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ABSTRACT

Large Vision-Language Models (VLMs) have achieved remarkable progress in
multimodal understanding, yet they struggle with information-intensive images
that densely interleave textual annotations with fine-grained graphical elements.
The main challenges lie in precisely localizing critical cues in dense layouts and
multi-hop reasoning to integrate dispersed evidence. We propose Speculative Ver-
dict (SV), a training-free framework inspired by speculative decoding that com-
bines multiple lightweight draft experts with a large verdict model. In the draft
stage, small VLMs act as draft experts to generate reasoning paths that provide di-
verse localization candidates; in the verdict stage, a strong VLM synthesizes these
paths to produce the final answer, minimizing computational cost while recovering
correct answers. To further improve both efficiency and accuracy, SV introduces a
consensus expert selection mechanism that forwards only high-agreement reason-
ing paths to the verdict. Empirically, SV achieves consistent gains on challenging
information-intensive and high-resolution visual question answering benchmarks,
including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By
synthesizing correct insights from partially accurate reasoning paths, SV achieves
both error correction and cost-efficiency compared to large proprietary models or
training pipelines.

1 INTRODUCTION

Recent advances in large vision–language models (VLMs) have delivered impressive performance
on tasks such as image captioning and general visual question answering (VQA) (Li et al., 2025;
Fu et al., 2024). However, these models encounter challenges in information-intensive images that
densely interleave diverse textual annotations (legends, labels, captions) with fine-grained graphical
elements (charts, diagrams, plots) across multiple scales and formats (Su et al., 2025b). Address-
ing this task requires two interdependent capabilities (Figure 1; Ke et al., 2025): (i) comprehensive
and precise localization, which involves not only pinpointing the exact positions of critical cues
in densely populated layouts but also ensuring that all query-relevant regions are identified; (ii)
multi-hop reasoning, which chains visual analysis—encompassing colors, shapes, and spatial rela-
tionships—with textual evidence, thereby integrating dispersed cues into a coherent and complete
answer. As each reasoning step builds on the accuracy of the previous one, any intermediate er-
ror can propagate through the entire chain, making the overall process highly error-sensitive and
difficult to correct retrospectively.

Existing work tackles information–intensive visual reasoning with search-based zoom-in pipelines
that enlarge local regions for detailed reasoning. Specifically, learning-based methods train rein-
forcement learning policies to guide zoom operations iteratively (Zheng et al., 2025; Su et al., 2025a;
Fan et al., 2025; Zhang et al., 2025b). Enhancing its performance would demand costly fine-grained
supervision. Moreover, training-free methods perform cropping based on internal attention or con-
fidence scores (Zhang et al., 2025a; Shen et al., 2024; Wang et al., 2025b). Yet in dense layouts, we
find these signals correlate weakly with true relevance, misleading the model into visually similar but
irrelevant areas. Consequently, these tool-driven designs fail to capture all evidence for multi-hop
reasoning, leaving the core challenges of information-intensive visual reasoning unsolved.

To overcome these limitations, we propose Speculative Verdict (SV), a training-free framework
inspired by speculative decoding that combines small draft visual experts with a large verdict
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Question: What is the percentage of  NFL revenue in 2009?

    Step 1: Region localization

Step 3: Value extraction

Distinguish between players’ share (blue) 

and NFL’s share (red) in the 2009 chart.

Extract the only displayed player’s 

percentage: 51%.

Question: Which news media has the least number of employees?

Locate the following chart region.

    Step 2: Symbol identification

Step 4: Reasoning (Calculation)

    Step 1: Keyword localization
Locate the legend of “number of employees”.

    Step 2: Pattern alignment

Match 

employee 
data row in 

each media 

entry.

Step 3: Evidence aggregation
Extract all available employee 

numbers from 17 media entries:        
        

1 2 3 4 5 6

7

8

9

101214 13 11

16

15

17

1

Step 4: Reasoning (Sorting)
Sort extracted values and select 

the media with the minimum:

        
—

3 LUSA (291)

(a)                                                                                                                 (b)

17

Image: Image:

Infer the NFL’s percentage as the complementary value: 

100%-51% = 49%.

Figure 1: Examples of correct reasoning paths for information-intensive image VQA tasks. They
illustrate distinct trajectories: (a) focuses on the localization of a specific chart, symbol identifica-
tion, and complementary reasoning from a single percentage value; (b) focuses on keyword-based
localization, evidence aggregation from multiple entries across the entire image, and cross-entity
sorting to select the minimum.

model (Leviathan et al., 2023). The framework operates in two stages (Figure 2): (1) Draft stage:
multiple lightweight VLMs serve as draft experts, each generating a reasoning path that offers di-
verse localization candidates; (2) Verdict stage: a large VLM acts as a strong verdict, which receives
the reasoning paths as contextual evidence, distinguishes the correct information, and outputs the
final answer tokens. SV directly tackles core challenges through complementary strengths: draft
experts expand evidence coverage across scattered regions, while the verdict prevents error prop-
agation by synthesizing these multiple perspectives. Importantly, unlike using a large proprietary
model to reason over every image section, SV invokes the verdict only once to yield a concise fi-
nal answer, thereby minimizing computational cost while effectively recovering correct answers.
To further balance accuracy and efficiency, SV introduces a consensus expert selection mechanism
in the draft stage, ensuring that only reasoning paths with strong agreement are forwarded to the
verdict.

We evaluate Speculative Verdict on information-intensive VQA benchmarks, including Info-
graphicVQA (Mathew et al., 2021), ChartMuseum (Tang et al., 2025), and ChartQAPro (Masry
et al., 2025), which demand reasoning over dense textual and visual content. As a training-free
framework, SV consistently outperforms strong open-source models, large proprietary models, and
perception-focused search methods while remaining cost-efficient. In particular, SV yields average
gains of 4% over small VLMs as draft experts and 10% over GPT-4o (Hurst et al., 2024) as verdict.
Beyond overall gains, SV successfully corrects 47-53% of cases where majority voting or the verdict
model alone fails, thereby reducing vulnerability to error propagation in information-intensive
visual reasoning. Furthermore, SV surpasses all baselines on HR-Bench 4K (Wang et al., 2025a),
a benchmark for high-resolution visual perception, underscoring its effectiveness in challenging
multimodal reasoning scenarios.

2 RELATED WORK

Vision-Language Model Reasoning with Tools. Recent research has explored enhancing VLM
perception by manipulating input images with zooming operations to locate relevant regions (Hu
et al., 2024). (1) Prompting-based methods exploit internal signals of VLMs to decide where to
zoom. ViCrop (Zhang et al., 2025a) leverages models’ attention maps to highlight query-related
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regions, thereby generating automatic visual crops. Other works perform tree-based search, where
models evaluate candidate sub-images with confidence scores to iteratively narrow down to rel-
evant regions (Shen et al., 2024; Wang et al., 2025b). However, such signals align poorly with
the required evidence in information-intensive images, since queries often require reasoning across
multiple dispersed regions. (2) Reinforcement learning approaches instead optimize policies that
interleave visual zooming with textual reasoning (Zheng et al., 2025; Su et al., 2025a; Fan et al.,
2025; Zhang et al., 2025b). By calling zooming tools within the agentic framework, these methods
adaptively crop regions and concatenate them into the reasoning trajectory, enabling more active ev-
idence gathering. Yet these methods still fall short on information-intensive images, requiring costly
task-specific training to scale.

Speculative Decoding. Speculative decoding is a draft-then-verify decoding paradigm to accelerate
LLM inference (Xia et al., 2024). Specifically, it utilizes a draft model to generate future tokens, and
a larger target model verifies them via parallel rejection sampling. Beyond the vanilla setting, recent
work extends acceptance from token-level equivalence to step-level semantic similarity to speed up
reasoning (Yang et al., 2025; Pan et al., 2025; Fu et al., 2025b; Liao et al., 2025). Collaborative
decoding via Speculation (Fu et al., 2025a) further applies speculative decoding with multiple draft
LLMs by verifying proposals against a combined distribution of the drafts and the target, yielding
greater speedups than standard ensembling. However, these adaptations primarily target speed in
LLM inference and also do not address the challenges of vision–language reasoning.

Large Language Model Ensemble. Majority voting aggregates answers by frequency, but fails
when the correct solution is produced by a minority. Universal Self-Consistency (Chen et al.,
2023) mitigates this failure mode by prompting the LLM to select the most consistent candidate
across samples. Further, learned aggregators read multiple rationales and synthesize them to recover
minority-correct information (Qi et al., 2025; Zhao et al., 2025). However, these approaches focus on
text-only ensembling. In visual-language reasoning, supervision of ensembling is not cost-effective
since multimodal complexity requires costly, fine-grained annotations.

3 SPECULATIVE VERDICT

Speculative decoding is an inference-time optimization originally developed to mitigate the latency
of autoregressive generation (Leviathan et al., 2023). The approach employs a draft-then-verify
paradigm: (i) a small, fast draft model proposes one or more future tokens speculatively, and (ii) a
large, accurate base model verifies these proposals in parallel, accepts or revises the proposals, and
generates output that is consistent with the base model’s distribution (Xia et al., 2024; Zhang et al.,
2024). This token-level process speeds up inference by committing several tokens at once, while
maintaining quality by discarding continuations that diverge from the base model’s distribution.

The key insight is that draft models expand coverage quickly, while the verifier ensures correctness.
Although this idea has been mainly applied to accelerate text generation, its high-level principle is
also well-suited for information-intensive multimodal reasoning.

3.1 METHOD OVERVIEW

Information-intensive visual question answering (VQA) requires models to localize query-relevant
regions, perceive diverse fine-grained textual and visual details, and integrate dispersed evidence
into a single correct answer. These tasks are highly error-sensitive as elaborated in Section 1: a
single misread or mislocalized element often leads to a completely wrong prediction.

To address this challenge, we adapt the draft–then–verify paradigm of speculative decoding to mul-
timodal reasoning. Unlike its original use for inference acceleration, we repurpose the paradigm to
improve robustness and error correction in information-intensive visual reasoning. On a high level,
our Speculative Verdict (SV) framework operates in two stages (Figure 2):

(i) Draft stage, where multiple lightweight VLMs serve as experts to provide diverse reasoning
paths (Section 3.2);

(ii) Verdict stage, where a large VLM acts as verdict to verify, refine, and synthesize these reasoning
paths into the final prediction (Section 3.3).
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Input

Draft Stage Verdict Stage

Small
Draft VLMs

Consensus 
Experts

s(yi)

0.86

1.44

0.79

1.13

0.66

Large
Verdict Model

Answer Reasoning

Final 
Answer

Global consensus score: 

Lower , 
more consensus

+

Draft Model

Target Model

𝑥!

𝑥! 𝑥"# 𝑥$# 𝑥%#

Inspiration:
Speculative decoding
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𝑥∗ ≠ 𝑥∗#

Figure 2: Overview of Speculative Verdict (SV). Inspired by speculative decoding, SV operates in
two stages. In the draft stage, given an input question-image pair, multiple small draft VLMs first
generate candidate answers. A global consensus score s(yi), computed based on pairwise NLL
differences, is used to select consensus experts for reasoning path generation. In the verdict stage,
these reasoning paths are verified and corrected by a large verdict model to produce the final answer.

3.2 DRAFT STAGE

Chain-of-Thought (CoT) prompting exposes models’ intermediate reasoning steps in an explicit,
stepwise form (Wei et al., 2022). This is critical for information-intensive VQA, where solving a
question requires a sequence of localization, evidence extraction, and analytic operations (Figure 1).
However, current VLM often lacks fine-grained perception and localization on densely annotated
images, and existing tool-driven zoom-in methods are ineffective as elaborated in Section 2. We
therefore utilize multiple VLMs to produce reasoning paths rather than a single direct answer, so
that the subsequent verdict can verify and synthesize structured evidence. Concretely, given an
image–question pair (x, q), several lightweight VLMs {M1, . . . ,Mm} are selected as draft experts
and are prompted with a CoT prompt (details in Appendix G). Each expert Mi outputs a candidate
answer yi = Mi(x, q) and a reasoning path ri.

We observe that each reasoning path ri provided by draft experts typically includes: (i) global scan
and localization proposals that identify query-related regions, sections, or subplots, often referenc-
ing axes, titles, or captions; (ii) evidence extraction, which transforms visual or textual elements
into structured cues, including reading legends, mapping colors to series, parsing axis labels, or as-
sembling lists of values or tokens for subsequent operations; (iii) analytic and reasoning operations,
which operate over the extracted cues to derive higher-level conclusions, such as filtering or select-
ing relevant entities, computing differences, sorting across panels, and cross-referencing dispersed
cues. As shown in the running case (Figure 3), different experts may match legends to charts differ-
ently; some correctly gather the required cues while others misread adjacent values. This diversity
yields a complementary but potentially noisy pool of reasoning signals.

To reduce noise and cost of the pipeline, we additionally apply a consensus-based selection mecha-
nism that forwards only the k most reliable draft experts, detailed in Section 3.4.

3.3 VERDICT STAGE

The set {ri} captures diverse cues, offering richer evidence but also introducing contradictions,
which motivates the need for a verdict stage to verify and integrate them. Answer-level ensem-
bling, such as majority voting, often fails in minority-correct scenarios where many experts con-
verge on the same incorrect decision, such as mislocalizing the query-related region or misreading
fine-grained textual details, even after correct localization. This failure mode is frequently observed
in information-intensive reasoning (as illustrated in Figure 3). Rather than discarding minority-
correct signals, we leverage a stronger model as a verdict to validate grounding, resolve conflicts,
and synthesize coherent reasoning from the draft paths.

Specifically, given the image–question pair (x, q) and the drafts’ reasoning paths {ri}ki=1, we con-
catenate these paths with (x, q) and present them to a large verdict model J . The original image
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Question: 
What is the 

percentage of  NFL 
revenue in 2009?

Answer

Small
Draft VLMs

51%

8.9 Billion

49%

49%

51

0.96

0.64

0.83

0.83

1.44

s(yi)

Consensus 
Experts

Region Localization:

Information Extraction: 
The player's percentage for 2009 is 51%.
Reasoning: 
NFL Revenue Percentage = 100% - 51% = 49%        

Region Localization:

Information Extraction: 
NFL revenue for 2009 is $9.8 billion.
NFL revenue percentage for 2009 is 51%. 

Region Localization:

Information Extraction: 
NFL revenue percentage for 2009 is 51%. 

Large
Verdict Model

49%

51%

Reasoning

Figure 3: An illustration of Speculative Verdict on InfographicVQA. Five draft VLMs first produce
candidate answers, with only two providing the correct result. Consensus scoring ranks answers
by agreement, and the three with the lowest scores are selected as consensus experts. Although
some experts commit extraction errors (confusing player’s share with NFL revenue), the verdict
synthesizes their reasoning paths and successfully recovers the correct answer (49%). This illustrates
SV’s ability to identify reliable experts and achieve error correction.

x is retained as input, as the verdict is expected to perform analysis rather than merely text-based
ensembling. The verdict processes all evidence in a single forward pass and outputs the final answer:

y = J(x, q, {ri}ki=1).

In this design, the verdict acts not as a voter but as a synthesizer. It evaluates grounding consistency,
identifies contradictions across reasoning paths, and integrates consistent cues into a coherent predic-
tion. The case in Figure 3 illustrates this intended role: when only one draft extracts the correct ev-
idence, the verdict is designed to recover it by contrasting against competing but inconsistent paths.

This setup enables us to leverage the reasoning capabilities of large models while keeping the infer-
ence cost manageable. Our verdict stage maximizes prefill utilization: the verdict processes multiple
draft reasoning paths as prefill input while generating only short answer tokens through minimal au-
toregressive decode. This design also avoids relying on large closed-source models for iterative
per-section analysis and long rationale generation, both of which are token-expensive.

3.4 CONSENSUS EXPERT SELECTION

To keep the verdict input both efficient and accurate, we introduce a training-free expert selection
mechanism at the beginning of the draft stage (Section 3.2). Since each question in information-
intensive VQA admits a unique correct answer, consensus among model answers provides a princi-
pled criterion for identifying reasoning paths with higher reliability. Therefore, the key idea here is
to measure agreement among draft experts’ answers and retain only those with stronger peer con-
sensus. This mechanism is computed efficiently by prefilling the question and answer tokens, with
each draft decoded only once, making it plug-and-play with minimal overhead.

Consensus Score. We define a consensus score that measures how strongly a draft expert’s answer
is agreed by its peers. Formally, let x be the input image and q = (q1, . . . , qn) the question tokens.
From the pool of candidate draft experts {Mi}mi=1, each model produces a candidate answer yi =
(yi,1, . . . , yi,T ). For a peer model Mj (j ̸= i) in the pool, we measure how plausible it finds yi by
computing the negative log-likelihood (NLL) of the concatenated input (x, q, yi), i.e., the original
image together with the question tokens followed by the candidate answer tokens:

NLLj(yi) = − 1
T

T∑
t=1

log pMj (yi,t | x, q≤n, yi,<t).

To account for calibration differences, we normalize against Mj’s own answer yj , thus relative
consensus score from Mj’s perspective is:

sj(yi) =
∣∣NLLj(yi)−NLLj(yj)

∣∣, j ̸= i,
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where a smaller sj(yi) indicates stronger agreement, as Mj finds yi nearly as plausible as its own
answer yj .

To capture overall agreement rather than pairwise consistency, we define the global consensus score
of candidate yi by summing across all peers:

s(yi) =
∑
j ̸=i

sj(yi),

which quantifies the overall level of peer consensus for Mi’s answer, and a lower s(yi) indicates
stronger agreement and thus higher reliability.

Consensus Expert Selection Strategy. We adopt a cross-all strategy that selects the k draft experts
with the strongest consensus, measured by the lowest consensus scores, from the pool of m VLMs.
By aggregating agreement across all peers, this strategy provides a holistic measure of reliability.
It thus yields a subset of reasoning paths that are well-grounded and compact in size, balancing
informativeness and efficiency. An illustrative example of this selection process is shown in Figure 3.

4 EXPERIMENTS

4.1 SETUPS

Configuration Details. We set the draft pool size to k = 5 considering efficiency and select m = 3
consensus experts in our main experiments. Ablation studies over different m values are reported
in Section 4.4. The draft pool consists of the following VLMs for expert selection: Qwen2.5-VL-
7B-Instruct (Bai et al., 2025), MiMo-VL-7B-RL (Team, 2025b), InternVL3-8B (Zhu et al., 2025),
GLM-4.1V-9B-Thinking (Team, 2025a), Ovis2.5-9B (Lu et al., 2025). These models are chosen as
draft visual experts for their strong multimodal perception and reasoning on information-intensive
and high-resolution images. For the verdict models, we employ GPT-4o (Hurst et al., 2024) and
Qwen2.5-VL-72B-Instruct respectively, given their superior ability in visual reasoning. In particu-
lar, for information-intensive image benchmarks, we preprocess images with PP-StructureV3 (Cui
et al., 2025) to produce a layout-preserving structured format, provided together with the original
image as auxiliary input to the verdict model.

Baselines. We compare SV with proprietary models GPT-4o and GPT-4o-mini, and the large open-
source model Qwen2.5-VL-72B-Instruct as it is one of our verdicts. We also evaluate SV against
draft experts mentioned above. These baselines are evaluated under the same chain-of-thought
prompting template in Appendix G. Additionally, we include DeepEyes (Zheng et al., 2025) as a
representative tool-driven baseline with zoom-in operations.

Benchmarks. We evaluate SV on three information-intensive benchmarks and extend the evalua-
tion to a representative high-resolution benchmark, providing a comprehensive assessment of fine-
grained visual reasoning: InfographicVQA (Mathew et al., 2021), ChartMuseum (Tang et al., 2025),
ChartQAPro (Masry et al., 2025) and HR-Bench 4K (Wang et al., 2025a). InfographicVQA collects
infographics with an average high resolution over 2k, designed to test reasoning over layout, graph-
ical and textual content, including operations such as counting, sorting, and basic arithmetic. Chart-
Museum and ChartQAPro introduce substantially greater visual reasoning complexity by covering
a broad spectrum of real-world chart types and question formats, revealing a large performance gap
between current Large VLMs and humans. These benchmarks require models to visually ground
relevant regions, extract information, and conduct reasoning to answer queries.

We further assess generalization to high-resolution images on HR-Bench 4K. It comprises two sub-
tasks: FSP (Fine-grained Single-instance Perception) and FCP (Fine-grained Cross-instance Percep-
tion), stressing small-object perception and cross-instance reasoning under high-resolution inputs.

4.2 RESULTS ON INFORMATION-INTENSIVE BENCHMARKS

As shown in Table 1, SV demonstrates superior performance across all benchmarks, outperforming
a wide range of baselines. Based on the results, we have the following key observations:
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Table 1: Results on test sets of four benchmarks. The three benchmarks on the left are our main
information-intensive VQA tasks, while the benchmark on the right evaluates high-resolution per-
ception. We compare SV against closed-source VLMs, open-source VLMs, and the tool-driven
method, with all results reproduced by ourselves. The best results for each benchmark are high-
lighted in bold and the second-best results are underlined.

Model Param
Size

InfographicVQA
ANLS

ChartMuseum
Acc

ChartQAPro
Acc

HR-Bench 4K
Acc

Closed-source VLMs

GPT-4o – 76.5 42.7 52.6 67.4
GPT-4o-mini – 67.2 31.5 44.1 53.8

Open-source VLMs

Qwen2.5-VL-Instruct 7B 79.8 29.5 51.0 73.0
MiMO-VL-RL (think) 7B 83.5 29.0 57.3 72.3
InternVL3 8B 72.3 25.9 45.1 68.0
GLM-4.1V-Thinking 9B 84.8 48.0 56.2 72.3
Ovis2.5 9B 81.7 34.0 55.9 69.5
Qwen2.5-VL-Instruct 72B 84.2 40.7 60.7 73.1

Tool-driven method

DeepEyes 7B 75.5 28.0 48.7 73.0

SV w/ GPT-4o Verdict – 88.4 49.3 64.0 71.4
SV w/ Qwen2.5-VL-72B-Instruct Verdict – 86.7 48.2 63.0 75.6

Majority
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Figure 4: SV’s correction ability on verdict’s error cases across information-intensive benchmarks
(GPT-4o as verdict). We consider only cases where the verdict itself fails, to isolate SV’s inde-
pendent correction capacity. For each benchmark, three bars denote expert correctness categories
(majority-correct, minority-correct, and zero-correct), defined by how many selected experts pro-
vide the correct answer. Within each category, the bars are split into the proportion corrected by SV
(dark) versus not corrected (light). More details can be found in Appendix C.

(i) SV shows consistent gains over all strong draft experts’ baselines, with improvements of 3.6%
on InfographicVQA, 1.3% on ChartMuseum, and 6.6% on ChartQAPro with GPT-4o as verdict. SV
also achieves comparable gains with Qwen-2.5-VL-72B-Instruct as a verdict.

(ii) Importantly, SV enables strong error correction beyond simple answer aggregation.
Across benchmarks, SV recovers 47–53% of minority-correct cases, where few draft experts are
correct and the verdict alone fails (see Figure 4 and case in Figure 3). Moreover, SV even recovers
2.5-4.5% of zero-correct cases, where neither the drafts nor the verdict answers correctly (see the
case in Appendix F). In these settings, SV succeeds by extracting partially correct pieces from
different draft reasoning paths while rejecting misleading cues, thus reconstructing them into a
correct answer. These findings indicate that errors in information-intensive visual reasoning are
often structured: even incorrect paths contain informative subparts. In this way, SV exploits this
structure by synthesizing multi-perspective reasoning paths, enabling effective correction where
traditional ensemble methods fail.

(iii) SV strengths large verdict models significantly, and using GPT-4o as verdict delivers stronger
results due to its reasoning advantage on information-intensive benchmarks. Specifically, when
GPT-4o is used as verdict, SV surpasses the GPT-4o baseline by 11.9% on InfographicVQA, 6.6%
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on ChartMuseum, and 11.4% on ChartQAPro. These improvements come with reduced inference
cost for the large verdict model, demonstrating that SV can outperform much larger or proprietary
LVLMs in a cost-efficient manner.

(iv) SV substantially outperforms representative tool-driven pipeline DeepEyes, with gains of
+12.9% on InfographicVQA, +21.3% on ChartMuseum, and +11.3% on ChartQAPro. This gap
arises because DeepEyes is strong in local grounding but weak in reasoning over dense textual and
visual content. For example, it often locates on text spans or legends rather than full regions need for
analytical operations, and its zoom-in calls are sometimes redundant or misdirected (see Appendix D
for error analysis). As a result, it struggles with global comparison and dispersed evidence synthesis.
In contrast, SV’s reasoning-path synthesis enables it to integrate evidence across regions reliably
without relying on predefined tool-based visual search.

4.3 RESULTS ON HIGH-RESOLUTION BENCHMARK

We further assess generalization to high-resolution images using HR-Bench 4K to evaluate whether
SV can enhance fine-grained visual perception. The key observations are as follows (Table 1):

(i) With Qwen2.5-VL-72B-Instruct as verdict, SV achieves its largest margin, surpassing the best-
performing draft expert by 2.6% and even outperforming the verdict itself by 2.5%. The superior
performance of Qwen2.5-VL-72B as verdict on this task correlates with its stronger visual localiza-
tion capabilities, indicating verdict selection should align with task-specific requirements.

(ii) SV also exceeds DeepEyes, which is explicitly trained with zoom-in tools for iterative visual
search on high-resolution perception. This highlights SV’s ability to generalize to high-resolution
tasks, where accurate recognition of small objects is critical. Aligning perceptually strong draft
experts with a verdict thus provides a simpler yet effective solution for high-resolution reasoning.

4.4 ABLATION STUDY

To better understand the effectiveness of SV, we conduct ablation studies on information-intensive
benchmarks to analyze the impact of individual components. In these experiments, the reasoning
baseline refers to the best-performing draft VLM in our pool for each benchmark (Table 1).

Number of Consensus Experts. Our setting with m = 3 consensus experts yields a favorable
trade-off between accuracy and efficiency, as it determines the number of reasoning paths forwarded
to the verdict. As shown in Figure 5, we observe that the performance improves nearly linearly up
to three draft models and then saturates, while inference cost grows roughly linearly with size.

Selection Strategies of Consensus Experts. We confirm the effectiveness of our cross-all selec-
tion strategy by comparing it with a best-reference strategy. In the best-reference variant, the top-
performing draft VLM serves as reference and the two most consistent experts are selected with it.
While best-reference is expected to be the strongest criterion, cross-all achieves comparable gains
while remaining reference-free (Figure 6).

Selection Criteria. Selecting consensus-based experts consistently improves performance, while
divergent selection can even fall below the single-draft reasoning baseline (Table 7). These results
support that, for information-intensive tasks, consensus-based selection more reliably identifies the
correct reasoning trajectory than enforced diversity.

Impact of Verdict Stage. The verdict stage yields higher performance than majority voting across
information-intensive benchmarks (Figure 8). Notably, majority voting with all five draft experts
performs comparably as majority voting with three consensus experts, consistent with our finding
that consensus selection can match the performance of all drafts at a lower cost (Table 5). SV further
surpasses both by leveraging the verdict’s error correction ability, successfully capturing minority-
correct cases that majority voting discards (Figure 4 and Figure 3).

Choice of Verdict Input. Providing full reasoning paths to the verdict yields substantially better
performance than passing only final answers (Table 2), with improvements of 15% on Infograph-
icVQA, and 4.8% on ChartQAPro. These results highlight that rich contextual evidence is essential
for the verdict to recover correct reasoning, whereas final predictions alone are insufficient.
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sensus experts m.
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Figure 6: Ablations on different consensus expert
selection strategies.

Choice of Verdict Scale. Using a large verdict model yields stronger gains than a small verdict
model. For ablations, we select GLM-4.1V-9B-Thinking as the small verdict because it is the
strongest reasoning model among the baselines. However, results in Table 3 show that it brings only
modest improvements, while GPT-4o delivers additional gains of 3.4% on InfographicVQA and
1.3% on ChartMuseum compared to this small verdict. These results indicate that even reasoning-
strong small verdicts offer limited benefit in synthesizing correct answers, validating SV’s design
principle of invoking a strong verdict only once to achieve robust and efficient error correction.
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Figure 7: Ablations on selection criteria.
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Figure 8: Performance comparison on SV and ma-
jority voting with different model sets.

Table 2: Ablations on verdict input.

Textual input InfographicVQA
ANLS

ChartQAPro
Acc

Reasoning baseline 84.8 57.3

Answers only 73.4 59.2
Reasoning paths 88.4 64.0

Table 3: Ablations on verdict scale. A subset of 1000
samples is tested on InfographicVQA.

Verdict Choice InfographicVQA
ANLS

ChartMuseum
Acc

ChartQAPro
Acc

Reasoning baseline 84.5 48.0 57.3

GLM-4.1V-9B-Thinking Verdict 86.0 48.0 59.4
GPT-4o Verdict 89.4 49.3 64.0

5 CONCLUSION

This paper introduces Speculative Verdict (SV), a training-free framework to address challenges
of information-intensive visual reasoning. Inspired by speculative decoding, SV repositions large
models as efficient synthesizers rather than computationally expensive step-by-step reasoners. By
integrating diverse reasoning paths from lightweight experts, the verdict can distinguish informa-
tive cues and recover correctness from structured errors. Experiments show that SV consistently
outperforms strong proprietary, open-source, and tool-driven methods, establishing a cost-efficient
paradigm for reasoning on information-intensive images. A limitation of our study is that the eval-
uation is restricted to a fixed draft model pool. Future work could examine more diverse pools to
provide further insights into its generalizability.
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6 ETHICS STATEMENT

All authors have read and commit to adhering to the ICLR Code of Ethics. This work does not in-
volve human subjects, sensitive personal data, biometrics, or medical information. All datasets used
are publicly available under permissible licenses and are not privacy-sensitive. We recognize that
any automated reasoning system may produce incorrect or misleading outputs. To ensure responsi-
ble use, we emphasize that our method is intended for research and analysis rather than deployment
in high-stakes settings. Users are encouraged to verify model outputs and apply human oversight
when necessary. We take full responsibility for all reported results, analyses, and claims, and we
welcome community scrutiny and feedback.

7 REPRODUCIBILITY STATEMENT

To support reproducibility, we provide comprehensive implementation details throughout our paper.
Key experimental configurations, such as draft expert selection, consensus scoring computation,
and verdict model specifications, are documented in Section 3.4 and Section 4.1. Detailed prompt
templates are presented in Appendix G. The supplementary material includes anonymized source
code to further clarify the implementation steps and enable faithful reproduction of our results.
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A DATASET STATISTICS

Table 4 reports the statistics of the four evaluation benchmarks. All benchmarks are based on real-
world images rather than synthetic renderings, ensuring the authenticity and diversity of the eval-
uation setting. In particular, InfographicVQA, ChartMuseum, and ChartQAPro are information-
intensive benchmarks: they contain thousands of images and questions with dense textual and nu-
merical content, collected from diverse sources spanning 2594, 157, and 184 distinct web domains
respectively (Mathew et al., 2021; Tang et al., 2025; Masry et al., 2025). This diversity reduces
source bias and reflects practical challenges in multimodal reasoning.

HR-Bench 4K is used primarily to evaluate the generalization of our method, serving as a high-
resolution benchmark with average sizes exceeding 4000×3500 pixels (Wang et al., 2025a). At the
same time, one of our main benchmarks, InfographicVQA, also exhibits high-resolution character-
istics. In particular, it frequently contains long-format images where diagrams span large vertical
layouts (see the case in Figure 3), which further compounds the difficulty of grounding and multi-
hop reasoning across dispersed regions.

Table 4: Statistics of the evaluation benchmarks. We report the number of images and questions, as
well as the average image resolution (width W̄ and height H̄).

Dataset Real vs.
Synthetic #Images #Questions W̄ H̄

InfographicVQA (test) Real 3288 579 1092 2771
ChartMuseum (test) Real 1000 818 1551 1213
ChartQAPro Real 1948 1341 1194 986
HR-Bench 4K Real 800 200 4024 3503

B COSTS

Table 5 reports the average inference cost of invoking GPT-4o as the verdict model per sample across
benchmarks. Costs are estimated using the official GPT-4o pricing (version gpt-4o-2024-08-06) as
of September 2025. The small variation across benchmarks is mainly attributed to differences in
reasoning path length, as more challenging tasks typically induce more complex reasoning. Overall,
the inference cost of using GPT-4o as the verdict is under $0.011 per sample across all benchmarks.

Table 5: Average inference cost of GPT-4o as verdict per sample across benchmarks. Costs are
computed using GPT-4o (gpt-4o-2024-08-06) pricing by September 2025.

Dataset GPT-4o cost per sample

InfographicVQA $0.0068
ChartMuseum $0.0109
ChartQAPro $0.0071
HR-Bench 4K $0.0044

C SUPPLEMENTARY RECOVERY ANALYSIS ON INFORMATION-INTENSIVE
BENCHMARKS

Table 6 and Figure 9 show the detailed recovery statistics across information-intensive benchmarks
with GPT-4o as verdict. We break down SV performance under three scenarios: (i) cases where
the majority of draft experts are correct (majority-correct), (ii) cases where only a minority are
correct (minority-correct), and (iii) cases where none are correct (zero-correct). While the main
paper focuses on the GPT-4o’s error cases to isolate SV’s effectiveness, here we provide the full
results for completeness.

Notably, in the zero-correct setting, recovery occurs rarely (2.6–24%), but it demonstrates verdict’s
surprising ability to infer the correct answer by synthesizing signal from entirely noisy reasoning.
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Table 6: Recovery accuracy (%) with GPT-4o as verdict. Results are conditioned on whether GPT-
4o itself can produce the correct answer.

GPT-4o Correct GPT-4o Wrong

Dataset Majority-
correct

Minority-
correct

Zero-
correct

Majority-
correct

Minority-
correct

Zero-
correct

InfographicVQA 96.81 64.13 20.54 93.30 53.42 4.44
ChartMuseum 98.46 69.84 15.38 89.92 47.71 2.69
ChartQAPro 94.59 68.18 24.00 85.25 48.43 2.86
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Figure 9: SV’s correction ability on verdict’s correct cases (GPT-4o as verdict), complementary to
its error cases in the Figure 4.

D ERROR ANALYSIS OF TOOL-DRIVEN PIPELINE

As mentioned in Section 2, tool-driven methods represent a line of work that augments vision-
language reasoning with explicit zoom-in operations. The representative pipeline DeepEyes is de-
signed to iteratively ground into image regions, and integrate them into the ongoing reasoning trajec-
tory under an RL framework. This mechanism has proven effective on high-resolution benchmarks,
where localized inspection of fine details is crucial.

However, DeepEyes is not specifically trained on our benchmarks, which require reasoning over
information-intensive images with densely interleaved textual and visual elements. Its performance
on InfographicVQA reveals the current limitations of such tool-based pipelines in this domain. We
categorize the observed deficiencies into three core challenges:

(i) Tendency toward literal grounding. DeepEyes is proficient at small-scale grounding but often
focuses on literal text spans or legends rather than reasoning-critical regions. For example, when a
question requires aligning numerical values with a chart axis, the model frequently grounds directly
onto the answer text or nearby labels instead of the relevant data regions. This shortcut strategy
works for simple queries but fails on complex reasoning on information-intensive images that require
global comparison.

(ii) Inefficient tool usage. Although DeepEyes is trained to iteratively apply zoom-in tools, we
observe that it invokes only one zoom step in more than half of the test cases. Among the double-
zoom cases, 92.8% duplicate the same bounding box, which serves only for verification rather than
exploration. In some instances, the model zooms into empty areas or irrelevant regions.

(iii) Lack of robustness on long and dense images. Information-intensive images often contain multi-
panel figures and dense annotations. DeepEyes cannot maintain a trajectory across multiple zoom
steps, making it difficult to integrate dispersed evidence. As a result, tasks requiring cross-region
synthesis, such as counting, sorting, or comparing across multiple subplots, remain challenging for
it.

Overall, this analysis indicates that while tool-driven pipelines are promising for high-resolution
inspection tasks, they face notable difficulties applying to information-intensive images without
domain-specific supervision. In contrast, SV achieves strong performance without additional train-
ing, offering a simple and effective alternative for reasoning over complex multimodal inputs.
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E ABLATION STUDY ON ADDITIONAL STRUCTURED IMAGE INPUT TO
VERDICT

In our experimental setup in Section 4.1, we preprocess each image via PP-StructureV3, a document
parsing model that generates Markdown representations capturing layout, textual blocks, and visual
metadata (Cui et al., 2025). This structured representation is then converted into an additional image
input for the verdict. To verify whether this input is critical or merely auxiliary, we conduct an
ablation study (Table 7).

The results show that SV achieves substantial gains over the reasoning baseline even without struc-
tured input. With the structured input, performance is generally slightly improved, though the gain
is negligible or even marginally lower in some cases. This pattern suggests that structured OCR-
derived signals are not essential for SV’s core performance, but may assist the verdict to distinguish
among competing reasoning paths.

Table 7: Ablations on additional structured image input to the verdict.

Input InfographicVQA
ANLS

ChartMuseum
Acc

ChartQAPro
Acc

Reasoning baseline 84.8 48.0 57.3

w/o input 88.3 49.5 59.4
w input 88.4 49.3 64.0

F QUALITATIVE EXAMPLE

Figure 10 illustrates a case where all three draft experts produced incorrect reasoning paths, yet
the verdict successfully corrected the answer. Specifically, the draft experts faced different types
of failures: some mis-extracted information from the image, others extracted the key information
correctly but failed to sort the values properly, and thus all generated wrong answers. Interestingly,
the verdict itself, when asked directly, also tends to answer “Australia” incorrectly. However, when
analyzing the noisy and conflicting reasoning paths together, the verdict was able to recover the
correct answer (Portugal).

This example complements the main results section: while Figure 3 illustrates recovery from
minority-correct experts, here we present a zero-correct case to show that SV can still synthesize
the correct solution even when all drafts and the verdict individually fail.

G PROMPT TEMPLATES

G.1 CHAIN-OF-THOUGHT PROMPTS

As described in Section 4.1, we employ a Chain-of-Thought prompt for each consensus expert to
generate reasoning paths and apply it identically when evaluating baselines. For InfographicVQA
and HR-Bench 4K, we use the same CoT prompt. For ChartMuseum (Tang et al., 2025), we adopt
its official reasoning prompt, and adapt that prompt strategy to ChartQAPro, given their similar-
ity in task complexity. Since ChartQAPro requires different prompt templates tailored to question
types (Masry et al., 2025), we first follow its official template per question type, then concatenate it
with our reasoning prompt.

The reasoning prompts for these datasets are shown in Figure 11.

G.2 PROMPTS FOR VERDICT

The user prompts used in the verdict stage are identical across datasets except for the final instruction
sentence, which is customized (see Figure 13). For GPT-4o as verdict, the system prompt is shown in
Figure 12. For Qwen-2.5-VL-72B-Instruct as verdict, we prepend its system prompt at the beginning
of the user prompt.
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H THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we used LLMs solely for auxiliary tasks such as language polishing, prompt refining,
and proofreading. Importantly, these interventions did not contribute any main scientific insight,
experimental design, or methodological advance. All core ideas, theoretical developments, experi-
ments, analyses, and claims in this paper are the work of the authors. Accordingly, authors assume
full responsibility for all content, consistent with ICLR policy that LLMs are not eligible for author-
ship.

Question: In which country the percentage of female 
researcher was the highest in the duration of 2011-15?

To determine the country with the highest percentage of female researchers in the duration of 2011-15, let‘s 
analyze the data provided in the image:
1. The image shows a pie chart for each country, indicating the proportion of women and men among 
researchers in Computer Sciences for the years 2011-15.
2. We need to compare the percentages of women researchers for each country listed.

Here are the percentages for each country:
Canada: 23% (women), US: 22% (women), Mexico: 23% (women), Chile: 16% (women), Brazil: 23% (women), 
EU28: 22% (women), Australia: 25% (women), Denmark: 20% (women), France: 22% (women), Portugal: 27% 
(women) ,  Japan: 11% (women)

From the above percentages, the highest percentage of women researchers is in Australia at 25%.

: Portugal

1

Image:

Ground-truth: Portugal

To answer the question, we need to look at the section titled “Researchers” which shows the proportion of 
women and men among researchers in Computer Sciences from 2011-15. Each country is represented by a 
circle with two segments, one for women and one for men, with the percentage values indicated. We need to 
identify the country with the largest segment for women:

Canada: 33% women, UK: 24% women,  France: 22% women, US: 22% women, Mexico: 18% women, Peru: 17% 
women, Chile: 16% women, Brazil: 23% women, Australia: 25% women, Japan: 11% women, Denmark: 11% 
women, Portugal: 26% women, ELIZABET: 22% women

From the list, we can see that Canada has the highest percentage of female researchers at 33%.

To determine the country with the highest percentage of female researchers (2011 - 15), we examine the 
"Researchers" section, which lists women's percentages (green) for each country. Checking each country's data: 
Canada: 23%, Denmark: 20%, France: 78%, US: 22%, Portugal: 27% (women), Mexico: 23%, Australia: 29%, Brazil: 
23%, UK: 22%, EU28: 22%, Chile: 16%

Among these, France has the highest percentage of female researchers at 78%. 

2

3

4

5

6

7

8

10 11

12

9

Figure 10: A qualitative zero-correct case corrected by verdict. All three draft experts fail due to
errors in extracting or sorting visual information, yet the verdict synthesizes their noisy reasoning
paths to recover the correct answer (i.e., Portugal).
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InfographicVQA / HR-Bench 4K

Question: {QUESTION} Please think step-by-step about the image to
answer the question using a single word or phrase enclosed within \\
boxed{{}}.

ChartMuseum

Please answer the question using the chart image.

Question: {QUESTION}

Please first generate your reasoning process and then provide the
user with the answer. Use the following format:

<think>
... your thinking process here ...
</think>
<answer>
... your final answer (entity(s) or number) ...
</answer>

ChartQAPro

{PROMPT for a specific question type}

Please first generate your reasoning process and then provide the
user with the answer. Use the following format:

<think>
... your thinking process here ...
</think>
<answer>
... your final answer (entity(s) or number) ...
</answer>

Figure 11: Prompt templates for reasoning.

All benchmarks

You are a vision-and-language judge. Follow the instructions strictly
.

Figure 12: System prompt template for verdict.
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InfographicVQA / ChartMuseum

Question:
{QUESTION}
--- Model 1 ---
Reasoning:
{Reasoning path 1}
Proposed Answer: {Answer 1}
--- Model 2 ---
Reasoning:
{Reasoning path 2}
Proposed Answer: {Answer 2}
--- Model 3 ---
Reasoning:
{Reasoning path 3}
Proposed Answer: {Answer 3}
Given the raw image, the layout-annotated image, the question, and
the reasoning from three models, please give the final answer using a
single word or phrase enclosed within \\boxed{{}}.

ChartQAPro

Question:
{QUESTION}
--- Model 1 ---
Reasoning:
{Reasoning path 1}
Proposed Answer: {Answer 1}
--- Model 2 ---
Reasoning:
{Reasoning path 2}
Proposed Answer: {Answer 2}
--- Model 3 ---
Reasoning:
{Reasoning path 3}
Proposed Answer: {Answer 3}
Given the raw image, the layout-annotated image, the question, and
the reasoning from three models, please directly give the final
answer enclosed within \\boxed{{}}.

HR-Bench 4K

Question:
{QUESTION}
--- Model 1 ---
Reasoning:
{Reasoning path 1}
Proposed Answer: {Answer 1}
--- Model 2 ---
Reasoning:
{Reasoning path 2}
Proposed Answer: {Answer 2}
--- Model 3 ---
Reasoning:
{Reasoning path 3}
Proposed Answer: {Answer 3}
Given the image, the question, and the reasoning from three models,
please directly give the final answer with the option’s letter
enclosed within \\boxed{{}}.

Figure 13: User prompt templates for verdict.
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