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Abstract

We train copies of a neural network on different sets of SGD noise and find that linearly
interpolating their weights can, remarkably, produce networks that perform significantly
better than the original networks. However, such interpolated networks consistently end
up in unfavorable regions of the optimization landscape: with further training, their per-
formance fails to improve or degrades, effectively undoing the performance gained from the
interpolation. We identify two quantities that impact an interpolated network’s perfor-
mance and relate our observations to linear mode connectivity. Finally, we investigate this
phenomenon from the lens of example importance and find that performance improves and
degrades almost exclusively on the harder subsets of the training data, while performance
is stable on the easier subsets. Our work represents a step towards a better understanding
of neural network loss landscapes and weight interpolation in deep learning.

1 Introduction

Linear interpolations of neural network weights are of considerable interest in modern deep learning, for both
theoretical and practical purposes (Singh & Jaggi, 2020; Li et al., 2023; Neyshabur et al., 2020). They have
aided our understanding of training dynamics and loss landscapes (Frankle et al., 2020; Sharma et al., 2024;
Paul et al., 2022a), and can improve performance at convergence (Izmailov et al., 2018; Matena & Raffel,
2022; Wortsman et al., 2022).

Much of the prior work on this topic has focused on linear interpolations of network weights during late-stage
training or at convergence (Wortsman et al., 2022), or interpolating SGD iterates of a network along a single
training trajectory (Zhang et al., 2019). However, our understanding of the properties of such networks and
their optimization remains limited in more general settings. The observations and investigations presented
here attempt to address this gap and improve our understanding of how linear interpolations evolve in the
context of SGD noise throughout the training process.

We train copies of networks on different sets of SGD noise (i.e data order and augmentation) on standard
vision tasks. More specifically, we consider a network initialization that is trained for a small number of
iterations k, after which its copies A and B are trained on different sets of SGD noise for s epochs.

With this context, our main findings and contributions are summarized as follows:

• We show that the performance of the network derived by interpolating A and B (referred to as the
interpolant henceforth) varies significantly throughout the optimization process. Specifically, given
k, the interpolant can display better accuracy than A or B on the training and test set, if the value
of s is small enough. Later in training (i.e. as s becomes larger), interpolant performance becomes
significantly worse.

• We attempt to train interpolants derived early in training and find that the improvement in per-
formance is seemingly transient – while they display better immediate performance, they either fail
to improve or degrade over the next few epochs of training. Empirically, we find that standard
learning rate schedule adjustments effectively provide no speed-up in optimization. We hypothesize
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Figure 1: We train two copies of a network on different sets of SGD noise, then average their weights and
continue training on the resulting network. We find that test accuracy shoots up upon interpolation, but
then precipitously drops and improvement stalls. The network initialization was trained for k = 10 epochs
before being cloned into “child networks” A and B. A and B were then trained on different SGD trajectories
for s = 10 epochs, before being averaged and trained further for 10 epochs.

that first-order optimization methods may be unsuitable for training interpolants and maintaining
the accuracy boost.

We also note that trained interpolated networks perform just as well as standard networks when
trained to convergence – by interpolating early, one can obtain models that perform better only
early in training.

• We analyze this phenomenon through the lens of example importance for good generalization,
and find that “important” examples (those with higher EL2N scores as defined in Paul et al.
(2021)) contribute significantly to the boost and subsequent drop in performance. Furthermore,
there is nearly no drop in performance on the less important examples – there can be no increase
in performance in this case since networks perfectly learn these examples early in training. We
hypothesize that our observations occur due to different subpopulations of the data becoming stable
to SGD noise at different points in training, as noted by Paul et al. (2021).

2 Related Work

Network weight interpolation has attracted significant interest in recent work. Izmailov et al. (2018) intro-
duces Stochastic Weight Averaging, where averaging SGD iterates along the same trajectory lead to better
generalization. In a similar vein, Zhang et al. (2019) introduces the Lookahead optimizer, which interpo-
lates a set of “fast weights” to update the actual weights of the network, leading to better training stability
and generalization. Wortsman et al. (2022) show that networks fine-tuned with different hyperparameter
configurations often lie in the same loss basin, and that averaging them can lead to better robustness and
performance. Ilharco et al. (2023) introduce the notion of “task vectors”, which capture task-specific direc-
tions in weight space. Furthermore, they can be arithmetically combined with fine-tuned network weights
and with each other to improve and/or degrade performance on specific tasks. Several other works support
these observations (Matena & Raffel, 2022; Li et al., 2022; McMahan et al., 2017). In contrast to these
settings, our work focuses on interpolants obtained in the earlier stages of training.

Our work is largely based on the framework provided by Frankle et al. (2020), which introduced linear
mode connectivity – networks trained from the same initialization on different sets of SGD noise (after
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some short period of shared training) converge to the same linearly connected minimum. We build upon
their work by investigating interpolants earlier in training, instead of at convergence. Mirzadeh et al.
(2021) observe that networks starting with the same initialization are connected by linear, low-loss paths
in the context of continual and multitask learning. Zhou et al. (2023) show that this notion of linear mode
connectivity extends to layer-wise feature maps as well. Permutation symmetries have been shown to align
networks so that they become linearly mode connected (Entezari et al., 2022; Ainsworth et al., 2023; Sharma
et al., 2024). Garipov et al. (2018) and Draxler et al. (2018) show that networks trained from different
initializations can be connected by non-linear low-loss paths.

Paul et al. (2021) propose the GraNd and EL2N scores to identify important examples early in training
across different network architectures and training configurations. We make use of the EL2N score to
analyze observations made in this work and relate it to example importance. Toneva et al. (2018) shows
that deep networks learn “easy” data earlier in training and rarely forget this subset. Furthermore, these
examples do not contribute significantly to final generalization performance. Our experiments support these
findings – we find that interpolated network performance is most variable on examples that are learned late
in training. Baldock et al. (2021) introduces the notion of effective prediction depth to empirically measure
example importance and correlate it to the accuracy and speed of learning a given example.

3 Interpolating Weights Early in Training

3.1 Linear Mode Connectivity and Instability Analysis

We say that two neural networks are linearly connected if all networks along the linear path connecting
the two trained networks in the parameter space have loss no larger than the end points (Frankle et al.,
2020). The authors empirically demonstrate this through instability analysis, where two copies of a network
are trained on different samples of SGD noise to convergence. If the two converged networks are linearly
connected, the original network is said to be stable to SGD noise.

In our work, we cannot use instability directly – as we will soon see, we often encounter interpolants that
perform better than the networks they were derived from, and therefore taking a maximum over performance
errors will not suit our purposes. Instead, we consider a similar metric but pay attention to the maximum
difference (increase or decrease) from the average error of the two networks that we are interpolating between.
Unlike (Frankle et al., 2020), we track the interpolant’s performance throughout training rather than only
at convergence.

3.2 Interpolation Performance Throughout Training

Understanding the effect of linear interpolation early in training helps improve our understanding of linear
mode connectivity since it is well-known that the early, noisy stage of training can heavily impact training
dynamics and performance at later stages (Goyal et al., 2018; Jastrzebski et al., 2020; Gilmer et al., 2022;
Paul et al., 2022b; Fort et al., 2020). Our analysis can also help tease apart the properties and structure of
neural network loss landscapes at different stages in the training process.

We start with a network that is randomly initialized or trained for k steps. Then, two copies of this network,
A and B, are trained on different sets of SGD noise for s epochs. Experimental details for the training setup
can be found in Appendix A. We will show the results of our experiment on CIFAR-10 (Krizhevsky, 2009)
with ResNet20 networks (He et al., 2016) here (specifically Fig. 2 in this context) – additional results on
different datasets and network architectures can be found in Appendix C and onward.

We observe that interpolant performance depends on both k and s. When k = 0, i.e. copies of the network
are made at initialization without any training, interpolants perform extremely poorly. However, when the
value of k is increased slightly, we make two observations: (a) the interpolants slightly outperform networks
A and B early in training, and (b) the rate at which interpolant performance degrades becomes smaller.
Furthermore, as k scales, both these observations become more dominant – interpolants outperform the
original networks for a longer portion of the training period, and their performance degrades more slowly.

3



Under review as submission to TMLR

0 10 20 30 40 50 60 70 80

0.2

0.4

0.6

0.8

k = 0 iters

0 10 20 30 40 50 60 70 80
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
k = 100 iters

0 10 20 30 40 50 60 70 80

0.5

0.6

0.7

0.8

k = 400 iters

0 10 20 30 40 50 60 70 80

0.60

0.65

0.70

0.75

0.80

0.85

0.90
k = 750 iters

0 20 40 60 80 100 120 140 160
0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925
k  3906 iters (10 epochs)

= 0
= 0.25
= 0.5
= 0.75
= 1

s (in epochs)

Te
st

 A
cc

ur
ac

y

Figure 2: Progression of test performance of ResNet20 networks resulting from linear weight interpolation
of child networks (α = 0 and 1, where α is the interpolation timestep) trained on different sets of SGD noise
on CIFAR-10. The network initialization is trained for k steps before being cloned into child networks, after
which they are trained on different SGD trajectories for s epochs. As k increases, interpolants perform just
as well or better than the child networks for an increasing number of epochs s before their performance
degrades. Eventually, interpolants perform well at all points in training until convergence, making the
network “stable to SGD noise” à la Frankle et al. (2020). The vertical dotted black lines represent learning
rate drops by a factor of 0.1, following the standard training scheme for this task. Note that the interpolants
are not trained further after interpolation – their performance is simply recorded while child networks are
trained on different sets of SGD noise. We repeat this experiment on 3 network initializations and provide
error bars.

Note that the interpolants are not trained further – their performance is simply noted while networks A and
B continue training on separate SGD trajectories.

Once k is sufficiently large, interpolant performance improves by more or less the same amount regardless
of the exact value of s. This is important from a practical perspective – we can potentially improve the
performance of a network by simply training two copies on different sets of SGD noise for a small number
of steps and interpolating their weights. Based on the scale and nature of the task, this may be preferable
to training a single network for multiple epochs. It can be reasoned that the performance of an interpolated
network drops as s increases since networks A and B grow further apart in L2 distance in weight space when
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trained through different SGD trajectories. The same observation applies to other notions of distance as
well (see Appendix G of Frankle et al. (2020)).

Observation (b) is partly captured by Frankle et al. (2020) – they show that instability to SGD noise i.e. the
performance gap between networks A and B and their interpolants at convergence gradually decreases as k
increases. When k becomes sufficiently large, the interpolated weights perform better than or approximately
as well as networks A and B at all stages of training, making the network “stable to SGD noise”. Intuitively,
an increase in k may correspond to gradually determining the “basin fate” of the network (Fort et al., 2020),
explaining the decrease in the rate at which performance degrades. However, we believe that the picture is
still far from clear and does not explain observation (a) at all.

One can also observe that in the later stages of training, interpolants can do just as well but do not outperform
networks A and B – we address an aspect of this in Section 4.

4 Training Linear Interpolants

From a practical perspective, our findings so far lead to a natural question: if linearly interpolating the
weights of networks trained on different sets of SGD noise leads to better performance (given appropriate
values of k and s), can we efficiently leverage this to speed up optimization?
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Figure 3: (a) Zoomed-in view of test performance of child networks and interpolant before and after weight
averaging, for k = 5 and s = 5 epochs. We observe a rise in test accuracy followed by an immediate drop over
the next few epochs. In addition to training the interpolant, we also train the child networks independently
as a reference. (b) Difference between interpolant and child network performance, for various (sufficiently
large) values of k. We consistently observe that the interpolant performs significantly better than the child
networks at the point of interpolation, but there is effectively no difference after 1-2 epochs. See Fig. 6 for
variations.

We address this by looking at the simplest case – two copies of a network are made after k epochs, trained
on different sets of SGD noise, and then interpolated to produce a network with better performance. The
resulting interpolant is then trained further to convergence. From the previous section, one may observe
that the degradation or improvement in performance is most significant for α = 0.5 – we will use this setting
in our further experiments, though our observations generally hold for other reasonable values of α (i.e. not
very close to 0 or 1).
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We train ResNet-20 (He et al., 2016) networks on CIFAR-10 (Krizhevsky, 2009) with different values of k and
s and evaluate their test performance with a focus on how performance changes at and after averaging network
weights (see Fig. 3 and Fig. 6). In general, we find that while interpolating weights improves performance, it
stagnates or degrades immediately over the next few epochs of further training. The subfigure corresponding
to k = 1 and s = 1 is an exception to this rule but is not useful in pratice, since gains in performance very
early in training are usually “easy” to achieve.

Simply dropping the learning rate after interpolation removes this observed stagnation/drop in performance,
but negatively impacts the performance at convergence, which may be undesirable (see Fig. 7). As a
compromise, we try warming up the learning rate after interpolation instead and find that this does not
cause any noticeable difference in the originally observed behavior – performance continues to degrade when
the learning rate is dropped and gradually increased. These results can be observed in Fig. 4.
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Figure 4: Zoomed-in view of test performance of child networks before interpolation and the weight-averaged
network at, and after interpolation, for a variety of k = 5 and s = 5 epochs – note that the plot begins after
the first k epochs. Test performance of the averaged network continues dropping even when linear warmup
is employed after interpolation. The learning rate is warmed up over t iterations, where the learning rate is
i
t × l at iteration i, and l is the original learning rate.

These results suggest that networks obtained by weight interpolation consistently end up in regions of the
loss landscape that are locally “better”, but are not naturally amenable to further training through SGD
– the degradation in the improved performance heavily implies that training is stalled as the interpolated
network escapes its present position in the loss landscape. Furthermore, this phenomenon does not seem
to be specific to a particular model architecture or choice of hyperparameters (such as the learning rate
schedule), hinting that what we observe is something more fundamental to the optimization process.

Our results so far raise two key questions:

• Why does linear interpolation of network weights trained from the same initialization on different
sets of SGD noise lead to networks that perform consistently and significantly better? How does
this depend on quantities k and s?

• Why are interpolants derived in this manner not naturally amenable to further training through
SGD? What are the properties of interpolants and their immediate positions in weight space or the
loss landscape that cause this, and if and how can this be prevented or mitigated?
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5 Example Importance

We now consider the following questions: Are there specific examples in the training set that are impacted
more heavily than others by weight interpolation? If so, is it the same set of examples that contribute
significantly to the improvement and subsequent drop in performance?

Frankle et al. (2020) note that networks become stable to SGD noise early but at different points in training
for different datasets during the training process. Furthermore, Paul et al. (2021) introduce metrics (see
Section 5.1) to measure example importance for training and achieving good generalization. The authors
show that data subsets differentiated by these metrics become stable to SGD noise at significantly different
points in training – in general, the more important the example, the later in training stability is achieved
with respect to it. Motivated by this, we explore how performance changes at and after interpolation on
subsets of data of similar importance according to this metric.

5.1 EL2N Score

Introduced by Paul et al. (2021), the Error L2-Norm (EL2N) score of a training example is defined as the
expected norm of the difference between its label as predicted by the model and its ground truth label, where
the expectation is computed at some early epoch t over multiple trained network initializations. The authors
demonstrate that the higher-scoring examples are more difficult to learn but are also more important for
generalization – removing these difficult examples from the training set had the biggest effect on the final
generalization of the model.

5.2 Interpolant Performance Improves and Degrades on Important Examples
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Figure 5: Performance of a ResNet20 network on 4 splits of CIFAR-10’s training set differentiated by EL2N
score, where Split 1 contains the least important examples, and Split 4 contains the most important ones.
The rise and subsequent drop in performance due to interpolation is most noticeable in Split 3 and Split 4,
which the network performs relatively poorly on. As noted in prior work (Paul et al., 2021), the network is
likely to be unstable to SGD noise with respect to Splits 3 and 4 at such an early point in training, providing
more evidence for the connection between our observations and stability to SGD noise.

We maintain the experiment setup from the previous section, where child networks (ResNet20) are trained
on different sets of SGD noise, averaged, and then trained further. In Fig. 5, we track the performance of
the child networks and the averaged network across 4 equal splits of CIFAR-10’s training set. The data is
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split according to the EL2N scores of the training examples computed at epoch 10 of training – each split
consists of 12500 examples, with Split 1 and Split 4 containing examples with the lowest and highest EL2N
scores respectively.

As expected and shown by previous work, more important examples (as defined above) are indeed learned
later in training. We also observe that it is primarily on Splits 3 and 4 that the network’s performance
improves and subsequently drops. While the former may seem obvious (these are the only splits where there
is space for performance to improve), the latter is not – linearly interpolating the weights causes a drop in
performance almost exclusively on the harder examples in a dataset. Furthermore, the network maintains
stellar performance on the easier examples when trained further.

Our observations emphasize the connection between interpolated network performance and stability to SGD
noise on subpopulations of data differentiated by example importance – interpolants derived from networks
trained on separate SGD noise trajectories perform better on data subpopulations that are still unstable to
SGD noise. On the other hand, once stability to SGD noise is reached on a specific subpopulation, there is
no degradation in performance from weight interpolation.

6 Conclusion and Discussion

We have empirically demonstrated that when copies of a neural network are trained on different sets of SGD
noise, the network resulting from a linear interpolation of their weights can perform better than the trained
copies. We frame this observation as an extension of linear mode connectivity, offering a more complete
picture of how networks become stable to SGD noise. Interestingly, when such an interpolated network is
further trained, performance fails to improve or degrades over the next few epochs. We also demonstrate
that strategies such as dropping or warming up the learning rate do not remedy this observation – linearly
interpolated networks consistently end up in brittle areas of the loss landscape that make the network
perform better in the short term but impede further optimization. We analyze this phenomenon from the
lens of example importance and empirically demonstrate that the observed improvement and degradation in
performance occur specifically in data subsets that are more important for generalization, providing further
evidence for the connection between our observations and differences in stability to SGD noise on examples
differentiated by example importance.

We conclude by noting some limitations and directions for future work. The biggest question raised by our
work is: Why does a simple linear interpolation of network weights trained on different sets of SGD noise
consistently show better performance, and how can we effectively leverage this improvement? While we
connect our observations to prior work, we do not comprehensively answer this question. The strategies we
explore to mitigate the drop in performance when training the interpolants are based on previously used
optimization techniques and tricks; due to the empirical nature of our study, we cannot conclude whether
an alternative optimization method exists that could robustly optimize the interpolants, exploiting the drop
in error to speed up training. It is also important to note that the current observations only apply to the
standard vision tasks, and it is an empirical question whether they would extend to other domains.

Overall, our work provides insight into the behavior of network weight interpolations during the early stages
of training and at the same time, raises new questions to address. We believe that this will help us better
understand neural network loss landscapes and weight interpolation in the future.
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B Additional Results for ResNet20 + CIFAR-10
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Figure 6: Zoomed-in view of test performance of child networks before interpolation and the weight-averaged
network at, and after interpolation, for a variety of k and s values in epochs. We consistently observe a
rise in test accuracy followed by an immediate pause in improvement or drop over the next few epochs.
Interestingly, the magnitude of improvement seems to be independent of the exact values of k and s.
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Figure 7: Dropping learning rate early in training removes the performance degradation observed in Fig. 3
but affects final performance significantly.
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C VGG-16 + CIFAR-10
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Figure 8: Progression of test performance of networks resulting from linear weight interpolation of child
networks.

0 2 4 6 8 10

0.4

0.6

0.8

k = 1, s = 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0

k = 1, s = 5

0 5 10 15 20

k = 1, s = 10

Network A
Network B
Averaged Network

0 2 4 6 8 10

0.4

0.6

0.8

k = 5, s = 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0

k = 5, s = 5

0 5 10 15 20

k = 5, s = 10

0 2 4 6 8 10

0.4

0.6

0.8

k = 10, s = 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0

k = 10, s = 5

0 5 10 15 20

k = 10, s = 10

Epoch

Te
st

 A
cc

ur
ac

y

Figure 9: Test performance of child networks before interpolation and the weight-averaged network at, and
after interpolation, for a variety of k and s values in epochs.
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D ResNet56 + CIFAR-100
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Figure 10: Progression of test performance of networks resulting from linear weight interpolation of child
networks.
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Figure 11: Test performance of child networks before interpolation and the weight-averaged network at, and
after interpolation, for a variety of k and s values in epochs.
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E ResNet20 + CINIC-10
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Figure 12: Progression of test performance of networks resulting from linear weight interpolation of child
networks on CINIC-10 (Darlow et al., 2018) with a ResNet20.
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Figure 13: Test performance of child networks before interpolation and the weight-averaged network at, and
after interpolation, for a variety of k and s values in epochs on CINIC-10 with a ResNet20.
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