Under review as a conference paper at ICLR 2026

DECISION-THEORETIC APPROACHES FOR IMPROVED
LEARNING-AUGMENTED ALGORITHMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We initiate the systematic study of decision-theoretic metrics in the design and
analysis of algorithms with machine-learned predictions. We introduce ap-
proaches based on both deterministic measures such as distance-based evaluation,
that help us quantify how close the algorithm is to an ideal solution, and stochas-
tic measures that balance the trade-off between the algorithm’s performance and
the risk associated with the imperfect oracle. These techniques allow us to quan-
tify the algorithm’s performance across the full spectrum of the prediction error,
and thus choose the best algorithm within an entire class of otherwise incompa-
rable ones. We apply our framework to three well-known problems from online
decision making, namely ski rental, one-max search, and contract scheduling.

1 INTRODUCTION

The field of learning-augmented computation has experienced remarkable growth recently. The
focus, in this area, is on algorithms that leverage a machine-learned prediction on some key ele-
ments of the input, based on historical data. The objective is to obtain algorithms that outperform
the pessimistic, worst-case guarantees that apply in the standard settings. Online algorithms with
ML predictions were first studied systematically in [Lykouris & Vassilvtiskiil (2018) and [Purohit
et al. (2018a)) and since then, the learning-augmented lens has been applied to numerous settings, in-
cluding rent-or-buy problems (Gollapudi & Panigrahil,[2019)), graph optimization (Azar et al.| [2022)),
secretaries (Antoniadis et al.,|2023), packing and covering (Bamas et al.,[2020), and scheduling (Lat-
tanzi et al.,2020). This is only a representative list; see the repository (Lindermayr & Megow,[2025)).

A major challenge in learning-augmented algorithms is the theoretical analysis, and its interplay with
the design considerations. Unlike the standard model, which focuses on the performance on worst-
case inputs such as the competitive ratio (Borodin & El-Yaniv, [1998), the analysis of algorithms
with predictions is multi-faceted, and involves objectives in trade-off relations. Typical desiderata
require that the algorithm has good consistency (informally, its performance assuming a perfect,
error-free prediction) as well as robustness (i.e., its performance under an arbitrarily bad prediction
of unbounded error). Beyond these two extremes, there is an additional natural requirement that the
algorithm’s performance degrades smoothly as a function of the prediction error.

It is unsurprising that not all of the above objectives can always be attained and simultaneously
optimized (Lavastida et al.l [2021). Such inherent analysis limitations have an important effect on
the algorithm’s design. One concrete methodology is to design algorithms that optimize the trade-off
between consistency and robustness, often called Pareto-optimal algorithms; e.g. (Sun et al., [2021a;
Lee et al, 2024; |We1 & Zhang| [2020; (Christianson et al., |2023). Another design approach is to
enforce smoothness, without quantifying explicitly the loss in terms of consistency or robustness,
e.g., (Angelopoulos et al., [2022} |Antoniadis et al., 2023)).

Each approach has its own merits, but also certain deficiencies. Pareto-optimality may lead to al-
gorithms that are brittle, in that their performance may degrade dramatically even in the presence
of imperceptible prediction error (Elenter et al.,[2024). From a practical standpoint, this drawback
renders such algorithms highly inefficient. Even if brittleness can be avoided, one may obtain an
entire class of Pareto-optimal algorithms, whose members exhibit incomparable smoothness (Beno-
mar & Perchet, |2025)). On the other hand, smoothness can often be enforced by assuming an upper
bound on the prediction error, which can be considered, informally, as the confidence in the predic-
tion oracle or the folerance to prediction errors. The design and the analysis are then both centered
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around this confidence parameter (Angelopoulos et al. 2022} |Antoniadis et al.l 2023). However,
this approach leads to algorithms that may be inferior for a large range of the prediction error, and
notably when the prediction is highly accurate (i.e., the error is small). It also requires either explicit
knowledge or an ad-hoc choice of this confidence value.

We are thus confronted with the following central question: Among the many possible algorithms,
each with its own performance function, how to choose the “best”? Here, the performance func-
tion is the smoothness that interpolates between the extreme points of consistency and robustness.
Answering this question hinges on the choice of a principled measure for the comparison of perfor-
mance curves, which is typically the purview of decision theory and the focus of this work.

Three classic problems: ski rental, one-max search, and contract scheduling. To demonstrate
our framework, we consider three classic problems. Our first problem, namely ski rental, is a classic
formulation of rent-or-buy settings, and has served as proving grounds for learning-based algorith-
mic approaches. Given an unknown horizon of days, the decision-maker must decide on which
day to stop renting, and irrevocably buy the equipment. The best deterministic competitive ratio is
2 (Karlin et al., [1988) (assuming a continuous setting), however a prediction on the horizon length
can help improve the competitive ratio, as has been shown in several works on this problem and its
extensions (Angelopoulos et al.l [2020; [Purohit et al., 2018b; Wei & Zhang| [2020; [Khanafer et al.,
2013} \Gollapudi & Panigrahil 2019; Wang et al.| [2020a; [Zhao et al.| [2024). Pareto-optimal algo-
rithms were studied in [Wei & Zhang| (2020); |Angelopoulos et al.| (2020); [Purohit et al.| (2018al).
Furthermore, the recent work of Benomar & Perchet| (2025) described a parameterized class of al-
gorithms, all of which are Pareto-optimal, but exhibit different, and incomparable smoothness.

A second problem that is fundamental in sequential decision making is one-max search, in which
a trader aims to sell an indivisible asset. Here, the input is a sequence o of prices, and the trader
must accept one of the prices in o irrevocably. The problem and its generalizations have a long
history of study, see e.g. |[El-Yaniv et al.| (2001)); [Mohr et al.|(2014); Clemente et al.| (2016)); Dam-
aschke et al.| (2009); Lee et al.| (2024) as well as Chapter 14 in |Borodin & El-Yaniv| (1998). The
learning-augmented setting in which the algorithm leverages a prediction on the maximum price in
o was studied in|Sun et al.|(2021a)), which gave Pareto-optimal algorithms. However, this algorithm
suffers from brittleness (Elenter et al.l 2024). |Angelopoulos et al.| (2022) gave an algorithm with
smooth error degradation, but no consistency/robustness guarantees, based on a tolerance parameter
0. However, this algorithm has inferior performance if the prediction is highly accurate.

Last, we consider a problem that is fundamental in real-time systems and bounded-resource reason-
ing in Al, namely contract scheduling (Russell & Zilberstein, 1991} Bernstein et al., 2003} [Lopez-
Ortiz et al.| 2014). Here, the aim is to design a system with interruptible capabilities via executions
of a non-interruptible algorithm. The performance of the system is measured by the acceleration
ratio, i.e., the multiplicative loss due to the repeated executions. |Angelopoulos & Kamali| (2023b)
studied the setting in which an oracle predicts the interruption time, and gave a Pareto-optimal
schedule. However, all Pareto-optimal algorithms are brittle, as shown in [Elenter et al.[(2024)). As-
suming a tolerance § on the range of the prediction error, |Angelopoulos & Kamali| (2023b)) also gave
a schedule that has better smoothness, but is once again inefficient for small prediction error.

1.1 CONTRIBUTIONS

We present the first principled study of decision-theoretic approaches in learning augmented algo-
rithms. Our objective is to be able to choose globally best algorithms based on objective, quantifiable
methods. We introduce both deterministic and stochastic approaches: the former do not require any
assumptions such as distributional information on the quality of the prediction, whereas the latter
help us capture the notion of risk, which is inherently tied to the stochasticity of the prediction
oracle. Specifically, we consider the following measures:

Distance measures We evaluate the distance between the performance of the algorithm, and an
ideal solution, i.e. an omniscient algorithm that knows the input, but is constrained by the same
robustness requirement as the online algorithm. We focus on two distance metrics: i) The weighted
maximum distance, which is defined as the weighted L..-norm distance between the performance
function of the algorithm and that of the ideal solution; here, the weight is a user-specified function
that reflects how much, and what type of importance the designer assigns to prediction errors; and
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ii) The weighted average distance, which measures the aggregate distance between the algorithm
and the ideal solution, averaged over the range of the prediction error.

Distance measures are inspired by tools such as Receiver Operating Characteristic (ROC)
graphs (Fawcett, 2006), which describe the tradeoff between the true positive rates (TPR) and the
false positive rates (FPR) of classifiers. Distance metrics between two ROC curves have been used as
a comparison measure of classifiers. Moreover, weighted distances in ROC graphs can help empha-
size critical regions: e.g., a user who is sensitive to false positives when FPR is low. This weighted
approach has several applications in medical diagnostic systems (L1 & Finel 2010).

Risk measures Here, the motivation comes from the realization that Pareto-optimal and tolerance-
based algorithms handle the risk of deviating from a perfect prediction in totally different ways.
Namely, the former maximize the risk, while the latter seek to minimize it. This explains undesir-
able characteristics such as their brittleness and inefficiency, respectively. To formalize the notion
of risk, we first introduce a stochastic prediction setting, where the oracle provides imperfect dis-
tributional information to the algorithm. We then introduce a novel analysis approach based on a
risk measure that has been influential in decision theory, namely the Conditional Value-at-Risk, de-
noted by CVaR,,. This value measures, informally, the expectation of a random loss/reward on its
(1 — «)-fraction of worst outcomes (Sarykalin et al.l 2008). Here, o € [0,1) is a parameter that
measures the risk aversion of the end user. We show how to obtain a parameterized analysis based
on risk-aversion, which quantifies the trade-off between the performance of the algorithm and its
risk.

Our techniques generalize previous approaches in learning-augmented algorithms. More precisely,
in the context of distance measures, by choosing the weight to be equal to 1 only at the prediction
point and zero otherwise, we recover the Pareto-optimal algorithms. For the risk-based analysis, we
obtain a generalization of the distributional consistency-robustness tradeoffs of |Diakonikolas et al.
(2021), by introducing the notion of «-consistency, where « is the risk parameter.

The paper is structured as follows. In Section 2| we formally present the decision-theoretic frame-
work of our study, which we then apply to various problems. For ski rental (Section[3)) we show how
to find, among the infinitely many Pareto-optimal algorithms, the one that optimizes our metrics. For
one-max search (Section [4) we show how to find, for any parameter r, an algorithm that likewise
optimizes the metrics, among the infinitely many r-robust strategies. Last, for contract scheduling
(Section[3)), we show how to find, among the infinitely many schedules of optimal acceleration ratio,
one that simultaneously optimizes each of our target metrics. In Section[6} we provide an experi-
mental evaluation of our algorithms that demonstrates the attained performance improvements.

Other related work [Elenter et al.| (2024), addressed brittleness via a user-specified profile. This
differs from our approach, in that our measures induce an explicit comparison to an ideal algorithm,
and are thus true performance metrics, unlike [Elenter et al.[ (2024) which does not allow for pair-
wise comparison of algorithms. The conditional value-at-risk was recently used in [Christianson
et al. (2024) in the design and analysis of randomized algorithms without predictions; however, no
previous work has connected CVaR to the competitive analysis of learning-augmented algorithms.

2 DECISION-THEORETIC MODELS

In this section, we formalize our decision-theoretic framework. For definiteness, we assume cost-
minimization problems (e.g., ski rental), however we note that the definitions can be extended
straightforwardly to profit-maximization problems (e.g., one-max search and contract scheduling).
We denote by OPT (o) the cost of an optimal offline algorithm on an input sequence o.

2.1 DISTANCE-BASED ANALYSIS

We focus on problems with single-valued predictions. We denote by =, some significant information
on the input o, and by y € R its predicted value. For instance, in one-max search, x,, is the maximum
price in 0. When o is implied from context, we will use x for simplicity. The prediction error is
defined as 7 = |z, — y|. The range of a prediction y, denoted by R,, is defined as an interval
R, = [¢,u] C [0,00) such that z, € R,. This formulation allows us to study algorithms with a
tolerance parameter. In particular, if R, = [(1 — d)y, (1 + d)y] where § € [0, 1], then we refer
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to algorithms that operate under this assumption as d-folerant algorithms. We emphasize that this
assumption of a bounded prediction error is not necessary in our framework, and unless specified,
we consider the general case R, = [0, 00). Namely, we use this assumption to be able to compare
against known J-tolerant algorithms.

Given an online algorithm A, an input o, and a prediction y, we denote by A(o, y) the cost incurred
by A on o, using y. The performance ratio of A, denoted by pr(A,o,y), is defined as the ratio

A(oy)
OPT(o)"

given an error-free (resp. adversarial) prediction. Formally, cons(A) = sup, pr(A,o,z,) and
rob(A) = sup,, , pr(4, o,y). We say that A is r-robust if it has robustness at most 7.

We define the consistency (resp. robustness) of A as its worst-case performance ratio

To define our distance measures, we introduce the concept of an ideal solution. Given r > 1 and
an input o, we define by I,.(o) the smallest cost that can be achieved on ¢ by an online algorithm

A that is required to be r-competitive on all inputs. We also define pr(I,, o) as olf;(TU()a)' The
definition implies that I,. is the best-possible Pareto-optimal algorithm with prediction x,. Note that

any r-robust online algorithm A with prediction y obeys pr(A, o,y) > pr(I,, o).

We can now define our distance measures starting with the maximum weighted distance. Here, the
user specifies a weight function w, : R, — [0, 1], which quantifies the importance that the user
assigns to prediction errors, and aims to guarantee smoothness. To reflect this, we require that w,, is
piecewise monotone. Namely, if R,, = [¢, u], then w,, is non-decreasing in [¢, y] and non-increasing
in [y, u]. The maximum distance of an algorithm A, given r, y is defined as

dmax(A) = sup {(pr(A, o, z) —pr(ly, o)) wy(z)}. (1)

o,x€R,

Thus, the maximum distance measures the weighted maximum deviation from the ideal perfor-
mance. We also define the average weighted distance, which measures the average deviation from
the ideal performance, across the range of the prediction error. Formally:

1
dave(A) = sup m /R (pr(A, o, 2) — pr(l,,0)) wy(z) dz. 2)
o y Y

2.2 RISK-BASED ANALYSIS

Since risk is an inherently stochastic concept, we need to introduce stochasticity in the prediction
model. To this end, we assume that the prediction is in the form of a distribution p, with support
over an interval [¢,u] C R, and a pdf that is non-decreasing on [¢, y] and non-increasing on [y, u].
This model has two possible interpretations. First, one may think of p as a distributional prediction,
in the lines of stochastic prediction oracles (Diakonikolas et al.,[2021)). A second interpretation of p
is that of a prior on the predicted value, based on historical data. We will use R, to refer to the range
of u, since it is motivated by considerations similar to the notion of range in the distance measures.

Our analysis will rely on the Conditional Value-at Risk (CVaR) measure from the theory of risk
management (Rockafellar et al.| [2000). Let X be a random variable that corresponds to the loss
(e.g., the cost in the case of a minimization problem), and a parameter « € [0, 1) that describes the
risk aversion. The Conditional Value-at-Risk CVaR,, is defined as

CVaR,(X) = irtlf {t + ﬁ]E[(X - t)*]} , where (X —t)" =max{X —t,0}. (3
In words, CVaR,,(X) is the expectation of X on the a-tail of its distribution, that is, the worst
(1 — «) fraction of its outcomes. Let F denote the class of input distributions (i.e., distributions
over sequences o) in which the predicted information has the same distribution as p. For example,
in one-max search, F' is a distribution of input sequences such that the maximum price is distributed
according to u. Given « € [0, 1), we define the a-consistency of an algorithm A as

CVaR,, r(A(0))
a-cons(A) = sup ——————=,

reF Eonp[OPT(0)]
where the subscript F' in the notation of CVaR signifies that o is generated according to F'. Our

objective is then summarized as follows. Given a robustness requirement 7, and a risk parameter «,
we would like to find an 7-robust algorithm of minimum «a-consistency.

“4)
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This measure is a risk-inclusive generalization of consistency, and interpolates between two ex-
treme cases. The first case, when o = 0, describes a risk-seeking algorithm that aims to minimize
its expected loss without considering deviations from the distributional prediction. In this case,
CVaR, r(A) = E,r[A(0)], thus (4) is equivalent to the consistency of A in the distributional
prediction model of |Diakonikolas et al.| (2021). The second case, when o« — 1, describes a risk
averse algorithm: here, it follows that CVaR,, #(A) = sup,egupp(r) A(0), thus @) describes the
performance of A in the adversarial situation in which all the probability mass is concentrated on
a worst-case point within the prediction range. Note that this risk-based model is an adaptation of
risk-sensitive randomized algorithms (Christianson et al., [2024) to learning-augmented settings.

3 SKIRENTAL

We consider the continuous version, in that skis can be bought at any time in R. We denote by b > 1
the buying cost, and by x the skiing horizon that is unknown to the online algorithm. We denote
by A the online algorithm that buys at time 7', hence its cost, Ar(x), is equal to z, if x < T,
and b+ T, if x > T. In the learning-augmented setting, the oracle provides a prediction y on the
horizon. It is known that for » > 2, Ap is r-robust iff ' € [b/(r — 1),b(r — 1)]. |Purohit et al.
(2018b) and [Wei & Zhang| (2020) showed that r-robust Pareto-optimal algorithms have consistency
r/(r — 1). More generally, Benomar & Perchet| (2025), gave a class of Pareto-optimal algorithms,
whose members exhibit different, and incomparable smoothness.

Objective: Given a robustness requirement 7 and a prediction y on the number of skiing days, find
T € [b/(r —1),b(r — 1)] such that A7 minimizes the various objectives defined in Section 2] We

will denote by 17, T3, and T, the optimal thresholds according to the corresponding measures.

ax? cvar

3.1 DISTANCE MEASURES
We begin by expressing the ideal performance.
Lemma 1 (Appendix[A). The performance ratio of the ideal algorithm I, is
1, ifr < b,
pr(l,,z) =4 &> ifx e {b,min{rb_rl, b(rfl)H,
5, ifz>min {%, b(r — 1)} .

For some intuition behind the proof, we distinguish between three cases. If x < b, then I,- buys at
b. If z > b, it buys at min{ br . b(r — 1)}; and if z > min{ b b(r — 1)} itbuys atb/(r — 1).

r—17 r—17
These choices optimize its cost on input x, while guaranteeing r-robustness on all inputs. Note that
pr(I., ) has a discontinuity at x = (r — 1)bonly if -*5 > r — 1, or 7 < 2.618, approximately. For
simplicity, we will consider the case » > 2.618, for which the ideal performance is continuous, and
we refer to the Appendix for a discussion of the case r € [2,2.618].

Figure || illustrates the performance of the ideal algorithm (in black, bold line) and various online
algorithms Ap. Note that all online algorithms have no better performance than the ideal on all
inputs, as expected, and that no online algorithm dominates the others.

We will distinguish between online algorithms that buy at times in [b/(r — 1),b), and those that buy
at times in [b, b(r — 1)]; we denote these two classes by C<j, and C'>, respectively. This distinction
will be helpful in the computational optimization of the distance measures, namely in the proof of
Theorem@ From , given a prediction y with range I, we have that

Az (2) —pr(I,, x)) w(zx). 5)

Ar) = —_—
dmax (A7) = sup (min{az,b}

TERy

To gain some insight into the structure of the maximum distance objective in (3), let us first consider
the unweighted case, i.e., w(z) = 1. If R, is unbounded, then d},,, = 1, which is attained by all
A7 € C>yp. Note that among these algorithms, A, has the best consistency, so we may choose this

algorithm as a tie-breaker.
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That is, if we have no confidence on the quality of the
prediction, the best algorithm is the competitively op-
timal one, which agrees with intuition. If, however, R,
has known bounds, then the best algorithm depends on
this range. For instance, if the right endpoint v of R,
is smaller than b, then any algorithm in the class C'> is
optimal according to dy,x. This is consistent with all
algorithms in the class defined by Benomar & Perchet
(2025). It is also interesting to note that regardless of
the range IRy, the best algorithm according to dax
is either a single algorithm in C'-y, namely A, or a
choice of algorithms in C'>; this is precisely the set of
all algorithms in | Benomar & Perchet| (2025). The fol-
lowing theorem shows how to obtain the best threshold
for the weighted distance.

Theorem 2 (Appendix [A). There is an algorithm for computing Ty,
number of critical points of the weight function w in the range R,,.

Performance ratio
S
I
- =

“.
-

i
-~

_b_ b _br_
=1 1

Ski season length

Figure 1: Performance functions of 7-
robust algorithms for different threshold
values. The curve in bold depicts the ideal
performance ratio.

that runs in time linear in the

We now turn to the average distance objective, which from (2) is equal to

Ar(z,y)
davg AT |R | / (mln{z b} pr(ITaz)) ’LU(Z) dz. (6)

In the unweighted case (w = 1), and without assumptions on R,, Ay(,._1) minimizes the average

distance. This is because, for x > T,Z’_Tl , its performance ratio matches the ideal, as depicted by the

blue curve in Figure |1, When R, is bounded, the optimal algorithm depends on the range, and the
problem reduces to minimizing the area between the performance curves of Ar and I, over R,,. For
general weight functions, the integral in (6] is evaluated piecewise, depending on w and T'.

3.2 RISK-BASED ANALYSIS

We consider the CVaR-based analysis of ski rental. In this setting, the algorithm has access to a
distributional prediction p over the skiing horizon z. Following the discussion in Section [2.2] we
will evaluate an online algorithm AT by means of its a-consistency (@).

Define gy = Pr[Ar(z) = = [, p(x)dz. With this definition in place, we obtain the
following result.

Theorem 3 (Appendix [A). Let x ~ 1 and t* denote the o-quantile of fu, i.e., the value satisfying
fg w(z)dz = a. Then

CVaRg,,[Ar(x)] = min {1 !

—

T
</ zu(z)dz+(T+b)qT>, T+bIQTa,T+b}, 7
) —

*

and Ty p = arg mlnTe[ br—1)] CVaRq,,[Ar(z)].

Theorem 3|captures the tradeoff between optimizing for average-case performance, on the one hand,
and safeguarding against adversarial prediction, on the other hand. Specifically, if « = 0, the
objective reduces to minimizing the expected cost, since fo z- u( ) dz+(b+T)-qr = E.ou[Ar(2)].
In contrast, if &« — 1, then we consider two cases: If 7" is such that gp > 0, then from (7),
CVaRq, u[Ar(x)] = b+ T, whereas if gr = 0, then CVaR,, ,[Ar(x)] = u. Hence, when o — 1,
CVaR,,,[Ar(x)] = min(b + T, u). The proof, and further details on these two extreme cases can
be found in Appendix [A]

4 ONE-MAX SEARCH

In this problem, the input is a sequence o of prices in [1, M], where M is known to the algorithm.
We denote by z,, the maximum price in o, or simply by =, when o is implied. Any online algorithm
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is a threshold algorithm, in that it selects some T' € [1, M] and accepts the first price in o that is at
least T'. If such a price does not exist in ¢, then the profit of the algorithm is defined to be equal
to the smallest price, namely equal to 1. We denote by A7 an online algorithm A with threshold
T, and by Ar(0o) its profit on input o. In the learning-augmented setting, the online algorithm has
access to a prediction y, and the prediction error is defined as 1 = |z, — y|.

The optimal competitive ratio of the problem is equal to v/ M [El-Yaniv| (1998). Moreover, for any
r > v/ M, it is easy to show that Ay is r-robust if and only 7' € [t1,t2], where t; = M/r and
to = r. Thus, for any r > /M, there is an infinite number of r-robust algorithms.

Objective. Given a robustness requirement 7, find the threshold 7 that optimizes the measures of
Section We denote by T35 ... 1o, and T, the optimal threshold values.

max’ —avg
4.1 DISTANCE MEASURES

We first describe the ideal solution.

Lemma 4 (Appendix [B). Given a robustness requirement r, and a sequence o, the ideal algorithm
I chooses the threshold min{ts, max{t, z, }}. Its performance ratio is

Ty, IifTs € [lytl)
pr(IT7U) = 17 ifxa S [tlatZ] (8)

%7 l.fI’UE(t%M]-

From H and Lemma it follows that diax (A1) = SUp, ,cp, (ﬁ(a) —pr(l,, 0)) w(z).

We first give an analytical solution for unweighted maximum distance. We refer to Appendix [B|for
the proof, and some intuition about the following result.

Theorem 5. For uniform weights (w = 1), forallz € R, = [{, u]
™ {min{tQa max{tla \/a}}v ifu < to,

max =\ min{ty, max{t;,T}},  otherwise,
where T = to — u + \/(u — t2)? + 4t3u.

The case of general weight functions is much more complex, from a computational standpoint. In
Appendix we obtain a formulation as a two-person zero-sum game between the algorithm (that
chooses its threshold T") and the adversary (that chooses x). For instance, if R, C [t1, t2], then the
payoff function of this game is max {max,>7 (% — 1) - w(z), max,<7 (I' — 1) - w(x)} . In gen-
eral, it is not possible to obtain an analytical expression of the value of this game (over deterministic
strategies) for all weight functions, but the game can be solved analytically for relatively simple
functions. For instance, in Appendix we solve the game analytically assuming linear weight.
The average weighted distance, on the other hand, can be optimized by piece-wise evaluation of an
integral. We refer to the discussion in Appendix [B.3] and an example based on linear weights.

4.2 RISK-BASED ANALYSIS

We consider the setting in which the algorithm has access to a distributional prediction g with
support in [(1 — &)y, (1 4+ 0)y], for some given 4. This assumption is not required, but it allows
us to draw useful conclusions as we discuss at the end of the section. Given robustness r, and a
risk value o € [0, 1), we seek an r-robust algorithm that minimizes the a-consistency. Since this
is a profit-maximization problem, the definitions of CVaR and a-consistency are slightly different

than (3)) and . Namely, we have CVaR,, (X) = sup, {t - =E[(t - X)+]} (Rockafellar et al.,

2000) and a-cons(A) = supper (%)‘

We first show that the a-consistency is determined by a worst-case distribution F'*. Here, F'* con-
sists of sequences of infinitesimally increasing prices from 1 up to y, followed by a last price equal
to 1, where y is drawn according to u.
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Lemma 6 (Appendix . For any algorithm Ar it holds that a-Cons(Ar) = W‘%.

Since the numerator in the expression of Lemma []is independent of the algorithm, it suffices to find
the threshold T for which CVaR,, g+ [Ar(o)] is maximized. This is accomplished in the following
theorem. Define gy = Pr,p-[Ar(c) = 1]. From the definition of F* and the fact that T is the

threshold of A, it follows that g7 = |, 57 &)y w(p)dp.

Theorem 7 (Appendix El) Tiyar = A1 MaXpey, 1] {W, (1-— 6)y} .

Theorem [/| interpolates between two cases. When o = 0, the algorithm maximizes its expected
profit, assuming that the maximum price in the input sequence has distribution p. In this case, we
find an r-robust algorithm of optimal consistency, under the distributional setting of [Diakonikolas
et al. (2021) which is a novel contribution for the one-max search problem by itself. When o« — 1,
the online algorithm must choose its threshold under the assumption that the maximum price is
chosen adversarially within the support [¢, u] of p, hence the threshold (and the algorithm’s profit)
is £ = (1 — 6)y. This recovers the analysis of the J-tolerant algorithm in|Angelopoulos et al.|(2022).

5 CONTRACT SCHEDULING

We apply our framework to the contract scheduling problem, defined in Section [} Once again,
the starting motivation is that there is an infinite number of schedules, all of which achieve an
optimal robustness equal to 4 (Russell & Zilberstein, |1991). We show how to compute schedules that
remain 4-robust, and provably optimize each of our metrics. Specifically, for maximum distance, the
schedule is computed by considering the set of critical points (conceptually similar to Theorem [2));
for average distance we derive a closed-form expression and optimize it numerically; and for CVaR
we obtain an exact formula based on the predicted distribution. We also evaluate our schedules
experimentally and observe that they outperform the state-of-the-art Pareto-optimal and J-tolerant
schedules of [Angelopoulos & Kamalil (2023b). We refer to Appendix [C|for the detailed discussion.

6 EXPERIMENTAL EVALUATION

We evaluate our algorithms of Sections [3|and ] which optimize the maximum and average distance
as well as the CVaR. We refer to them as MAX, AVG and CVAR,,.

Baselines For ski rental, we compare to the class of algorithms BP, of Benomar & Perchet (2025).
BP, buys at time b/(r — 1), if y > b, and at time p € [b, b(r — 1)], otherwise. In our experiments we
consider three possible values for the parameter p, namely p € {b, (r — 1)b, b + %’} For one-max
search we compare to two Pareto-optimal algorithms: The one of |Sun et al.| (2021a), denoted by
PO;, and the more straightforward algorithm, denoted by PO, (Angelopoulos & Kamali, [2023a)
that sets its threshold to 7" = min{¢2, max{t1, y}}, where t; = M /r and to = r. We also compare
against the §-tolerant algorithm of |[Angelopoulos et al.| (2022), denoted by §-TOL.

Datasets For ski rental, we set b = 10 and » = 5. The prediction y is chosen such that y ~
Unif[b/z, bz], where z = 4, and the prediction range R, is set to [(1 — 0)y, (1 + )y] with § = 0.9.
The horizon x is generated u.a.r. in I?,,. For one-max search, we set M = 1000 and r = 100, with
y ~ Unif[z, M/z] and z = 10, and the same definition of R,. The input is the worst-case sequence
of increasing prices up to the maximum price z, followed by a last price equal to 1, where z is
chosen u.a.r. in I?,. This is the standard class of inputs for evaluating worst-case performance (Sun
et al., 2021a; Elenter et al., 2024). We refer to Appendix |D| for more experimental results on the
parameters r, d, z, as well as for experiments on real data for one-max search.

Evaluation For both problems, we compute the average performance ratio, over all x € R,, and
over 1000 repetitions on the choice of y. For MAX and AVG, we use the (uniquely defined) linear,
symmetric function over R, whereas CVAR, is evaluated under a Gaussian distribution y truncated
to R, and centered at y, with o € {0.1,0.5,0.9}. Furthermore, we compute the average expected
cost/profit over p for the two problems, respectively, where the averaging is over the choices of y.
Tables [I|and 2] show the obtained average performance ratios and expected costs/profits. The tables
also report the 95% confidence intervals (CIs).
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Table 1: Experimental results for ski rental.

MAX AVG CVAR,, BP,
a=0.1 a=0.5 a=0.9 b b+ br/2 b(r—1)
Avg perf. ratio 1.344 1.337 1.340 1.349 1.367 1.677 2.187 2219
CIL./CI_ +0.03/-0.03  +0.03/-0.03  +0.03/-0.03 ~ +0.03/-0.03 ~ +0.03/-0.04  +0.05/-0.05  +0.16/-0.17  +0.17/-0.17
Exp. cost 11.241 11.187 11.173 11.215 11.316 16.987 21.234 20.958
CIL./CI_ +0.48/-0.51  +0.49/-0.51  +0.50/-0.52  +0.48/-0.54  +0.48/-0.52  +0.99/-1.09  +2.01/-2.22  +1.95/-2.00

Table 2: Experimental results for one-max search.

MAX AVG CVAR, 5-ToL PO, PO->

a=0.1 a=0.5 a=0.9

Avg perf. ratio 4.394 4.447 9.771 8.144 6.022 10.009 4.630 15.685
CL./CI_ +0.04/-0.05  +0.06/-0.05  +0.26/-0.26  +0.20/-0.20  +0.12/-0.12  +0.00/-0.00 ~ +0.06/-0.06 ~ +0.45/-0.45
Exp. profit 15.614 20.528 35.795 34.402 27.500 5.475 13.904 27.986
CL./CI_ +0.30/-0.32  +0.50/-0.48  +1.06/-1.04  +1.00/-1.08  +0.81/-0.82  +0.15/-0.17  +0.16/-0.17  +0.82/-0.80

Discussion For the ski rental problem, all our algorithms achieve better performance ratios and
average costs than the baseline BP,,, for all choices of the parameter p. The performance ratios and
average costs of CVAR,, increase with «, as expected, since the higher the parameter o, the more
the algorithm hedges against unfavorable outcomes.

For one-max search, the baseline algorithms show marked performance differences. This is due to
the choice of thresholds, with 4-TOL and PO, tending to have the smallest and largest thresholds,
respectively, whereas PO; chooses its threshold in between. Thus, PO, and §-TOL show high-
est/lowest brittleness to prediction errors, respectively, whereas PO, is more balanced. MAX and
AVG exhibit better performance ratios than all baselines and better expected profits, with the ex-
ception of the highly brittle PO5. In regards to the CVAR class, once again the expected profit is
decreasing with «, whereas the performance ratio improves as « grows. We observe that CVaR
algorithms considerably improve upon both §-TOL and PO; across both metrics. They also have a
better average profit than PO;, though worse performance ratio.

The experiments show that even with relatively simple weight functions and distance measures,
distance-based algorithms offer considerable improvements over the state of the art. Moreover,
CVaR approaches help obtain smooth tradeoffs between the expected cost/profit and the performance
ratio, as a function of the risk parameter «, with improved overall performance in the majority of
the cases. In Appendix [D| we report further experimental results that allow us to reach additional
conclusions on the impact of the various parameters in the setting. Specifically, as the prediction
range becomes smaller, or as the weight function becomes more concentrated around y, the experi-
ments show that the performance of our algorithms improves. This is consistent with the theoretical
motivation and analysis, since they can better leverage information on the quality of the prediction.

7 CONCLUSION

We introduced new decision-theoretic approaches for optimizing the performance of learning-
augmented algorithms, by taking into consideration the entire range of the prediction error. Fu-
ture work can address further applications, e.g., generalized rent-or buy problems such as multi-
shop (Wang et al.,|2020b) and multi-option ski rental (Shin et al., 2023)), knapsack (Daneshvaramoli
et al., | 2024) and secretary problems (Antoniadis et al.,|2023). Another direction involves problems
with multi-valued predictions, such as packing problems (Im et al.| 2021). Our framework can still
apply in these more complex settings, since the error is defined by a distance norm between the
predicted and the actual vector. A last direction concerns dynamic predictions, in which the oracle
is accessed several times during the algorithm’s execution. An interesting potential application in
this domain is learning-augmented power management, given its connections to ski rental as shown
in (Antoniadis et al., [2021)).
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Appendix

A DETAILS FROM SECTION [3]

A.1 OMITTED PROOFS

Proof of Lemmall| First, recall that in order to be 7-robust, any algorithm must buy skis no later
than time b(r — 1) and no earlier than b/(r — 1). We consider the following possible cases.

Casel: x < b.
In this case, I, rents up to time b. This guarantees r-robustness, and since I,.(x) = x, we have that
pr(ly,z)=1.

Case2: z € {b, min{ e b(r — 1)})

r—17

In this case, I, buys at time min { L b(r — 1)} > x, 80 I.(x) = x. This guarantees r-robustness,

since the buy time lies in [b/(r — 1), b(r — 1)].

Now consider any r-robust algorithm A, then we consider two possible cases on 7.

o If T" < b, then Ap buys before b, and its cost is at least that of A, /(r—1)» Which is

b br
COSt(Ab/(T,I),J?) = o1 +b= 1

> x.

o If T € [b, min{ b b(r — 1)}], then cost(Ap,z) =T + b > .

r—17

In both cases, cost(Ar,z) > I.(x) = x. Therefore, pr(I,,z) = x/b is optimal among r-robust
algorithms.

Case3:x2min{ b b(r—1) .

r—17
In this case, I, buys at time b/(r — 1), which satisfies r-robustness and its cost is
br

while the offline optimum is b.

Now consider any other r-robust algorithm Ap. If T > b/(r — 1), then cost(Ap,z) = T + b >
br = I(z). ¥ T < b/(r — 1), then A is not r-robust.

r—1 =

Therefore, I,.(x) has the minimum cost among all r-robust algorithms, and

br T

pr(I.,x) = m =7

This completes the proof. O

Proof of Theorem[2] For general weight functions w(z), recall that we assume that w is symmetric
and piecewise monotone: i.e., non-decreasing for z < y and non-increasing for z > y. The behavior
of the maximum distance objective in (5]) depends on the location of y relative to b, and also on the
buying threshold 7". Recall from Lemmall]that pr(,., z) = 1 for z < b, and is increasing for z > b.
Thus, algorithms in the class C'«;, incur strictly positive distance in z < b, while algorithms from
C'>p match the ideal in this interval, and may perform better when the weight is concentrated around
y <b.

Given this structure, we partition the problem into two subproblems: computing the best threshold
T} among algorithms in C'«;, and the best threshold 775 in C'>. Once the buy times 77 and T3 are
computed, the final choice is

T*

max

= argmin dpyax(Ar).
Te{Ty T3}
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Algorithm 1 Algorithm for computing 77

max

Input: Prediction y with range Ry, weight w(z), robustness r, buy cost b.
Output: Optimal buy time T}, minimizing max distance.
Casel: T € Cy
1: Define critical set

Sy hu{ze Ry £((A22 — Du(z)) =0}

: for T € S; do
Compute dimax(Ar) + maxzer, (A2 1)w(z)
: end for
: T7 < argminres, dmax(AT)
Case2: T € Csy
: Define critical set

Sy« {y, b, 2=, b(r —1)}U {z ER,: %((ATT(Z) — pr(IT,z))w(z)> _ 0}

: for T € Sz do

Compute diax (A7) < maxeer, (W —pr(l,z))w(z)
: end for

B TQ* < arg minT652 dmax(AT)

: return Ty, < arg min{ dmax(Ary), dmax(Azy) }

[*))

— O O 0

— =

Algorithm|[I|shows how to compute 77;,,.... The algorithm evaluates a finite set of buy times based on

critical points, which are values of x where the weighted distance function may reach its maximum.
These include the prediction y, the point x = b, the values b—’"l and b(r — 1), and all solutions to the

r—

equation where the derivative of the weighted distance is zero.

O

Proof of Theorem 5] We use the cost-minimization version of the Conditional Value-at-Risk, given
by (3).

Fix T € {bel, b(r — 1)} and let z ~ p denote the predicted skiing horizon. Let M(t) :=

fot 1(z) dz be the cumulative distribution function, and g = 1 — M(T') be the probability of the
horizon being at least T'. The cost of algorithm A is

x, z<T,
Ar(e) = {T+b, z>T.

We evaluate CVaR,, ,,[Ar(x)] by considering three possible ranges of ¢ in the definition above.

Case 1: t < T'. In this case,

T —t, t<ax<T,
(Ap(z) —t)" =S T+b—t, =>T,
0, T < t.

Multiplying the CVaR expression by (1 — «) gives

T e’}
(1—a)CVaRa(AT(x)):inf{(l—a)zH—/t (z—t)u(z)dz—&—(T—&-b—t)/ u(z)dz}

t>0 T

t>0

T
:mf{(l—a)t+/ zu(z)dz+(T+b)qT—t(1—M(t))}. ©)

Differentiating (9) with respect to ¢ gives
(1—a)—(1—M(@)=M(t) -«

Since the second derivative of (9) equals (t) > 0, the minimizer is any ¢* satisfying M (¢*) = o
If M is continuous and strictly increasing, then t* = M ~!(«) is unique. Substituting t* and using
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1—M(t*) =1— ayields

1 T
CVaR,(Ar(z)) = —— (/t zp(z)dz+ (T +b) qT> . (10)

:1—a «

Case2: T <t <T+b. Here (Ap(z) —t)" =0forz < Tand (T +b—t)forz > T. Since
is linear in ¢, the minimum occurs at one of the endpoints of the range of t. As a result, we have

CVaR, (A7(z)) = min {T+b i T+b}. (11)

’
«

1

Case 3: t > T +b. In this range (Ar(z) —t)™ = 0 for all z, so the infimum is attained at ¢t = T +b,
yielding
CVaR,(Ar(x)) =T + 0.

Combining the above cases, CVaR,, ,[Ar(x)] is the minimum between (Case 1) and
(Case 2), which completes the proof.

Analysis of extreme cases.

(i) For o = 0, we have t* = inf supp(u) = ¢. From (10},

T
CVaRo(Ar(z)) = /e 2 u(z) dz + (T + b)ar = E[ Ar(2))],

since Ar(z) =z on {z < T} and Ar(x) =T 4+ bon {& > T}. Moreover, CVaRg(Ar) is equal
to (T0), because

T
[ #n(e)ds (T4 b)gr T = gr) + (7 + bar =T+ bar.
L

ii) Suppose that & — 1, then we distinguish between cases gr > 0 and gr = 0. If gr > 0, both
(10) and the first term of contain (1 — «)~! times a positive quantity; the minimum is therefore
the remaining term 7" + b, so

lim1 CVaR,(Ar(z)) =T +b.
a—r

If g = 0 (equivalently T' > u := sup supp(u)), then reduces to

I I
— zp(z)dz = / zp(z)dz =Bz |z > "],
t

1—a /i T 1-a /.

since Pr[z > t*] =1—c«and p = 0on (u,T]. As o — 1, t* — u and bounded convergence yields
E[z | z > t*] — u. In the same regime, becomes min{7, T + b} = T > u, so the minimum
is given by (10) and

lim1 CVaR,(Ar(x)) = u.

a—

Combining the above we obtain that lim,,,; CVaR, (Ar(z)) = max{u, T+ b}.

A.2 IDEAL PERFORMANCE FOR 7 < 2.618
If r € [2,2.618], then the ideal algorithm I,.(x) has a discontinuity at x = b(r — 1), as shown in

Figure[I] We note that all results presented in the main paper hold regardless of the value of r, i.e.,
Theorem 2]and Algorithm|I]remain valid.
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—— T=b/(r-1)
T=

b
2(r-1)

Performance ratio
N

b b(r—1) %
Ski season length

Figure 2: Performance of the ideal r-robust algorithm I,. compared to several algorithms Ap for
different values of 7', when » < 2.618. In contrast to Figure |l| the algorithms that buy at times

2
T = % (purple curve) and T' = Tlf 7 (red curve) are not r-robust anymore, because their

thresholds fall outside the interval [b/(r — 1), b(r — 1)].

B DETAILS FROM SECTION[4]

B.1 OMITTED PROOFS

Proof of Lemma First, recall that in order to be r-robust, any algorithm must choose a threshold
T € [t1,t2), where ty = M/r and to = r.

Case 1: z, < ty.
In this case, I sets T = t; and never accepts, so A¢, (o) = 1. The offline optimum is z,, hence
T
pr(l,,0) = TU =z,.
Any other r-robust algorithm Ar must also have T' > ¢1, thus Ar(c) = 1, and the performance

ratio of Ap is x,. Therefore, I. is optimal in this interval.

Case 2: z, € [t1,t2].
Here I, sets T' = x,, thus Ar(0) = z, and

pr(l,, o) = Yo _ 1,
hence I, is optimal in this interval.

Case 3: z, > to.
In this case, I sets T = t2 and accepts the first price at least ¢2, so Az, (o) > t2 and

pr(l,0) < x—g.
to

Any r-robust algorithm must have T' < 5. If T' < t5, consider a sequence o of the form v, t5, where
v € [T, t3). In this case, Ap(0) = v and

xO’
to
Thus no r-robust algorithm attains a smaller ratio than I,. on o.

pr(Ap,0) = -2 >
v

Combining the three cases, the optimal threshold is 7 = min{te, max{t1, 2z, }} and the perfor-
mance ratio is

Ty o € [1,t1),
pr(l,,0) =<1, Zo € [t1,ta],
xg/tg, "L'D-G(tQ,M}.
This completes the proof. O

Proof of Theorem[5] The proof is based on a case analysis. First, note that the prediction range
R, = [¢,u] may not always overlap with the robustness interval [¢;,t5]. If this is the case, the
threshold 777 .. must be chosen so as to minimize the maximum distance from the ideal performance.

Namely:
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o Ifu <ty,then T}, = t1, since in this case dmax (A1) = 0.

o If £ > to, then T}, = to, since we have again dpx (A1) = 0.

This ensures that the algorithm’s performance aligns with the ideal benchmark when predictions fall
outside the robustness interval. Furthermore, we analyze intersections between R, and [t1, ¢2] by
considering the following cases:

Case 1: { and w are within [ty t2]. Then pr(I,,z) = 1forall z € R,,. We consider further subcases:

1. T < ¢: The maximum distance dy,.x (A7) is defined by 7 — 1, with the adversary selecting
x = u to maximize this distance.

2. T € [¢,u]: The distance dmax (A7) is calculated as max {# — 1,7 — 1}. If T < x, the
performance ratio is maximized at x = wu; however, when 71" exceeds z, it is maximized at
x =T — ¢ for a very small €. Hence in this case the performance ratio is arbitrarily close

T
to T

3. T > u: In this case, < u, and dyax (A7) = v — 1.

The second case above, namely 7' € [¢,u], is the most general one. To minimize dpax(AT), the
optimal 7% is equal to \/u, because it minimizes the maximum of two expressions. If \/u < t1,

then the tl;Irlg)s(hold must be adjusted to:
Trtlax = max{th \/E}

to ensure it resides within the robustness interval.

Case 2: t1 < £ and u > to. Here, the main complication is that pr(/,, ) may differ from 1. It is
sufficient to choose T € [¢, 5], with the maximum distance being

U U to
Amax(AT) = —— —T-1,=—15.
(Ar) maX{T 5 T }

Solving for the optimal 7' that satisfies

%—%:T—L
yields
T =ty —u++/(u—t2)?+ 4t2u.
However, this value may not belong in [t1, 2], hence
T

max

= min{te, max{ty, T}}.
This concludes the proof. O

For some intuition behind Theorem [5] we note that in the first case, the algorithm aims to minimize
the distance from the line y(x) = 1 (the ideal performance). In this case, the threshold has a de-
pendency on \/u, as derived from an analysis similar to the competitive ratio (which is equal to the
square root of the maximum price). In the second case, the algorithm aims to minimize the dis-
tance from a more complex ideal performance, which includes two line segments. This explains the
dependency on the more complex value 7. One can also show that T > 4/u: this is explained intu-
itively, since in the second case, the algorithm has more “leeway”, given that the ideal performance
ratio attains higher values.

Proof of Lemmal6] From the definition of F'*, it follows that

Epop [p] = Ep [p],

hence the a-consistency of Ar is at least the RHS of the equation in Lemma@
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Let F be a distribution that maximizes the a-consistency, then it must be that

Ep,~ L[p]
a —cons(Ap) > — —PoRYE
W) 2 Gk, o [Ar(o)

We can argue that CVaR #lAr(0)] < CVaRq, p+[A7(0)]. This follows directly from , and the
observation that in any sequence o in the support of F'*, we have that Ap(o) = 1, if z, < T, and
Arp(o) =T, if z, > T. Hence, we also showed that the c-consistency is at least the RHS of the
equation in Lemmal6] which concludes the proof. O

Proof of Theorem[7} Similar to ski rental, the computation of CVaR, ,[Ar(c)] for the one-
max search problem requires a case analysis based on the parameter ¢ of (3). Define ¢ =
Pry~p+[Ar(0) = 1] as the probability that the algorithm Ar selects the value 1, and 1 — ¢r as the
probability it selects the threshold 7'. Recall that these are the only two possibilities, from the defi-
nition of F*, without any assumptions of R,,. Under the assumption that R, = [(1 —d)y, (1+)y],
we can obtain a better lower bound for Ar, i.e., we know it can ensure a minimum profit of (1 —§)y.
We proceed with the analysis of this setting, and consider the following cases.

Case I: t > T. Then

CVaR, ,[Ar(0)] = fgg {t< 1 ila) + QT(ll_—To)z . T} '

In this case, the optimal value of ¢ is equal to 7', hence we obtain:

T(1—qr —a)+qr

CVaR, u[Ar(0)] = L a

Case 2: t < (1 — §)y. In this case, (t — Ap(0))T =0, and
CVaRq,,u[Ar(0)] = (1 - 0)y.

Case 3:t € [(1 — 0)y, T]. Then

0 w.p.1—gqr
t—A t=e7 ’
( r(@)) {t -1, w.p.qr,
from which we get that

CVaRa [Ar(0)] =  sup ]{t<10“”)+ i }

tel(1-8)y,T l -« l -«

We consider two further subcases. If 1 — a — g7 < 0, then we obtain
CVaRq u[Ar(0)] = (1 —0)y.
In the case, when 1 — o — g7 > 0, we have that

T(1—-qr—a)+qr
1—a ’

CVaRq ,[Ar(0o)] =

Combining all the above cases, if follows that:

11—«

CVaRq ,[Ar(0)] = max { T=gr=a)tar _ 6)y} .

18
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B.2 WEIGHTED MAXIMUM DISTANCE

The payoff function is defined considering two cases: First, if R,, C [t1, 2], then the payoff function
is

x
max {Ijlza%( (T - 1) . w(az),rg&a%( (T-1)- w(x)} )
since, in this case, the ideal performance is equal to 1.
In the second case, i.e., R, is not in [t1, t2], then
max {Tg3§t2 (£ - 1) w(z), max (T — g) w(x), I;’l<a%{(T — 1)w(m)} . (12)

which follows from (§). In general, it is not possible to obtain an analytical expression for the value
of this game (under deterministic strategies) for arbitrary weight functions. However, for specific
functions, the game can be solvable as we demonstrate below.

Example: We will compute T

 ax for a linear weight function, defined as:

w(az):max{o,l— x_y|}. (13)

For simplicity, we only show the computation for the case R, C [ti,t2]. The other cases can be
handled along similar lines, using (I2). In this case is

(x—l)(l—y_(sx>, ifr <Tandz € [(1-90)y,y,
Y

x y—x :

el _ > _

(T 1)(1 " ), ifr>Tandx € [(1—90)y, v,
max vy

(x—l)(l— 5 >, ifr<Tandzx €[y, (14 0)y],

Y

x r—y .

L — > :

(T 1)(1 " ), ifx >Tandx € [y, (14 0)y]

We denote the expressions, for each case in the above maximization, by ey, e2, €3, e4 respectively.
First we analyze the best response of the adversary for a fixed threshold 7', which represents the
player’s strategy. There are two cases to distinguish, depending on how 71" compares to y.

CASEA: T <y.

Subcase Al: (1 —d)y < = < T In this case, the value of the game is given by e;. The second
derivative of e; with respect to x is 2/dy, therefore e; is concave, and maximized at one of the
endpoints of the case range. Considering e; as a function of z we have e;((1 — §)y) = 0 and
er(T) = (T —1)(T — ((1 = d)y))/yd > 0. Therefore, the adversary’s best response is to choose
x =T, yielding a game value, which we denote by

P (1)
yo

Subcase A2: T' < x <y In this case, the value of the game is given by e,. Its second derivative is

2/ydT, therefore es is concave. Again we evaluate es at the endpoints of the case range, and obtain

ea(T) = 0as well as ea(y) = y/T — 1 > 0. Therefore, the adversary’s best response is to choose

x = g, producing a game value

Vo = — 1.

Nl
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Subcase A3: y < z < (14 9)y In this case, the value of the game is given by e4. The second
derivative is —2/(yd T'), hence eg is concave. Using second order analysis, we find that it is maxi-
mized at x = (T 4 (1 4 §)y)/2. This choice is in the case range [y, (1 4+ §)y], since T belongs to
[(1 =)y, (14 0)y]. We denote by

(A+0)y - 1)
Uy =
4yé6T

the value of the game for the best adversarial choice in this case.

Summary of case A We observe that vs is always dominated by v,4, hence the value of the game
in case A is max{vy, v4}.

CASEB: T > y.

Similar to the previous case, we break this case further into 3 subcases.

Subcase B1: (1 — d)y < & < y. Asin case Al, the value of the game is given by e;, which
is maximized at its right endpoint. Since this is a different endpoint than in case A1, we obtain a
different value of the game, namely

ei(y) =y — 1.

Subcase B2: y < 2 < T. In this case, the value of the game is e3. Its second derivative is —2/yd,
hence it is concave. Its derivative at the upper endpoint is 4 — 27" < 0, hence e5 is maximized at this
lower endpoint, and has the value v3 = y — 1. Note this v3 happens to be also the value of the game
in case B1 and does not depend on 7.

Subcase B3: 7" < z. The analysis of this case is identical to the analysis of case A4, hence the
value of the game is vy.

Summary of case B If the algorithm chooses T' € [y, (1 + &)y, then the value of the game is
max{vs, vs }. We observe that vy is a concave function in T', with slope 0 at T' = (1 + §)y, while v3
is a constant. We show that vs > vy, even for the whole range (1 — d)y < T < (1 + ¢)y. For this
purpose we evaluate vq at T = (1 — §)y, and obtain by the assumption that 1 < (1 — §)y that

0
v —val(1=8) =y 1= g0
>y-1-%
- 1
>0

SUMMARY OF BOTH CASES A, B

We know that if the algorithm chooses T' > y, then the value of the game is v3 = y — 1. We claim
that 7" < y would be a better choice. We already showed that v4 < v3. To show v; < v3, we observe
that in v; = (T — l)w, the first factor 7" — 1 is upper bounded by y — 1. In addition, the
second factor is at most 1 by 7' < y, from which we conclude v; < vs.

Hence max{vy,v4} < v3. As aresult, the algorithm’s best strategy is to choose (1 — §)y < T <y
such that v (T") = v4(T'). The exact expression of this value can be computed, but does not have a
simple form. Hence, for the purpose of presentation, we omit its exact expression. See Figure 3] for
an illustration.
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T

Value of the game

o
0

0“P,OO 125 150 175 2,00 225 250 275 3.00
Threshold T

Figure 3: Illustration of the different values of the game: v; in blue, v3 in orange, and vy in green.

The parameters are y = 2 and 6 = 0.5. The value of the game is obtained for 7" chosen as the
intersection of the green and blue curves.

B.3 AN EXAMPLE FOR COMPUTING THE AVERAGE DISTANCE

In this section, we discuss how to optimize the average distance, which from @) and (E[) is equal to

ﬁ(f(jlﬂ_é)y(w —1) - w(x) de+

S E ) (@) da), (L4 Sy < o,

duvg (A1) = { 25 (f7 (2 — 1) - w(w) da+ (14)
Jp (3 —1) - w(z) dat
t(21+5)y(% _ %) ~w(z) dz), otherwise.

We illustrate how to compute the average distance for the linear weight function, as defined in (I3).
We show the calculations only for the first case in , i.e., in the case in which (1 + d)y < to.
Recall that the linear weight function is increasing for 7' < y and decreasing for 7" > y. Due to
this behavior, we split the computation of the integral into two expressions, depending on whether
T < yorT >y, which are given below.

([ ()
+/Ty(;—1)-<1—yx) dz
+/y(1+5)y(;_1>.<1_x;y) d:r),

([0 (55
o[ G- (-5 e
+/T(1+5)y (7-1): (1— x;%) d:r).

The first expression, daye,1(7"), can be simplified to:
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1
davg,l(T) = 12

BT~ W = 1)+ 38 (v = AT +)

+3ys(T — 1) (T* — y°)
+(T = 1)(y = T)*(y+21)).

Similarly, the second expression, davg,g(T), simplifies to:

Yo+ 3y — (6 +yo —3y)T
o 127 ’

davg,2(T)

To determine the optimal threshold T.;,, we apply second-order analysis, solving for each case

independently. The final solution is obtained by selecting the value of T" that minimizes dayg(T').

C APPLICATION IN CONTRACT SCHEDULING

Definitions In this section, we apply our framework to the contract scheduling proble In its
standard version (with no predictions), the schedule can be defined as an increasing sequence of the
form X = (z;);en, Where x; is the length of the i-th contract. These lengths correspond to the
execution times of an interruptible system, i.e., we repeatedly execute the algorithm with running

times x1, 2, .... Hence, the completion time of the i-th contract is defined as Zi':o z;. Given
an interruption time 7', let £(X,T) denote the length of the largest contract completed in 7. The
acceleration ratio of X (Russell & Zilberstein, [1991) is defined as

T
0X, 1)

acc(X) =suppr(X,T), wherepr(X,T) = (15)
T

It is known that the best-possible acceleration ratio is equal to 4, which is attained by any doubling
schedule of the form X = (A\2%);, where A € [1,2). In fact, under very mild assumptions, dou-
bling schedules are the unique schedules that optimize the acceleration ratio. Note that according
to Definition without any assumptions, no schedule can have bounded acceleration ratio if the
interruption time is allowed to be arbitrarily small. To circumvent this problem, it suffices to assume
that the schedule is bi-infinite, in that it starts with an infinite number of infinitesimally small con-

tracts. For instance, the doubling schedule can be described as (2i)iez, and the completion time of
contract i > 0 is defined as 3 27/ = 2'"!. We refer to the discussion in|Angelopoulos et al.

(2024)) for further details. We summarize our objective as follows:

Objective: For each of the decision-theoretic models of Section [2| find A € [1,2) such that the
schedule X optimizes the corresponding measure.

We will denote by Aj, .., A, and AZ,, the optimal values according to the maximum/average dis-
tance, and according to CVaR, respectively. Given a schedule X, we will use the notation k) (t) to

denote the index of the largest contract in X that completes by time ¢, hence k(t) = [log, £].

C.1 DISTANCE MEASURES

Here, we consider the setting in which there is a prediction y on the interruption time. We begin with
identifying an ideal schedule, which, in the context of contract schedule, is a 4-robust schedule X
that optimizes the length £(X, y), i.e., the length of the contract completed by the predicted time y.
From |Angelopoulos & Kamali| (2023b), we know that such an ideal schedule completes a contract
of length y/2, precisely at time y, and thus has the following property.

Remark 8. The performance ratio of the ideal 4-robust schedule is equal to 2.

I'This is a problem of incomplete information that can be considered as an online problem, in the sense that
in each time step the scheduler must decide whether to continue the current contract, or start a new one.
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*

Algorithm 2 Algorithm for computing A}, ..

Input: Prediction y with range R, weight function w.

Output: The optimal value of the A\-parameter, A} ...

1: Define a set of critical times as S = {y, A-2"2(#) S’} where S’ is the set of all solutions to the
differential equation w(T) 4+ w'(T) - (T — X - 2182 X1y = 0.

2: Forall T € S, compute d(X,,T) = — 2) ~w(T).

3: Return \*

max

__r
A-2kA(T)—1
= argmin, ¢y o) maxres d(X, T).

From (I)), (I5) and Remark [3] it follows that the maximum distance of a schedule X can be ex-

pressed as

T
Anax (X)) = félgy (W — 2) ~w(T), (16)

where recall that 2, is the range of the prediction y.

*

Algorithm 2[shows how to compute A} ... We give the intuition behind the algorithm. We prove, in
Theorem [9} that the distance can be maximized only at a discrete set of times, denoted by .S. This
set includes the prediction y, the last time a contract in X, completes prior to y, and an additional
set of times, denoted by S’ which are the roots of a differential equation, defined in step 2 of the
algorithm. To show this, we rely on two facts: that w is piece-wise monotone (i.e., bitonic), and that
the performance function of any 4-robust schedule X is piece-wise linear, with values in [2, 4].

Theorem 9. Algorithm 2| returns an optimal schedule according to dax.

Proof. Recall that the performance ratio of the schedule X, = (\2%); is expressed as
T T

X T = = .
pr(X, 1) U0(Xx,T)  A.oloss T11

We observe that pr(X,,T) is a piece-wise linear function. Specifically, if T' belongs in the interval
(A27,X\27F1], then pr(Xy, T') is a linear increasing function, with value equal to 2, at T' = \27 + ¢,
and value equal to 4 at T = A2+, where ¢ is an infinitesimally small, positive value. This linear
growth arises from the structure of the schedule, which starts a new contract at the endpoint of each
interval. For this reason, pr(Xy,T) has a discontinuity at the endpoint of each interval.

By definition, y belongs to the interval (T}, (), Tk, ()+1]- To simplify the notation, in the remainder
of the proof we use k to denote k) (y). We claim dpx (X)) is maximized for some T € [Ty, Tg+41],
specifically at one of a finite set of critical points S. To establish this claim, we make the following
observations:

* At T = T}, the performance ratio reaches its maximum value equal to 4, for the entire
interval (T—1, Tk)-

* Any 7' > Ty41 or T' < T} does not need to be considered in the computation of dy,,x, due
to the monotonicity of the weight function, and the structural properties of the schedule
X, as discussed above.

Given that the bitonic nature of the weight function, we observe that for all T < y, w(T) is non-
decreasing, hence within the interval [T}, y), it suffices to only consider 7}, as a maximizing candi-
date. Furthermore, in the interval [y, T), +1], w(7T') is non-increasing, while the performance ratio
grows linearly. Thus, one must find the local maxima for T € (y, Tk, 4+1], by solving d’(X,T) = 0,
or equivalently

w(T) +w'(T) - (T — -2l 31y = 0.

We thus show that it suffices to consider the set .S as potential maximizers of the distance, as defined
in Algorithm 2] O

Corollary 9.1. For the unit weight function w(t) = 1, and R,, = [(1 — 6)y, (1 + 0)y], the schedule
that minimizes dy.x is the schedule of Angelopoulos & Kamali (2023D)).
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Proof. The proof is a special case of the proof of Theorem E} In this case, d'(X),T) =1 > 0,
which implies that only local maxima for d(X,T) can occur at T' = Ty or at (1 + 0)y.

We will consider two cases. First, suppose that 6 > 1/3. In this case, any schedule X is such
that dynax (X)) = 2. This is because X completes at least one contract within the time interval
(1 =d)y, (1 +d)y].

For the second case, suppose that 6 < 1/3. Then, in order to minimize dy,ax, and without loss of
generality, A must be chosen so that no contract terminates anywhere in [(1 — )y, (1 + J)y], since
otherwise X would have a performance ratio as large as 4, hence distance as large as 2. With this
into account, A must be further chosen so that X, completes a contract at time (1 — &)y. This is
because, in this case, pr(Xy, T') is increasing in T', for T’ € [(1 — )y, (1 + 0)y]. Hence the optimal
algorithm is precisely the -tolerant algorithm. O

Next, we show how to optimize the average distance, which from (2)), and (T3)) is equal to

1 T
Aave(X) = — ———— 2| -w(T) dT. 17
) =505 [ (g —2) v ()

Optimizing (17) requires numerical methods.

C.2 COMPUTING THE AVERAGE DISTANCE OF A SCHEDULE

To ensure computational tractability, we impose a constraint on the range R, of the prediction y.
Specifically, we assume & < % This assumption guarantees that for any schedule of the form
X = \(2"), there is at most one completed contract within R,,.

The length of the largest completed contract in X before (1 — )y is then given by A2k ((1=0)y) =1
Using this, we divide the range R, into two sub-intervals:
L. [(1 — &)y, A2kA((1=9)1)+1]: In this interval, the performance ratio is

T T
(X, T) A2k ((=d)y)—1"

2. [A2FA((1=0)9)+1 (1 4+ §)y]: In this interval, the performance ratio is

T T
(X, T) ~ A2k

The average distance dayg(X) is then expressed as:

1 A2FA((1=8)p)+1 T

dave (X)) = %0 </(1§)y ()M—é)y)—l - 2) ~w(T)dT (18)
(1+0)y T

" /,\2h((1—5>y>+1 </W1_5)y> - 2) D dT>. 4

Example: linear weight functions. As an example, consider the case in which w is a bitonic linear
function defined by

To apply this weight function in the computation of @ we divide the prediction interval R, =
[(1 = 8)y, (14 6)y] into three subintervals based on the structure of the schedule and function w:

e T € [(1 — (5)y7 A2k>‘((1_6)y)+1]: In this case, pr(X, T) = W Then,

A2FA((1=8)y)+1

T y—T
/My (mkﬂ(w)y“ _2) | (1_ s > ar-
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« T e N2M=09FL y]: In this case, pr(X, T) = s5rrr=syy- Then,

2k ((1=08)y) *

Yy T y—T
/,\gkA((l—(s)yH—l <)\2k)\((15)y) a 2> ' (1 - y6 ) dT

* T € [y, (1 + d)y): In this case, pr(X, T) = 5rtr=s- Then,

SR S D SR e i
Y A2k ((1=8)y) Yo '

To summarize, we obtain from the above cases, and that
g(x —3(y8)2\ + 4R (=09 +1)3 | 3 ok ((1=0)1) N2 yy(§ — 1)
vl X) = By

9—2-kx((1-8)y) ( — (y0) +9(yd)*y — 3(yd)y* + y3)
3(y0)?A '

+

Optimizing in terms of A via second-order analysis and solving for the derivative’s root gives three
solutions, but only one real root. Thus the optimized value is:

Ao = 9=3(1+kx((1=8)y)) <4kx((16)y) y(1—6)

N 16k>\((1—6)y) y2(5 _ 1)2

1/3
( —3.64m((1=0)W) A + 4\/4096k»(<1—5)y>3132)

1/3
+ ( — 364 ((1=0)y) 4 4 4\/4096@((1*5)9)3132) / )

where
A =3(y8)* — 25(y6)%y + 9(yd)y* — 3y°,
By = 5(y6)® — 39(yd)*y + 15(y8)y* — 5y°,
By = (y0)® — 9(yd)y + 3(yd)y* — y°.

C.3 RISK-BASED ANALYSIS

We now turn our attention to the CVaR analysis. Following the discussion of Section[2.2] the oracle
provides the schedule with an imperfect distributional prediction £. From (@), and the fact that any
distributional prediction concerns only the interruption time (the only unknown in the problem), the
a-consistency of a schedule X, is equal to

ETNH [T]
CVaR,, ,[0(X,T)]

a-cons(A) =

We thus seek X that maximizes the conditional value-at-risk of its largest completed contract by
an interruption generated according to u. To obtain a tractable expression of this quantity, we will
assume that y has support R, € [(1 —9)y, (14 6)y], where h < y/3. This captures the requirement
that the support remains bounded, otherwise the distributional prediction becomes highly inaccurate.
This implies that if ¢ is drawn from p, then in X, £(X, t) can only have one of two possible values,
namely 25 ((1=80)») =1 gpnd N2k ((1=0)y),

EA(Q-8)y)+1
Define g\ = Pr[¢(Xy,T) = A2 ((1=9v)=1] — f(’;Q_;)y w(T) dT, then from the discussion

above we have that Pr[((Xy,T) = A2 ((1=99)] = 1 — ¢,. With this definition in place, we can
find the optimal schedule.
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Theorem 10. Assuming 6 < 1/3, we have that

A2EA((1=8)y) -1

CVaR%M[E(XA, )] = max{ (2(1—a) —qx) 7)\2“((1_5)11)_1} )

l1-«a
where ky(t) = |log, £ |. Hence,
AGvar = arg maxje(i1,2) CV&Ra,u[e(XA» Tﬂ»

Theorem [T0] interpolates between two extreme cases. If @ = 0, then our schedule maximizes the
expected contract length assuming 7' ~ i, i.e., A28 ((1=0v) =1 g 4 AoRA((1=0)y) . (1 — ¢y) =
A2FA((1=9)y)=1 . (2 — ¢,). This schedule recovers the optimal consistency in the standard case of a
distributional prediction, as studied in (Angelopoulos et al.,2024), and corresponds to a risk-seeking
scheduler. In the other extreme, i.e., when @ — 1, the schedule optimizes the length of a contract
that completes by the time (1 — §)y, namely A\2¥*((1=9)¥)=1 We thus recover the consistency of the
d-tolerant schedule.

Proof. Recall the definition of the conditional value-at risk comes, as given in (3). In order to
compute CVaR,, ,[¢(Xx,T)] we have to apply case analysis, based on the value of the parameter ¢:

Case I: t > \2kx((1=0)y)  Then
CVaR, ., [l(XA,T)] =
1
sup {t L (t . )\Qkx((l—5)y)—1(2 . q/\))} )

t>A2kA ((1=8)y)—1 -«

In this case, the optimal value of ¢ is equal to A2¥»((1=9)%)—1 'hence we obtain:

A2FA((1-8)y) -1

CVaRq ,[0(X),T)] = 2(1 —a)—qy).

11—«

Case 2: t < X2 ((1=9))=1 n this case, (t — (X, T))" =0, and
CVaRg p[((Xn, T)] = 225 (1=00)=1

Case 3: t € [A2FA((1=9)1)=1 N\9kA((1=0)v)] Then

0 w. p. 1 —qn
t—0X, THT =" ’
( ( s )) {t _ )\2]@)\((1*6)9)71, W. D. gx,

from which we obtain that

CVaRq . [0(Xx, T)] = sup {t (1 _ L) n w} .

R -« 1-a
te[}@k)\((l—é)y)*l’ A2k ((1=8)y) ]

We consider two further subcases, based on whether of 1 — o — g, is positive or not. In the former
case, we have that
A2kA((1=d)y)—1
CVaRa,u[0(Xx, T)] = B — 2l —a)—q\).
In the latter case, we obtain

CVaRg [0 Xy, T)] = A2k (=91,

From the above case analysis, it follows that
A2kA((1=0)y)—1

CVaR, ,[0(X,T)] = max{ T

(21— ) — ) mey)l} ,

which concludes the proof. O
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Table 3: Experimental results for contract scheduling (linear weight), 6 = 0.2.

MAX AVG CVAR, PO 5-ToL
a=0.1 a=0.5 a=0.9
Avg perf. ratio 2.421 2.413 2.426 2.416 2.471 2.960 2.500
CIL./CI_ +0.0000/- +0.0000/- +0.0002/- +0.0001/- +0.0002/- +0.0000/- +0.0000/-
0.0000 0.0000 0.0002 0.0001 0.0003 0.0000 0.0000
Exp. contract length 413,303 417,504 420,164 415,274 402,646 373,008 397,875
CI./CI_ +9083.55/- +8495.21/- +9123.35/- +8621.83/- +8679.61/- +7776.46/- +8377.65/-
8957.96 9051.60 8027.55 8983.43 8684.86 7024.64 8357.20

Table 4: Experimental results for contract scheduling (linear weight), § = %

MAX AVG CVAR, PO §-ToL
a=0.1 a=0.5 a=0.9
Avg perf. ratio 2.689 2.632 2.643 2.654 2.873 2.934 3.000
CI,./CI_ +0.0000/- +0.0000/- +0.0002/- +0.0002/- +0.0006/- +0.0000/- +0.0000/-
0.0000 0.0000 0.0002 0.0002 0.0006 0.0000 0.0000
Exp. contract length 371,190 387,025 389,927 378,469 344,100 370,414 329,257
CI/CI_ +7982.66/- +8086.65/- +8739.76/- +8779.84/- +7710.75/- +8252.32/- +7185.13/-
7670.94 8892.81 9252.04 7975.69 8106.44 8220.64 7391.59

C.4 EVALUATION OF CONTRACT SCHEDULES

Baselines We compare our schedules against two 4-robust baselines (Angelopoulos & Kamali,
2023b): the Pareto-optimal schedule (PO), which completes a contract at the prediction y, and the
d-tolerant schedule (4-Tol), which completes a contract at (1 — 0)y.

Datasets The prediction is chosen as y ~ Unif[0.8 - 105, 1.2 - 10°], and the prediction range is
R, =[(1—-6)y, (1 + d)y]. The interruption time 7 is chosen uniformly at random from R,,.

Evaluation For MAX and AVG, we use two weight functions defined on R,. The first is a linear
symmetric function that decreases from 1 at y to O at the endpoints of 1?,,. The second is a Gaussian
function

L _ 1 (z=y)? -
’Uj([L‘) = oV 2T exp( 2 ( o ) ) 9 lf{E € Ry,
0, otherwise,

where 0 = Jdy/4. For CVAR,, the predictive distribution p coincides with the respective weight
function, truncated and normalized on R, with o € {0.1,0.5,0.9}.

For each schedule ,we compute the average performance ratio, taken over all T' € R,, with 1000
independent repetitions on the choice of y. We also compute the expected completed contract length
under p, with the averaging performed over the choices of y. The tables also report the 95% con-
fidence intervals (Cls). Results are presented in six tables: three for the linear weight function (Ta-
bles[3H5) and three for the Gaussian weight function (Tables [6H8), each corresponding to a different
value of 4.

Discussion The tables show that, in the vast majority of the considered settings, our schedules
achieve better performance ratios and larger expected contract lengths than both PO and 4-Tol. This
can be explained by the fact that all Pareto-optimal algorithms are brittle, as shown in (Elenter et al.,
2024])), whereas, in contrast, the §-Tol algorithm is inefficient unless the prediction error is large.

For CVAR,, the results show that the expected completed contract length decreases as o grows,
while the performance ratio tends to increase, which is consistent with the tradeoff between risk and
robustness. When ¢ is smaller, all schedules perform better: this is because the reduced prediction
range allows to our algorithms a more accurate positioning of the completion time. In a similar
vein, for Gaussian weights, the results are consistently stronger than for linear weights, because the
distribution is more concentrated around y. Finally, we note that most confidence intervals on the
reported objectives collapse to zero. This is consistent with theory because the schedules have the
same structure for each prediction y.
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Table 5: Experimental results for contract scheduling (linear weight), 6 = 0.4.

MAX AVG CVAR,, PO §-ToL
a=0.1 a=0.5 a=0.9
Avg perf. ratio 2.808 2.704 2.711 2.746 3.031 2.920 3.287
CI./CI_ +0.0000/- +0.0000/- +0.0001/- +0.0003/- +0.0003/- +0.0000/- +0.0000/-
0.0000 0.0000 0.0001 0.0003 0.0003 0.0000 0.0000
Exp. contract length 361,661 385,593 387,891 372,668 335,125 376,514 308,199
CI,./CI_ +7657.21/- +8265.97/- +8415.05/- +8449.57/- +7200.61/- +8415.63/- +7370.45/-
7979.53 8367.98 8767.30 8393.17 7299.36 8840.35 8120.64

Table 6: Experimental results for contract scheduling (Gaussian weight), § = 0.2.

MAX AVG CVAR,, PO 5-ToL
a=0.1 a=0.5 a=0.9
Avg perf. ratio 2.267 2.266 2273 2.266 2.315 2.960 2.500
CIL./CI_ +0.0000/- +0.0001/- +0.0002/- +0.0000/- +0.0003/- +0.0000/- +0.0000/-
0.0000 0.0001 0.0002 0.0001 0.0003 0.0000 0.0000
Exp. contract length 442,104 443,434 445,046 442,662 430,335 373,008 397,869
CIL./CI_ +9722.63/- +9022.41/- +9673.17/- +9198.55/- +9289.41/- +7776.46/- +8377.52/-
9586.90 9592.05 8505.70 9603.26 9245.24 7024.64 8357.07

Table 7: Experimental results for contract scheduling (Gaussian weight), § = %

MAX AVG CVAR,, PO 5-ToL
a=0.1 a=0.5 a=0.9
Avg perf. ratio 2.421 2.413 2.423 2.415 2.524 2.934 3.000
CI./CI_ +0.0000/- +0.0001/- +0.0002/- +0.0001/- +0.0004/- +0.0000/- +0.0000/-
0.0000 0.0001 0.0002 0.0001 0.0004 0.0000 0.0000
Exp. contract length 412,448 416,801 419,095 414,520 392,171 370,414 329,262
CI./CI_ +8872.45/- +8664.99/- +9395.10/- +9623.35/- +8729.12/- +8252.32/- +7185.24/-
8524.03 9576.50 9951.62 8751.30 9156.69 8220.64 7391.71

Table 8: Experimental results for contract scheduling (Gaussian weight), § = 0.4.

MAX AVG CVAR,, PO 5-ToL
a=0.1 a=0.5 a=0.9
Avg perf. ratio 2.494 2.478 2.488 2.483 2.631 2.920 3.287
CL./CI_ +0.0000/- +0.0001/- +0.0003/- +0.0002/- +0.0006/- +0.0000/- +0.0000/-
0.0000 0.0001 0.0002 0.0002 0.0006 0.0000 0.0000
Exp. contract length 407,466 413,970 416,511 410,594 382,442 376,514 308,032
CI./CI_ +8625.69/- +8887.56/- +9024.70/- +9319.17/- +8202.65/- +8415.63/- +6701.11/-
8993.79 8941.28 9400.35 9231.67 8300.45 8840.35 7383.17

D DETAILS FROM SECTIONI[6]

D.1 EVALUATION OF SKI RENTAL ALGORITHMS

We base the experiments on the benchmarks described in Section [6} for varying values of the
parameters 6,7, 2. For MAX and AVG we consider two classes of weight functions on R, =
[(1—9)y, (1+ d)y]: alinear symmetric weight decreasing from 1 at y to 0 at the endpoints, and a
Gaussian weight with mean y and o = dy/4, both truncated and normalized on R,,. For CVAR,,, the
distribution (i is described by the same linear and Gaussian weight classes (truncated and normalized
in R,), with o € {0.1,0.5,0.9}. As in the main paper, we report (i) the average performance ratio
(averaged over all x € R, and over 1000 draws of y) and (ii) the expected cost under u (averaged
over the same 1000 draws of y). Each table also includes 95% confidence intervals. We present
five tables for linear weights (Tables [JHI3) and five for Gaussian weights (Tables [T4HT8). They
correspond to the settings (d,r, z) € {(0.9,5,4), (0.9,8,4), (0.5,5,4), (0.5,8,4), (0.9,5,7)}.
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Table 9: Ski rental (linear weight), § = 0.9, r = 5, z = 4.

MAX AVG CVAR,, BP,
a=0.1 a=0.5 a=0.9 b b+ 4 b(r —1)
Avg perf. ratio 1.3442 1.3368 13418 1.3637 13930 1.6767 2.1874 2.2189
CI/CI_ +0.0311/- +0.0309/- +0.0297/- +0.0343/- +0.0366/- +0.0482/- +0.1606/- +0.1706/-
0.0345 0.0336 0.0303 0.0342 0.0355 0.0502 0.1668 0.1684
Exp. cost 11.2501 11.1832 11.1693 11.2758 11.4553 16.4188 20.6070 20.5024
CI./CI_ +0.4798/- +0.4866/- +0.4954/- +0.4787/- +0.4671/- +0.9002/- +1.8565/- +1.8461/-
0.5076 0.5085 0.5201 0.5368 0.4981 0.9968 2.0281 1.8712

Table 10: Ski rental (linear weight), § = 0.9, r = 8, z = 4.

MAX AVG CVAR, BP,
a=0.1 a=05 a=0.9 b b+ br b(r —1)
Avg perf. ratio  1.2879 1.2853 1.3031 1.3343 1.3978 1.6767 22417 2.2251
CL;/CI_ +0.0318/- +0.0324/- +0.0338/- +0.0435/- +0.0543/- +0.0482/- +0.1794/- +0.1748/-
0.0339 0.0334 0.0355 0.0398 0.0505 0.0502 0.1831 0.1732
Exp. cost 10.4306 10.3880 10.3999 10.4840 10.7296 16.4325 20.8787 20.7540
CL;/CI_ +0.3959/- +0.4165/- +0.4189/- +0.4035/- +0.3811/- +0.9005/- +1.9688/- +1.9242/-
0.4364 0.4321 0.4595 0.4551 0.4256 0.9964 2.1559 1.9548

Table 11: Ski rental (linear weight), § = 0.5, r = 5, z = 4.

MAX AVG CVAR, BP,
a=0.1 a=0.5 a=0.9 b b+ br b(r — 1)
Avg perf. ratio  1.2047 1.2034 1.2085 1.2145 1.2287 1.7729 2.2041 2.1976
CL;/CI_ +0.0182/-  +0.0182/- +0.0170/-  +0.0182/- +0.0216/-  +0.0633/- +0.1836/-  +0.1870/-
0.0201 0.0204 0.0176 0.0198 0.0223 0.0695 0.1871 0.1844
Exp. cost 11.1739 11.1732 11.1751 11.2170 11.3174 17.0456 21.2944 21.0003
CIL./CI_ +0.4695/-  +0.4829/- +0.4960/-  +0.4791/- +0.4821/-  +0.9977/- +2.0426/-  +1.9736/-
0.5043 0.5080 0.5209 0.5392 0.5183 1.1034 2.2322 2.0155

Table 12: Ski rental (linear weight), 6 = 0.5, 7 = 8, z = 4.

Max AVG CVAR BP,
a=0.1 a=0.5 a=0.9 b b+ br b(r — 1)

Avg perf. ratio  1.1265 1.1245 1.1334 1.1404 1.1476 1.7729 2.1680 2.1595
CL/CI_ +00112/- 400108  +0.0098-  +0.0133~  +0.0158/-  +0.0633/-  +0.1825-  +0.1783/-

0.0125 0.0124 0.0098 0.0128 0.0153 0.0695 0.1828 0.1757
Exp. cost 10.3897 10.3880 103983 10.4419 10.4889 17.0499 20.7854 207519
CL;/CL_ +0.3918/-  +0.4165-  +0.4184/- 403959/~  +0.4063/-  +0.9967/-  +1.9364/-  +1.9246/-

0.4351 04321 0.4550 0.4595 0.4330 1.1027 2.1260 1.9540
Discussion As ¢ decreases, our algorithms perform better both in terms of the performance ratio

and in terms of the average expected cost. This is consistent with theory, since I, becomes smaller,
and the algorithms can better leverage the narrower prediction range. We also note that Gaussian
weights generally yield stronger results than linear weights, which is explained by the fact that the
Gaussian weight function is more concentrated around y.

Varying z has small effect on the performance of the algorithms. This is not only expected, but
also an essential feature of the algorithms, since they should perform consistently regardless of the
predicted value. A similar observation holds for varying the robustness parameter .

D.2 EVALUATION OF ONE-MAX SEARCH ALGORITHMS

We base the experiments on the benchmarks described in Section [f] for varying values of the pa-
rameters J, 7, z. We evaluate MAX, AVG, and CVAR,, using the linear and Gaussian weight classes
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Table 13: Ski rental (linear weight), § = 0.9,r =5, z = 7.

MAX AVG CVAR,, BP,
a=0.1 a=0.5 a=0.9 b b+ 4 b(r —1)
Avg perf. ratio 13103 1.3053 13151 1.3295 13534 1.7901 2.8509 2.9905
CI/CI_ +0.0229/- +0.0233/- +0.0238/- +0.0276/- +0.0312/- +0.0456/- +0.1914/- +0.2160/-
0.0222 0.0223 0.0260 0.0275 0.0310 0.0472 0.2102 0.2153
Exp. cost 11.7081 11.7023 11.7078 11.7775 11.9247 17.8170 27.2827 27.5432
CI./CI_ +0.3917/- +0.4131/- +0.4053/- +0.3772/- +0.3763/- +0.7726/- +2.0175/- +2.0996/-
0.4533 0.4432 0.4532 0.4741 0.4357 0.8356 2.3302 2.2661

Table 14: Ski rental (Gaussian weight), § = 0.9, r =5, z = 4.

MAX AVG CVAR, BP,
a=0.1 a=0.5 a=0.9 b b+ b(r — 1)
Avg perf. ratio 13514 1.3387 1.3397 1.3492 1.3669 1.6767 2.1874 2.2189
CL;/CI_ +0.0297/- +0.0307/- +0.0302/- +0.0326/- +0.0335/- +0.0482/- +0.1606/- +0.1706/-
0.0333 0.0337 0.0311 0.0344 0.0358 0.0502 0.1668 0.1684
Exp. cost 11.1765 11.1731 11.1731 11.2151 11.3155 16.9873 21.2338 20.9577
CL/CI_ +0.4687/- +0.4829/- +0.4966/- +0.4796/- +0.4828/- +0.9850/- +2.0143/- +1.9520/-
0.5039 0.5081 0.5217 0.5398 0.5188 1.0909 2.2246 1.9971

Table 15: Ski rental (Gaussian weight), § = 0.5, r =5, z = 4.

MAX AVG CVAR, BP,
a=0.1 a=0.5 a=0.9 b b+ br b(r — 1)
Avgperf. ratio  1.2097 1.2034 1.2049 1.2049 1.2141 1.7729 2.2041 2.1976
CIL/CI_ +0.0184/-  +0.0182/- +0.0180/-  +0.0185/- +0.0197/-  +0.0633/- +0.1836/-  +0.1870/-
0.0206 0.0204 0.0185 0.0199 0.0221 0.0695 0.1871 0.1844
Exp. cost 11.1740 11.1732 11.1733 11.1733 11.2349 17.1177 21.3451 20.9444
CL;/CI_ +0.4693/-  +0.4829/- +0.4966/-  +0.4843/- +0.4917/-  +1.0257/- +2.0850/-  +1.9824/-
0.5043 0.5080 0.5217 0.5294 0.5055 1.1153 2.2479 2.0130

Table 16: Ski rental (Gaussian weight), § = 0.9, r = 8, z = 4.

MAX AVG CVAR, BP,
a=0.1 a=0.5 a=0.9 b b+ br b(r —1)
Avg perf. ratio  1.3025 1.2853 1.3002 1.3175 1.3571 1.6767 22417 2.2251
CL;/CI_ +0.0322/- +0.0324/- +0.0342/- +0.0416/- +0.0507/- +0.0482/- +0.1794/- +0.1748/-
0.0335 0.0334 0.0360 0.0390 0.0444 0.0502 0.1831 0.1732
Exp. cost 10.3947 10.3880 10.3983 10.4381 10.5760 16.9918 20.7954 20.7520
CL;/CI_ +0.3933/- +0.4165/- +0.4198/- +0.3974/- +0.4016/- +0.9841/- +1.9368/- +1.9246/-
0.4372 0.4321 0.4603 0.4614 0.4385 1.0901 2.1269 1.9540

Table 17: Ski rental (Gaussian weight), 6 = 0.5, 7 = 8, z = 4.

Max AVG CVAR BP,
a=0.1 a=05 a=0.9 b b+ br b(r —1)
Avg perf. ratio  1.1345 1.1245 1.1288 1.1324 1.1404 1.7729 2.1680 2.1595
CIL/CI_ +0.0147/-  +0.0108/-  +0.0103/-  +0.0123/-  +0.0152/-  +0.0633/-  +0.1825-  +0.1783/-
0.0149 0.0124 0.0105 0.0122 0.0150 0.0695 0.1828 0.1757
Exp. cost 10.3908 10.3880 10.3898 10.4073 10.4565 17.1216 20.7559 207519
CI/CI_ +0.3920/-  +0.4165/-  +0.4204/-  +0.3986/-  +0.4107/-  +1.0255/-  +1.9374-  +1.9246/-
04354 0.4321 0.4565 0.4622 0.4390 1.1160 2.1215 1.9540

defined in Section[D.T] As in the main paper, we report (i) the average performance ratio (averaged
over all z € Ry and over 1000 draws of y) and (ii) the expected profit under ;. (averaged over
the same 1000 draws). All tables include 95% confidence intervals. We present five tables for lin-
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Table 18: Ski rental (Gaussian weight), § = 0.9,r =5,z = 7.

MAX AVG CVAR,, BP,
a=0.1 a=0.5 a=0.9 b b+ 4 b(r —1)
Avg perf. ratio  1.3201 1.3065 1.3110 1.3199 1.3383 1.7901 2.8509 2.9905
CI,./CI_ +0.0244/- +0.0236/- +0.0238/- +0.0262/- +0.0313/- +0.0456/- +0.1914/- +0.2160/-
0.0231 0.0227 0.0262 0.0258 0.0288 0.0472 0.2102 0.2153
Exp. cost 11.7063 11.7000 11.7051 11.7411 11.8475 18.2168 30.3389 30.9557
CI,./CI_ +0.3918/- +0.4139/- +0.4048/- +0.3831/- +0.4039/- +0.7890/- +2.4735/- +2.6507/-
0.4544 0.4431 0.4595 0.4670 0.4368 0.8573 2.9018 27672
Table 19: One-max (linear weight), § = 0.9, r = 100, z = 10.
MAX AVG CVAR,, 5-ToL PO, PO
a=0.1 a=0.5 a=0.9
Avg perf. ratio  4.3942 4.4469 9.9327 6.7335 5.2429 10.0085 4.6304 15.6848
CL./CI_ +0.04/-0.05  +0.06/-0.05  +0.26/-0.26  +0.15/-0.15  +0.12/-0.11  +0.00/-0.00  +0.06/-0.06  +0.45/-0.45
Exp. profit 15.2276 19.6283 30.7586 27.7794 16.1624 5.4746 13.5565 27.9437
CL./CI_ +030/-0.33  +0.49/-048  +0.90/-0.89  +0.80/-0.87  +0.49/-0.50  +0.15/-0.17  +0.18/-0.18  +0.82/-0.80
Table 20: One-max (linear weight), § = 0.5, r = 100, z = 10.
MAX AVG CVAR,, §-ToL PO, PO5
a=0.1 a=0.5 a=0.9
Avg perf. ratio  2.5877 2.7856 10.0269 6.7880 3.1589 2.0000 3.8718 21.0408
CIL./CI_ +0.02/-0.02  +0.01/-001  +0.26/-0.26  +0.16/-0.16  +0.04/-0.04  +0.00/-0.00  +0.06/-0.07  +0.62/-0.62
Exp. profit 28.6754 29.2159 36.1414 34.5976 29.7982 27.3730 13.9343 28.0349
CI,./CI_ +0.79/-0.88  +0.86/-0.82  +1.07/-1.05  +1.01/-1.09  +0.86/-0.87  +0.75/-0.83  +0.16/-0.16  +0.82/-0.81
Table 21: One-max (linear weight), 6 = 0.9, » = 80, z = 10.
MAX AVG CVAR,, 5-ToL PO, PO->
a=0.1 a=0.5 a=0.9
Avg perf. ratio  4.4865 4.4469 9.9943 6.9624 5.7321 10.0085 4.6516 15.6848
CI./CI_ +0.04/-0.04  +0.06/-0.05  +0.26/-0.26  +0.15/-0.15  +0.14/-0.14  +0.00/-0.00  +0.05/-0.05  +0.45/-0.45
Exp. profit 15.6165 19.6283 30.7121 27.6555 15.8462 5.4746 14.4844 27.9437
CL./CI_ +0.28/-031  +0.49/-048  +0.91/-0.89  +0.81/-0.88  +0.52/-0.53  +0.15/-0.17  +0.17/-0.18  +0.82/-0.80
Table 22: One-max (linear weight), § = 0.5, r = 80, z = 10.
MAX AVG CVAR,, 5-ToL PO, PO2
a=0.1 a=0.5 a=0.9
Avg perf. ratio 27301 2.7856 10.0378 6.7586 3.1362 2.0000 3.8570 21.0408
CIL./CI_ +0.05-0.05  +0.01/-0.01  +0.26/-0.26  +0.16/-0.16  +0.04/-0.04  +0.00/-0.00  +0.06/-0.07  +0.62/-0.62
Exp. profit 28.6082 29.2159 36.0559 345122 29.7079 27.3730 14.9631 28.0349
CIL,./CI_ +0.78/-0.87  +0.86/-0.82  +1.07/-1.04  +1.02/-1.10  +0.86/-0.87  +0.75/-0.83  +0.16/-0.17  +0.82/-0.81

ear weights (Tables [[9H23) and five for Gaussian weights (Tables 24H28). They correspond to the
settings (3,7, z) € {(0.9,100, 10), (0.5,100,10), (0.9, 80, 10), (0.5, 80, 10), (0.9, 100, 20)}.

Discussion The results show that our algorithms tend to improve as § decreases, whereas they are
not affected by variations in the parameters r and z. This is consistent with theory, and we refer to
the discussion in the analysis of the experiments on ski rental (Section [D.I)) for the justification.

For small values of §, §-TOL has very small performance ratio: this is due to the fact that in this case,
the range is extremely small. This advantage disappears, in a marked manner, once ¢ increases.
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Table 23: One-max (linear weight), § = 0.9, r = 100, z = 20.

MAX AVG CVAR,, §-ToL PO, PO-
a=0.1 a=0.5 a=0.9
Avg perf. ratio  3.8763 3.8645 6.7675 4.8622 4.1063 10.0049 3.8668 10.2558
CL, /CI_ +0.02/-0.02  +0.02/-0.02  +0.09/-0.09  +0.05/-0.05  +0.07/-0.07  +0.00/-0.00  +0.02/-0.02  +0.15/-0.15
Exp. profit 11.2099 13.9404 19.7256 17.8093 10.9724 3.4915 11.7401 18.0238
CL, /CI_ +0.10/-0.10  +0.18/-0.17  +0.30/-0.30  +0.27/-029  +0.15/-0.15  +0.05/-0.06  +0.06/-0.06  +0.28/-0.27
Table 24: One-max (Gaussian weight), § = 0.9, r = 100, z = 10.
MAX AVG CVAR,, 5-ToL PO, PO2
a=0.1 a=0.5 a = 0.9
Avg perf. ratio  5.0599 5.4540 9.7709 8.1444 6.0222 10.0085 4.6304 15.6848
CL,/CI_ +0.0728/- +0.0940/- +0.2564/- +0.1988/- +0.1196/- +0.0008/- +0.0561/- +0.4526/-
0.0756 0.0909 0.2561 0.1969 0.1205 0.0008 0.0578 0.4530
Exp. profit 24.9584 27.0416 35.7945 34.4015 27.5003 5.4746 13.9039 27.9858
CL,/CI_ +0.6259/- +0.7406/- +1.0580/- +1.0003/- +0.8137/- +0.1503/- +0.1583/- +0.8233/-
0.7080 0.7242 1.0403 1.0822 0.8159 0.1666 0.1659 0.8022
Table 25: One-max (Gaussian weight), § = 0.5, » = 100, z = 10.
MAX AVG CVAR, 5-ToL PO, PO,
a=0.1 a=0.5 a=0.9
Avg perf. ratio  5.9298 6.1761 12.1837 10.5279 7.4024 2.0000 3.8718 21.0408
CI./CI_ +0.1000/- +0.1142/- +0.3366/- +0.2822/- +0.1767/- +0.0000/- +0.0622/- +0.6202/-
0.1051 0.1099 0.3318 0.2819 0.1844 0.0000 0.0653 0.6154
Exp. profit 35.2058 35.6679 41.5955 40.8581 37.3962 27.3730 13.9997 28.1314
CL, /CI_ +0.9612/- +1.0397/- +1.2372/- +1.1976/- +1.0807/- +0.7512/- +0.1485/- +0.8152/-
1.0665 1.0025 1.2094 1.2908 1.0969 0.8332 0.1558 0.8127
Table 26: One-max (Gaussian weight), § = 0.9, » = 80, z = 10.
MAX AVG CVAR,, 5-ToL PO, PO
a=0.1 a=0.5 a=0.9
Avg perf. ratio  5.1262 5.4540 9.8288 8.3568 6.2563 10.0085 4.6516 15.6848
CL./CI_ +0.0622/- +0.0940/- +0.2528/- +0.1908/- +0.1229/- +0.0008/- +0.0465/- +0.4526/-
0.0690 0.0909 0.2506 0.1933 0.1208 0.0008 0.0473 0.4530
Exp. profit 24.8628 27.0416 35.6981 34.2272 27.3657 5.4746 14.9229 27.9858
CL./CI_ +0.6067/- +0.7406/- +1.0671/- +1.0189/- +0.8320/- +0.1503/- +0.1671/- +0.8233/-
0.6877 0.7242 1.0390 1.0926 0.8334 0.1666 0.1722 0.8022
Table 27: One-max (Gaussian weight), § = 0.5, r = 80, z = 10.
MAX AVG CVAR, §-ToL PO, PO5
a=0.1 a=0.5 a=0.9
Avg perf. ratio  5.9483 6.1761 12.1798 10.5404 73715 2.0000 3.8570 21.0408
CL,/CI_ +0.0807/- +0.1142/- +0.3329/- +0.2871/- +0.1781/- +0.0000/- +0.0629/- +0.6202/-
0.0907 0.1099 0.3376 0.2838 0.1906 0.0000 0.0660 0.6154
Exp. profit 34.9084 35.6679 41.4923 40.7649 37.2693 27.3730 15.0337 28.1314
CL,/CI_ +0.9659/- +1.0397/- +1.2443/- +1.1989/- +1.0851/- +0.7512/- +0.1612/- +0.8152/-
1.0843 1.0025 1.2156 13073 1.1117 0.8332 0.1756 0.8127
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Table 28: One-max (Gaussian weight), § = 0.9, = 100, z = 20.

MAX AVG CVAR, §-ToL PO, PO5

a=0.1 a=0.5 a=20.9

Avg perf. ratio 4.1276 4.3758 6.6495 5.6691 4.2717 10.0049 3.8668 10.2558
CIL./CI_ +0.0295/- +0.0344/- +0.0853/- +0.0664/- +0.0365/- +0.0004/- +0.0217/- +0.1520/-
0.0313 0.0339 0.0854 0.0676 0.0386 0.0004 0.0227 0.1489
Exp. profit 16.9932 18.3253 22.8969 21.9870 17.7082 3.4915 12.2219 18.0633
CIL/CI_- +0.2258/- +0.2575/- +0.3510/- +0.3316/- +0.2615/- +0.0501/- +0.0495/- +0.2777/-
0.2519 0.2496 0.3484 0.3609 0.2685 0.0555 0.0505 0.2677

D.3 REAL DATA EXPERIMENTS FOR ONE-MAX SEARCH

In this section, we provide a computational evaluation of our algorithms on real-world data, using
the same algorithm baselines as in Section @ We consider two datasets: (i) the exchange ratesE] of
EUR to four other currencies (CHF, USD, JPY, and GBP), where each series is a sequence o of
6672 daily prices over a span of 25 years; and (ii) Bitcoin (USD) data recorded every minute from
January 1st 2020 to December 31st 2024, comprising a total of 2,630,880 pricesﬂ This follows the
choice of data from |Sun et al.|(2021b) and Benomar et al.| (2025)).

Datasets For each sequence o, let
T = max oy
t

denote the maximum price in the input. For generating predictions, we consider a random value
z sampled from a normal distribution with a mean equal to zero, standard deviation of 1/2, and
truncated to the interval [—1, +1]. This value is then scaled by the error upper bound d, generating
the predicted value

y=x+xd-z.

The error bound § is obtained by partitioning the sequence o into eight equal-length segments. In
each segment 4, we record the maximum price M;. The bound is then defined as the difference
between the largest and smallest of these maxima:

rd = max M; — min M;.
i=1,...,8 i=1,..,8

Recall that in one-max search, if all prices are below the chosen threshold, the algorithm needs to
sell at the lowest price. In this experimental setup, we use the lowest price in the sequence as this
final price.

Evaluation We performed 10,000 runs to account for prediction randomness and report the resulting
average performance ratio and expected profit, both with 95% confidence intervals. For MAX and
AVG, we use the linear symmetric weight function, while CVAR,, is evaluated under a Gaussian
distribution truncated to R, = [(1 — d)y, (1 + 6)y], with o € {0.1,0.5,0.9}.

Results The final results are presented in Table[29] Since the input sequences in real-life scenarios
are not worst-case and the range of prices varies depending on the currency, it is challenging to
determine which algorithm performs best overall. As shown in the table, the performance ratios
vary significantly across currencies. For example, MAX and AVG demonstrate better competitive
performance for CHF and USD, while CVAR is competitive for GBP. This variability highlights the
dependence of algorithm performance on the specific characteristics of the input data. Nevertheless,
algorithms such as MAX, AvVG and CVAR 5 have overall either better, or very similar performance
ratios than the state of the art algorithms.

To help interpret the variation in performance ratios reported in Table[29] we include Table[30] which
summarizes the range of prices observed in each sequence. As expected, the difference between the
smallest and largest prices is particularly significant for BTC, with a ratio exceeding 28. This large

2https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_
reference_exchange_rates/html/index.en.html

‘https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data?
resource=download
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Table 29: Real-data evaluation for one-max search: average performance ratios and expected profits
with 95% confidence intervals.

Currency MAX AVG CVAR,, 6-ToL PO, PO,
a=20.1 a=0.5 a=0.9
CHF (Avg. ratio) 1.2617 1.2503 1.3287 1.3178 1.3451 1.5286 1.7824 1.4702
CL./CI_ +0.013/- +0.016/- +0.019/- +0.016/- +0.015/- +0.015/- +0.002/- +0.021/-
0.014 0.015 0.018 0.015 0.014 0.014 0.002 0.019
CHF (Exp. profit) 1.612 1.624 1.587 1.553 1.498 1.372 1.298 1.462
CIL./CI_ +0.031/- +0.036/- +0.027/- +0.028/- +0.026/- +0.021/- +0.019/- +0.030/-
0.028 0.032 0.029 0.027 0.025 0.020 0.018 0.028
GBP (Avg. ratio) 1.1573 1.1573 1.1342 1.1137 1.0912 1.1474 1.1573 1.1241
CIL./CI_ +0.002/- +0.001/- +0.004/- +0.004/- +0.004/- +0.002/- +0.001/- +0.004/-
0.001 0.001 0.003 0.003 0.003 0.002 0.001 0.003
GBP (Exp. profit) 0.927 0.918 0.944 0.931 0.912 0.856 0.807 0.884
CL./CI_ +0.014/- +0.012/- +0.018/- +0.017/- +0.016/- +0.014/- +0.010/- +0.018/-
0.013 0.011 0.016 0.015 0.015 0.013 0.009 0.016
JPY (Avg. ratio) 1.0842 1.0842 1.0842 1.0842 1.0842 1.0842 1.0876 1.0741
CL./CI_ +0.001/- +0.001/- +0.001/- +0.001/- +0.001/- +0.001/- +0.001/- +0.002/-
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
JPY (Exp. profit) 168.4 168.3 168.7 168.5 168.0 167.2 166.8 169.1
CL./CI_ +1.5/-1.4 +1.6/-1.5 +1.6/-1.5 +1.5/-1.6 +1.6/-1.5 +1.3/-1.3 +1.2/-1.2 +2.0/-1.9
USD (Avg. ratio) 1.2042 1.1837 1.2289 1.2254 1.2471 1.3582 1.5439 1.3263
CL./CI_ +0.011/- +0.010/- +0.012/- +0.012/- +0.011/- +0.011/- +0.001/- +0.015/-
0.010 0.009 0.011 0.011 0.010 0.010 0.001 0.013
USD (Exp. profit) 1.451 1.477 1.503 1.469 1.392 1.327 1.213 1.424
CIL./CI_ +0.023/- +0.025/- +0.029/- +0.027/- +0.028/- +0.021/- +0.012/- +0.031/-
0.022 0.023 0.027 0.028 0.026 0.020 0.012 0.029
BTC (Avg. ratio) 9.0380 8.8881 9.0380 9.0380 9.0380 9.0380 15.1874 9.4486
CIL./CI_ +0.38/-0.36  +0.37/-0.36  +0.38/-0.37  +0.39/-0.38  +0.39/-0.37  +0.37/-0.36  +0.02/-0.02  +0.42/-0.41
BTC (Exp. profit) 24,132 24,228 24,180 24,095 23,978 23,842 23,610 24,310
CIL./CI_ +812/-796 +824/-781 +897/-873 +852/-829 +783/-764 +653/-641 +514/-487 +947/-932

Table 30: Lowest and highest prices observed in each currency sequence, and their ratio.

Currency Lowest Highest Ratio
CHF 0.9260 1.6803 1.8146
GBP 0.5711 0.9786 1.7134
JPY 89.3000 175.3900 1.9641
USD 0.8252 1.5990 1.9377
BTC 3865.0 108276.0 28.0145

variation contributes to the substantially higher performance ratios observed for BTC across all
algorithms.
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