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Abstract

A major goal in biotechnology is to generate libraries of functional proteins that
display useful phenotypes. Towards this goal, previous approaches have lever-
aged probabilistic models of evolutionary sequences to design proteins reflecting
the constraints that govern natural evolution. Other approaches have incorpo-
rated labeled data from experiments reflecting a desired phenotype, either alone
or alongside models of evolutionary sequences, to design proteins exhibiting a
useful functional property. With the goal of minimizing experimental effort and
accelerating design cycles, we seek to quantify the minimal amounts and types of
evolutionary and experimental data required for designing novel sequences with
useful properties, and to identify the best models for utilizing all available data.
Using a published model dataset of AAV gene therapy vector designs developed
to achieve a desired tissue tropism, we evaluate models using evolutionary and
experimental data independently and in concert for their ability to predict capsid
liver targeting. We find that particularly when using data on capsid formation
for the related phenotype of liver tropism and when evaluating sequences farther
away from the wild-type, natural sequence data becomes more important and a
combination of both data-types outperforms other supervised and unsupervised
benchmarks. We introduce a semi-supervised Bayesian approach trained on a
combination of evolutionary sequences and capsid viability that can best predict
AAV?2 liver tropism for sequences greater than 3 mutations away from wild-type.
This has beneficial implications for the design of diverse and functional AAV?2
libraries, as well as the broader objective of protein design.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



1 Introduction

Adeno-associated virus (AAV) capsids are powerful vectors for gene therapy delivery, but exhibit a
broad natural tropism that can result in off-target delivery and low therapeutic efficacy for applications
focused on specific tissue targets. Furthermore, the design of capsids is challenging because capsid
proteins are highly multi-functional and sequence modification has a high potential for disrupting
crucial elements of viral assembly or infectivity [[1, 2]].

Directed evolution (iterative rounds of local mutation and phenotype selection) is an effective
approach for generating functional mutants locally around known viable sequences. However,
exploring sequence space farther out from wildtype is challenging, as random synthesis of more
distant variants yields few functional proteins [3}4]. This loss of function is particularly drastic in
AAV - of the 10,000 random capsid sequences ranging from 2-10 steps away from AAV?2 generated
in Bryant et al. (2021), only 2% of sequences 6 mutations away were functional and after 6
mutations, none were functional (Table S1). The AAV2 capsid fitness landscape, therefore, presents
an opportunity for methods to design functional phenotypes further away from wildtype - a task
that has previously been attempted by using computational approaches. Bryant et al. (2021), used
single mutants with measured capsid viability to generate viable capsid proteins up to 20+ mutations
away from wild-type. [3]] used an unsupervised variational autoencoder trained on natural sequences
and semi-supervised variational autoencoders learning from natural sequences as well as a labeled
dataset of 1-30 mutations to evaluate and design sequences with viable AAV?2 capsids as measured
by their experimental method. This study did not explore the performance of unsupervised and
semi-supervised models on classifying sequences distant from their training set.

Here, we build upon this work by establishing the utility of computational models for AAV capsid
design by quantifying the types and amounts of data needed for different design tasks, including
designing near and far to a known target sequence and designing sequences that exhibit specific
tropism using only data on the related phenotype of capsid formation. Using available high-throughput
assays to design and predict related phenotypes may reduce the cost of experimentation (as tropism
assays are much more expensive than capsid formation assays, particularly when examining tropism
in non-human primates) and is also pertinent to identifying proteins that exhibit multiple desirable
phenotypes. We assess supervised and semi-supervised model performance at different sequence
distances from the training set. We also assess how much information is added with labels by
comparing with unsupervised model benchmarks.

2 Methods

2.1 Multiple sequence alignments

Multiple sequences alignments of evolutionary sequences were constructed using jackhmmer [S]],
an iterative profile-HMM based search tool, against the uniref100 database We optimized search
depth to maximize sequence coverage and the effective number of sequences included after clustering
similar sequences as previously reported [6} 7] and to optimize contact map accuracy to the 1LP3
PDB structure of AAV2 capsid [8]].

2.2 Experimental data collection

The capsid viability data consists of 200k AAV2 capsid sequences with mutations in a 28 amino acid
region known for heparin and antibody binding. The sequences are assayed for a capsid assembly and
the models are evaluated on binarized of non-viable and viable as described in [4]. The tropism data
consists of 11k designed AAV?2 capsid sequences with mutations in the same 28 amino acid region.
We filter the capsid data for substitutions only — as are models are all alignment-based, leaving 44k
sequences (Table S1, S2). To assess how well lower mutational data can generalize past their local
mutational scan we split train and test sets by training on single mutants and testing on sequences 2+
mutations away from wild-type. The continuous labels describe liver biodistribution as described in
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2.3 Models

2.3.1 Unsupervised

The Potts model is an undirected graphical model with probability that includes terms for pairwise
combinations of sites:

p(elh) = Zexp(B(x)) (1)

where F(z) is the log-potential of a given sequence and Z normalizes over possible sequences [? ].

Epair(z) = Z hi(z;) + Z Jij (@i, x5) )

i<j
We implemented the Potts models as described in [9]

Two different variational autoencoders are implemented as described in [10, 3, [I1]. The EVE
(Evolutionary model of Variant Effects) model is a Bayesian variational autoencoder (VAE), capable
of capturing complex higher-order interactions across sequence positions [[7, [10]]. The Sinai model is
a dense-layer variational autoencoder with 2 layers in the encoder and 3 in the decoder[11} 3]

2.3.2 Supervised

Supervised Convolutional neural networks, recurrent neural networks, and logistic regression models
are implemented as described in [4]. Additionally a 5-fold cross-validation 12 normalized model was
implemented with one-hot sequence regression to capsid viability labels.

2.3.3 Semi-supervised

We compare a variant of the M1 model as inspired by [12} [13]. Both Kingma, et al. and Gomez-
Bombarelli, et al. jointly train their semi-supervised VAE, using both the experimental data and the
natural sequence data to train reconstruction. However, in our use case, it is not desirable to train
the reconstruction of x on the experimental data due to a variety of factors: 1) a data imbalance of
experimental data and natural sequences 2) the experimental sequence space is not what we want
to focus our training of the latent space because we want to be able to extrapolate beyond the local
fitness landscape; 3) the sequence space from which we learn the experimental labels can be from
synthetic libraries, which are not vetted for any stability or function, so we do not want our model
to try to reconstruct these sequences. So, we instead train the VAE and the supervised top model
sequentially.

We implement the augmented Potts and DeepSequence as described in [14]. The augmented Potts and
augmented DeepSequence model consists of a 5-fold cross validation 12-normalized linear regression
trained off the one-hot-encoded sequences concatenated with the Potts Hamiltonian or DeepSequence
ELBO, respectively.

We also implement the semi-supervised variational autoencoder as described in [3]]. This is where the
variational autoencoder is trained not only off an alignment of evolutionary sequences but also the
phenotypically fit sequences of the training dataset.

We also propose a method for combining predictions of the unsupervised and supervised models
trained above using Bayes rule (Eq. 3) to approximate the conditional probability of a sequence given
the desired phenotype. This method is fully modular - we can use any combination of separately
trained supervised (Eq. 4) and unsupervised (Eq. 5) models, requiring no additional training of a
semi-supervised model.
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3 Results

Here we evaluate a set of models trained on unlabeled evolutionary data, labeled experimental
single-mutation data, or a combination (described above) for their performance at predicting which
synthetic capsids assemble. Each model is assessed by how well it classifies viable and non-viable
sequences a specific mutational disstance away from WT. We also evaluate these models for their
performance at predicting an alternate fitness phenotype of wildtype-AAV2: liver tropism.

3.1 Predicting capsid viability

For mutations up to 6 mutations away from wild type a simple ridge regression trained on single
mutation expression data best distinguishes viable and non-viable capsids, with marginal or no gain
from using evolutionary information (Table 1). This is perhaps not surprising as the multiples in the
test set were designed based on the single mutation results. When training on both double and single
mutations, a simple ridge regression outperforms all unsupervised and supervised models regardless
of distance from wildtype.

Distance Linear Augmented [Linear Regression
from W.T. |Potts Regression [Potts X Potts

2 0.79 0.95 0.95 0.88

3 0.78 0.89 0.89 0.85

4 0.78 0.86 0.86 0.84

5 0.76 0.83 0.83 0.82

6 0.75 0.79 0.79 0.80

7 0.75 0.74 0.74 0.79

8 0.72 0.72 0.72 0.76

9 0.72 0.72 0.72 0.76

10 0.71 0.71 0.71 0.75

11 0.63 0.62 0.62 0.65

Table 1: Here are the top performing supervised (red), semi-supervised (gray), and unsupervised
(blue) capsid viability classifications denoted via AUC. The AUC performances are stratified by
distance from wildtype. Below 5 mutations, the linear regression outperforms all models in AUC when
classifying binary labels of capsid viability. However after 5 mutations, evolutionary information
allows unsupervised and semi-supervised models to outperform linear regression. For more model
performances see Table S2.

3.2 Predicting liver tropism

We next explored the question of whether a model that is trained on and successfully predicts the
phenotype of capsid formation can predict the alternate, yet related phenotype of liver tropism. The
supervised ridge regression trained on single and double mutant capsid viability is the best model for
predicting capsid viability of more distant sequences (Table S3). However, when evaluating models
trained on capsid viability for their ability to predict liver tropism, the supervised model trained on
capsid viability under-performs an unsupervised Potts model trained on natural sequences for designs
more than 6 mutations away from the wildtype — no matter how much training data from the capsid
viability experiment is incorporated (Table S4).

We next evaluated a bayesian model that combines supervised learning with an unsupervised model.
We find that this approach outperforms unsupervised models in mutational regimes where the
supervised training dominates (mutational distances closer to wildtype) although it underperforms
compared to supervised models for very close mutational distances. This approach also outperforms
both supervised and unsupervised models in regimes where the unsupervised training dominates
(further away from experimental wildtype) (Table 2).

4 Discussion

Intuitively, experimental data closely conforms to the features of the experiment and is very useful for
predicting the function of designed sequences for the same experiment. Natural sequence data, on the
other hand, captures the broad constraints acting on evolution of these sequences, which are generally



Distance |Linear Linear Regression x

from W.T. |Regression |Potts Potts
1 0.78 0.32 0.60
2 0.62 0.40 0.55
3 0.53 0.39 0.50
4 040 0.34 0.41
5 0.35 0.29 0.35
6 0.28 0.30 0.31
7 0.28 0.30 0.32
8 0.07 0.12 0.13

Table 2: Spearman correlations of model predictions with observed liver tropism for designs at
various distances from wildtype. Above 3 mutations, the evolutionary data allows semi-supervised
models to outperform the linear regression trained on capsid viability. For sequences per distance see
table S5

reflected in a range of phenotypes related to the protein’s natural function. Especially in the case of
deep mutational scans where the experimental data is quite local in its sample of sequence space,
similarly, the predictions of a model trained on such a space are limited to a smaller neighborhood
around the starting sequence, whereas a model trained on a broader range of natural evolution is better
suited for predicting further away and generalizing to fitness phenotypes beyond the ones directly
measured in the experiment.

5 Future Directions

Future directions to this project involve:

* Evaluating unsupervised, supervised, and semi-supervised models for their performance at
generating functional AAV sequences with the desired phenotype by characterizing designed
sequences from each model in-silico and in experiments.
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A Appendix
Randomly synthesized Designed
Distance from W.T. |No. sequences|No. viable |% Viable |No.sequences [No. viable |% Viable
1 518 285 55%
2 7154 2206 31% 4045 3615 89%
3 806 131 16% 6306 5423 86%
4 727 61 8% 6126 4795 78%
5 669 31 5% 5783 4040 70%
6 626 12 2% 4919 2855 58%
7 102 0 0% 783 436 56%
8 103 0 0% 667 283 42%
9 101 0 0% 571 157 27%
10 96 0 0% 500 107 21%
11 455 59 13%
12 424 28 7%
13 384 14 4%
14 340 8 2%

Table S1: Random sequences lack viable sequences above 6 mutations from wild-type where designed
sequences have viable sequences up to 15 mutations away from wild-type

Distance
from W.T.

Linear
VAE (Sinai Logistic Ridge VAE+ (Sinai Regression x Sequences with
EVE Potts 2021) CNN RNN Regression M1 2021) UniRe| Potts | Potts [Num positive labels
50 77 80 79 95| 0.95] 51 55| 88| .95 11199 5821

2 1 7
3 61 7 50 65 7 77 89| 89 51 54 85| 89 7112] 5554
4 3 7 49 60 7 75 86 86 51 55| 84 86 6853 4856
5 4 U .49 .57 7 .74 .83 82 .51 .55 .82 .83 6452 4071
62 7! .49 .56 .7/ .71 .7¢ 7 .51 .55 .80 X 5545 2867
61 7! 50 7 69 7 7 51 56 79 885 436|
63 7 49 7 66 7 7 55| 56| 76| ; 770 283
62 7 50 7 64 7. 7 51 E‘ 76| ; 672 157
1 59 71 52 ; 7 63 71 71 52 55| 75| Vi 596 107
11 0.62 0.63 0.54 0.52 0.66 0.55 0.62) 061 0.53 0.52' 0.65 0.62 455, 59
62 ﬂ 52 .61 57 63| 63| 52 ﬂ' 71 .64 24 28
64 76| 50 70 55 69 69 48 55 78) 0 84 14
64 76| 60 76! 48| 67| 66| 43 .51 .76 .67 40| 8|
98 92| 77 67 39 90) ﬁ 29 59| 92| .91 97 1




Linear
Regression Linear
trained on Regression Linear Regression
Distance single trained on 1,2  |trained on single
from WT Potts mutations mutations mutations x Potts
2 0.79 0.95 0.88
3 0.78 0.89 0.94 0.85
4 0.78 0.86 0.92 0.84
5 0.76 0.83 0.88 0.82
6 0.75 0.79 0.85 0.80
7 0.75 0.74 0.82 0.79
8 0.72 0.72 0.80 0.76
9 0.72 0.72 0.79 0.76
10 0.71 0.71 0.78 0.75
11 0.63 0.62 0.71 0.65
12 0.70 0.63 0.73 0.71
13 0.76 0.69 0.76 0.78
14 0.76 0.67 0.78 0.76
15 0.92 0.90 0.94 0.92

Table S3: Model results of capsid viability with number of sequences per distance from wild-type.
When training on 1-2 mutations, the ridge regression can outperform unsupervised Potts model at all
distances from wild-type

Training dataset's number of ions away from W.T.
Distance from W.T. |1 1-2 1-3 1-4 1-5 Potts
1 0.80 0.80 0.80 0.79 0.78 0.32
2 0.61 0.64 0.64 0.64 0.62 0.40
3 0.50 0.51 0.52 0.52 0.53 0.39
a4 0.36 0.39 0.39 0.40 0.40 0.34
5 0.32 0.34 0.34 0.35 0.35 0.29
6 0.26 0.26 0.27 0.28 0.28 0.30
7 0.26 0.27 0.28 0.28 0.28 0.30
8 0.04 0.06 0.05 0.07 0.07 0.12

Table S4: Ridge results of capsid viability with number of sequences per distance from wild-type.
Increasing the amount of training data does not improve spearman correlations of liver tropism above
6 mutations away from wild-type

Sequence
Distance from overlap with
W.T. No. sequences |viability assay
1 332 332
2 1239 1222
3 1024 998
4 979 954
5 901 886
6 867 844
7 133 129
8 133 132
9 139 137
10 137 134

Table S5: Almost all sequences from liver tropism assay overlap with sequences from capsid viability
assay.
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