have proposed a novel method for designing neural PDE solvers that
respect conservation laws. We verify that kernel integrals are able to implicitly learn functional
derivatives, as well as propose parametrization using neural fields. Using the resulting architecture
in a Hamiltonian framework allows stable and energy-conserving predictions of 1D and 2D PDEs.
These capabilities enable Hamiltonian Neural Solvers to generalize to certain out-of-distribution
inputs, such as a longer time horizon or unseen initial conditions.

While learning functions and operators are dominant paradigms, approximating functionals may also
have interesting uses. Functionals provide concise descriptions of physical systems by integrating
physical variables, such as describing the energy of a molecule or the drag of an airfoil. Although
concise, functional derivatives are often more relevant and can contain dynamical information or
perhaps be used for optimization. We hope that future work can continue to improve functional
approximators as well as take advantage of these models in new and insightful applications.
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A Additional Visualizations
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Figure 5: Predicted trajectories of the KdV equation. The white dashed line denotes the training
horizon, where only states from ¢ = 0 to ¢ = 50 are seen during training. Despite not seeing later,
more chaotic states, HNS still extrapolates beyond the training horizon by conserving the Hamiltonian,
while other models struggle. FNO and Unet models are shown with their du/dt variants.
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Figure 6: Predicted trajectories of the Shallow Water Equations (SWE) with sinusoidal ICs, displayed
att = 10 and ¢ = 50. All models are able to achieve good performance on in-distribution samples.

64 128
X

SWE-Pulse, t=10

Unet

FNO
128 128
GA . 64 .
0 0
0 64 12 0 64 12
X X

HNS

128

64

0
128 0

8 8

SWE-Pulse, t=50

FNO Unet
128 128
54 . GA
0
0 64 128
X

0 o
0 64 128 0
X

128

Figure 7: Predicted SWE trajectories with Gaussian pulse ICs, displayed at ¢ = 10 and ¢t = 50.
Despite showing different behavior, HNS can better generalize to OOD samples.
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B Additional Results

B.1 Hamiltonian Errors and Inductive Bias

Model Adv KdV ~ SWE-Sines SWE-Pulse
FNO 218  NaN 0.0091 0.1326
Unet 022 237 0.0053 0.0158
FNO(4)  0.033  6.75¢8 - -
Unet(%) 0.043  5.76e6 - -
HNS 0.0002  1.32 0.0015 0.0003

Table 4: Relative L2 Error for each experiment, evaluated on the Hamiltonian of predicted trajectories.
Despite not including the Hamiltonian in the training loss and testing on OOD samples, HNS is
exceptional at predicting solutions that conserve the Hamiltonian.

In the main body, we presented qualitative evidence that HNS is able to better conserve the Hamil-
tonian of predicted trajectories. To quantify this claim, we calculate the Relative L2 Error of the

Hamiltonian of predicted trajectories across all PDE experiments. Specifically, the error of a sample

t — 4 2 . . . . .
is given by: % Zthl %, where u’ is the true solution at time ¢, uj) is the predicted

solution at time ¢, and #[-] is the Hamiltonian given by the integrals in Equations [§| and The
Hamiltonian errors are averaged across the validation sets and reported in Table[d] We note that in
the KdV experiments, the dynamics are chaotic and the Hamiltonian is highly nonlinear, both of
which contribute to large errors once predicted trajectories diverge. Overall, we find that HNS has
exceptional capabilities in implicitly conserving energy-like quantities in their prediction.

Interestingly, this capability exists even when not trained with a loss on the Hamiltonian (i.e.,
||[H[u!] — H[u}]||3) and when predicting out-of-distribution trajectories. Where does this inductive
bias to conserve the Hamiltonian come from? Based on Gruver et al. [42], we hypothesize four
inductive biases in HNS that may contribute to this:

. ODE Bias: HNS predicts (ZT? and uses an ODE integrator to evolve PDE dynamics.
. Hamiltonian Bias: HNS relies on J % to calculate ‘fi—‘t‘.

. Gradient Learning Bias: HNS relies on autograd(Hg[u], u) to calculate %.

AW N =

. Neural Functional Bias: HNS relies on integral kernel functionals to calculate
autograd(Hg[u], u).

We note that these biases are listed from simplest to most complex and are cumulative; for example, it
is not possible to implement Hamiltonian structure without also implementing an ODE integrator. We
modify a Unet to incorporate each inductive bias and evaluate its performance on the KdV equation,
which is the most chaotic setting. The ODE bias was considered in the main work by training
du/dt model variants, while incorporating Hamiltonian bias is done by changing the training label to
0 /éu and using J during inference. To extend Unets to gradient learning, we add a linear head to
project the output field to a scalar and use automatic differentiation to obtain § /du. After training,
we evaluate model correlation time and Hamiltonian error on the validation set and the results are
reported in Table[3]

We find that the main contributors to HNS performance and its ability to conserve energies over time
is using Hamiltonian structure as well as the neural functional architecture. Using an ODE integrator
alone degrades model performance and implementing gradient learning with Unets also harms
performance. Interestingly, using gradient learning with conventional architectures disproportionately
harms energy conservation; this implies that in PDEs, gradient domain learning improves energy
conservation only when architectures have meaningful functional derivatives. This is not readily
apparent, as observations from molecular dynamics or HNNs suggest that gradient domain learning
generally improves energy conservation without considering the underlying architectures [35, 146 48]
Based on these findings, we hypothesize the following mechanism underlying HNS: integral kernel
functionals enable the learning of functional derivatives, combining this with infinite-dimensional
Hamiltonian mechanics leads to its performance and conservation properties.
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Metric: Correlation Time (1) Hamiltonian Error ()

Unet (Base) 125.25 2.37
Unet (ODE) 120.5 5.76e6
Unet (Ham.) 143.75 2.06
Unet (Grad.) 141 471
HNS 151.75 1.32

Table 5: Correlation time and Hamiltonian errors for Unet models with increasingly more inductive
biases, compared to HNS on the KdV equation. Using ODE integrators or gradient domain learning
both degrade performance, while using Hamiltonian structure or neural functionals both increase
performance and energy conservation.

B.2 Timing Experiments

Model (#Params) Adv  KdV  SWE-Sines

FNO (65K/135K/7M) 0.083 0.091 0.967
Unet (65K/146K/3M) 0.138 0.146 1.345
HNS (32K/87K/3M) 0.126 0.228 4.547
Numerical Solver 0.000 1109 33.26

Table 6: Computational cost per inference step for each model across different PDEs, given in
milliseconds (ms). Model sizes are also reported for the (Adv/Kdv/SWE) experiments. Each run uses
a single NVIDIA RTX 6000 Ada GPU. Numerical solvers are run on a AMD Ryzen Threadripper
PRO 5975WX 32-Core CPU due to lack of GPU compatibility.

The additional overhead of using automatic differentiation, evaluating the operator 7, and applying
an ODE integrator during inference increases the computational cost of HNS. We examine this in
Table [6] by performing a model rollout and averaging the time per inference step across a batch.
Additionally, we report the runtimes of the numerical solvers used. In the case of 1D Advection, the
analytical solution is used. Randomly sampled initial conditions can cause variability in the stiffness
of the solution, therefore, solver runtimes are averaged across 10 samples. We note that the 2D SWE
solver (PyClaw) [31]] uses a Fortran compiler and is optimized for hyperbolic PDEs, while the KdV
solver is purely Python-based. We note that for a fairer comparison, the numerical solvers should be
coarsened to match the accuracy of the neural solvers.

Consistent with prior works, FNO models remain a fast neural PDE solver. While HNS may
have a lower parameter count, this may be a misleading measure of inference speed. Automatic
differentiation calculates the gradient with respect to each input point, therefore the computational
cost of this step can scale with the size of the input grid. This can be seen when comparing the
Adv and KdV experiments, where the grid size doubles from n, = 128 to n, = 256, and the
computational cost roughly doubles as well. In 2D experiments, the cost of HNS is appreciably
more than other baselines, although it is still modestly faster than an optimized numerical solver. We
do not anticipate that the finite-difference (FD) schemes used in 7 or ODE integrators contribute
meaningfully to computational cost, since FD schemes use O (M) operations, where M is the number
of grid points, and numerical integration occurs in constant time.

B.3 Ablation Studies

There are many choices for parameterizing a kernel integral, such as from different kernels (linear,

nonlinear), different architectures (MLP, SIREN), different conditioning mechanisms (concat/FiLM)

and different receptive fields (local, global). Since this design space is large, we consider the effects

of incrementally improving each aspect and report the performance of different HNS models in Table

‘We find that a nonlinear kernel is needed in all cases, since all the Hamiltonians tested are nonlinear.

In addition, the use of FILM conditioning and SIRENS tend to improve performance. Lastly, global
8%u

conditioning is necessary for the KdV equation, which has nonlocal terms (%) in the Hamiltonian.
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Model Rollout Error Model Correlation Time Model Rollout Error

Base 1.248 Base 51.75 Base 0.113
+ Nonlinear 0.028 + Nonlinear 73.00 + Nonlinear 0.034
+ FiLM 0.016 + FiLM 65.25 + FiLM 0.030
+ SIREN 0.003 + SIREN 73.25 + SIREN 0.026
+ Global 0.057 + Global 151.75 + Global 0.024
(a) Ablations for 1D Advection (b) Ablations for 1D KdV (c) Ablations for 2D SWE-Sines

Table 7: Ablation studies for the HNS architecture. The base architecture is specified by (Linear,
Concat, SIREN, Local). Each successive row is cumulative, adding an additional feature to the model.
Parameter sizes are approximately constant across ablations.

B.4 Varying Dataset Sizes

We study the effect of varying the number of samples in the training dataset on HNS performance
in Table|8| The training dataset is truncated by a factor of 8, 4, or 2, and evaluated on the same
validation dataset. This is repeated across all experiments/PDEs. In general, increasing the dataset
size consistently improves model performance. This is more acute for 1D equations. For 2D SWE,
the extra spatial dimension may allow for more data per sample relative to the complexity of the
dynamics.

Dataset Size  Adv KdV SWE-Sines SWE-Pulse

f=18 1.320  71.00 0.0293 0.0243
f=1/4 0.302  71.25 0.0274 0.0230
f=12 0.075 95.25 0.0254 0.0227
f=1 0.003 151.75 0.0249 0.0216

Table 8: Rollout error () or correlation times (1) of HNS models trained on datasets downsampled
by a factor of f (e.g., f = 1/2 uses half the number of training samples in the training set).

B.5 Discretization Invariance

We experiment with querying models at different discretizations than its training resolution. The
results are in Table [9] with the training resolution in bold. Rollout errors are averaged over the
validation set, where validation labels are either downsampled or re-solved at a higher resolution
using the same initial conditions. Additionally, for 1D Advection, we conducted an experiment in
which the model is queried on an unseen grid « = [0, 32], n, = 256, after being trained on a grid
x = [0, 16], n, = 128, denoted as 256*.

(a) Rollout Error at Different Resolu-(b) Rollout Error at Different Resolu-(c) Rollout Error at Different Resolu-

tions, 1D Adv tions, 2D SWE (Sines) tions, 2D SWE (Pulse)
Resolution HNF FNO Unet Resolution HNF FNO Unet Resolution HNF FNO Unet
64 0.0029 0.064 1.19 (64,64) 0.028 0.066 0.098 (64,64) 0.035 0.173 0.173
128 0.0033 0.064 0.075 (128,128) 0.029 0.066 0.008 (128, 128) 0.024 0.174 0.117
256 0.0055 0.050 1.32 (256,256) 0.026 0.066 0.110 (256, 256) 0.019 0.174 0.225
256* 0.0021 1.34 0.072

Table 9: Rollout error of models at different resolutions for 1D Adv and 2D SWE datasets.

In all cases, HNFs are capable of zero-shot super-resolution, as is possible with Neural Operators.
Additionally, the error is approximately constant across discretizations and on a new, unseen grid
for 1D Advection. Predictably, FNO models have nearly constant error across discretizations.
Interestingly, for an extrapolated grid in 1D Advection, FNO struggles to make predictions. For Unet
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models, the error increases when the grid spacing changes, however for a constant spacing, it is able
to extrapolate to unseen grids (i.e. [0, 16] — [0, 32] with dz unchanged).

C Additional Theory

C.1 Proof of Linear Functional Approximation

Interestingly, while development of neural functionals was arrived upon independently, a proof of
linear functional approximation exists. In fact, approximating a linear functional with an integral
kernel is an intermediate step in operator approximation theorems [[77H79] and its proof comes as a
series of lemmas in Kovachki et al. [9]]. For the sake of completeness, we provide relevant definitions
and cite the necessary lemmas here.

Definitions (Appendix A, Kovachki et al. [9]) Let D C R? be a domain. Let Ny = N U {0}
denote the natural numbers that include zero. Let X’ be a Banach space, and A'* be its continuous
dual space. Specifically, the dual space contains all continuous, linear functionals f : X — R with
the norm: || f|[x+ = sup,ex |z v=1 [f(2)] < 00.

For any multi-index o € N&, 9 is the a-th partial derivative of f. The following spaces are defined
for m € Ny:

« C(D)={f:D —R: fis continuous}
« C"(D)={f:D—=R:09°f c C" 1l (D)V 0 < |a|; <m}
e CX(D)={fe€C>D):supp(f) C D is compact}
Cyt (D) = {f € C™(D) : maxo<|a|, <m SWPep [0% f(2)| < oo}
e C™(D) = {f € C/*(D) : 9*f is uniformly continuous V0 < |a|; < m}

Additionally, we cite definitions of neural networks from Section 8.1, Kovachki et al. [9]. For any
n € Nand o : R — R, a neural network with n layers is given by:

Np(;RELRY) = {f R 5 RY i f(2) = Woo(... Wio(Wox + bg) + by ...) + by,
Wy € Roxd Wy e Rxdo W, € RY ¥dn-1
bo € R® by e RM, ... b, €eRY dy,dy,...,d €N}
The activation functions ¢ are restricted to the set:
o€ Ay :={0ecCR):3InecNst N,isdense in C"(K)VK C R? compact}
to allow universal approximation. Lastly, functions are restricted to be real-valued, although exten-

sions to vector-valued functions are possible (Section 8.3, Kovachki et al. [9]]).

Theorem C.1 (Lemma 30, Kovachki et al. [9]). Let D C R? be a domain and L € (C(D))* be a
linear functional. For any compact set K C C(D) and € > 0, there exists a function k € C°(D)
such that:

sup |L(u) —/ kudz| < €
u€ K D

This result establishes that a linear functional acting on functions in C'(D) can be approximated
by a smooth integral kernel with arbitrary error €. To show functional approximation with a neural
network, we slightly modify an existing lemma:

Theorem C.2 (Lemma 32, Kovachki et al. [9]). Let D C R? be a domain and A = C(D). Let
L € A* be a linear functional. For any compact set K C A, 0 € Ay, and € > 0, there exists a
number L € N and neural network rg € N (o; R? R) such that:

sup |L(u) — /D ko(z)u(z)dr)y < €

ueK
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Proof. Since K is bounded, there exists a number M > 0 such that:

sup |ulla < M
ueK
By Lemma 30, there exists a function x € C$°(D) such that:

sup |L(u) —/ rudz| < <
D

ueK 2
Since o € Ay, there exists some L € N and a neural network 9 € Ny (o; R% R) such that:
€
ko — Kllc < 2M[D|
Then for any v € K:
|L(u) — /D ko(z)u(x)dz|y < |L(u) — /D kudx|; + | /D(H — Kkg)udz |y

€
&+ MID| x|~ ol

IN

IN

€

O

Therefore, linear functionals for continuously differentiable function classes can be approximated to
arbitrary accuracy by a neural network using an integral kernel. Extensions to Sobolev and Hilbert
spaces can also be proved in a similar manner.

Interestingly, this overlap between neural functionals and neural operators suggests a deeper connec-
tion between the two. The integral kernel functional bears many similarities to the integral kernel
operator and, in practice, is implemented as an integral kernel operator evaluated at a single output.
From an implementation perspective, the two architectures are equivalent in this manner; examining
the theoretical basis also suggests that neural functionals are a subset of neural operators when
approximating linear functionals. This can be seen by looking at operator approximation theorems
(Lemma 22, Kovachki et al. [9]). We refrain from rewriting the theorems here, but focus on the
necessary modifications. Specifically, to use a neural operator to approximate a linear functional, the
output Banach space ) is set to R and intermediate dimensions J, J' are set to 1. The linear map
Fy : X — R’ from the input field z € X becomes F; = w;(z), where w; (x) € X*. Lastly, the
finite-dimensional map is defined as ¢ € C(R, R) and the output map is defined as G ;- : R — R.

C.2 Connection to the Cylindrical Approximation

Miyagawa and Yokota [56] propose an alternate mechanism to approximate functionals based on the
cylindrical approximation. We explore a possible connection with the current method of using an
integral kernel.

We consider functionals F'[u] : H — R, where we restrict functions u(z) € H to be in a Hilbert space
H with inner product (-, -) ;. Since functions can be represented as a sum of basis functions, u(x)
can be written as u(z) = Y _p- ; (u, ¢ )dx(x), with an orthonormal basis {1, ¢2, . . .}. Truncating
the sum to a finite number of terms m allows the cylindrical approximation of functionals [80H82]].
This is obtained by substituting the truncated series into the functional:

flar,as, .. am) = F[Y_ ardp(2))] (15)
k=1

where ay; are basis coefficients (u, ¢y). Using the cylindrical approximation f, functional derivatives
can be approximated by:

%\%

Zﬁ (16)

a
k=1 =k
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which converges to the true functional derivative as m — oo [81]]. When discretizing the functional
derivative, we define a set of n points x = [x1, Z2, . . ., z,] at which the basis functions are evaluated,
which results in the discrete approximation of the functional derivative:

Zaf¢k( )

of . (1
Zaaklﬁbk( ) (17)

> 2 ()

We are interested if the gradient of a neural functional that is parameterized by a kernel integral can
represent this discrete object, and what conditions are needed to do so. Furthermore, there are two
levels of approximation (a truncated basis and a discretized domain) and we are interested if the
gradient of a neural functional can recover a functional derivative in its limit. We will work through
three cases of increasing complexity, using a linear kernel, a nonlinear kernel, and a nonlinear and
global kernel.

Linear Kernel Integrals A functional parameterized by a linear kernel integral can be written as:

n

Fylu] = /Q Ko(x)u(z)de = Ko(a:)ui; (18)

=1

using a Riemann sum approximation and quadrature weights p;. Without loss of generality, we can
assume some constant quadrature weight p and write the gradient of the Riemann sum as:

%(“9 z1)ur) ko(x1)
u gy (Ro(w2)uz) kg (2)
/NU(Z Ko (Ti)u;) = p : =p : (19)
=1 . .
52 (Ko(n)un)) Ko (Tn)

We can interpret this gradlent as the discretization of a single basis function xy = ¢1, and without
the necessary coefficients 5~ f . Evidently, this is not enough expressivity to approach a sum of m

coefficients and basis functlons even as n — oo. Intuitively, the output Fy[u] does not depend on u
enough, causing its gradient V,, to be too simple. A potential remedy is to modify the kernel to be
nonlinear by using k¢ (z, u(z)).

Nonlinear Kernel Integrals Following the same approximation, the gradient of a nonlinear kernel
integral can be written as:

%(/‘50(«%17'@1)“1) U13%1"69(5U1,U1) + Ko(T1,u1)
- o= (Ko (2, us)us) ug 52— kg2, Ug) + (T2, Ug)
Uvu(z Ko (Ti,ui)ui) = p =H
i=1 : :
50— (Ko (Tn, Un )tn)) Un 52— K0 (T, un) + Ko(Tn, Un)

(20)
using the product rule. In general, kg(x;,u;) can be quite complex and nonlinear, however, by
construction it only depends on (z;, u;). We define a function d;(z;) = d‘z Ko, Ui)|w;=u;» Wwhich
evaluates the partial derivative at x;. This lets us construct at most n basis functions {dy,ds,...,dn},
however, this is still not enough expressivity, as each entry of the discretized functional derivative
is still restricted to one basis function, albeit a different one at each row. Despite this shortcoming,
writing this expansion allows us to see that producing a sum over multiple basis functions requires
the kernel to depend globally on u = [ug, us,. .., u,], since the gradient of the Riemann sum no
longer degenerates to a single term at each row.
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Nonlinear Global Kernel Integrals Using the same approximation, the gradient of a nonlinear,
global kernel integral can be written as:

52 (3 wo (i, w)uy)

n 9
W(Z k(i 0)u;)
pVu(D Re (i wug) = p | T 1)
i=1 :
72 (3 ro(zi, w)uy)
The expression aiui (3" ko(z4, u)u;) can be expanded into:
0 0
a—%(;m(;(mi7u)ui) :u1a—ujf<ag(a?1,u) +... (22)
0
+ ujTWHQ(xja u) + /{9(:Cj7u) +..
+ una—ujng(ozn, u)
In general, we can construct a kernel x4 such that %jﬁg(ay, u) is different for i = {1,...,n}. A
simple example is provided based on FiLM modulation:
Hg(ﬂ?i, 11) = [W“u]l(W””xz + bz) + [bu]z (23)

where W¢ € R W* ¢ R1#1 pv € R b* € R! and []; is an operation that takes the i-th row of
a column vector. In this case, aiuj“@ (x;,u) is equivalent to a function d;;(z;) = WZ%- W*x,;. With
even deeper and more complex kernels, functions d;; can become more expressive. Without loss of
generality, we can also absorb the basis coefficients into d;;.

With this formulation, we can see that the j-th row of the gradient vector can be written as a sum
of n functions Z?=1 d;j(z;), which reduces to the cylindrical approximation when letting d;; be
arbitrary. Furthermore, letting n — oo increases the number of functions d;; and coordinates x;, and
is consistent with the interpretation of simultaneously increasing the number of bases to approach the
true functional derivative as well as converting from a discrete to continuous representation.

The cylindrical approximation makes no assumption on the linearity of F, therefore, when using
a global, nonlinear kernel, a kernel integral can represent a functional derivative. This theoretical
insight is also supported by empirical observations. Through ablation studies in Section [B.3] we find
that modeling complex functional derivatives (such as in the KdV equation) is only possible with a
global, nonlinear kernel, and simplifications of the kernel degrade the performance.

C.3 Derivations with Varying Coefficients and Source Terms

Using HNS with PDEs with varying coefficients and source terms is possible on a case-by-case
basis, requiring additional effort to derive the Hamiltonian structure. We provide examples below by
introducing coefficients to 1D Advection and 1D KdV as well as varying bathymetry (source terms)
to 2D SWE.

Varying Coefficients In the presence of coefficients, the Hamiltonians for 1D Advection and 1D
KdV become:

c 9 « 3 0%u
Haavlu] = [ —5(u(@))*dz,  Hpaolu] = [ ——(u(x))” — Bu(z) 5 (v)dz,  (24)
For 1D Advection, one can verify the Hamiltonian structure:
Hadw OHado,  Ou  du

o ), (gt S @)

A similar calculation recovers the PDE for the 1D KdV equation (u; + auu, + Suge, = 0) from

Hamilton’s equations by using SHidn — —%uz — Bug,. To accommodate varying coefficients, this

ou
suggests training HNS with coefficient information using the loss: £(V,Hg(u, x, ¢), %) In special

cases where the coefficients can be factored out (i.e., % = 057;—75“1), once can scale the base

model output V,, 7y (u, x) by ¢ to achieve the same effect.
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Varying Source Terms The 2D shallow-water equations describe free surfaces where the horizontal
length scale is significantly larger than the vertical length scale. Within this setup, the free surface can
be above a spatially-varying bathymetry b(z, y), or the topography of the bottom surface. Changes in
the elevation of the bathymetry can accelerate or decelerate flows, which acts as a source term on the
momentum balance [83}|84]]. In particular, the shallow-water equations are modified to become:

Oth +V - (vh) =0, v +v-Vv=—gVh—ghVb (26)

Furthermore, h(z,y, t) now represents the height above the bathymetry b(x, y, t). This source term
is represented in the Hamiltonian as:

1 1
Ho[w] = H[vs, vy, b = / Sh(E +02) + Sgh(1+ ) dA 27)
Q
and the operator matrix 7 is left unchanged (Equation[IT]). One can check that applying Hamilton’s
equations recovers the modified shallow-water equations. When comparing this derivation to one

with constant bathymetry, one can show that:

SH ] SH[u]

ou ou

+

0
0 (28)
ghb

This suggests that instead of scaling model outputs V,, Hg(u, x) (as in the case of coefficients), source
terms can be potentially captured by adding terms to model outputs. In PDEs where a decomposition

like this is not possible, the source term will need to be added to the model input to produce the
output V,, Hg(u, x, b), where bold terms indicate discretized fields/coordinates.

D Implementation Details

D.1 Numerical Methods

Numerical Integration ODE integration is performed using a 2nd-order Adams-Bashforth scheme.
The solution at the next timestep u’™! is calculated using the current timestep u’ and an estimate of
the current derivative % |,_, = f(u?):

u = u + At @f(ut) - ;f(u”)> (29)

This can be implemented in constant time by caching prior derivative estimates { f(u’) : i < t},
allowing the ODE integrator to have a 2nd-order truncation error (O(At?)) while remaining fast.
At the first timestep, there are no cached derivatives, therefore a first-order Euler integrator is used:
ult! = u’ + Atf(u?). For the given experiments, these integrators are accurate since At is small
enough; to be used with larger timesteps At, higher-order integrators may be needed or smaller,
intermediate steps will need to be taken [26]]. This adds additional consideration to the training and
deployment of derivative-based neural PDE solvers.

Finite Difference Schemes Implementing infinite-dimensional Hamiltonian structure involves
approximating the operator 7, either through numerical methods or neural operators. We opt for
numerical methods, as the operators are simple and in all our tests only involve first-order spatial
derivatives J,. For the 1D Advection equation, we implement a 2nd-order central difference scheme.
For the 1D KdV equation, the spatial derivatives exhibit larger gradients, therefore we use an 8th-order
central difference scheme with a smoothing stencil to approximate J, [83]. A similar scheme is
implemented in 2D to approximate 9, and J, for the 2D SWE experiments, and additionally, a
Savitzky-Golay filter is used to further damp numerical oscillations. These arise since the lack of
viscosity creates discontinuities in the shallow-water equations, alternative methods may include
flux-limiting or non-oscillatory schemes [86, [87]. While these implementations work, they still
required tuning, as such, the use of a neural operator to approximate .7 to make HNS fully learnable
would be an interesting future direction.

Additionally, to calculate temporal derivatives du/dt during training, a 4-th order Richardson ex-
trapolation is used to provide accurate derivatives. At the boundaries t = 0, ¢ = T a one-sided
Richardson extrapolation is used [|88]].
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Numerical Solvers The analytical solution to the Advection equation is used to generate its datasets.
The numerical solver for the KdV equation is from Brandstetter et al. [24]]; due to the stiffness of
the PDE, the solutions do not always conserve the Hamiltonian. The WENO schemes used allow
for more stable derivatives, but at the cost of numerical viscosity, which can affect the Hamiltonian
since it is highly nonlinear. Therefore, we filter the generated KdV solutions and extract 50% of the
trajectories with the smallest variation in the Hamiltonian. Similar fluctuations in the Hamiltonian
are seen in SWE trajectories generated from PyClaw [31]], but the variations are small enough to be
ignored.

D.2 Experimental Details

Hyperparameters FEach model has different hyperparameters for different PDEs (Adv/KdV/SWE).
We provide key hyperparameters for these experiments in Tables[I0] [TT} [T2]

Adv KdV SWE Adv KdV SWE Adv KdV SWE

Modes 10 12 12 Width 8 12 32 Width 32 32 64
Width 24 32 48 Bottleneck Dim 32 48 128 Kernel local global global
Layers 5 5 5 Layers 6 6 6 Cond. FiLM FiLM FLM
Table 10: FNO Parameters Table 11: Unet Parameters Table 12: HNS Parameters

Computational Resources All experiments were run on a single NVIDIA RTX 6000 Ada GPU;
1D experiments were usually run within 10 minutes, while 2D experiments were usually run within
an hour. The largest dataset is around 20 GB, for the 2D Shallow-Water equations.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The authors were careful to not claim too much in the abstract and introduction,
focusing on summarizing the paper and providing an introduction to the field and how the
paper fits in.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section ?? (Discussion).
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: An informal proof is provided in the main body in Section 3, but a formal
proof is given in Appendix [C.1]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have tried to provide the necessary detail for reproducing results, and all
code and datasets will be also be released.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: All code and datasets will be made publicly available.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided information on the experimental setup and specific details
can be found in the config files of the provided code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Error bars are given for the main quantitative, PDE results in Tables [2and [3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Details on the compute resources are provided in the Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The paper does not violate the code of ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work is largely foundational and in the field of physics; at this moment
there are no likely negative impacts of the work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There are no risks for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The authors have created all assets used in the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: New code and datasets will have accompanying documentation.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The research does not involve crowdsourcing or human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were not used in the core method development of the research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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