
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DECISION-THEORETIC APPROACHES FOR IMPROVED
LEARNING-AUGMENTED ALGORITHMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We initiate the systematic study of decision-theoretic metrics in the design and
analysis of algorithms with machine-learned predictions. We introduce ap-
proaches based on both deterministic measures such as distance-based evaluation,
that help us quantify how close the algorithm is to an ideal solution, and stochas-
tic measures that balance the trade-off between the algorithm’s performance and
the risk associated with the imperfect oracle. These techniques allow us to quan-
tify the algorithm’s performance across the full spectrum of the prediction error,
and thus choose the best algorithm within an entire class of otherwise incompa-
rable ones. We apply our framework to three well-known problems from online
decision making, namely ski rental, one-max search, and contract scheduling.

1 INTRODUCTION

The field of learning-augmented computation has experienced remarkable growth recently. The
focus, in this area, is on algorithms that leverage a machine-learned prediction on some key ele-
ments of the input, based on historical data. The objective is to obtain algorithms that outperform
the pessimistic, worst-case guarantees that apply in the standard settings. Online algorithms with
ML predictions were first studied systematically in Lykouris & Vassilvtiskii (2018) and Purohit
et al. (2018a) and since then, the learning-augmented lens has been applied to numerous settings, in-
cluding rent-or-buy problems (Gollapudi & Panigrahi, 2019), graph optimization (Azar et al., 2022),
secretaries (Antoniadis et al., 2023), packing and covering (Bamas et al., 2020), and scheduling (Lat-
tanzi et al., 2020). This is only a representative list; see the repository (Lindermayr & Megow, 2025).

A major challenge in learning-augmented algorithms is the theoretical analysis, and its interplay with
the design considerations. Unlike the standard model, which focuses on the performance on worst-
case inputs such as the competitive ratio (Borodin & El-Yaniv, 1998), the analysis of algorithms
with predictions is multi-faceted, and involves objectives in trade-off relations. Typical desiderata
require that the algorithm has good consistency (informally, its performance assuming a perfect,
error-free prediction) as well as robustness (i.e., its performance under an arbitrarily bad prediction
of unbounded error). Beyond these two extremes, there is an additional natural requirement that the
algorithm’s performance degrades smoothly as a function of the prediction error.

It is unsurprising that not all of the above objectives can always be attained and simultaneously
optimized (Lavastida et al., 2021). Such inherent analysis limitations have an important effect on
the algorithm’s design. One concrete methodology is to design algorithms that optimize the trade-off
between consistency and robustness, often called Pareto-optimal algorithms; e.g. (Sun et al., 2021a;
Lee et al., 2024; Wei & Zhang, 2020; Christianson et al., 2023). Another design approach is to
enforce smoothness, without quantifying explicitly the loss in terms of consistency or robustness,
e.g., (Angelopoulos et al., 2022; Antoniadis et al., 2023).

Each approach has its own merits, but also certain deficiencies. Pareto-optimality may lead to al-
gorithms that are brittle, in that their performance may degrade dramatically even in the presence
of imperceptible prediction error (Elenter et al., 2024). From a practical standpoint, this drawback
renders such algorithms highly inefficient. Even if brittleness can be avoided, one may obtain an
entire class of Pareto-optimal algorithms, whose members exhibit incomparable smoothness (Beno-
mar & Perchet, 2025). On the other hand, smoothness can often be enforced by assuming an upper
bound on the prediction error, which can be considered, informally, as the confidence in the predic-
tion oracle or the tolerance to prediction errors. The design and the analysis are then both centered

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

around this confidence parameter (Angelopoulos et al., 2022; Antoniadis et al., 2023). However,
this approach leads to algorithms that may be inferior for a large range of the prediction error, and
notably when the prediction is highly accurate (i.e., the error is small). It also requires either explicit
knowledge or an ad-hoc choice of this confidence value.

We are thus confronted with the following central question: Among the many possible algorithms,
each with its own performance function, how to choose the “best”? Here, the performance func-
tion is the smoothness that interpolates between the extreme points of consistency and robustness.
Answering this question hinges on the choice of a principled measure for the comparison of perfor-
mance curves, which is typically the purview of decision theory and the focus of this work.

Three classic problems: ski rental, one-max search, and contract scheduling. To demonstrate
our framework, we consider three classic problems. Our first problem, namely ski rental, is a classic
formulation of rent-or-buy settings, and has served as proving grounds for learning-based algorith-
mic approaches. Given an unknown horizon of days, the decision-maker must decide on which
day to stop renting, and irrevocably buy the equipment. The best deterministic competitive ratio is
2 (Karlin et al., 1988) (assuming a continuous setting), however a prediction on the horizon length
can help improve the competitive ratio, as has been shown in several works on this problem and its
extensions (Angelopoulos et al., 2020; Purohit et al., 2018b; Wei & Zhang, 2020; Khanafer et al.,
2013; Gollapudi & Panigrahi, 2019; Wang et al., 2020a; Zhao et al., 2024). Pareto-optimal algo-
rithms were studied in Wei & Zhang (2020); Angelopoulos et al. (2020); Purohit et al. (2018a).
Furthermore, the recent work of Benomar & Perchet (2025) described a parameterized class of al-
gorithms, all of which are Pareto-optimal, but exhibit different, and incomparable smoothness.

A second problem that is fundamental in sequential decision making is one-max search, in which
a trader aims to sell an indivisible asset. Here, the input is a sequence σ of prices, and the trader
must accept one of the prices in σ irrevocably. The problem and its generalizations have a long
history of study, see e.g. El-Yaniv et al. (2001); Mohr et al. (2014); Clemente et al. (2016); Dam-
aschke et al. (2009); Lee et al. (2024) as well as Chapter 14 in Borodin & El-Yaniv (1998). The
learning-augmented setting in which the algorithm leverages a prediction on the maximum price in
σ was studied in Sun et al. (2021a), which gave Pareto-optimal algorithms. However, this algorithm
suffers from brittleness (Elenter et al., 2024). Angelopoulos et al. (2022) gave an algorithm with
smooth error degradation, but no consistency/robustness guarantees, based on a tolerance parameter
δ. However, this algorithm has inferior performance if the prediction is highly accurate.

Last, we consider a problem that is fundamental in real-time systems and bounded-resource reason-
ing in AI, namely contract scheduling (Russell & Zilberstein, 1991; Bernstein et al., 2003; López-
Ortiz et al., 2014). Here, the aim is to design a system with interruptible capabilities via executions
of a non-interruptible algorithm. The performance of the system is measured by the acceleration
ratio, i.e., the multiplicative loss due to the repeated executions. Angelopoulos & Kamali (2023b)
studied the setting in which an oracle predicts the interruption time, and gave a Pareto-optimal
schedule. However, all Pareto-optimal algorithms are brittle, as shown in Elenter et al. (2024). As-
suming a tolerance δ on the range of the prediction error, Angelopoulos & Kamali (2023b) also gave
a schedule that has better smoothness, but is once again inefficient for small prediction error.

1.1 CONTRIBUTIONS

We present the first principled study of decision-theoretic approaches in learning augmented algo-
rithms. Our objective is to be able to choose globally best algorithms based on objective, quantifiable
methods. We introduce both deterministic and stochastic approaches: the former do not require any
assumptions such as distributional information on the quality of the prediction, whereas the latter
help us capture the notion of risk, which is inherently tied to the stochasticity of the prediction
oracle. Specifically, we consider the following measures:

Distance measures We evaluate the distance between the performance of the algorithm, and an
ideal solution, i.e. an omniscient algorithm that knows the input, but is constrained by the same
robustness requirement as the online algorithm. We focus on two distance metrics: i) The weighted
maximum distance, which is defined as the weighted L∞-norm distance between the performance
function of the algorithm and that of the ideal solution; here, the weight is a user-specified function
that reflects how much, and what type of importance the designer assigns to prediction errors; and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ii) The weighted average distance, which measures the aggregate distance between the algorithm
and the ideal solution, averaged over the range of the prediction error.

Distance measures are inspired by tools such as Receiver Operating Characteristic (ROC)
graphs (Fawcett, 2006), which describe the tradeoff between the true positive rates (TPR) and the
false positive rates (FPR) of classifiers. Distance metrics between two ROC curves have been used as
a comparison measure of classifiers. Moreover, weighted distances in ROC graphs can help empha-
size critical regions: e.g., a user who is sensitive to false positives when FPR is low. This weighted
approach has several applications in medical diagnostic systems (Li & Fine, 2010).

Risk measures Here, the motivation comes from the realization that Pareto-optimal and tolerance-
based algorithms handle the risk of deviating from a perfect prediction in totally different ways.
Namely, the former maximize the risk, while the latter seek to minimize it. This explains undesir-
able characteristics such as their brittleness and inefficiency, respectively. To formalize the notion
of risk, we first introduce a stochastic prediction setting, where the oracle provides imperfect dis-
tributional information to the algorithm. We then introduce a novel analysis approach based on a
risk measure that has been influential in decision theory, namely the Conditional Value-at-Risk, de-
noted by CVaRα. This value measures, informally, the expectation of a random loss/reward on its
(1 − α)-fraction of worst outcomes (Sarykalin et al., 2008). Here, α ∈ [0, 1) is a parameter that
measures the risk aversion of the end user. We show how to obtain a parameterized analysis based
on risk-aversion, which quantifies the trade-off between the performance of the algorithm and its
risk.

Our techniques generalize previous approaches in learning-augmented algorithms. More precisely,
in the context of distance measures, by choosing the weight to be equal to 1 only at the prediction
point and zero otherwise, we recover the Pareto-optimal algorithms. For the risk-based analysis, we
obtain a generalization of the distributional consistency-robustness tradeoffs of Diakonikolas et al.
(2021), by introducing the notion of α-consistency, where α is the risk parameter.

The paper is structured as follows. In Section 2, we formally present the decision-theoretic frame-
work of our study, which we then apply to various problems. For ski rental (Section 3) we show how
to find, among the infinitely many Pareto-optimal algorithms, the one that optimizes our metrics. For
one-max search (Section 4) we show how to find, for any parameter r, an algorithm that likewise
optimizes the metrics, among the infinitely many r-robust strategies. Last, for contract scheduling
(Section 5), we show how to find, among the infinitely many schedules of optimal acceleration ratio,
one that simultaneously optimizes each of our target metrics. In Section 6, we provide an experi-
mental evaluation of our algorithms that demonstrates the attained performance improvements.

Other related work Elenter et al. (2024), addressed brittleness via a user-specified profile. This
differs from our approach, in that our measures induce an explicit comparison to an ideal algorithm,
and are thus true performance metrics, unlike Elenter et al. (2024) which does not allow for pair-
wise comparison of algorithms. The conditional value-at-risk was recently used in Christianson
et al. (2024) in the design and analysis of randomized algorithms without predictions; however, no
previous work has connected CVaR to the competitive analysis of learning-augmented algorithms.

2 DECISION-THEORETIC MODELS

In this section, we formalize our decision-theoretic framework. For definiteness, we assume cost-
minimization problems (e.g., ski rental), however we note that the definitions can be extended
straightforwardly to profit-maximization problems (e.g., one-max search and contract scheduling).
We denote by OPT(σ) the cost of an optimal offline algorithm on an input sequence σ.

2.1 DISTANCE-BASED ANALYSIS

We focus on problems with single-valued predictions. We denote by xσ some significant information
on the input σ, and by y ∈ R its predicted value. For instance, in one-max search, xσ is the maximum
price in σ. When σ is implied from context, we will use x for simplicity. The prediction error is
defined as η = |xσ − y|. The range of a prediction y, denoted by Ry , is defined as an interval
Ry = [ℓ, u] ⊆ [0,∞) such that xσ ∈ Ry . This formulation allows us to study algorithms with a
tolerance parameter. In particular, if Ry = [(1 − δ)y, (1 + δ)y] where δ ∈ [0, 1], then we refer

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

to algorithms that operate under this assumption as δ-tolerant algorithms. We emphasize that this
assumption of a bounded prediction error is not necessary in our framework, and unless specified,
we consider the general case Ry = [0,∞). Namely, we use this assumption to be able to compare
against known δ-tolerant algorithms.

Given an online algorithm A, an input σ, and a prediction y, we denote by A(σ, y) the cost incurred
by A on σ, using y. The performance ratio of A, denoted by pr(A, σ, y), is defined as the ratio
A(σ,y)
OPT(σ) . We define the consistency (resp. robustness) of A as its worst-case performance ratio
given an error-free (resp. adversarial) prediction. Formally, cons(A) = supσ pr(A, σ, xσ) and
rob(A) = supσ,y pr(A, σ, y). We say that A is r-robust if it has robustness at most r.

To define our distance measures, we introduce the concept of an ideal solution. Given r ≥ 1 and
an input σ, we define by Ir(σ) the smallest cost that can be achieved on σ by an online algorithm
A that is required to be r-competitive on all inputs. We also define pr(Ir, σ) as Ir(σ)

OPT(σ) . The
definition implies that Ir is the best-possible Pareto-optimal algorithm with prediction xσ . Note that
any r-robust online algorithm A with prediction y obeys pr(A, σ, y) ≥ pr(Ir, σ).

We can now define our distance measures starting with the maximum weighted distance. Here, the
user specifies a weight function wy : Ry → [0, 1], which quantifies the importance that the user
assigns to prediction errors, and aims to guarantee smoothness. To reflect this, we require that wy is
piecewise monotone. Namely, if Ry = [ℓ, u], then wy is non-decreasing in [ℓ, y] and non-increasing
in [y, u]. The maximum distance of an algorithm A, given r, y is defined as

dmax(A) = sup
σ,x∈Ry

{(pr(A, σ, x)− pr(Ir, σ))wy(x)} . (1)

Thus, the maximum distance measures the weighted maximum deviation from the ideal perfor-
mance. We also define the average weighted distance, which measures the average deviation from
the ideal performance, across the range of the prediction error. Formally:

davg(A) = sup
σ

1

|Ry|

∫
Ry

(pr(A, σ, z)− pr(Ir, σ))wy(z) dz. (2)

2.2 RISK-BASED ANALYSIS

Since risk is an inherently stochastic concept, we need to introduce stochasticity in the prediction
model. To this end, we assume that the prediction is in the form of a distribution µ, with support
over an interval [ℓ, u] ⊆ R, and a pdf that is non-decreasing on [ℓ, y] and non-increasing on [y, u].
This model has two possible interpretations. First, one may think of µ as a distributional prediction,
in the lines of stochastic prediction oracles (Diakonikolas et al., 2021). A second interpretation of µ
is that of a prior on the predicted value, based on historical data. We will use Rµ to refer to the range
of µ, since it is motivated by considerations similar to the notion of range in the distance measures.

Our analysis will rely on the Conditional Value-at Risk (CVaR) measure from the theory of risk
management (Rockafellar et al., 2000). Let X be a random variable that corresponds to the loss
(e.g., the cost in the case of a minimization problem), and a parameter α ∈ [0, 1) that describes the
risk aversion. The Conditional Value-at-Risk CVaRα is defined as

CVaRα(X) = inf
t

{
t+

1

1− α
E[(X − t)+]

}
, where (X − t)+ = max{X − t, 0}. (3)

In words, CVaRα(X) is the expectation of X on the α-tail of its distribution, that is, the worst
(1 − α) fraction of its outcomes. Let F denote the class of input distributions (i.e., distributions
over sequences σ) in which the predicted information has the same distribution as µ. For example,
in one-max search, F is a distribution of input sequences such that the maximum price is distributed
according to µ. Given α ∈ [0, 1), we define the α-consistency of an algorithm A as

α-cons(A) = sup
F∈F

CVaRα,F (A(σ))

Eσ∼F [OPT(σ)]
, (4)

where the subscript F in the notation of CVaR signifies that σ is generated according to F . Our
objective is then summarized as follows. Given a robustness requirement r, and a risk parameter α,
we would like to find an r-robust algorithm of minimum α-consistency.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This measure is a risk-inclusive generalization of consistency, and interpolates between two ex-
treme cases. The first case, when α = 0, describes a risk-seeking algorithm that aims to minimize
its expected loss without considering deviations from the distributional prediction. In this case,
CVaRα,F (A) = Eσ∼F [A(σ)], thus (4) is equivalent to the consistency of A in the distributional
prediction model of Diakonikolas et al. (2021). The second case, when α → 1, describes a risk
averse algorithm: here, it follows that CVaRα,F (A) = supσ∈supp(F) A(σ), thus (4) describes the
performance of A in the adversarial situation in which all the probability mass is concentrated on
a worst-case point within the prediction range. Note that this risk-based model is an adaptation of
risk-sensitive randomized algorithms (Christianson et al., 2024) to learning-augmented settings.

3 SKI RENTAL

We consider the continuous version, in that skis can be bought at any time in R. We denote by b ≥ 1
the buying cost, and by x the skiing horizon that is unknown to the online algorithm. We denote
by AT the online algorithm that buys at time T , hence its cost, AT (x), is equal to x, if x < T ,
and b + T , if x ≥ T . In the learning-augmented setting, the oracle provides a prediction y on the
horizon. It is known that for r ≥ 2, AT is r-robust iff T ∈ [b/(r − 1), b(r − 1)]. Purohit et al.
(2018b) and Wei & Zhang (2020) showed that r-robust Pareto-optimal algorithms have consistency
r/(r − 1). More generally, Benomar & Perchet (2025), gave a class of Pareto-optimal algorithms,
whose members exhibit different, and incomparable smoothness.

Objective: Given a robustness requirement r and a prediction y on the number of skiing days, find
T ∈ [b/(r − 1), b(r − 1)] such that AT minimizes the various objectives defined in Section 2. We
will denote by T ∗

max, T ∗
avg and T ∗

cvar the optimal thresholds according to the corresponding measures.

3.1 DISTANCE MEASURES

We begin by expressing the ideal performance.
Lemma 1 (Appendix A). The performance ratio of the ideal algorithm Ir is

pr(Ir, x) =


1, if x < b,
x
b , if x ∈

[
b,min

{
br
r−1 , b(r − 1)

}]
,

r
r−1 , if x ≥ min

{
br
r−1 , b(r − 1)

}
.

For some intuition behind the proof, we distinguish between three cases. If x < b, then Ir buys at
b. If x > b, it buys at min

{
br
r−1 , b(r − 1)

}
; and if x ≥ min

{
br
r−1 , b(r − 1)

}
it buys at b/(r − 1).

These choices optimize its cost on input x, while guaranteeing r-robustness on all inputs. Note that
pr(Ir, x) has a discontinuity at x = (r− 1)b only if r

r−1 ≥ r− 1, or r < 2.618, approximately. For
simplicity, we will consider the case r > 2.618, for which the ideal performance is continuous, and
we refer to the Appendix for a discussion of the case r ∈ [2, 2.618].

Figure 1 illustrates the performance of the ideal algorithm (in black, bold line) and various online
algorithms AT . Note that all online algorithms have no better performance than the ideal on all
inputs, as expected, and that no online algorithm dominates the others.

We will distinguish between online algorithms that buy at times in [b/(r− 1), b), and those that buy
at times in [b, b(r− 1)]; we denote these two classes by C<b and C≥b, respectively. This distinction
will be helpful in the computational optimization of the distance measures, namely in the proof of
Theorem 2. From (1), given a prediction y with range Ry we have that

dmax(AT) = sup
x∈Ry

(
AT (x)

min{x, b}
− pr(Ir, x)

)
w(x). (5)

To gain some insight into the structure of the maximum distance objective in (5), let us first consider
the unweighted case, i.e., w(x) = 1. If Ry is unbounded, then d∗max = 1, which is attained by all
AT ∈ C≥b. Note that among these algorithms, Ab has the best consistency, so we may choose this
algorithm as a tie-breaker.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

b
r 1

b br
r 1

b(r 1)
Ski season length

1
r

r 1

2
2r 1
r 1

r 1

r

Pe
rfo

rm
an

ce
 ra

tio

T = b/(r 1)
T = br

2(r 1)
T = b
T = br

(r 1)

T = b(r2 r + 1
2(r 1)

T = b(r 1)
pr(Ir, x)

Figure 1: Performance functions of r-
robust algorithms for different threshold
values. The curve in bold depicts the ideal
performance ratio.

That is, if we have no confidence on the quality of the
prediction, the best algorithm is the competitively op-
timal one, which agrees with intuition. If, however, Ry

has known bounds, then the best algorithm depends on
this range. For instance, if the right endpoint u of Ry

is smaller than b, then any algorithm in the class C≥b is
optimal according to dmax. This is consistent with all
algorithms in the class defined by Benomar & Perchet
(2025). It is also interesting to note that regardless of
the range Ry , the best algorithm according to dmax

is either a single algorithm in C<b, namely Ab, or a
choice of algorithms in C≥b; this is precisely the set of
all algorithms in Benomar & Perchet (2025). The fol-
lowing theorem shows how to obtain the best threshold
for the weighted distance.

Theorem 2 (Appendix A). There is an algorithm for computing T ∗
max that runs in time linear in the

number of critical points of the weight function w in the range Ry .

We now turn to the average distance objective, which from (2) is equal to

davg(AT) =
1

|Ry|

∫
Ry

(
AT (z, y)

min{z, b}
− pr(Ir, z)

)
w(z) dz. (6)

In the unweighted case (w = 1), and without assumptions on Ry , Ab(r−1) minimizes the average
distance. This is because, for x ≥ br

r−1 , its performance ratio matches the ideal, as depicted by the
blue curve in Figure 1. When Ry is bounded, the optimal algorithm depends on the range, and the
problem reduces to minimizing the area between the performance curves of AT and Ir over Ry . For
general weight functions, the integral in (6) is evaluated piecewise, depending on w and T .

3.2 RISK-BASED ANALYSIS

We consider the CVaR-based analysis of ski rental. In this setting, the algorithm has access to a
distributional prediction µ over the skiing horizon x. Following the discussion in Section 2.2, we
will evaluate an online algorithm AT by means of its α-consistency (4).

Define qT = Pr[AT (x) = T + b] =
∫∞
T

µ(x)dx. With this definition in place, we obtain the
following result.
Theorem 3 (Appendix A). Let x ∼ µ and t∗ denote the α-quantile of µ, i.e., the value satisfying∫ t∗

0
µ(z) dz = α. Then

CVaRα,µ[AT (x)] = min

{
1

1− α

(∫ T

t∗
z µ(z) dz + (T + b) qT

)
, T + b

qT
1− α

, T + b

}
, (7)

and T ∗
CVaR = argminT∈[b

r−1 , b(r−1)] CVaRα,µ[AT (x)].

Theorem 3 captures the tradeoff between optimizing for average-case performance, on the one hand,
and safeguarding against adversarial prediction, on the other hand. Specifically, if α = 0, the
objective reduces to minimizing the expected cost, since

∫ T

0
z·µ(z) dz+(b+T)·qT = Ez∼µ[AT (z)].

In contrast, if α → 1, then we consider two cases: If T is such that qT > 0, then from (7),
CVaRα,µ[AT (x)] = b + T , whereas if qT = 0, then CVaRα,µ[AT (x)] = u. Hence, when α → 1,
CVaRα,µ[AT (x)] = min(b + T, u). The proof, and further details on these two extreme cases can
be found in Appendix A.

4 ONE-MAX SEARCH

In this problem, the input is a sequence σ of prices in [1,M], where M is known to the algorithm.
We denote by xσ the maximum price in σ, or simply by x, when σ is implied. Any online algorithm

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

is a threshold algorithm, in that it selects some T ∈ [1,M] and accepts the first price in σ that is at
least T . If such a price does not exist in σ, then the profit of the algorithm is defined to be equal
to the smallest price, namely equal to 1. We denote by AT an online algorithm A with threshold
T , and by AT (σ) its profit on input σ. In the learning-augmented setting, the online algorithm has
access to a prediction y, and the prediction error is defined as η = |xσ − y|.

The optimal competitive ratio of the problem is equal to
√
M El-Yaniv (1998). Moreover, for any

r ≥
√
M , it is easy to show that AT is r-robust if and only T ∈ [t1, t2], where t1 = M/r and

t2 = r. Thus, for any r >
√
M , there is an infinite number of r-robust algorithms.

Objective. Given a robustness requirement r, find the threshold T that optimizes the measures of
Section 2. We denote by T ∗

max, T ∗
avg and T ∗

CVaR the optimal threshold values.

4.1 DISTANCE MEASURES

We first describe the ideal solution.
Lemma 4 (Appendix B). Given a robustness requirement r, and a sequence σ, the ideal algorithm
Ir chooses the threshold min{t2,max{t1, xσ}}. Its performance ratio is

pr(Ir, σ) =


xσ, if xσ ∈ [1, t1)

1, if xσ ∈ [t1, t2]
xσ

t2
, if xσ ∈ (t2,M].

(8)

From (1) and Lemma 4, it follows that dmax(AT) = supσ,x∈Ry

(
x

AT (σ) − pr(Ir, σ)
)
w(x).

We first give an analytical solution for unweighted maximum distance. We refer to Appendix B for
the proof, and some intuition about the following result.
Theorem 5. For uniform weights (w = 1), for all x ∈ Ry = [ℓ, u]

T ∗
max =

{
min{t2,max{t1,

√
u}}, if u ≤ t2,

min{t2,max{t1, T̃}}, otherwise,

where T̃ = t2 − u+
√

(u− t2)2 + 4t22u.

The case of general weight functions is much more complex, from a computational standpoint. In
Appendix B.2 we obtain a formulation as a two-person zero-sum game between the algorithm (that
chooses its threshold T) and the adversary (that chooses x). For instance, if Ry ⊆ [t1, t2], then the
payoff function of this game is max

{
maxx≥T

(
x
T − 1

)
· w(x),maxx<T (T − 1) · w(x)

}
. In gen-

eral, it is not possible to obtain an analytical expression of the value of this game (over deterministic
strategies) for all weight functions, but the game can be solved analytically for relatively simple
functions. For instance, in Appendix B.2, we solve the game analytically assuming linear weight.
The average weighted distance, on the other hand, can be optimized by piece-wise evaluation of an
integral. We refer to the discussion in Appendix B.3, and an example based on linear weights.

4.2 RISK-BASED ANALYSIS

We consider the setting in which the algorithm has access to a distributional prediction µ with
support in [(1 − δ)y, (1 + δ)y], for some given δ. This assumption is not required, but it allows
us to draw useful conclusions as we discuss at the end of the section. Given robustness r, and a
risk value α ∈ [0, 1), we seek an r-robust algorithm that minimizes the α-consistency. Since this
is a profit-maximization problem, the definitions of CVaR and α-consistency are slightly different
than (3) and (4). Namely, we have CVaRα(X) = supt

{
t− 1

1−αE[(t−X)+]
}

(Rockafellar et al.,

2000) and α-cons(A) = supF∈F

(
Eσ∼F [OPT(σ)]

CVaRα,F (A(σ))

)
.

We first show that the α-consistency is determined by a worst-case distribution F ∗. Here, F ∗ con-
sists of sequences of infinitesimally increasing prices from 1 up to y, followed by a last price equal
to 1, where y is drawn according to µ.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Lemma 6 (Appendix B). For any algorithm AT it holds that α-Cons(AT) =
Ex∼µ[x]

CVaRα,F∗ [AT (σ)] .

Since the numerator in the expression of Lemma 6 is independent of the algorithm, it suffices to find
the threshold T for which CVaRα,F∗ [AT (σ)] is maximized. This is accomplished in the following
theorem. Define qT = Prσ∼F∗ [AT (σ) = 1]. From the definition of F ∗ and the fact that T is the
threshold of A, it follows that qT =

∫ T

(1−δ)y
µ(p)dp.

Theorem 7 (Appendix B). T ∗
CVaR = argmaxT∈[t1,t2]

{
T (1−α−qT)+qT

1−α , (1− δ)y
}
.

Theorem 7 interpolates between two cases. When α = 0, the algorithm maximizes its expected
profit, assuming that the maximum price in the input sequence has distribution µ. In this case, we
find an r-robust algorithm of optimal consistency, under the distributional setting of Diakonikolas
et al. (2021) which is a novel contribution for the one-max search problem by itself. When α → 1,
the online algorithm must choose its threshold under the assumption that the maximum price is
chosen adversarially within the support [ℓ, u] of µ, hence the threshold (and the algorithm’s profit)
is ℓ = (1− δ)y. This recovers the analysis of the δ-tolerant algorithm in Angelopoulos et al. (2022).

5 CONTRACT SCHEDULING

We apply our framework to the contract scheduling problem, defined in Section 1. Once again,
the starting motivation is that there is an infinite number of schedules, all of which achieve an
optimal robustness equal to 4 (Russell & Zilberstein, 1991). We show how to compute schedules that
remain 4-robust, and provably optimize each of our metrics. Specifically, for maximum distance, the
schedule is computed by considering the set of critical points (conceptually similar to Theorem 2);
for average distance we derive a closed-form expression and optimize it numerically; and for CVaR
we obtain an exact formula based on the predicted distribution. We also evaluate our schedules
experimentally and observe that they outperform the state-of-the-art Pareto-optimal and δ-tolerant
schedules of Angelopoulos & Kamali (2023b). We refer to Appendix C for the detailed discussion.

6 EXPERIMENTAL EVALUATION

We evaluate our algorithms of Sections 3 and 4 which optimize the maximum and average distance
as well as the CVaR. We refer to them as MAX, AVG and CVARα.

Baselines For ski rental, we compare to the class of algorithms BPρ of Benomar & Perchet (2025).
BPρ buys at time b/(r− 1), if y ≥ b, and at time ρ ∈ [b, b(r− 1)], otherwise. In our experiments we
consider three possible values for the parameter ρ, namely ρ ∈ {b, (r − 1)b, b+ br

2 }. For one-max
search we compare to two Pareto-optimal algorithms: The one of Sun et al. (2021a), denoted by
PO1, and the more straightforward algorithm, denoted by PO2 (Angelopoulos & Kamali, 2023a)
that sets its threshold to T = min{t2,max{t1, y}}, where t1 = M/r and t2 = r. We also compare
against the δ-tolerant algorithm of Angelopoulos et al. (2022), denoted by δ-TOL.

Datasets For ski rental, we set b = 10 and r = 5. The prediction y is chosen such that y ∼
Unif[b/z, bz], where z = 4, and the prediction range Ry is set to [(1− δ)y, (1 + δ)y] with δ = 0.9.
The horizon x is generated u.a.r. in Ry . For one-max search, we set M = 1000 and r = 100, with
y ∼ Unif[z,M/z] and z = 10, and the same definition of Ry . The input is the worst-case sequence
of increasing prices up to the maximum price x, followed by a last price equal to 1, where x is
chosen u.a.r. in Ry . This is the standard class of inputs for evaluating worst-case performance (Sun
et al., 2021a; Elenter et al., 2024). We refer to Appendix D for more experimental results on the
parameters r, δ, z, as well as for experiments on real data for one-max search.

Evaluation For both problems, we compute the average performance ratio, over all x ∈ Ry , and
over 1000 repetitions on the choice of y. For MAX and AVG, we use the (uniquely defined) linear,
symmetric function over Ry , whereas CVARα is evaluated under a Gaussian distribution µ truncated
to Ry and centered at y, with α ∈ {0.1, 0.5, 0.9}. Furthermore, we compute the average expected
cost/profit over µ for the two problems, respectively, where the averaging is over the choices of y.
Tables 1 and 2 show the obtained average performance ratios and expected costs/profits. The tables
also report the 95% confidence intervals (CIs).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Experimental results for ski rental.

MAX AVG CVARα BPρ

α = 0.1 α = 0.5 α = 0.9 b b + br/2 b(r − 1)

Avg perf. ratio 1.344 1.337 1.340 1.349 1.367 1.677 2.187 2.219
CI+/CI− +0.03/-0.03 +0.03/-0.03 +0.03/-0.03 +0.03/-0.03 +0.03/-0.04 +0.05/-0.05 +0.16/-0.17 +0.17/-0.17

Exp. cost 11.241 11.187 11.173 11.215 11.316 16.987 21.234 20.958
CI+/CI− +0.48/-0.51 +0.49/-0.51 +0.50/-0.52 +0.48/-0.54 +0.48/-0.52 +0.99/-1.09 +2.01/-2.22 +1.95/-2.00

Table 2: Experimental results for one-max search.

MAX AVG CVARα δ-TOL PO1 PO2

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 4.394 4.447 9.771 8.144 6.022 10.009 4.630 15.685
CI+/CI− +0.04/-0.05 +0.06/-0.05 +0.26/-0.26 +0.20/-0.20 +0.12/-0.12 +0.00/-0.00 +0.06/-0.06 +0.45/-0.45

Exp. profit 15.614 20.528 35.795 34.402 27.500 5.475 13.904 27.986
CI+/CI− +0.30/-0.32 +0.50/-0.48 +1.06/-1.04 +1.00/-1.08 +0.81/-0.82 +0.15/-0.17 +0.16/-0.17 +0.82/-0.80

Discussion For the ski rental problem, all our algorithms achieve better performance ratios and
average costs than the baseline BPρ, for all choices of the parameter ρ. The performance ratios and
average costs of CVARα increase with α, as expected, since the higher the parameter α, the more
the algorithm hedges against unfavorable outcomes.

For one-max search, the baseline algorithms show marked performance differences. This is due to
the choice of thresholds, with δ-TOL and PO2 tending to have the smallest and largest thresholds,
respectively, whereas PO1 chooses its threshold in between. Thus, PO2 and δ-TOL show high-
est/lowest brittleness to prediction errors, respectively, whereas PO1 is more balanced. MAX and
AVG exhibit better performance ratios than all baselines and better expected profits, with the ex-
ception of the highly brittle PO2. In regards to the CVAR class, once again the expected profit is
decreasing with α, whereas the performance ratio improves as α grows. We observe that CVaR
algorithms considerably improve upon both δ-TOL and PO2 across both metrics. They also have a
better average profit than PO1, though worse performance ratio.

The experiments show that even with relatively simple weight functions and distance measures,
distance-based algorithms offer considerable improvements over the state of the art. Moreover,
CVaR approaches help obtain smooth tradeoffs between the expected cost/profit and the performance
ratio, as a function of the risk parameter α, with improved overall performance in the majority of
the cases. In Appendix D we report further experimental results that allow us to reach additional
conclusions on the impact of the various parameters in the setting. Specifically, as the prediction
range becomes smaller, or as the weight function becomes more concentrated around y, the experi-
ments show that the performance of our algorithms improves. This is consistent with the theoretical
motivation and analysis, since they can better leverage information on the quality of the prediction.

7 CONCLUSION

We introduced new decision-theoretic approaches for optimizing the performance of learning-
augmented algorithms, by taking into consideration the entire range of the prediction error. Fu-
ture work can address further applications, e.g., generalized rent-or buy problems such as multi-
shop (Wang et al., 2020b) and multi-option ski rental (Shin et al., 2023), knapsack (Daneshvaramoli
et al., 2024) and secretary problems (Antoniadis et al., 2023). Another direction involves problems
with multi-valued predictions, such as packing problems (Im et al., 2021). Our framework can still
apply in these more complex settings, since the error is defined by a distance norm between the
predicted and the actual vector. A last direction concerns dynamic predictions, in which the oracle
is accessed several times during the algorithm’s execution. An interesting potential application in
this domain is learning-augmented power management, given its connections to ski rental as shown
in (Antoniadis et al., 2021).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement. This work introduces and studies theoretical measures for the design and analy-
sis of learning-augmented online algorithms. We do not anticipate any ethical concerns arising from
this research.

Reproducibility Statement. Concerning the theoretical results, all complete proofs are given in
the Appendix. Concerning the experimental results, the full code and datasets can be downloaded at
the https://anonymous.4open.science/r/decision_theoretic_code-09E7/.
The code is also available as suppementary material.

REFERENCES

Spyros Angelopoulos and Shahin Kamali. Rényi-ulam games and online computation with im-
perfect advice. In 48th International Symposium on Mathematical Foundations of Computer
Science, MFCS, volume 272 of LIPIcs, pp. 13:1–13:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2023a.

Spyros Angelopoulos and Shahin Kamali. Contract scheduling with predictions. J. Artif. Intell. Res.,
77:395–426, 2023b.

Spyros Angelopoulos, Christoph Dürr, Shendan Jin, Shahin Kamali, and Marc P. Renault. Online
computation with untrusted advice. In Thomas Vidick (ed.), 11th Innovations in Theoretical
Computer Science Conference, ITCS, volume 151 of LIPIcs, pp. 52:1–52:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

Spyros Angelopoulos, Shahin Kamali, and Dehou Zhang. Online search with best-price and query-
based predictions. In Proceedings of the 36th AAAI Conference on Artificial Intelligence, pp.
9652–9660. AAAI Press, 2022.

Spyros Angelopoulos, Marcin Bienkowski, Christoph Dürr, and Bertrand Simon. Contract schedul-
ing with distributional and multiple advice. In Proceedings of the 33rd International Joint Con-
ference on Artificial Intelligence (IJCAI), 2024.

Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand Simon. Learning-
augmented dynamic power management with multiple states via new ski rental bounds. Advances
in neural information processing systems, 34:16714–16726, 2021.

Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online match-
ing problems with machine learned advice. Discret. Optim., 48(Part 2):100778, 2023.

Yossi Azar, Debmalya Panigrahi, and Noam Touitou. Online graph algorithms with predictions. In
Joseph (Seffi) Naor and Niv Buchbinder (eds.), Proceedings of the 2022 ACM-SIAM Symposium
on Discrete Algorithms, SODA, pp. 35–66. SIAM, 2022.

Etienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning aug-
mented algorithms. Advances in Neural Information Processing Systems, 33:20083–20094, 2020.

Ziyad Benomar and Vianney Perchet. On tradeoffs in learning-augmented algorithms. CoRR,
abs/2501.12770, 2025. doi: 10.48550/ARXIV.2501.12770. URL https://doi.org/10.
48550/arXiv.2501.12770.

Ziyad Benomar, Lorenzo Croissant, Vianney Perchet, and Spyros Angelopoulos. Pareto-optimality,
smoothness, and stochasticity in learning-augmented one-max-search. CoRR, abs/2502.05720,
2025. doi: 10.48550/ARXIV.2502.05720. URL https://doi.org/10.48550/arXiv.
2502.05720.

Daniel S. Bernstein, Lev Finkelstein, and Shlomo Zilberstein. Contract algorithms and robots on
rays: Unifying two scheduling problems. In Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI), pp. 1211–1217, 2003.

Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge Uni-
versity Press, 1998.

10

https://anonymous.4open.science/r/decision_theoretic_code-09E7/
https://doi.org/10.48550/arXiv.2501.12770
https://doi.org/10.48550/arXiv.2501.12770
https://doi.org/10.48550/arXiv.2502.05720
https://doi.org/10.48550/arXiv.2502.05720

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nicolas Christianson, Junxuan Shen, and Adam Wierman. Optimal robustness-consistency trade-
offs for learning-augmented metrical task systems. In AISTATS, volume 206 of Proceedings of
Machine Learning Research, pp. 9377–9399. PMLR, 2023.

Nicolas Christianson, Bo Sun, Steven H. Low, and Adam Wierman. Risk-sensitive online algorithms
(extended abstract). In Shipra Agrawal and Aaron Roth (eds.), The Thirty Seventh Annual Con-
ference on Learning Theory (COLT), volume 247 of Proceedings of Machine Learning Research,
pp. 1140–1141. PMLR, 2024.

Jhoirene Clemente, Juraj Hromkovič, Dennis Komm, and Christian Kudahl. Advice complexity of
the online search problem. In International Workshop on Combinatorial Algorithms, pp. 203–212.
Springer, 2016.

Peter Damaschke, Phuong Hoai Ha, and Philippas Tsigas. Online search with time-varying price
bounds. Algorithmica, 55(4):619–642, 2009.

Mohammadreza Daneshvaramoli, Helia Karisani, Adam Lechowicz, Bo Sun, Cameron Musco, and
Mohammad Hajiesmaili. Competitive algorithms for online knapsack with succinct predictions.
arXiv preprint arXiv:2406.18752, 2024.

Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Ali Vakilian, and Nikos Zarifis. Learning
online algorithms with distributional advice. In International Conference on Machine Learning,
pp. 2687–2696. PMLR, 2021.

Ran El-Yaniv. Competitive solutions for online financial problems. ACM Computing Surveys, 30
(1):28–69, March 1998. ISSN 0360-0300.

Ran El-Yaniv, Amos Fiat, Richard M Karp, and Gordon Turpin. Optimal search and one-way trading
online algorithms. Algorithmica, 30(1):101–139, 2001.

Alex Elenter, Spyros Angelopoulos, Christoph Dürr, and Yanni Lefki. Overcoming brittleness in
pareto-optimal learning-augmented algorithms. In Proceedings of the 37th Annual Conference on
Neural Information Processing Systems (NeurIPS), 2024.

Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874, 2006.

Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert advice.
In Proceedings of the 36th International Conference on Machine Learning, ICML, volume 97 of
Proceedings of Machine Learning Research, pp. 2319–2327. PMLR, 2019.

Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Online knapsack with
frequency predictions. Advances in Neural Information Processing Systems, 34:2733–2743, 2021.

Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel Dominic Sleator. Competitive snoopy
caching. Algorithmica, 3:77–119, 1988. doi: 10.1007/BF01762111. URL https://doi.
org/10.1007/BF01762111.

Ali Khanafer, Murali Kodialam, and Krishna P. N. Puttaswamy. The constrained ski-rental problem
and its application to online cloud cost optimization. In 2013 Proceedings IEEE INFOCOM, pp.
1492–1500, 2013. doi: 10.1109/INFCOM.2013.6566944.

Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online scheduling
via learned weights. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
pp. 1859–1877. SIAM, 2020.

Thomas Lavastida, Benjamin Moseley, R. Ravi, and Chenyang Xu. Learnable and instance-robust
predictions for online matching, flows and load balancing. In 29th Annual European Symposium
on Algorithms, ESA), volume 204 of LIPIcs, pp. 59:1–59:17, 2021.

Russell Lee, Bo Sun, Mohammad Hajiesmaili, and John C. S. Lui. Online search with predictions:
Pareto-optimal algorithm and its applications in energy markets. In e-Energy, pp. 50–71. ACM,
2024.

11

https://doi.org/10.1007/BF01762111
https://doi.org/10.1007/BF01762111

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jialiang Li and Jason P Fine. Weighted area under the receiver operating characteristic curve and its
application to gene selection. Journal of the Royal Statistical Society Series C: Applied Statistics,
59(4):673–692, 2010.

Alexander Lindermayr and Nicole Megow. Repository of works on algorithms with predictions.
https://algorithms-with-predictions.github.io, 2025. Accessed: 2025-01-
01.

Alejandro López-Ortiz, Spyros Angelopoulos, and Angele Hamel. Optimal scheduling of contract
algorithms for anytime problem-solving. J. Artif. Intell. Res., 51:533–554, 2014.

Thodoris Lykouris and Sergei Vassilvtiskii. Competitive caching with machine learned advice. In
International Conference on Machine Learning, pp. 3296–3305. PMLR, 2018.

Esther Mohr, Iftikhar Ahmad, and Günter Schmidt. Online algorithms for conversion problems: a
survey. Surveys in Operations Research and Management Science, 19(2):87–104, 2014.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML predictions.
In Advances in Neural Information Processing Systems, volume 31, pp. 9661–9670, 2018a.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions.
Advances in Neural Information Processing Systems, 31, 2018b.

R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk. Journal
of risk, 2:21–42, 2000.

Stuart J. Russell and Shlomo Zilberstein. Composing real-time systems. In Proceedings of the 12th
International Joint Conference on Artificial Intelligence (IJCAI), pp. 212–217, 1991.

Sergey Sarykalin, Gaia Serraino, and Stan Uryasev. Value-at-risk vs. conditional value-at-risk in
risk management and optimization. In State-of-the-art decision-making tools in the information-
intensive age, pp. 270–294. Informs, 2008.

Yongho Shin, Changyeol Lee, Gukryeol Lee, and Hyung-Chan An. Improved learning-augmented
algorithms for the multi-option ski rental problem via best-possible competitive analysis. In In-
ternational Conference on Machine Learning, pp. 31539–31561. PMLR, 2023.

Bo Sun, Russell Lee, Mohammad Hajiesmaili, Adam Wierman, and Danny H.K. Tsang. Pareto-
optimal learning-augmented algorithms for online conversion problems. Advances in Neural In-
formation Processing Systems, 34:10339–10350, 2021a.

Bo Sun, Russell Lee, Mohammad H. Hajiesmaili, Adam Wierman, and Danny H.K. Tsang.
Pareto-optimal learning-augmented algorithms for online conversion problems. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 10339–10350, 2021b. URL https://proceedings.neurips.cc/paper/2021/
hash/55a988dfb00a914717b3000a3374694c-Abstract.html.

Shufan Wang, Jian Li, and Shiqiang Wang. Online algorithms for multi-shop ski rental with ma-
chine learned advice. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020a. URL https://proceedings.neurips.cc/paper/2020/
hash/5cc4bb753030a3d804351b2dfec0d8b5-Abstract.html.

Shufan Wang, Jian Li, and Shiqiang Wang. Online algorithms for multi-shop ski rental with machine
learned advice. Advances in Neural Information Processing Systems, 33:8150–8160, 2020b.

Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-augmented
online algorithms. In Proceedings of the 33rd Conference on Neural Information Processing
Systems (NeurIPS), 2020.

Hailiang Zhao, Xueyan Tang, Peng Chen, and Shuiguang Deng. Learning-augmented algorithms for
the bahncard problem. Advances in Neural Information Processing Systems, 37:113234–113281,
2024.

12

https://algorithms-with-predictions.github.io
https://proceedings.neurips.cc/paper/2021/hash/55a988dfb00a914717b3000a3374694c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/55a988dfb00a914717b3000a3374694c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/5cc4bb753030a3d804351b2dfec0d8b5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/5cc4bb753030a3d804351b2dfec0d8b5-Abstract.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

A DETAILS FROM SECTION 3

A.1 OMITTED PROOFS

Proof of Lemma 1. First, recall that in order to be r-robust, any algorithm must buy skis no later
than time b(r − 1) and no earlier than b/(r − 1). We consider the following possible cases.

Case 1: x < b.
In this case, Ir rents up to time b. This guarantees r-robustness, and since Ir(x) = x, we have that
pr(Ir, x) = 1.

Case 2: x ∈
[
b, min

{
br
r−1 , b(r − 1)

})
.

In this case, Ir buys at time min
{

br
r−1 , b(r − 1)

}
> x, so Ir(x) = x. This guarantees r-robustness,

since the buy time lies in [b/(r − 1), b(r − 1)].

Now consider any r-robust algorithm AT , then we consider two possible cases on T .

• If T < b, then AT buys before b, and its cost is at least that of Ab/(r−1), which is

cost(Ab/(r−1), x) =
b

r − 1
+ b =

br

r − 1
> x.

• If T ∈ [b, min
{

br
r−1 , b(r − 1)

}
], then cost(AT , x) = T + b ≥ x.

In both cases, cost(AT , x) ≥ Ir(x) = x. Therefore, pr(Ir, x) = x/b is optimal among r-robust
algorithms.

Case 3: x ≥ min
{

br
r−1 , b(r − 1)

}
.

In this case, Ir buys at time b/(r − 1), which satisfies r-robustness and its cost is

Ir(x) =
br

r − 1
,

while the offline optimum is b.

Now consider any other r-robust algorithm AT . If T > b/(r − 1), then cost(AT , x) = T + b >
br
r−1 = Ir(x). If T < b/(r − 1), then AT is not r-robust.

Therefore, Ir(x) has the minimum cost among all r-robust algorithms, and

pr(Ir, x) =
br

(r − 1)b
=

r

r − 1
.

This completes the proof.

Proof of Theorem 2. For general weight functions w(x), recall that we assume that w is symmetric
and piecewise monotone: i.e., non-decreasing for x < y and non-increasing for x > y. The behavior
of the maximum distance objective in (5) depends on the location of y relative to b, and also on the
buying threshold T . Recall from Lemma 1 that pr(Ir, x) = 1 for x < b, and is increasing for x ≥ b.
Thus, algorithms in the class C<b incur strictly positive distance in x < b, while algorithms from
C≥b match the ideal in this interval, and may perform better when the weight is concentrated around
y < b.

Given this structure, we partition the problem into two subproblems: computing the best threshold
T ∗
1 among algorithms in C<b and the best threshold T ∗

2 in C≥b. Once the buy times T ∗
1 and T ∗

2 are
computed, the final choice is

T ∗
max = argmin

T∈{T∗
1 ,T∗

2 }
dmax(AT).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 Algorithm for computing T ∗
max

Input: Prediction y with range Ry , weight w(x), robustness r, buy cost b.
Output: Optimal buy time T ∗

max minimizing max distance.
Case 1: T ∈ C<b

1: Define critical set
S1 ← {y, b} ∪

{
z ∈ Ry : d

dz

((AT (z)
z
− 1

)
w(z)

)
= 0

}
2: for T ∈ S1 do
3: Compute dmax(AT)← maxx∈Ry

(cost(AT ,x)
x

− 1
)
w(x)

4: end for
5: T ∗

1 ← argminT∈S1 dmax(AT)
Case 2: T ∈ C≥b

6: Define critical set

S2 ← {y, b, br
r−1

, b(r − 1)} ∪
{
z ∈ Ry : d

dz

((AT (z)
b
− pr(Ir, z)

)
w(z)

)
= 0

}
7: for T ∈ S2 do
8: Compute dmax(AT)← maxx∈Ry

(cost(AT ,x)
b

− pr(Ir, x)
)
w(x)

9: end for
10: T ∗

2 ← argminT∈S2 dmax(AT)
11: return T ∗

max ← argmin{ dmax(AT∗
1
), dmax(AT∗

2
) }

Algorithm 1 shows how to compute T ∗
max. The algorithm evaluates a finite set of buy times based on

critical points, which are values of x where the weighted distance function may reach its maximum.
These include the prediction y, the point x = b, the values br

r−1 and b(r− 1), and all solutions to the
equation where the derivative of the weighted distance is zero.

Proof of Theorem 3. We use the cost-minimization version of the Conditional Value-at-Risk, given
by (3).

Fix T ∈
[

b
r−1 , b(r − 1)

]
and let x ∼ µ denote the predicted skiing horizon. Let M(t) :=∫ t

0
µ(z) dz be the cumulative distribution function, and qT = 1 − M(T) be the probability of the

horizon being at least T . The cost of algorithm AT is

AT (x) =

{
x, x < T,

T + b, x ≥ T.

We evaluate CVaRα,µ[AT (x)] by considering three possible ranges of t in the definition above.

Case 1: t < T . In this case,

(AT (x)− t)+ =


x− t, t ≤ x < T,

T + b− t, x ≥ T,

0, x < t.

Multiplying the CVaR expression by (1− α) gives

(1− α) CVaRα(AT (x)) = inf
t>0

{
(1− α)t+

∫ T

t

(z − t)µ(z) dz + (T + b− t)

∫ ∞

T

µ(z) dz
}

= inf
t>0

{
(1− α)t+

∫ T

t

z µ(z) dz + (T + b) qT − t (1−M(t))
}
. (9)

Differentiating (9) with respect to t gives

(1− α)− (1−M(t)) = M(t)− α.

Since the second derivative of (9) equals µ(t) ≥ 0, the minimizer is any t∗ satisfying M(t∗) = α.
If M is continuous and strictly increasing, then t∗ = M−1(α) is unique. Substituting t∗ and using

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

1−M(t∗) = 1− α yields

CVaRα(AT (x)) =
1

1− α

(∫ T

t∗
z µ(z) dz + (T + b) qT

)
. (10)

Case 2: T ≤ t ≤ T + b. Here (AT (x)− t)+ = 0 for x < T and (T + b− t) for x ≥ T . Since (3)
is linear in t, the minimum occurs at one of the endpoints of the range of t. As a result, we have

CVaRα(AT (x)) = min

{
T + b

qT
1− α

, T + b

}
. (11)

Case 3: t ≥ T +b. In this range (AT (x)− t)+ = 0 for all x, so the infimum is attained at t = T +b,
yielding

CVaRα(AT (x)) = T + b.

Combining the above cases, CVaRα,µ[AT (x)] is the minimum between (10) (Case 1) and (11)
(Case 2), which completes the proof.

Analysis of extreme cases.

(i) For α = 0, we have t∗ = inf supp(µ) = ℓ. From (10),

CVaR0(AT (x)) =

∫ T

ℓ

z µ(z) dz + (T + b)qT = E[AT (x)],

since AT (x) = x on {x < T} and AT (x) = T + b on {x ≥ T}. Moreover, CVaR0(AT) is equal
to (10), because∫ T

ℓ

z µ(z) dz + (T + b)qT ≤ T (1− qT) + (T + b)qT = T + bqT .

(ii) Suppose that α → 1, then we distinguish between cases qT > 0 and qT = 0. If qT > 0, both
(10) and the first term of (11) contain (1−α)−1 times a positive quantity; the minimum is therefore
the remaining term T + b, so

lim
α→1

CVaRα(AT (x)) = T + b.

If qT = 0 (equivalently T > u := sup supp(µ)), then (10) reduces to

1

1− α

∫ T

t∗
z µ(z) dz =

1

1− α

∫ u

t∗
z µ(z) dz = E[x | x ≥ t∗],

since Pr[x ≥ t∗] = 1−α and µ ≡ 0 on (u, T]. As α → 1, t∗ → u and bounded convergence yields
E[x | x ≥ t∗] → u. In the same regime, (11) becomes min{T, T + b} = T ≥ u, so the minimum
is given by (10) and

lim
α→1

CVaRα(AT (x)) = u.

Combining the above we obtain that limα→1 CVaRα(AT (x)) = max{u, T + b }.

A.2 IDEAL PERFORMANCE FOR r < 2.618

If r ∈ [2, 2.618], then the ideal algorithm Ir(x) has a discontinuity at x = b(r − 1), as shown in
Figure 1. We note that all results presented in the main paper hold regardless of the value of r, i.e.,
Theorem 2 and Algorithm 1 remain valid.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

b
r 1

b b(r 1) br
r 1

Ski season length

1

r 1

r
r 1

2

2r 1
r 1

r

Pe
rfo

rm
an

ce
 ra

tio

T = b/(r 1)
T = br

2(r 1)
T = b
T = br

(r 1)

T = b(r2 r + 1
2(r 1)

T = b(r 1)
pr(Ir, x)

Figure 2: Performance of the ideal r-robust algorithm Ir compared to several algorithms AT for
different values of T , when r < 2.618. In contrast to Figure 1, the algorithms that buy at times
T = b(r2−r+2)

2(r−2) (purple curve) and T = br
r−1 (red curve) are not r-robust anymore, because their

thresholds fall outside the interval [b/(r − 1), b(r − 1)].

B DETAILS FROM SECTION 4

B.1 OMITTED PROOFS

Proof of Lemma 4. First, recall that in order to be r-robust, any algorithm must choose a threshold
T ∈ [t1, t2], where t1 = M/r and t2 = r.

Case 1: xσ < t1.
In this case, Ir sets T = t1 and never accepts, so At1(σ) = 1. The offline optimum is xσ , hence

pr(Ir, σ) =
xσ

1
= xσ.

Any other r-robust algorithm AT must also have T ≥ t1, thus AT (σ) = 1, and the performance
ratio of AT is xσ . Therefore, Ir is optimal in this interval.

Case 2: xσ ∈ [t1, t2].
Here Ir sets T = xσ , thus AT (σ) = xσ and

pr(Ir, σ) =
xσ

xσ
= 1,

hence Ir is optimal in this interval.

Case 3: xσ > t2.
In this case, Ir sets T = t2 and accepts the first price at least t2, so At2(σ) ≥ t2 and

pr(Ir, σ) ≤
xσ

t2
.

Any r-robust algorithm must have T ≤ t2. If T < t2, consider a sequence σ of the form v, t2, where
v ∈ [T, t2). In this case, AT (σ) = v and

pr(AT , σ) =
xσ

v
≥ xσ

t2
.

Thus no r-robust algorithm attains a smaller ratio than Ir on σ.

Combining the three cases, the optimal threshold is T = min{t2,max{t1, xσ}} and the perfor-
mance ratio is

pr(Ir, σ) =


xσ, xσ ∈ [1, t1),

1, xσ ∈ [t1, t2],

xσ/t2, xσ ∈ (t2,M].

This completes the proof.

Proof of Theorem 5. The proof is based on a case analysis. First, note that the prediction range
Ry = [ℓ, u] may not always overlap with the robustness interval [t1, t2]. If this is the case, the
threshold T ∗

max must be chosen so as to minimize the maximum distance from the ideal performance.
Namely:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• If u ≤ t1, then T ∗
max = t1, since in this case dmax(AT) = 0.

• If ℓ ≥ t2, then T ∗
max = t2, since we have again dmax(AT) = 0.

This ensures that the algorithm’s performance aligns with the ideal benchmark when predictions fall
outside the robustness interval. Furthermore, we analyze intersections between Ry and [t1, t2] by
considering the following cases:

Case 1: ℓ and u are within [t1, t2]. Then pr(Ir, x) = 1 for all x ∈ Ry . We consider further subcases:

1. T ≤ ℓ: The maximum distance dmax(AT) is defined by u
T −1, with the adversary selecting

x = u to maximize this distance.

2. T ∈ [ℓ, u]: The distance dmax(AT) is calculated as max
{

u
T − 1, T − 1

}
. If T < x, the

performance ratio is maximized at x = u; however, when T exceeds x, it is maximized at
x = T − ε for a very small ε. Hence in this case the performance ratio is arbitrarily close
to T

1 .

3. T ≥ u: In this case, x ≤ u, and dmax(AT) = u− 1.

The second case above, namely T ∈ [ℓ, u], is the most general one. To minimize dmax(AT), the
optimal T ∗

max is equal to
√
u, because it minimizes the maximum of two expressions. If

√
u < t1,

then the threshold must be adjusted to:

T ∗
max = max{t1,

√
u}

to ensure it resides within the robustness interval.

Case 2: t1 ≤ ℓ and u ≥ t2. Here, the main complication is that pr(Ir, x) may differ from 1. It is
sufficient to choose T ∈ [ℓ, t2], with the maximum distance being

dmax(AT) = max

{
u

T
− u

t2
, T − 1,

t2
T

− 1

}
.

Solving for the optimal T that satisfies
u

T
− u

t2
= T − 1,

yields

T = t2 − u+
√
(u− t2)2 + 4t22u.

However, this value may not belong in [t1, t2], hence

T ∗
max = min{t2,max{t1, T}}.

This concludes the proof.

For some intuition behind Theorem 5, we note that in the first case, the algorithm aims to minimize
the distance from the line y(x) = 1 (the ideal performance). In this case, the threshold has a de-
pendency on

√
u, as derived from an analysis similar to the competitive ratio (which is equal to the

square root of the maximum price). In the second case, the algorithm aims to minimize the dis-
tance from a more complex ideal performance, which includes two line segments. This explains the
dependency on the more complex value T̃ . One can also show that T̃ ≥

√
u: this is explained intu-

itively, since in the second case, the algorithm has more “leeway”, given that the ideal performance
ratio attains higher values.

Proof of Lemma 6. From the definition of F ∗, it follows that

Ep∼µ[p] = Ep∼F∗ [p],

hence the α-consistency of AT is at least the RHS of the equation in Lemma 6.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Let F̃ be a distribution that maximizes the α-consistency, then it must be that

α− cons(AT) ≥
Ep∼µ[p]

CVaRα,F̃ [AT (σ)]
.

We can argue that CVaRα,F̃ [AT (σ)] ≤ CVaRα,F∗ [AT (σ)]. This follows directly from (3), and the
observation that in any sequence σ in the support of F ∗, we have that AT (σ) = 1, if xσ < T , and
AT (σ) = T , if xσ ≥ T . Hence, we also showed that the α-consistency is at least the RHS of the
equation in Lemma 6, which concludes the proof.

Proof of Theorem 7. Similar to ski rental, the computation of CVaRα,µ[AT (σ)] for the one-
max search problem requires a case analysis based on the parameter t of (3). Define qT =
Prσ∼F∗ [AT (σ) = 1] as the probability that the algorithm AT selects the value 1, and 1− qT as the
probability it selects the threshold T . Recall that these are the only two possibilities, from the defi-
nition of F ∗, without any assumptions of Ry . Under the assumption that Ry = [(1− δ)y, (1+ δ)y],
we can obtain a better lower bound for AT , i.e., we know it can ensure a minimum profit of (1−δ)y.
We proceed with the analysis of this setting, and consider the following cases.

Case 1: t ≥ T . Then

CVaRα,µ[AT (σ)] = sup
t≥T

{
−t(

α

1− α
) +

qT (1− T) + T

1− α

}
.

In this case, the optimal value of t is equal to T , hence we obtain:

CVaRα,µ[AT (σ)] =
T (1− qT − α) + qT

1− α
.

Case 2: t ≤ (1− δ)y. In this case, (t−AT (σ))
+ = 0, and

CVaRα,µ[AT (σ)] = (1− δ)y.

Case 3: t ∈ [(1− δ)y, T]. Then

(t−AT (σ))
+ =

{
0, w. p. 1− qT ,

t− 1, w. p. qT ,

from which we get that

CVaRα,µ[AT (σ)] = sup
t∈[(1−δ)y,T]

{
t

(
1− α− qT

1− α

)
+

qT
1− α

}
.

We consider two further subcases. If 1− α− qT ≤ 0, then we obtain

CVaRα,µ[AT (σ)] = (1− δ)y.

In the case, when 1− α− qT > 0, we have that

CVaRα,µ[AT (σ)] =
T (1− qT − α) + qT

1− α
.

Combining all the above cases, if follows that:

CVaRα,µ[AT (σ)] = max

{
T (1− qT − α) + qT

1− α
, (1− δ)y

}
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.2 WEIGHTED MAXIMUM DISTANCE

The payoff function is defined considering two cases: First, if Ry ⊆ [t1, t2], then the payoff function
is

max

{
max
x≥T

(x
T

− 1
)
· w(x),max

x<T
(T − 1) · w(x)

}
,

since, in this case, the ideal performance is equal to 1.

In the second case, i.e., Ry is not in [t1, t2], then

max

{
max

T≤x≤t2

(
x
T − 1

)
w(x), max

x≥t2

(
x
T − x

t2

)
w(x), max

x<T
(T − 1)w(x)

}
. (12)

which follows from (8). In general, it is not possible to obtain an analytical expression for the value
of this game (under deterministic strategies) for arbitrary weight functions. However, for specific
functions, the game can be solvable as we demonstrate below.

Example: We will compute T ∗
max for a linear weight function, defined as:

w(x) = max

{
0, 1− |x− y|

yδ

}
. (13)

For simplicity, we only show the computation for the case Ry ⊆ [t1, t2]. The other cases can be
handled along similar lines, using (12). In this case (12) is

max



(x− 1)

(
1− y − x

yδ

)
, if x < T and x ∈ [(1− δ)y, y],(x

T
− 1
)(

1− y − x

yδ

)
, if x ≥ T and x ∈ [(1− δ)y, y],

(x− 1)

(
1− x− y

yδ

)
, if x < T and x ∈ [y, (1 + δ)y],(x

T
− 1
)(

1− x− y

yδ

)
, if x ≥ T and x ∈ [y, (1 + δ)y].

We denote the expressions, for each case in the above maximization, by e1, e2, e3, e4 respectively.
First we analyze the best response of the adversary for a fixed threshold T , which represents the
player’s strategy. There are two cases to distinguish, depending on how T compares to y.

CASE A: T ≤ y.

Subcase A1: (1 − δ)y ≤ x ≤ T In this case, the value of the game is given by e1. The second
derivative of e1 with respect to x is 2/δy, therefore e1 is concave, and maximized at one of the
endpoints of the case range. Considering e1 as a function of x we have e1((1 − δ)y) = 0 and
e1(T) = (T − 1)(T − ((1 − δ)y))/yδ > 0. Therefore, the adversary’s best response is to choose
x = T , yielding a game value, which we denote by

v1 = (T − 1)
T − ((1− δ)y)

yδ
.

Subcase A2: T ≤ x ≤ y In this case, the value of the game is given by e2. Its second derivative is
2/yδT , therefore e2 is concave. Again we evaluate e2 at the endpoints of the case range, and obtain
e2(T) = 0 as well as e2(y) = y/T − 1 ≥ 0. Therefore, the adversary’s best response is to choose
x = y, producing a game value

v2 =
y

T
− 1.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Subcase A3: y ≤ x ≤ (1 + δ)y In this case, the value of the game is given by e4. The second
derivative is −2/(yδ T), hence e2 is concave. Using second order analysis, we find that it is maxi-
mized at x = (T + (1 + δ)y)/2. This choice is in the case range [y, (1 + δ)y], since T belongs to
[(1− δ)y, (1 + δ)y]. We denote by

v4 =
((1 + δ)y − T)2

4yδT

the value of the game for the best adversarial choice in this case.

Summary of case A We observe that v2 is always dominated by v4, hence the value of the game
in case A is max{v1, v4}.

CASE B: T ≥ y.

Similar to the previous case, we break this case further into 3 subcases.

Subcase B1: (1 − δ)y ≤ x ≤ y. As in case A1, the value of the game is given by e1, which
is maximized at its right endpoint. Since this is a different endpoint than in case A1, we obtain a
different value of the game, namely

e1(y) = y − 1.

Subcase B2: y ≤ x ≤ T . In this case, the value of the game is e3. Its second derivative is −2/yδ,
hence it is concave. Its derivative at the upper endpoint is 4− 2T ≤ 0, hence e2 is maximized at this
lower endpoint, and has the value v3 = y− 1. Note this v3 happens to be also the value of the game
in case B1 and does not depend on T .

Subcase B3: T ≤ x. The analysis of this case is identical to the analysis of case A4, hence the
value of the game is v4.

Summary of case B If the algorithm chooses T ∈ [y, (1 + δ)y], then the value of the game is
max{v3, v4}. We observe that v4 is a concave function in T , with slope 0 at T = (1+ δ)y, while v3
is a constant. We show that v3 ≥ v4, even for the whole range (1 − δ)y ≤ T ≤ (1 + δ)y. For this
purpose we evaluate v4 at T = (1− δ)y, and obtain by the assumption that 1 ≤ (1− δ)y that

v3 − v4((1− δ)y) = y − 1− yδ

(1− δ)y

≥ y − 1− yδ

1
≥ 0.

SUMMARY OF BOTH CASES A,B

We know that if the algorithm chooses T ≥ y, then the value of the game is v3 = y − 1. We claim
that T ≤ y would be a better choice. We already showed that v4 ≤ v3. To show v1 ≤ v3, we observe
that in v1 = (T − 1)T−(y−yδ)

yδ , the first factor T − 1 is upper bounded by y − 1. In addition, the
second factor is at most 1 by T ≤ y, from which we conclude v1 ≤ v3.

Hence max{v1, v4} ≤ v3. As a result, the algorithm’s best strategy is to choose (1− δ)y ≤ T ≤ y
such that v1(T) = v4(T). The exact expression of this value can be computed, but does not have a
simple form. Hence, for the purpose of presentation, we omit its exact expression. See Figure 3 for
an illustration.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Threshold T

0.0

0.5

1.0

1.5

2.0

2.5

Va
lu

e
of

 th
e

ga
m

e

v1
v3
v4

Figure 3: Illustration of the different values of the game: v1 in blue, v3 in orange, and v4 in green.
The parameters are y = 2 and δ = 0.5. The value of the game is obtained for T chosen as the
intersection of the green and blue curves.

B.3 AN EXAMPLE FOR COMPUTING THE AVERAGE DISTANCE

In this section, we discuss how to optimize the average distance, which from (2), and (8) is equal to

davg(AT) =



1
2yδ (

∫ T

(1−δ)y
(x− 1) · w(x) dx+∫ (1+δ)y

T
(x
T − 1) · w(x) dx), if (1 + δ)y ≤ t2,

1
2yδ (

∫ T

t1
(x− 1) · w(x) dx+∫ t2

T
(x
T − 1) · w(x) dx+∫ (1+δ)y

t2
(x
T − x

t2
) · w(x) dx), otherwise.

(14)

We illustrate how to compute the average distance for the linear weight function, as defined in (13).
We show the calculations only for the first case in (14), i.e., in the case in which (1 + δ)y ≤ t2.
Recall that the linear weight function is increasing for T ≤ y and decreasing for T ≥ y. Due to
this behavior, we split the computation of the integral into two expressions, depending on whether
T < y or T ≥ y, which are given below.

davg,1(T) =
1

2yδ

(∫ T

(1−δ)y

(x− 1) ·
(
1− y − x

h

)
dx

+

∫ y

T

(x
T

− 1
)
·
(
1− y − x

h

)
dx

+

∫ (1+δ)y

y

(x
T

− 1
)
·
(
1− x− y

h

)
dx

)
,

davg,2(T) =
1

2yδ

(∫ y

(1−δ)y

(x− 1) ·
(
1− y − x

h

)
dx

+

∫ T

y

(x
T

− 1
)
·
(
1− x− y

h

)
dx

+

∫ (1+δ)y

T

(x
T

− 1
)
·
(
1− x− y

y
δ

)
dx

)
.

The first expression, davg,1(T), can be simplified to:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

davg,1(T) =
1

12(yδ)2T

(
− (yδ)3(T − 1) + 3(yδ)2((y − 2)T + y)

+ 3yδ(T − 1)
(
T 2 − y2

)
+ (T − 1)(y − T)2(y + 2T)

)
.

Similarly, the second expression, davg,2(T), simplifies to:

davg,2(T) =
yδ + 3y − (6 + yδ − 3y)T

12T
.

To determine the optimal threshold T ∗
avg, we apply second-order analysis, solving for each case

independently. The final solution is obtained by selecting the value of T that minimizes davg(T).

C APPLICATION IN CONTRACT SCHEDULING

Definitions In this section, we apply our framework to the contract scheduling problem1. In its
standard version (with no predictions), the schedule can be defined as an increasing sequence of the
form X = (xi)i∈N, where xi is the length of the i-th contract. These lengths correspond to the
execution times of an interruptible system, i.e., we repeatedly execute the algorithm with running
times x1, x2, Hence, the completion time of the i-th contract is defined as

∑i
j=0 xi. Given

an interruption time T , let ℓ(X,T) denote the length of the largest contract completed in T . The
acceleration ratio of X (Russell & Zilberstein, 1991) is defined as

acc(X) = sup
T

pr(X,T), where pr(X,T) =
T

ℓ(X,T)
. (15)

It is known that the best-possible acceleration ratio is equal to 4, which is attained by any doubling
schedule of the form Xλ = (λ2i)i, where λ ∈ [1, 2). In fact, under very mild assumptions, dou-
bling schedules are the unique schedules that optimize the acceleration ratio. Note that according
to Definition 15, without any assumptions, no schedule can have bounded acceleration ratio if the
interruption time is allowed to be arbitrarily small. To circumvent this problem, it suffices to assume
that the schedule is bi-infinite, in that it starts with an infinite number of infinitesimally small con-
tracts. For instance, the doubling schedule can be described as (2i)i∈Z, and the completion time of
contract i ≥ 0 is defined as

∑i
j=−∞ 2j = 2i+1. We refer to the discussion in Angelopoulos et al.

(2024) for further details. We summarize our objective as follows:

Objective: For each of the decision-theoretic models of Section 2, find λ ∈ [1, 2) such that the
schedule Xλ optimizes the corresponding measure.

We will denote by λ∗
max, λ∗

avg and λ∗
cvar the optimal values according to the maximum/average dis-

tance, and according to CVaR, respectively. Given a schedule Xλ, we will use the notation kλ(t) to
denote the index of the largest contract in Xλ that completes by time t, hence kλ(t) = ⌊log2 t

λ⌋.

C.1 DISTANCE MEASURES

Here, we consider the setting in which there is a prediction y on the interruption time. We begin with
identifying an ideal schedule, which, in the context of contract schedule, is a 4-robust schedule X
that optimizes the length ℓ(X, y), i.e., the length of the contract completed by the predicted time y.
From Angelopoulos & Kamali (2023b), we know that such an ideal schedule completes a contract
of length y/2, precisely at time y, and thus has the following property.
Remark 8. The performance ratio of the ideal 4-robust schedule is equal to 2.

1This is a problem of incomplete information that can be considered as an online problem, in the sense that
in each time step the scheduler must decide whether to continue the current contract, or start a new one.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 2 Algorithm for computing λ∗
max

Input: Prediction y with range Ry , weight function w.
Output: The optimal value of the λ-parameter, λ∗

max.
1: Define a set of critical times as S = {y, λ · 2kλ(y), S′}, where S′ is the set of all solutions to the

differential equation w(T) + w′(T) · (T − λ · 2⌊log2
T
λ ⌋) = 0.

2: For all T ∈ S, compute d(Xλ, T) =
(

T
λ·2kλ(T)−1 − 2

)
· w(T).

3: Return λ∗
max = argminλ∈[1,2) maxT∈S d(X,T).

From (1), (15) and Remark 8 it follows that the maximum distance of a schedule Xλ can be ex-
pressed as

dmax(Xλ) = sup
T∈Ry

(
T

ℓ(Xλ, T)
− 2

)
· w(T), (16)

where recall that Ry is the range of the prediction y.

Algorithm 2 shows how to compute λ∗
max. We give the intuition behind the algorithm. We prove, in

Theorem 9, that the distance can be maximized only at a discrete set of times, denoted by S. This
set includes the prediction y, the last time a contract in Xλ completes prior to y, and an additional
set of times, denoted by S′ which are the roots of a differential equation, defined in step 2 of the
algorithm. To show this, we rely on two facts: that w is piece-wise monotone (i.e., bitonic), and that
the performance function of any 4-robust schedule Xλ is piece-wise linear, with values in [2, 4].
Theorem 9. Algorithm 2 returns an optimal schedule according to dmax.

Proof. Recall that the performance ratio of the schedule Xλ = (λ2i)i is expressed as

pr(Xλ, T) =
T

ℓ(Xλ, T)
=

T

λ · 2⌊log2
T
λ ⌋−1

.

We observe that pr(Xλ, T) is a piece-wise linear function. Specifically, if T belongs in the interval
(λ2j , λ2j+1], then pr(Xλ, T) is a linear increasing function, with value equal to 2, at T = λ2j + ε,
and value equal to 4 at T = λ2j+1, where ε is an infinitesimally small, positive value. This linear
growth arises from the structure of the schedule, which starts a new contract at the endpoint of each
interval. For this reason, pr(Xλ, T) has a discontinuity at the endpoint of each interval.

By definition, y belongs to the interval (Tkλ(y), Tkλ(y)+1]. To simplify the notation, in the remainder
of the proof we use k to denote kλ(y). We claim dmax(Xλ) is maximized for some T ∈ [Tk, Tk+1],
specifically at one of a finite set of critical points S. To establish this claim, we make the following
observations:

• At T = Tk, the performance ratio reaches its maximum value equal to 4, for the entire
interval (Tk−1, Tk].

• Any T > Tk+1 or T < Tk does not need to be considered in the computation of dmax, due
to the monotonicity of the weight function, and the structural properties of the schedule
Xλ, as discussed above.

Given that the bitonic nature of the weight function, we observe that for all T < y, w(T) is non-
decreasing, hence within the interval [Tk, y), it suffices to only consider Tk as a maximizing candi-
date. Furthermore, in the interval [y, Tkλ+1], w(T) is non-increasing, while the performance ratio
grows linearly. Thus, one must find the local maxima for T ∈ (y, Tkλ+1], by solving d′(Xλ, T) = 0,
or equivalently

w(T) + w′(T) · (T − λ · 2⌊log2
T
λ ⌋) = 0.

We thus show that it suffices to consider the set S as potential maximizers of the distance, as defined
in Algorithm 2.

Corollary 9.1. For the unit weight function w(t) = 1, and Ry = [(1− δ)y, (1 + δ)y], the schedule
that minimizes dmax is the schedule of Angelopoulos & Kamali (2023b).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. The proof is a special case of the proof of Theorem 9. In this case, d′(Xλ, T) = 1 > 0,
which implies that only local maxima for d(Xλ, T) can occur at T = Tk+1 or at (1 + δ)y.

We will consider two cases. First, suppose that δ > 1/3. In this case, any schedule Xλ is such
that dmax(Xλ) = 2. This is because Xλ completes at least one contract within the time interval
[(1− δ)y, (1 + δ)y].

For the second case, suppose that δ ≤ 1/3. Then, in order to minimize dmax, and without loss of
generality, λ must be chosen so that no contract terminates anywhere in [(1 − δ)y, (1 + δ)y], since
otherwise Xλ would have a performance ratio as large as 4, hence distance as large as 2. With this
into account, λ must be further chosen so that Xλ completes a contract at time (1 − δ)y. This is
because, in this case, pr(Xλ, T) is increasing in T , for T ∈ [(1− δ)y, (1 + δ)y]. Hence the optimal
algorithm is precisely the δ-tolerant algorithm.

Next, we show how to optimize the average distance, which from (2), and (15) is equal to

davg(X) =
1

2yδ

∫
T∈Ry

(
T

λ · 2⌊log2
T
λ ⌋−1

− 2

)
· w(T) dT. (17)

Optimizing (17) requires numerical methods.

C.2 COMPUTING THE AVERAGE DISTANCE OF A SCHEDULE

To ensure computational tractability, we impose a constraint on the range Ry of the prediction y.
Specifically, we assume δ ≤ 1

3 . This assumption guarantees that for any schedule of the form
X = λ(2i)i there is at most one completed contract within Ry ,.

The length of the largest completed contract in X before (1− δ)y is then given by λ2kλ((1−δ)y)−1.
Using this, we divide the range Ry into two sub-intervals:

1. [(1− δ)y, λ2kλ((1−δ)y)+1]: In this interval, the performance ratio is

T

ℓ(X,T)
=

T

λ2kλ((1−δ)y)−1
.

2. [λ2kλ((1−δ)y)+1, (1 + δ)y]: In this interval, the performance ratio is

T

ℓ(X,T)
=

T

λ2kλ((1−δ)y)
.

The average distance davg(X) is then expressed as:

davg(Xλ) =
1

2yδ

(∫ λ2kλ((1−δ)y)+1

(1−δ)y

(
T

λ2kλ((1−δ)y)−1
− 2

)
· w(T) dT (18)

+

∫ (1+δ)y

λ2kλ((1−δ)y)+1

(
T

λ2kλ((1−δ)y)
− 2

)
· w(T) dT

)
. (19)

Example: linear weight functions. As an example, consider the case in which w is a bitonic linear
function defined by

w(T) = max

{
0, 1− |T − y|

yδ

}
,

To apply this weight function in the computation of (19), we divide the prediction interval Ry =
[(1− δ)y, (1 + δ)y] into three subintervals based on the structure of the schedule and function w:

• T ∈ [(1− δ)y, λ2kλ((1−δ)y)+1]: In this case, pr(X,T) = T
λ2kλ((1−δ)y)−1 . Then,∫ λ2kλ((1−δ)y)+1

(1−δ)y

(
T

λ2kλ((1−δ)y)−1
− 2

)
·
(
1− y − T

yδ

)
dT.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• T ∈ [λ2kλ((1−δ)y)+1, y]: In this case, pr(X,T) = T
λ2kλ((1−δ)y) . Then,∫ y

λ2kλ((1−δ)y)+1

(
T

λ2kλ((1−δ)y)
− 2

)
·
(
1− y − T

yδ

)
dT.

• T ∈ [y, (1 + δ)y]: In this case, pr(X,T) = T
λ2kλ((1−δ)y) . Then,∫ (1+δ)y

y

(
T

λ2kλ((1−δ)y)
− 2

)
·
(
1− y − T

yδ

)
dT.

To summarize, we obtain from the above cases, and (19) that

davg(X) =
−3(yδ)2λ+ 4kλ((1−δ)y)+1λ3 + 3 · 2kλ((1−δ)y)λ2 y(δ − 1)

3(yδ)2λ

+
2−2−kλ((1−δ)y)

(
− (yδ)3 + 9(yδ)2y − 3(yδ)y2 + y3

)
3(yδ)2λ

.

Optimizing in terms of λ via second-order analysis and solving for the derivative’s root gives three
solutions, but only one real root. Thus the optimized value is:

λ∗
avg = 2−3(1+kλ((1−δ)y))

(
4kλ((1−δ)y) y(1− δ)

+
16kλ((1−δ)y) y2(δ − 1)2(

− 3 · 64kλ((1−δ)y)A+ 4
√

4096kλ((1−δ)y)B1B2

)1/3
+
(
− 3 · 64kλ((1−δ)y)A+ 4

√
4096kλ((1−δ)y)B1B2

)1/3)
.

where
A = 3(yδ)3 − 25(yδ)2y + 9(yδ)y2 − 3y3,

B1 = 5(yδ)3 − 39(yδ)2y + 15(yδ)y2 − 5y3,

B2 = (yδ)3 − 9(yδ)2y + 3(yδ)y2 − y3.

C.3 RISK-BASED ANALYSIS

We now turn our attention to the CVaR analysis. Following the discussion of Section 2.2, the oracle
provides the schedule with an imperfect distributional prediction µ. From (4), and the fact that any
distributional prediction concerns only the interruption time (the only unknown in the problem), the
α-consistency of a schedule Xλ is equal to

α-cons(A) =
ET∼µ[T]

CVaRα,µ[ℓ(Xλ, T)]
.

We thus seek Xλ that maximizes the conditional value-at-risk of its largest completed contract by
an interruption generated according to µ. To obtain a tractable expression of this quantity, we will
assume that µ has support Ry ∈ [(1− δ)y, (1+ δ)y], where h ≤ y/3. This captures the requirement
that the support remains bounded, otherwise the distributional prediction becomes highly inaccurate.
This implies that if t is drawn from µ, then in Xλ, ℓ(Xλ, t) can only have one of two possible values,
namely λ2kλ((1−δ)y)−1 and λ2kλ((1−δ)y).

Define qλ = Pr[ℓ(Xλ, T) = λ2kλ((1−δ)y)−1] =
∫ λ2kλ((1−δ)y)+1

(1−δ)y
µ(T) dT, then from the discussion

above we have that Pr[ℓ(Xλ, T) = λ2kλ((1−δ)y)] = 1 − qλ. With this definition in place, we can
find the optimal schedule.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Theorem 10. Assuming δ ≤ 1/3, we have that

CVaRα,µ[ℓ(Xλ, T)] = max

{
λ2kλ((1−δ)y)−1

1− α
(2(1− α)− qλ) , λ2

kλ((1−δ)y)−1

}
,

where kλ(t) = ⌊log2 t
λ⌋. Hence,

λ∗
CVaR = argmaxλ∈[1,2) CVaRα,µ[ℓ(Xλ, T)],

Theorem 10 interpolates between two extreme cases. If α = 0, then our schedule maximizes the
expected contract length assuming T ∼ µ, i.e., λ2kλ((1−δ)y)−1 · qλ + λ2kλ((1−δ)y) · (1 − qλ) =
λ2kλ((1−δ)y)−1 · (2− qλ). This schedule recovers the optimal consistency in the standard case of a
distributional prediction, as studied in (Angelopoulos et al., 2024), and corresponds to a risk-seeking
scheduler. In the other extreme, i.e., when α → 1, the schedule optimizes the length of a contract
that completes by the time (1− δ)y, namely λ2kλ((1−δ)y)−1. We thus recover the consistency of the
δ-tolerant schedule.

Proof. Recall the definition of the conditional value-at risk comes, as given in (3). In order to
compute CVaRα,µ[ℓ(Xλ, T)] we have to apply case analysis, based on the value of the parameter t:

Case 1: t ≥ λ2kλ((1−δ)y). Then

CVaRα,µ[ℓ(Xλ, T)] =

sup
t≥λ2kλ((1−δ)y)−1

{
t− 1

1− α

(
t− λ2kλ((1−δ)y)−1(2− qλ)

)}
.

In this case, the optimal value of t is equal to λ2kλ((1−δ)y)−1, hence we obtain:

CVaRα,µ[ℓ(Xλ, T)] =
λ2kλ((1−δ)y)−1

1− α
(2(1− α)− qλ) .

Case 2: t ≤ λ2kλ((1−δ)y)−1. In this case, (t− ℓ(X,T))+ = 0, and

CVaRα,µ[ℓ(Xλ, T)] = λ2kλ((1−δ)y)−1.

Case 3: t ∈ [λ2kλ((1−δ)y)−1, λ2kλ((1−δ)y)]. Then

(t− ℓ(X,T))+ =

{
0, w. p. 1− qλ,

t− λ2kλ((1−δ)y)−1, w. p. qλ,

from which we obtain that

CVaRα,µ[ℓ(Xλ, T)] = sup
t∈[λ2kλ((1−δ)y)−1, λ2kλ((1−δ)y)]

{
t
(
1− qλ

1−α

)
+ λ2kλ((1−δ)y)−1·qλ

1−α

}
.

We consider two further subcases, based on whether of 1− α − qλ is positive or not. In the former
case, we have that

CVaRα,µ[ℓ(Xλ, T)] =
λ2kλ((1−δ)y)−1

1− α
(2(1− α)− qλ) .

In the latter case, we obtain

CVaRα,µ[ℓ(Xλ, T)] = λ2kλ((1−δ)y)−1.

From the above case analysis, it follows that

CVaRα,µ[ℓ(Xλ, T)] = max

{
λ2kλ((1−δ)y)−1

1− α
(2(1− α)− qλ) , λ2

kλ((1−δ)y)−1

}
,

which concludes the proof.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 3: Experimental results for contract scheduling (linear weight), δ = 0.2.

MAX AVG CVARα PO δ-TOL

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 2.421 2.413 2.426 2.416 2.471 2.960 2.500
CI+/CI− +0.0000/-

0.0000
+0.0000/-

0.0000
+0.0002/-

0.0002
+0.0001/-

0.0001
+0.0002/-

0.0003
+0.0000/-

0.0000
+0.0000/-

0.0000

Exp. contract length 413,303 417,504 420,164 415,274 402,646 373,008 397,875
CI+/CI− +9083.55/-

8957.96
+8495.21/-

9051.60
+9123.35/-

8027.55
+8621.83/-

8983.43
+8679.61/-

8684.86
+7776.46/-

7024.64
+8377.65/-

8357.20

Table 4: Experimental results for contract scheduling (linear weight), δ = 1
3 .

MAX AVG CVARα PO δ-TOL

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 2.689 2.632 2.643 2.654 2.873 2.934 3.000
CI+/CI− +0.0000/-

0.0000
+0.0000/-

0.0000
+0.0002/-

0.0002
+0.0002/-

0.0002
+0.0006/-

0.0006
+0.0000/-

0.0000
+0.0000/-

0.0000

Exp. contract length 371,190 387,025 389,927 378,469 344,100 370,414 329,257
CI+/CI− +7982.66/-

7670.94
+8086.65/-

8892.81
+8739.76/-

9252.04
+8779.84/-

7975.69
+7710.75/-

8106.44
+8252.32/-

8220.64
+7185.13/-

7391.59

C.4 EVALUATION OF CONTRACT SCHEDULES

Baselines We compare our schedules against two 4-robust baselines (Angelopoulos & Kamali,
2023b): the Pareto-optimal schedule (PO), which completes a contract at the prediction y, and the
δ-tolerant schedule (δ-Tol), which completes a contract at (1− δ)y.

Datasets The prediction is chosen as y ∼ Unif[0.8 · 106, 1.2 · 106], and the prediction range is
Ry = [(1− δ)y, (1 + δ)y]. The interruption time T is chosen uniformly at random from Ry .

Evaluation For MAX and AVG, we use two weight functions defined on Ry . The first is a linear
symmetric function that decreases from 1 at y to 0 at the endpoints of Ry . The second is a Gaussian
function

w(x) =

{
1

σ
√
2π

exp
(
− 1

2

(
x−y
σ

)2)
, if x ∈ Ry,

0, otherwise,

where σ = δy/4. For CVARα, the predictive distribution µ coincides with the respective weight
function, truncated and normalized on Ry , with α ∈ {0.1, 0.5, 0.9}.

For each schedule ,we compute the average performance ratio, taken over all T ∈ Ry , with 1000
independent repetitions on the choice of y. We also compute the expected completed contract length
under µ, with the averaging performed over the choices of y. The tables also report the 95% con-
fidence intervals (CIs). Results are presented in six tables: three for the linear weight function (Ta-
bles 3–5) and three for the Gaussian weight function (Tables 6–8), each corresponding to a different
value of δ.

Discussion The tables show that, in the vast majority of the considered settings, our schedules
achieve better performance ratios and larger expected contract lengths than both PO and δ-Tol. This
can be explained by the fact that all Pareto-optimal algorithms are brittle, as shown in (Elenter et al.,
2024), whereas, in contrast, the δ-Tol algorithm is inefficient unless the prediction error is large.

For CVARα, the results show that the expected completed contract length decreases as α grows,
while the performance ratio tends to increase, which is consistent with the tradeoff between risk and
robustness. When δ is smaller, all schedules perform better: this is because the reduced prediction
range allows to our algorithms a more accurate positioning of the completion time. In a similar
vein, for Gaussian weights, the results are consistently stronger than for linear weights, because the
distribution is more concentrated around y. Finally, we note that most confidence intervals on the
reported objectives collapse to zero. This is consistent with theory because the schedules have the
same structure for each prediction y.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 5: Experimental results for contract scheduling (linear weight), δ = 0.4.

MAX AVG CVARα PO δ-TOL

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 2.808 2.704 2.711 2.746 3.031 2.920 3.287
CI+/CI− +0.0000/-

0.0000
+0.0000/-

0.0000
+0.0001/-

0.0001
+0.0003/-

0.0003
+0.0003/-

0.0003
+0.0000/-

0.0000
+0.0000/-

0.0000

Exp. contract length 361,661 385,593 387,891 372,668 335,125 376,514 308,199
CI+/CI− +7657.21/-

7979.53
+8265.97/-

8367.98
+8415.05/-

8767.30
+8449.57/-

8393.17
+7200.61/-

7299.36
+8415.63/-

8840.35
+7370.45/-

8120.64

Table 6: Experimental results for contract scheduling (Gaussian weight), δ = 0.2.

MAX AVG CVARα PO δ-TOL

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 2.267 2.266 2.273 2.266 2.315 2.960 2.500
CI+/CI− +0.0000/-

0.0000
+0.0001/-

0.0001
+0.0002/-

0.0002
+0.0000/-

0.0001
+0.0003/-

0.0003
+0.0000/-

0.0000
+0.0000/-

0.0000

Exp. contract length 442,104 443,434 445,046 442,662 430,335 373,008 397,869
CI+/CI− +9722.63/-

9586.90
+9022.41/-

9592.05
+9673.17/-

8505.70
+9198.55/-

9603.26
+9289.41/-

9245.24
+7776.46/-

7024.64
+8377.52/-

8357.07

Table 7: Experimental results for contract scheduling (Gaussian weight), δ = 1
3 .

MAX AVG CVARα PO δ-TOL

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 2.421 2.413 2.423 2.415 2.524 2.934 3.000
CI+/CI− +0.0000/-

0.0000
+0.0001/-

0.0001
+0.0002/-

0.0002
+0.0001/-

0.0001
+0.0004/-

0.0004
+0.0000/-

0.0000
+0.0000/-

0.0000

Exp. contract length 412,448 416,801 419,095 414,520 392,171 370,414 329,262
CI+/CI− +8872.45/-

8524.03
+8664.99/-

9576.50
+9395.10/-

9951.62
+9623.35/-

8751.30
+8729.12/-

9156.69
+8252.32/-

8220.64
+7185.24/-

7391.71

Table 8: Experimental results for contract scheduling (Gaussian weight), δ = 0.4.

MAX AVG CVARα PO δ-TOL

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 2.494 2.478 2.488 2.483 2.631 2.920 3.287
CI+/CI− +0.0000/-

0.0000
+0.0001/-

0.0001
+0.0003/-

0.0002
+0.0002/-

0.0002
+0.0006/-

0.0006
+0.0000/-

0.0000
+0.0000/-

0.0000

Exp. contract length 407,466 413,970 416,511 410,594 382,442 376,514 308,032
CI+/CI− +8625.69/-

8993.79
+8887.56/-

8941.28
+9024.70/-

9400.35
+9319.17/-

9231.67
+8202.65/-

8300.45
+8415.63/-

8840.35
+6701.11/-

7383.17

D DETAILS FROM SECTION 6

D.1 EVALUATION OF SKI RENTAL ALGORITHMS

We base the experiments on the benchmarks described in Section 6, for varying values of the
parameters δ, r, z. For MAX and AVG we consider two classes of weight functions on Ry =
[(1 − δ)y, (1 + δ)y]: a linear symmetric weight decreasing from 1 at y to 0 at the endpoints, and a
Gaussian weight with mean y and σ = δy/4, both truncated and normalized on Ry . For CVARα, the
distribution µ is described by the same linear and Gaussian weight classes (truncated and normalized
in Ry), with α ∈ {0.1, 0.5, 0.9}. As in the main paper, we report (i) the average performance ratio
(averaged over all x ∈ Ry and over 1000 draws of y) and (ii) the expected cost under µ (averaged
over the same 1000 draws of y). Each table also includes 95% confidence intervals. We present
five tables for linear weights (Tables 9–13) and five for Gaussian weights (Tables 14–18). They
correspond to the settings (δ, r, z) ∈ {(0.9, 5, 4), (0.9, 8, 4), (0.5, 5, 4), (0.5, 8, 4), (0.9, 5, 7)}.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 9: Ski rental (linear weight), δ = 0.9, r = 5, z = 4.

MAX AVG CVARα BPρ

α = 0.1 α = 0.5 α = 0.9 b b + br
2 b(r − 1)

Avg perf. ratio 1.3442 1.3368 1.3418 1.3637 1.3930 1.6767 2.1874 2.2189
CI+/CI− +0.0311/-

0.0345
+0.0309/-

0.0336
+0.0297/-

0.0303
+0.0343/-

0.0342
+0.0366/-

0.0355
+0.0482/-

0.0502
+0.1606/-

0.1668
+0.1706/-

0.1684

Exp. cost 11.2501 11.1832 11.1693 11.2758 11.4553 16.4188 20.6070 20.5024
CI+/CI− +0.4798/-

0.5076
+0.4866/-

0.5085
+0.4954/-

0.5201
+0.4787/-

0.5368
+0.4671/-

0.4981
+0.9002/-

0.9968
+1.8565/-

2.0281
+1.8461/-

1.8712

Table 10: Ski rental (linear weight), δ = 0.9, r = 8, z = 4.

MAX AVG CVARα BPρ

α = 0.1 α = 0.5 α = 0.9 b b + br
2 b(r − 1)

Avg perf. ratio 1.2879 1.2853 1.3031 1.3343 1.3978 1.6767 2.2417 2.2251
CI+/CI− +0.0318/-

0.0339
+0.0324/-

0.0334
+0.0338/-

0.0355
+0.0435/-

0.0398
+0.0543/-

0.0505
+0.0482/-

0.0502
+0.1794/-

0.1831
+0.1748/-

0.1732

Exp. cost 10.4306 10.3880 10.3999 10.4840 10.7296 16.4325 20.8787 20.7540
CI+/CI− +0.3959/-

0.4364
+0.4165/-

0.4321
+0.4189/-

0.4595
+0.4035/-

0.4551
+0.3811/-

0.4256
+0.9005/-

0.9964
+1.9688/-

2.1559
+1.9242/-

1.9548

Table 11: Ski rental (linear weight), δ = 0.5, r = 5, z = 4.

MAX AVG CVARα BPρ

α = 0.1 α = 0.5 α = 0.9 b b + br
2 b(r − 1)

Avg perf. ratio 1.2047 1.2034 1.2085 1.2145 1.2287 1.7729 2.2041 2.1976
CI+/CI− +0.0182/-

0.0201
+0.0182/-

0.0204
+0.0170/-

0.0176
+0.0182/-

0.0198
+0.0216/-

0.0223
+0.0633/-

0.0695
+0.1836/-

0.1871
+0.1870/-

0.1844

Exp. cost 11.1739 11.1732 11.1751 11.2170 11.3174 17.0456 21.2944 21.0003
CI+/CI− +0.4695/-

0.5043
+0.4829/-

0.5080
+0.4960/-

0.5209
+0.4791/-

0.5392
+0.4821/-

0.5183
+0.9977/-

1.1034
+2.0426/-

2.2322
+1.9736/-

2.0155

Table 12: Ski rental (linear weight), δ = 0.5, r = 8, z = 4.

MAX AVG CVARα BPρ

α = 0.1 α = 0.5 α = 0.9 b b + br
2 b(r − 1)

Avg perf. ratio 1.1265 1.1245 1.1334 1.1404 1.1476 1.7729 2.1680 2.1595
CI+/CI− +0.0112/-

0.0125
+0.0108/-

0.0124
+0.0098/-

0.0098
+0.0133/-

0.0128
+0.0158/-

0.0153
+0.0633/-

0.0695
+0.1825/-

0.1828
+0.1783/-

0.1757

Exp. cost 10.3897 10.3880 10.3983 10.4419 10.4889 17.0499 20.7854 20.7519
CI+/CI− +0.3918/-

0.4351
+0.4165/-

0.4321
+0.4184/-

0.4550
+0.3959/-

0.4595
+0.4063/-

0.4330
+0.9967/-

1.1027
+1.9364/-

2.1260
+1.9246/-

1.9540

Discussion As δ decreases, our algorithms perform better both in terms of the performance ratio
and in terms of the average expected cost. This is consistent with theory, since Ry becomes smaller,
and the algorithms can better leverage the narrower prediction range. We also note that Gaussian
weights generally yield stronger results than linear weights, which is explained by the fact that the
Gaussian weight function is more concentrated around y.

Varying z has small effect on the performance of the algorithms. This is not only expected, but
also an essential feature of the algorithms, since they should perform consistently regardless of the
predicted value. A similar observation holds for varying the robustness parameter r.

D.2 EVALUATION OF ONE-MAX SEARCH ALGORITHMS

We base the experiments on the benchmarks described in Section 6, for varying values of the pa-
rameters δ, r, z. We evaluate MAX, AVG, and CVARα using the linear and Gaussian weight classes

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 13: Ski rental (linear weight), δ = 0.9, r = 5, z = 7.

MAX AVG CVARα BPρ

α = 0.1 α = 0.5 α = 0.9 b b + br
2 b(r − 1)

Avg perf. ratio 1.3103 1.3053 1.3151 1.3295 1.3534 1.7901 2.8509 2.9905
CI+/CI− +0.0229/-

0.0222
+0.0233/-

0.0223
+0.0238/-

0.0260
+0.0276/-

0.0275
+0.0312/-

0.0310
+0.0456/-

0.0472
+0.1914/-

0.2102
+0.2160/-

0.2153

Exp. cost 11.7081 11.7023 11.7078 11.7775 11.9247 17.8170 27.2827 27.5432
CI+/CI− +0.3917/-

0.4533
+0.4131/-

0.4432
+0.4053/-

0.4532
+0.3772/-

0.4741
+0.3763/-

0.4357
+0.7726/-

0.8356
+2.0175/-

2.3302
+2.0996/-

2.2661

Table 14: Ski rental (Gaussian weight), δ = 0.9, r = 5, z = 4.

MAX AVG CVARα BPρ

α = 0.1 α = 0.5 α = 0.9 b b + br
2 b(r − 1)

Avg perf. ratio 1.3514 1.3387 1.3397 1.3492 1.3669 1.6767 2.1874 2.2189
CI+/CI− +0.0297/-

0.0333
+0.0307/-

0.0337
+0.0302/-

0.0311
+0.0326/-

0.0344
+0.0335/-

0.0358
+0.0482/-

0.0502
+0.1606/-

0.1668
+0.1706/-

0.1684

Exp. cost 11.1765 11.1731 11.1731 11.2151 11.3155 16.9873 21.2338 20.9577
CI+/CI− +0.4687/-

0.5039
+0.4829/-

0.5081
+0.4966/-

0.5217
+0.4796/-

0.5398
+0.4828/-

0.5188
+0.9850/-

1.0909
+2.0143/-

2.2246
+1.9520/-

1.9971

Table 15: Ski rental (Gaussian weight), δ = 0.5, r = 5, z = 4.

MAX AVG CVARα BPρ

α = 0.1 α = 0.5 α = 0.9 b b + br
2 b(r − 1)

Avg perf. ratio 1.2097 1.2034 1.2049 1.2049 1.2141 1.7729 2.2041 2.1976
CI+/CI− +0.0184/-

0.0206
+0.0182/-

0.0204
+0.0180/-

0.0185
+0.0185/-

0.0199
+0.0197/-

0.0221
+0.0633/-

0.0695
+0.1836/-

0.1871
+0.1870/-

0.1844

Exp. cost 11.1740 11.1732 11.1733 11.1733 11.2349 17.1177 21.3451 20.9444
CI+/CI− +0.4693/-

0.5043
+0.4829/-

0.5080
+0.4966/-

0.5217
+0.4843/-

0.5294
+0.4917/-

0.5055
+1.0257/-

1.1153
+2.0850/-

2.2479
+1.9824/-

2.0130

Table 16: Ski rental (Gaussian weight), δ = 0.9, r = 8, z = 4.

MAX AVG CVARα BPρ

α = 0.1 α = 0.5 α = 0.9 b b + br
2 b(r − 1)

Avg perf. ratio 1.3025 1.2853 1.3002 1.3175 1.3571 1.6767 2.2417 2.2251
CI+/CI− +0.0322/-

0.0335
+0.0324/-

0.0334
+0.0342/-

0.0360
+0.0416/-

0.0390
+0.0507/-

0.0444
+0.0482/-

0.0502
+0.1794/-

0.1831
+0.1748/-

0.1732

Exp. cost 10.3947 10.3880 10.3983 10.4381 10.5760 16.9918 20.7954 20.7520
CI+/CI− +0.3933/-

0.4372
+0.4165/-

0.4321
+0.4198/-

0.4603
+0.3974/-

0.4614
+0.4016/-

0.4385
+0.9841/-

1.0901
+1.9368/-

2.1269
+1.9246/-

1.9540

Table 17: Ski rental (Gaussian weight), δ = 0.5, r = 8, z = 4.

MAX AVG CVARα BPρ

α = 0.1 α = 0.5 α = 0.9 b b + br
2 b(r − 1)

Avg perf. ratio 1.1345 1.1245 1.1288 1.1324 1.1404 1.7729 2.1680 2.1595
CI+/CI− +0.0147/-

0.0149
+0.0108/-

0.0124
+0.0103/-

0.0105
+0.0123/-

0.0122
+0.0152/-

0.0150
+0.0633/-

0.0695
+0.1825/-

0.1828
+0.1783/-

0.1757

Exp. cost 10.3908 10.3880 10.3898 10.4073 10.4565 17.1216 20.7559 20.7519
CI+/CI− +0.3920/-

0.4354
+0.4165/-

0.4321
+0.4204/-

0.4565
+0.3986/-

0.4622
+0.4107/-

0.4390
+1.0255/-

1.1160
+1.9374/-

2.1215
+1.9246/-

1.9540

defined in Section D.1. As in the main paper, we report (i) the average performance ratio (averaged
over all x ∈ Ry and over 1000 draws of y) and (ii) the expected profit under µ (averaged over
the same 1000 draws). All tables include 95% confidence intervals. We present five tables for lin-

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 18: Ski rental (Gaussian weight), δ = 0.9, r = 5, z = 7.

MAX AVG CVARα BPρ

α = 0.1 α = 0.5 α = 0.9 b b + br
2 b(r − 1)

Avg perf. ratio 1.3201 1.3065 1.3110 1.3199 1.3383 1.7901 2.8509 2.9905
CI+/CI− +0.0244/-

0.0231
+0.0236/-

0.0227
+0.0238/-

0.0262
+0.0262/-

0.0258
+0.0313/-

0.0288
+0.0456/-

0.0472
+0.1914/-

0.2102
+0.2160/-

0.2153

Exp. cost 11.7063 11.7000 11.7051 11.7411 11.8475 18.2168 30.3389 30.9557
CI+/CI− +0.3918/-

0.4544
+0.4139/-

0.4431
+0.4048/-

0.4595
+0.3831/-

0.4670
+0.4039/-

0.4368
+0.7890/-

0.8573
+2.4735/-

2.9018
+2.6507/-

2.7672

Table 19: One-max (linear weight), δ = 0.9, r = 100, z = 10.

MAX AVG CVARα δ-TOL PO1 PO2

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 4.3942 4.4469 9.9327 6.7335 5.2429 10.0085 4.6304 15.6848
CI+/CI− +0.04/-0.05 +0.06/-0.05 +0.26/-0.26 +0.15/-0.15 +0.12/-0.11 +0.00/-0.00 +0.06/-0.06 +0.45/-0.45

Exp. profit 15.2276 19.6283 30.7586 27.7794 16.1624 5.4746 13.5565 27.9437
CI+/CI− +0.30/-0.33 +0.49/-0.48 +0.90/-0.89 +0.80/-0.87 +0.49/-0.50 +0.15/-0.17 +0.18/-0.18 +0.82/-0.80

Table 20: One-max (linear weight), δ = 0.5, r = 100, z = 10.

MAX AVG CVARα δ-TOL PO1 PO2

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 2.5877 2.7856 10.0269 6.7880 3.1589 2.0000 3.8718 21.0408
CI+/CI− +0.02/-0.02 +0.01/-0.01 +0.26/-0.26 +0.16/-0.16 +0.04/-0.04 +0.00/-0.00 +0.06/-0.07 +0.62/-0.62

Exp. profit 28.6754 29.2159 36.1414 34.5976 29.7982 27.3730 13.9343 28.0349
CI+/CI− +0.79/-0.88 +0.86/-0.82 +1.07/-1.05 +1.01/-1.09 +0.86/-0.87 +0.75/-0.83 +0.16/-0.16 +0.82/-0.81

Table 21: One-max (linear weight), δ = 0.9, r = 80, z = 10.

MAX AVG CVARα δ-TOL PO1 PO2

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 4.4865 4.4469 9.9943 6.9624 5.7321 10.0085 4.6516 15.6848
CI+/CI− +0.04/-0.04 +0.06/-0.05 +0.26/-0.26 +0.15/-0.15 +0.14/-0.14 +0.00/-0.00 +0.05/-0.05 +0.45/-0.45

Exp. profit 15.6165 19.6283 30.7121 27.6555 15.8462 5.4746 14.4844 27.9437
CI+/CI− +0.28/-0.31 +0.49/-0.48 +0.91/-0.89 +0.81/-0.88 +0.52/-0.53 +0.15/-0.17 +0.17/-0.18 +0.82/-0.80

Table 22: One-max (linear weight), δ = 0.5, r = 80, z = 10.

MAX AVG CVARα δ-TOL PO1 PO2

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 2.7301 2.7856 10.0378 6.7586 3.1362 2.0000 3.8570 21.0408
CI+/CI− +0.05/-0.05 +0.01/-0.01 +0.26/-0.26 +0.16/-0.16 +0.04/-0.04 +0.00/-0.00 +0.06/-0.07 +0.62/-0.62

Exp. profit 28.6082 29.2159 36.0559 34.5122 29.7079 27.3730 14.9631 28.0349
CI+/CI− +0.78/-0.87 +0.86/-0.82 +1.07/-1.04 +1.02/-1.10 +0.86/-0.87 +0.75/-0.83 +0.16/-0.17 +0.82/-0.81

ear weights (Tables 19–23) and five for Gaussian weights (Tables 24–28). They correspond to the
settings (δ, r, z) ∈ {(0.9, 100, 10), (0.5, 100, 10), (0.9, 80, 10), (0.5, 80, 10), (0.9, 100, 20)}.

Discussion The results show that our algorithms tend to improve as δ decreases, whereas they are
not affected by variations in the parameters r and z. This is consistent with theory, and we refer to
the discussion in the analysis of the experiments on ski rental (Section D.1) for the justification.

For small values of δ, δ-TOL has very small performance ratio: this is due to the fact that in this case,
the range is extremely small. This advantage disappears, in a marked manner, once δ increases.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 23: One-max (linear weight), δ = 0.9, r = 100, z = 20.

MAX AVG CVARα δ-TOL PO1 PO2

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 3.8763 3.8645 6.7675 4.8622 4.1063 10.0049 3.8668 10.2558
CI+/CI− +0.02/-0.02 +0.02/-0.02 +0.09/-0.09 +0.05/-0.05 +0.07/-0.07 +0.00/-0.00 +0.02/-0.02 +0.15/-0.15

Exp. profit 11.2099 13.9404 19.7256 17.8093 10.9724 3.4915 11.7401 18.0238
CI+/CI− +0.10/-0.10 +0.18/-0.17 +0.30/-0.30 +0.27/-0.29 +0.15/-0.15 +0.05/-0.06 +0.06/-0.06 +0.28/-0.27

Table 24: One-max (Gaussian weight), δ = 0.9, r = 100, z = 10.

MAX AVG CVARα δ-TOL PO1 PO2

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 5.0599 5.4540 9.7709 8.1444 6.0222 10.0085 4.6304 15.6848
CI+/CI− +0.0728/-

0.0756
+0.0940/-

0.0909
+0.2564/-

0.2561
+0.1988/-

0.1969
+0.1196/-

0.1205
+0.0008/-

0.0008
+0.0561/-

0.0578
+0.4526/-

0.4530

Exp. profit 24.9584 27.0416 35.7945 34.4015 27.5003 5.4746 13.9039 27.9858
CI+/CI− +0.6259/-

0.7080
+0.7406/-

0.7242
+1.0580/-

1.0403
+1.0003/-

1.0822
+0.8137/-

0.8159
+0.1503/-

0.1666
+0.1583/-

0.1659
+0.8233/-

0.8022

Table 25: One-max (Gaussian weight), δ = 0.5, r = 100, z = 10.

MAX AVG CVARα δ-TOL PO1 PO2

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 5.9298 6.1761 12.1837 10.5279 7.4024 2.0000 3.8718 21.0408
CI+/CI− +0.1000/-

0.1051
+0.1142/-

0.1099
+0.3366/-

0.3318
+0.2822/-

0.2819
+0.1767/-

0.1844
+0.0000/-

0.0000
+0.0622/-

0.0653
+0.6202/-

0.6154

Exp. profit 35.2058 35.6679 41.5955 40.8581 37.3962 27.3730 13.9997 28.1314
CI+/CI− +0.9612/-

1.0665
+1.0397/-

1.0025
+1.2372/-

1.2094
+1.1976/-

1.2908
+1.0807/-

1.0969
+0.7512/-

0.8332
+0.1485/-

0.1558
+0.8152/-

0.8127

Table 26: One-max (Gaussian weight), δ = 0.9, r = 80, z = 10.

MAX AVG CVARα δ-TOL PO1 PO2

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 5.1262 5.4540 9.8288 8.3568 6.2563 10.0085 4.6516 15.6848
CI+/CI− +0.0622/-

0.0690
+0.0940/-

0.0909
+0.2528/-

0.2506
+0.1908/-

0.1933
+0.1229/-

0.1208
+0.0008/-

0.0008
+0.0465/-

0.0473
+0.4526/-

0.4530

Exp. profit 24.8628 27.0416 35.6981 34.2272 27.3657 5.4746 14.9229 27.9858
CI+/CI− +0.6067/-

0.6877
+0.7406/-

0.7242
+1.0671/-

1.0390
+1.0189/-

1.0926
+0.8320/-

0.8334
+0.1503/-

0.1666
+0.1671/-

0.1722
+0.8233/-

0.8022

Table 27: One-max (Gaussian weight), δ = 0.5, r = 80, z = 10.

MAX AVG CVARα δ-TOL PO1 PO2

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 5.9483 6.1761 12.1798 10.5404 7.3715 2.0000 3.8570 21.0408
CI+/CI− +0.0807/-

0.0907
+0.1142/-

0.1099
+0.3329/-

0.3376
+0.2871/-

0.2838
+0.1781/-

0.1906
+0.0000/-

0.0000
+0.0629/-

0.0660
+0.6202/-

0.6154

Exp. profit 34.9084 35.6679 41.4923 40.7649 37.2693 27.3730 15.0337 28.1314
CI+/CI− +0.9659/-

1.0843
+1.0397/-

1.0025
+1.2443/-

1.2156
+1.1989/-

1.3073
+1.0851/-

1.1117
+0.7512/-

0.8332
+0.1612/-

0.1756
+0.8152/-

0.8127

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 28: One-max (Gaussian weight), δ = 0.9, r = 100, z = 20.

MAX AVG CVARα δ-TOL PO1 PO2

α = 0.1 α = 0.5 α = 0.9

Avg perf. ratio 4.1276 4.3758 6.6495 5.6691 4.2717 10.0049 3.8668 10.2558
CI+/CI− +0.0295/-

0.0313
+0.0344/-

0.0339
+0.0853/-

0.0854
+0.0664/-

0.0676
+0.0365/-

0.0386
+0.0004/-

0.0004
+0.0217/-

0.0227
+0.1520/-

0.1489

Exp. profit 16.9932 18.3253 22.8969 21.9870 17.7082 3.4915 12.2219 18.0633
CI+/CI− +0.2258/-

0.2519
+0.2575/-

0.2496
+0.3510/-

0.3484
+0.3316/-

0.3609
+0.2615/-

0.2685
+0.0501/-

0.0555
+0.0495/-

0.0505
+0.2777/-

0.2677

D.3 REAL DATA EXPERIMENTS FOR ONE-MAX SEARCH

In this section, we provide a computational evaluation of our algorithms on real-world data, using
the same algorithm baselines as in Section 6. We consider two datasets: (i) the exchange rates2 of
EUR to four other currencies (CHF, USD, JPY, and GBP), where each series is a sequence σ of
6672 daily prices over a span of 25 years; and (ii) Bitcoin (USD) data recorded every minute from
January 1st 2020 to December 31st 2024, comprising a total of 2,630,880 prices,3. This follows the
choice of data from Sun et al. (2021b) and Benomar et al. (2025).

Datasets For each sequence σ, let
x = max

t
σt

denote the maximum price in the input. For generating predictions, we consider a random value
z sampled from a normal distribution with a mean equal to zero, standard deviation of 1/2, and
truncated to the interval [−1,+1]. This value is then scaled by the error upper bound δ, generating
the predicted value

y = x+ xδ · z.

The error bound δ is obtained by partitioning the sequence σ into eight equal-length segments. In
each segment i, we record the maximum price Mi. The bound is then defined as the difference
between the largest and smallest of these maxima:

xδ = max
i=1,...,8

Mi − min
i=1,...,8

Mi.

Recall that in one-max search, if all prices are below the chosen threshold, the algorithm needs to
sell at the lowest price. In this experimental setup, we use the lowest price in the sequence as this
final price.

Evaluation We performed 10,000 runs to account for prediction randomness and report the resulting
average performance ratio and expected profit, both with 95% confidence intervals. For MAX and
AVG, we use the linear symmetric weight function, while CVARα is evaluated under a Gaussian
distribution truncated to Ry = [(1− δ)y, (1 + δ)y], with α ∈ {0.1, 0.5, 0.9}.

Results The final results are presented in Table 29. Since the input sequences in real-life scenarios
are not worst-case and the range of prices varies depending on the currency, it is challenging to
determine which algorithm performs best overall. As shown in the table, the performance ratios
vary significantly across currencies. For example, MAX and AVG demonstrate better competitive
performance for CHF and USD, while CVAR is competitive for GBP. This variability highlights the
dependence of algorithm performance on the specific characteristics of the input data. Nevertheless,
algorithms such as MAX, AVG and CVAR0.5 have overall either better, or very similar performance
ratios than the state of the art algorithms.

To help interpret the variation in performance ratios reported in Table 29, we include Table 30, which
summarizes the range of prices observed in each sequence. As expected, the difference between the
smallest and largest prices is particularly significant for BTC, with a ratio exceeding 28. This large

2https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_
reference_exchange_rates/html/index.en.html

3https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data?
resource=download

33

https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/index.en.html
https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/index.en.html
https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data?resource=download
https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data?resource=download

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 29: Real-data evaluation for one-max search: average performance ratios and expected profits
with 95% confidence intervals.

Currency MAX AVG CVARα δ-TOL PO1 PO2

α = 0.1 α = 0.5 α = 0.9

CHF (Avg. ratio) 1.2617 1.2503 1.3287 1.3178 1.3451 1.5286 1.7824 1.4702
CI+/CI− +0.013/-

0.014
+0.016/-

0.015
+0.019/-

0.018
+0.016/-

0.015
+0.015/-

0.014
+0.015/-

0.014
+0.002/-

0.002
+0.021/-

0.019
CHF (Exp. profit) 1.612 1.624 1.587 1.553 1.498 1.372 1.298 1.462
CI+/CI− +0.031/-

0.028
+0.036/-

0.032
+0.027/-

0.029
+0.028/-

0.027
+0.026/-

0.025
+0.021/-

0.020
+0.019/-

0.018
+0.030/-

0.028

GBP (Avg. ratio) 1.1573 1.1573 1.1342 1.1137 1.0912 1.1474 1.1573 1.1241
CI+/CI− +0.002/-

0.001
+0.001/-

0.001
+0.004/-

0.003
+0.004/-

0.003
+0.004/-

0.003
+0.002/-

0.002
+0.001/-

0.001
+0.004/-

0.003
GBP (Exp. profit) 0.927 0.918 0.944 0.931 0.912 0.856 0.807 0.884
CI+/CI− +0.014/-

0.013
+0.012/-

0.011
+0.018/-

0.016
+0.017/-

0.015
+0.016/-

0.015
+0.014/-

0.013
+0.010/-

0.009
+0.018/-

0.016

JPY (Avg. ratio) 1.0842 1.0842 1.0842 1.0842 1.0842 1.0842 1.0876 1.0741
CI+/CI− +0.001/-

0.001
+0.001/-

0.001
+0.001/-

0.001
+0.001/-

0.001
+0.001/-

0.001
+0.001/-

0.001
+0.001/-

0.001
+0.002/-

0.001
JPY (Exp. profit) 168.4 168.3 168.7 168.5 168.0 167.2 166.8 169.1
CI+/CI− +1.5/-1.4 +1.6/-1.5 +1.6/-1.5 +1.5/-1.6 +1.6/-1.5 +1.3/-1.3 +1.2/-1.2 +2.0/-1.9

USD (Avg. ratio) 1.2042 1.1837 1.2289 1.2254 1.2471 1.3582 1.5439 1.3263
CI+/CI− +0.011/-

0.010
+0.010/-

0.009
+0.012/-

0.011
+0.012/-

0.011
+0.011/-

0.010
+0.011/-

0.010
+0.001/-

0.001
+0.015/-

0.013
USD (Exp. profit) 1.451 1.477 1.503 1.469 1.392 1.327 1.213 1.424
CI+/CI− +0.023/-

0.022
+0.025/-

0.023
+0.029/-

0.027
+0.027/-

0.028
+0.028/-

0.026
+0.021/-

0.020
+0.012/-

0.012
+0.031/-

0.029

BTC (Avg. ratio) 9.0380 8.8881 9.0380 9.0380 9.0380 9.0380 15.1874 9.4486
CI+/CI− +0.38/-0.36 +0.37/-0.36 +0.38/-0.37 +0.39/-0.38 +0.39/-0.37 +0.37/-0.36 +0.02/-0.02 +0.42/-0.41
BTC (Exp. profit) 24,132 24,228 24,180 24,095 23,978 23,842 23,610 24,310
CI+/CI− +812/-796 +824/-781 +897/-873 +852/-829 +783/-764 +653/-641 +514/-487 +947/-932

Table 30: Lowest and highest prices observed in each currency sequence, and their ratio.

Currency Lowest Highest Ratio

CHF 0.9260 1.6803 1.8146
GBP 0.5711 0.9786 1.7134
JPY 89.3000 175.3900 1.9641
USD 0.8252 1.5990 1.9377
BTC 3865.0 108276.0 28.0145

variation contributes to the substantially higher performance ratios observed for BTC across all
algorithms.

34

	Introduction
	Contributions

	Decision-Theoretic Models
	Distance-Based Analysis
	Risk-Based Analysis

	Ski Rental
	Distance Measures
	Risk-Based Analysis

	One-Max Search
	Distance Measures
	Risk-Based Analysis

	Contract Scheduling
	Experimental Evaluation
	Conclusion
	Details from Section 3
	Omitted proofs
	Ideal performance for r<2.618

	Details from Section 4
	Omitted proofs
	Weighted Maximum Distance
	An Example for Computing the Average Distance

	Application in contract scheduling
	Distance measures
	Computing the Average Distance of a Schedule
	Risk-based analysis
	Evaluation of contract schedules

	Details from Section 6
	Evaluation of Ski Rental Algorithms
	Evaluation of One-Max Search Algorithms
	Real Data Experiments for One-Max Search

