
Application of Neuroevolution
in Autonomous Cars

G. Sainath , S. Vignesh , S. Siddarth , and G. Suganya

Abstract With the onset of electric vehicles, and them becoming more and more
popular, autonomous cars are the future in the travel/driving experience. The barrier
to reaching level 5 autonomy is the difficulty in the collection of data that incorporates
good driving habits and the lack thereof. The problem with current implementations
of self-driving cars is the need for massively large datasets and the need to evaluate
the driving in the dataset. We propose a system that requires no data for its training.
An evolutionary model would have the capability to optimize itself towards the
fitness function. We have implemented neuroevolution, a form of genetic algorithm,
to train/evolve self-driving cars in a simulated virtual environment with the help of
Unreal Engine 4, which utilizes Nvidia’s PhysX Physics Engine to portray real-world
vehicle dynamics accurately. We were able to observe the serendipitous nature of
evolution and have exploited it to reach our optimal solution. We also demonstrate
the ease in generalizing attributes brought about by genetic algorithms and how they
may be used as a boilerplate upon which other machine learning techniques may be
used to improve the overall driving experience.

Keywords Neuroevolution · Neural networks · Genetic algorithm · Generation ·
Fitness · Selection · Crossover ·Mutation

1 Introduction

The society of automobile engineers (SAE) has coined six different levels of
autonomy beginning at level 0, the absence of any autonomy, to level 5, complete
autonomy requiring no human interventionwhatsoever. Currently, many luxury vehi-
cles possess level 3 autonomy in terms of cruise control and active lane control, and a
handful of vehicles possess level 4 autonomy. Level 5 autonomy in cars is still under
research and development. The main barrier to attain this level of autonomy is the
task of collecting data and the lack thereof. Although a deep model can be extremely

G. Sainath · S. Vignesh · S. Siddarth · G. Suganya (B)
Vellore Institute of Technology, Chennai, India
e-mail: suganya.g@vit.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
R. J. Kannan et al. (eds.), International Virtual Conference on Industry 4.0,
Lecture Notes in Electrical Engineering 355,
https://doi.org/10.1007/978-981-16-1244-2_26

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1244-2_26&domain=pdf
https://orcid.org/0000-0002-7401-1955
https://orcid.org/0000-0003-2332-9565
https://orcid.org/0000-0002-2690-381X
https://orcid.org/0000-0001-9560-4760
mailto:suganya.g@vit.ac.in
https://doi.org/10.1007/978-981-16-1244-2_26


302 G. Sainath et al.

adept at learning and generalizing features, it can only learn what it sees. Humans
can learn from different scenarios. Essentially, even if it learns to navigate through a
busy street, it may not be able to correct oversteer or understeer due to several factors
such as poor roads and tyre wear causing a loss of traction, which may not have been
accounted for in the training dataset. That is why an evolutionary approach would
solve these issues. What if the car could learn to drive on its own, via trial and error,
over countless generations? It would have trained, evolved to overcome such edge
cases and scenarios, and would know exactly what to do once it detects wheel spin
or any form of loss of traction/grip.

2 Overview of Existing Systems

2.1 Neural Networks (Supervised Learning)

A neural network is an interconnected network of neurons, also called nodes. Each
neuron has a set of output edges that activate based on the resultant value obtained
from the weighted inputs it received from the previous layer (Fig. 1).

Fig. 1 Topology of an artificial neural network



Application of Neuroevolution in Autonomous Cars 303

In a supervised learning approach, we would have a list of attributes or features
as our inputs and a list of targets as our outputs. We would then have to use back-
propagation to train our neural network to correct its weight to suit our target and
increase its accuracy.

So, in a situation where it is difficult to obtain a dataset large enough to train the
neural network to a certain degree of accuracy, we will face problems arriving at our
optimal solution. This is especially true in the scenario of self-driving cars, where
large corporations like Nvidia use 1000 h of driving data to train their vehicle to
navigate the roads. In such scenarios, we could adopt an evolutionary technique that
requires no datasets and train our model in a simulated environment.

Although deep neural networks utilizing convolutional layers have performed
extraordinarily in several scenarios, the problem arises after the fact that it can only
learn what it is shown or taught. Since there are countless more possibilities of things
that can happen on the road, which cannot be accounted for in the driving data we
gather. Moreover, such networks are notoriously prone to over-fitting.

2.2 Reinforcement Learning

Reinforcement learning is another critical area of research in autonomous vehicles,
where an agent learns to accomplish a task by gathering experience by itself, rather
than through a supervised dataset. The basic gist of the algorithm is that an agent
granted a reward when it performs an action that is desirable in the current scenario
and gets punished if it does something undesirable. Although this form of carrot
and stick approach seems to be how we, as individuals learn, the key drawback
of this algorithm is that the agent has no prior experience whatsoever. We humans
learn pretty quickly through this approach due to the generalization of a multitude
of experiences that we have gathered from birth till date. This is not the case for the
agent, and so it takes quite a while, depending on the complexity of the problem, for
the agent to gather enough experiences in order for it to determine whether a certain
action is desirable or not [1, 2] (Fig. 2).

Fig. 2 Basic flow of
reinforcement learning



304 G. Sainath et al.

3 Proposed System

Neuroevolution is a genetic algorithm that is used to evolve artificial neural networks.
In this model, each species of a generation has a brain (the neural network) that has
a set of genes (weights). In the beginning, all species of the population have random
weights and hence perform random actions. It is through serendipitous discovery
that a certain species gets closer to our solution. We select this species based on a
fitness function and pick similarly performing species to perform crossover. After
crossover, we mutate this gene and pass it on to the next generation. Owing to the
nature of this sort of evolution, genetic algorithms are easily parallelizable as the
actors (neural networks and their respective vehicle) of the population are individual
entities independent of each other [3].

So the entire genetic algorithm can be summarized to three key processes:

• Selection:We select the best species of the generation basedon thefitness function.
• Crossover:We crossover the genes of the population to converge onto our solution.
• Mutation: We mutate the genes, in the hope of a better solution, of the selected

species following crossover (Fig. 3).

We can see that mutation and crossover seem a little opposite to one another.
Mutation randomizes the weights of a certain percentage of neurons while crossover
tries to converge them. There is a trade-off here between exploration and exploitation.
Exploration viamutation is exploring new gene sets out of a hope that something new
can lead to promising results whereas exploitation via crossover is taking what you

Fig. 3 Simple pipeline of neuroevolution



Application of Neuroevolution in Autonomous Cars 305

learned and using that information, combining the best, to inform newer decision-
making processes.

4 Implementation

We chose to simulate neuroevolution using Unreal Engine 4, which is a game engine
that utilizes Nvidia’s PhysX Physics Engine to replicate real-world like vehicle
dynamics, which is essential if we plan to transfer the learning that has happened in
this environment.

Compared to using simulators such as CARLA, which was also built on the same
engine, we have a lot more freedom when we build the whole environment from the
ground up, in terms of level design, vehicle physics, frame times (time dilations) and
overall gives more power to the user.

4.1 Vehicle Dynamics

FWD Layout—Since most vehicles these days in the low to mid-tier range are front-
engine, front-wheel drives (FF), we chose this as our vehicle layout, and for the
differential, we went with a limited-slip differential (LSD) that prevents wheel spin,
which is getting more and more common these days. The transmission of the vehicle
is set to automatic. The suspension settings have also been altered so that it favours
understeer rather than it oversteer, as most manufacturers do these days, as it is easier
to correct understeer. Weight transfer and tyre traction are also essential aspects that
dictate the vehicle’s physical handling and are simulated accurately.

RWD Layout—We also wanted to observe how this approach would fare on a
more difficult layout which is harder to control, which is the front-engine, rear wheel
drive (FR), also the typical sports car layout, as they more prone to over-steering and
sliding through corners without proper throttle control and adequate countersteering.
The suspension of this layout has also been altered so that it favours oversteering
behaviour rather than understeer.

4.2 Neural Net

Each vehicle that we simulate has a brain that controls the values for the throttle
pedal, the brake pedal, and the steering angles directly. This brain is our deep neural
network which outputs a value from −1 to 1 for all the above inputs of the vehicle.
The inputs to the neural network are the distances (normalized to 0–1) we obtained
by tracing a point cloud around the vehicle. We also feed in the current speed of the
vehicle (normalized to its maximum speed) and the angle between the velocity of



306 G. Sainath et al.

the vehicle and its forward vector, which provides the neural net information about
in which direction the car is sliding towards, if or when it does.

4.3 Genetic Algorithm

The genetic algorithm in this simulation is a higher-level entity that oversees the
processes responsible for selection, crossover and mutation. It controls the mutation
and crossover rates and is responsible for spawning and tracking all the features
of the entire vehicle species for each generation of the population. Initially, in the
first generation, all the weights of all the neural networks are initialized to random
values, and it is through serendipitous discovery aided by the fitness function that
we converge on to a solution through selection and crossover and also search for a
better solution through mutation.

4.4 Working

In the first generations, all the weights of all the neural networks in the vehicles are
initialized randomly, so they have no clue what to do when they are spawned and
hence move randomly. To remove poorly performing agents, which is a crucial part
of Darwinian evolution, “survival of the fittest”, we de-spawn vehicles that crash into
obstacles and guard rails or those that do not reach a certain threshold score within
a predetermined period of time.

Pipeline:

1. Genetic algorithm entity spawns a vehicle population
2. Select top-performing vehicles based on the fitness function
3. Perform crossover by the weighted average of their weights with respect to their

relative fitness in terms of the population
4. Mutate a small percentage of the weights by setting them to random values
5. Spawn the next generation of vehicles
6. Repeat for n generations till satisfactory behaviour is observed (Fig. 4).

Selection For each vehicle, the distance travelled (in the direction of the course)
each frame, which we call the score of the neural net, is calculated as:

�d = v × �t (1)

Δd = distance travelled that frame
v = instantaneous speed
Δt = frame time.



Application of Neuroevolution in Autonomous Cars 307

Fig. 4 Neuroevolution architecture

In order to prevent over-correcting behaviour and that it does not game the fitness
score, we increment its score only when the angle between the velocity vector and
the car’s forward vector is less than a threshold value which we set as 10°.

From this, we calculate the net score each frame, which is the total distance
travelled (until it de-spawns) and is calculated as:

score =
∑

�d (2)

At the end of each generation, the relative fitness of each neural network is
calculated as:

fitnessi = scorei∑p
j=1 scorei

(3)

where

fitnessi = relative fitness of the current neural network
scorei = total distance travelled by the vehicle
p = total population of the generation.

Now, for spawning the next generation of vehicles, we pick the top n vehicles
with the greatest fitness (n could be selected arbitrarily, we chose it to be 1/10th of
the population, p).

CrossoverWenowperform an arithmetic crossover of these n species byweighted
addition of theirweightswith respect to their fitness. For each connection in the neural
network, the weight of the connection after crossover is calculated as:

new w =
n∑

i=1

(wi × fitneesi ) (4)

where

fitnessi = relative fitness of the current neural network
wi = weight of a certain connection in the neural net



308 G. Sainath et al.

n = the top selected species of the generation.

Mutation Once we perform crossover for about 80% of the weights in the neural
network, we then move on to mutation which is typically done to about 20% of the
weights by using a random function on the weights.

5 Results

Within the simulated environment, we have observed that the population over several
generations has evolved to not crash into obstacles, and also through sheer random-
ness have decided to stick to one side of a lane in certain simulations. They also
perform advanced traffic management techniques such as zipper merges. A zipper
merge is when a car continues to stay on the lane even after a blockade is located.
They merge into the free lane only once they are close to the blockade in order
to prevent traffic congestion that would occur if everyone stopped using that lane
entirely (Figs. 5, 6, and 7; Table 1).

Modeling using various simulations, iterating and variating different parameters,
are that when the fitness function is simple, it generalizes the course pretty quickly
and is able to navigate it well over very few generations. But, when we alter it
so that it favours a certain style of cornering or maintaining a certain amount of
speed, it takes drastically more generations for it achieve this sort of specialization.
This interpretation is backed by the discrepancies seen in the number of generations it
took for the front-engine, rear-wheel drive (FR) layout compared to the front-engine,
front-wheel drive (FF) layout (Fig. 8).

Fig. 5 Neural net switches lane only at the very verge of colliding on to the obstacle (white wall
to left)



Application of Neuroevolution in Autonomous Cars 309

Fig. 6 Neural net has decided to stick to the left lane on the road through sheer randomness which
can be nurtured by altering the fitness function

Fig. 7 Neural net has learned how to countersteer and control the car on the onset of oversteer

6 Conclusion and Future Work

Based on the results we have observed above, we can come to the conclusion
that genetic algorithms such as neuroevolution can speed up the initial phase of
generalizing features several fold compared to traditional techniques such as back-
propagation which place the prerequisite of procuring a massive dataset for training
so as to not overfit the solution. But once the network attains the basic cognitive



310 G. Sainath et al.

Table 1 Generations taken by the neural nets to evolve enough to navigate the entire course without
crashing

Layout Crossover rate (%) Mutation rate (%) Generation Population

FR 80 20 97 4850

FR 80 10 225 11,250

FR 90 20 145 7250

FR 90 10 171 8550

FF 80 20 24 1200

FF 80 10 26 1300

FF 90 20 38 1900

FF 90 10 12 600

Fig. 8 Once one the neural nets hit a peak, it is able to constantly replicate the peaks which is an
indication of evolution

abilities for driving, it can be further improved upon through reinforcement learning
techniques such as deep Q-learning [4, 5], since it has already gathered a plethora of
experiences over several generations, which is one of the key barriers slowing down
reinforcement, since now we can quickly jump to the phase where the focus is more
on obtaining as many rewards as possible rather than the initial phase of gathering
experience where the agent primarily tries to just not get punished for its actions.



Application of Neuroevolution in Autonomous Cars 311

References

1. Saez Y, Perez D, Sanjuan O, Isasi P (2008) Driving cars by means of genetic algorithms.
In: Rudolph G, Jansen T, Beume N, Lucas S, Poloni C (eds) Parallel problem solving from
nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_109

2. Such FP, Madhavan V, Conti E, Lehman J, Stanley KO, Clune J (2017) Deep neuroevolu-
tion: genetic algorithms are a competitive alternative for training deep neural networks for
reinforcement learning. ArXiv, abs/1712.06567

3. Stanley KO, Clune J, Lehman J et al (2019) Designing neural networks through neuroevolution.
Nat Mach Intell 1:24–35. https://doi.org/10.1038/s42256-018-0006-z

4. Stanley KO, Miikkulainen R (2002) Efficient reinforcement learning through evolving neural
network topologies. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary
Computation (GECCO’02). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp
569–577

5. Iglesias Rodriguez R, Rodríguez M, Regueiro C, Correa J, Barro S (2006) ICINCO 2006,
Proceedings of the Third International Conference on Informatics in Control, Automation and
Robotics, Robotics and Automation, Setúbal, Portugal, August 1-5, 2006, pp 188–195

https://doi.org/10.1007/978-3-540-87700-4_109
https://doi.org/10.1038/s42256-018-0006-z

	 Application of Neuroevolution in Autonomous Cars
	1 Introduction
	2 Overview of Existing Systems
	2.1 Neural Networks (Supervised Learning)
	2.2 Reinforcement Learning

	3 Proposed System
	4 Implementation
	4.1 Vehicle Dynamics
	4.2 Neural Net
	4.3 Genetic Algorithm
	4.4 Working

	5 Results
	6 Conclusion and Future Work
	References




