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Abstract

In this paper, we present a new framework for reducing
the computational complexity of geometric vision problems
through targeted reweighting of the cost functions used to
minimize reprojection errors. Triangulation - the task of es-
timating a 3D point from noisy 2D projections across mul-
tiple images - is a fundamental problem in multiview ge-
ometry and Structure-from-Motion (SfM) pipelines. We ap-
ply our framework to the two-view case and demonstrate
that optimal triangulation, which requires solving a uni-
variate polynomial of degree six, can be simplified through
cost function reweighting reducing the polynomial degree to
two. This reweighting yields a closed-form solution while
preserving strong geometric accuracy. We derive optimal
weighting strategies, establish theoretical bounds on the ap-
proximation error, and provide experimental results on real
data demonstrating the effectiveness of the proposed ap-
proach compared to standard methods. Although this work
focuses on two-view triangulation, the framework general-
izes to other geometric vision problems.

1. Introduction

Multiple view geometry has long been a well-established
field within computer vision, with several decades of exten-
sive research, as noted in works such as [9]. The inherent
complexity of various subproblems, including relative pose
estimation and triangulation, has been rigorously analyzed,
often quantified by the number of critical points required
to achieve optimal solutions. Typically, these problems are
addressed either through slow but guaranteed methods or
through faster, local iterative methods that lack assurance
of reaching an optimal solution. In contrast, in this paper,
a fundamentally different direction is pursued. We intro-
duce a framework that makes targeted modifications to the
cost function in order to reduce the underlying complexity.

When applied to the triangulation problem, we demonstrate
that it can be simplified at its core, reducing the number
of critical points and thereby enhancing computational effi-
ciency. An example is given in Figure 1.

Triangulation stands as a cornerstone problem with ex-
tensive applications in 3D reconstruction, robotics, and aug-
mented reality. Formally, the task involves recovering the
3D position of a point X from its observed projections x̃i

in two or more camera images, where each projection is
expressed by πi(X). Ideally, if the 3D point X and its cor-
responding 2D projections x̃i are perfectly aligned, that is,
x̃i = πi(X), then this reconstruction becomes a straightfor-
ward calculation. However, in real-world scenarios, various
sources of error – such as inaccuracies in the camera’s inter-
nal parameters, small discrepancies in relative camera posi-
tioning, or limitations in point-matching precision – lead to
imperfect data. These imperfections result in skewed rays
that fail to intersect precisely in 3D space. Consequently,
the triangulation problem in practical settings shifts to find-
ing the 3D point that most closely aligns with the observed
2D projections.

Assuming independent Gaussian noise on the image
measurements, the maximum likelihood estimate is ob-
tained by minimizing the L2-error between observed and
ideal projections. This geometric error, addressed by Hart-
ley and Sturm already in 1997 [10], involves computing the
six critical points intrinsic to the problem [24], meaning
that any simpler (non-direct) solution inevitably involves
trade-offs. Iterative approaches, such as the fast method
proposed by Lindstrom [21], have also been suggested, al-
though these can converge to local optima. An alternative is
to change the optimization criterion, for example, using the
L∞-norm [12], which enables an optimal solution through
convex optimization. In contrast, we explore a novel ap-
proach in multiple view geometry by weighting the L2-cost
function to reduce the set of critical points, allowing direct
computation of the solution in closed form.

Our framework can, in principle, be applied to any al-
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Figure 1. The optimal triangulation problem can have up to three
local minima and requires finding the roots of a degree-6 uni-
variate polynomial, following Hartley-Sturm [10]. We propose a
weighting of the cost function that lowers the degree to 2, yield-
ing a unique minimum. The plot shows a specific example where
Hartley-Sturm’s method has to choose between two local minima.
Here, we plot the lowest cost value per epipolar plane, parame-
terised by an angle from the principal axis of one camera (see [10,
Section 4.2] for details). The costs are rescaled to have the same
minimum and maximum value for ease of viewing.

gebraic optimization problem and is thus widely applicable
within multiple view geometry, e.g., to n-view triangula-
tion [11], camera pose estimation [7] and registration [25].
Here, we showcase our strategy in detail for two-view trian-
gulation.

In Sec. 2, we introduce our overall approach formally.
In Sec. 3, we recap two-view triangulation and provide
an equivalent reformulation via a diagonalizing change of
coordinates. In Sec. 4, we study our proposed weighted
version of two-view triangulation. We determine the best
weights that reduce the number of critical points from 6 to
either 4 or 2 (see Theorems 4.1 and 4.3) and find theoret-
ical bounds on the quality of our proposed approximation
(see Proposition 4.4). Experiment results and comparisons
to baselines on real data are given in Sec. 5.

1.1. Related Work

Triangulation. The most well-known approach to trian-
gulation is to solve for the six critical points as described
in [10], but the algorithm tends to be slow. Computing the
midpoint between 3D rays does not work well for near par-
allel rays, hence it should in general be avoided. Using
algebraic cost functions, such as the Direct Linear Trans-
form, can be fast but may be inaccurate [9]. Iterative meth-
ods for triangulation were pioneered by Kanatani et. al.
[14, 15] and the method by Lindstrom [21] leverages this
approach. In theory, the method does not guarantee an opti-
mal solution with respect to the cost function, whereas our
approach does with respect to the weighted cost function.
Other works on triangulation modify the optimize criterion,
for instance, the L1-cost and the L∞-cost functions are op-
timized in [12, 13, 19]. In [18], a variant of the midpoint

method is proposed. We experimentally compare to both
Lindstrom [21] and Hartley-Sturm [10], two natural base-
lines that solve the optimal triangulation problem — the
former being a fast, iterative method, and the latter a slower,
exact method.

The Geometric Error. In applied algebraic geometry, fit-
ting noisy data points to a mathematical model defined by
polynomials has seen a lot of interest [3]. The smallest dis-
tance between the data and the model is the geometric error.
The corresponding geometric error for homographies was
first introduced by Sturm [32]. The Euclidean distance de-
gree is the number of smooth complex critical points for the
optimization problem, given random data. It expresses the
algebraic complexity of fitting data to a model; the higher
the Euclidean distance degree, the more computationally
expensive the optimization. For 3D reconstruction, sev-
eral works have studied or computed these degrees, e.g.,
[6, 10, 23, 24, 26]. The Euclidean distance degree is used to
implement efficient solvers in homotopy continuation [2] or
to solve the associated polynomial systems via specialized
symbolic solvers [17].

The Sampson Error. Sampson approximation was first
proposed in [28] and independently by Taubin [33]
to approximate the point-conic distance. Luong and
Faugeras [22] introduced it to approximate the reprojection
error in epipolar geometry. The Sampson error has been
considered in other vision settings [4, 5, 20, 34]. This ex-
tensive use of Sampson approximation for geometric prob-
lems shows its versatility. Recently, the Sampson error was
revisited and studied from a mathematical perspective [27].

Weighted Euclidean Problems. The authors of [16]
studied weighted Euclidean distance problems for rank-one
approximations of tensors, variations thereof, and quadric
hypersurfaces. Similarly to this article, they analyze the
weights that lead to the smallest number of critical points.

2. Framework
We consider geometric vision problems involving 3D
points, their image projections, and the cameras. A full-
rank 3 × 4 matrix C defines a camera that projects a 3D
point X ∈ R3 as

π : R3 99K R2

X 7→
[
C(X; 1)1/C(X; 1)3
C(X; 1)2/C(X; 1)3

]
.

(1)

Here, 99K denotes a rational map, meaning a map well-
defined almost everywhere. We study both uncalibrated
cameras, where C is unconstrained, and calibrated cameras
of the form C = [R; t], where R ∈ SO(3) and t ∈ R3.



Now, consider the residual between a projected 3D point
X and its measured image point x̃, given by ϵ = x̃−π(X).
If the measured image points are corrupted by independent,
normally distributed noise, the maximum likelihood esti-
mate is obtained by minimizing ||ϵ||2 over the unknowns,
where ϵ is the vector of all image residuals. The unknowns,
depending on the task, may consist of 3D points and/or
cameras. In compact form, we seek to solve problems of
the form

min
ϵ,z

||ϵ||2

s.t. p(ϵ, z) = 0,
(2)

where z encodes the unknown parameters of interest. The
constraint vector p(ϵ, z) = 0 can be written as polynomial
constraints by clearing denominators. Solving this opti-
mization problem exactly quickly becomes intractable for
large problems. One measure of complexity is the number
of smooth complex critical points of the optimization given
generic measured image points x̃, known as the Euclidean
distance degree (ED-degree) of the problem.

Example 2.1 (Triangulation). Given cameras Ci for i =
1, . . . , n and corresponding image points x̃i in n views,
computing the 3D point X is known as triangulation. The
ED-degree for n = 2 is well known to be 6 (for generic
cameras), with an algorithm for computing the six station-
ary points first presented in [10]. For three-view triangula-
tion (n = 3), the ED-degree is 47 [23, 31].

The ED-degree of a geometric vision problem is intrin-
sic, meaning that reducing complexity requires altering the
problem itself. We address this by reweighting the objective
function and analyzing how different choices of weights af-
fect the ED-degree. Concretely, we investigate

min
ε,z

∑
i

λiε
2
i

s.t. p(ε, z) = 0,

(3)

where λi are positive weights applied to the residual terms.
The optimal choice of weights depends heavily on the con-
straints p and can be challenging to determine. One strategy
to mitigate this is to first make the constraints simpler by ap-
plying a coordinate transformation of the form

ε = Rϵ (4)

with an orthogonal matrix R. This leaves the problem (2)
unchanged, as ||ε|| = ||ϵ||, ensuring that the ED-degree
remains the same. We carry out this strategy in detail for
two-view triangulation.

3. Two-View Triangulation
A common way of expressing two-view triangulation is via
the fundamental matrix F of the camera pair C1, C2. More

precisely, given a fundamental matrix F , i.e., a 3×3 rank-2
matrix, it is the following squared-error minimization:

E2
F (x̃) := min

ϵ
∥ϵ∥2

s.t. (x̃1 + ϵ1; 1)
⊺F (x̃2 + ϵ2; 1) = 0.

(5)

Our goal is to find an approximate solution to (5) that
is simpler and faster to compute via (3) and (4). In this
direction, we first simplify the epipolar constraint. Note that

(x1; 1)
⊤F (x2; 1) (6)

equals

(x; 1)⊤
1

2

 0 F2×2 Fh

F⊤
2×2 0 F⊤

v

F⊤
h Fv 2F3,3


︸ ︷︷ ︸

Q(F ):=

(x; 1), (7)

where

F =

[
F2×2 Fh

Fv F3,3

]
. (8)

Lemma 3.1. For a fundamental matrix F , the matrix Q(F )
is rank-deficient. Moreover, if F2×2 is invertible, then
Q(F ) has rank 4 and its kernel is[

k(F )
1

]
, where k(F ) :=

[
−F−⊤

2×2F
⊤
v

−F−1
2×2Fh

]
. (9)

Proof. The determinant of Q(F ) is det(F2×2) det(F )/16.
Therefore, it is always rank-deficient. Moreover, since
F2×2 is invertible, the top left 4 × 4 matrix of Q(F ) has
rank 4, implying that Q(F ) has rank 4.

Now we can rewrite (7) further. Denote by P (F ) the
upper left 4× 4 matrix of Q(F ). By construction,

(x; 1)⊤Q(F )(x; 1) =

(x− k(F ))⊤P (F )(x− k(F )).
(10)

Next, we express this constraint in terms of the eigenvalues
of P (F ). Since that matrix is symmetric, its eigenvalues
are real. In fact, they are the signed singular values of F2×2.
Hence, the eigenvalues of P (F ) are a1,−a1, a2,−a2 for
some a1, a2 ≥ 0. Up to translation and orthogonal action,
we now see that (10) is equal to∑

i

qiy
2
i , where q = (a1,−a1, a2,−a2). (11)

Here, the new variables y are obtained from x via y =
R(F )⊤(x−k(F )) for some orthogonal 4×4 matrix R(F ).
Our updated optimization problem is then

E2
q(ỹ) := min

ε
∥ε∥2

s.t.
∑
i

qi(ỹi + εi)
2 = 0.

(12)



Proposition 3.2. Let F be a fundamental matrix such that
F2×2 is invertible, and let diag(q) = R⊤P (F )R be a di-
agonalization of P (F ). Then the critical points of (5) with
data x̃ are in bijection with the critical points of (12) with
data ỹ = R⊤(x̃− k(F )) via

ϵ 7→ ε = R⊤ϵ. (13)

In particular, EF (x̃) = Eq(ỹ).

Proof. It is a well-known fact in metric algebraic geometry
that translation and orthogonal transformation preserve the
ED-degree and that the critical points are in bijection via
(13). To see this, one can directly study the critical equa-
tions. The details are worked out in [26].

Remark 3.3. All parameters a1, a2 > 0 are possible, also
when we restrict ourselves to calibrated cameras. This is
because all non-zero matrices F2×2 can be obtained from
C1 = [I 0] and C2 = [R t] with R ∈ SO(3). Indeed, one
can choose t1 = t2 = 0 and add a column to

[
0 −1
1 0

]
F⊤
2×2

such that the resulting 2× 3 matrix S has orthogonal rows
of the same norm. Then choose t3 such that S/t3 has rows
of norm 1 and extend that matrix to a 3× 3 rotation matrix
R. That way, the top left block of R⊤[t]× is F2×2.

4. The weighted optimization problem
We will now show that one can change the standard
squared-error minimization to a weighted squared-error loss
such that the number of critical points drops and the opti-
mization problem becomes simpler. More concretely, we
replace (12) by

E2
q,λ(ỹ) := min

ε

∑
i

λiε
2
i

s.t.
∑
i

qi(ỹi + εi)
2 = 0,

(14)

where q = (a1,−a1, a2,−a2) and λ = (λ1, λ2, λ3, λ3) ∈
R4

>0. The restriction that the λi are positive ensures that the
optimization problem corresponds to minimizing a distance
(that may differ from the standard Euclidean distance). The
number of complex critical points of (14) for general a1, a2
and ỹ is called the λ-Weighted ED-degree (λ-degree).

Theorem 4.1. Let ai, λi > 0. The λ-degree of (14) is
I. 2 if λ = (µa1, νa1, µa2, νa2) for some µ, ν ∈ R>0,

II. 4 otherwise if (λ1, λ3) = µ(a1, a2) for some µ ∈ R>0

or (λ2, λ4) = ν(a1, a2) for some ν ∈ R>0,
III. 6 otherwise.

As a consequence, if a1 = a2, then the λ-degree is 2 for
λ = (1, 1, 1, 1), meaning that the ED-degree is also 2. This
is in particular the case for calibrated cameras C1 =

[
I 0

]
and C2 =

[
R t

]
where the last row of R is (0, 0, 1), as we

will see in Prop. 4.5. Note that the last row of R encodes the
optical axis of the camera, and hence for a stereo rig with
parallel image planes, we obtain the optimal (unweighted)
L2-solution without having to solve a degree-6 polynomial!

Proof. Given noisy measurements ỹ, the critical points of
the optimization problem (14) are those ε ̸= −ỹ that satisfy
the problem’s constraint and such that the Jacobian matrix

[
λ1ε1 λ2ε2 λ3ε3 λ4ε4

a1(ỹ1 + ε1) −a1(ỹ2 + ε2) a2(ỹ3 + ε3) −a2(ỹ4 + ε4)

]
has rank one. Writing q = (a1,−a1, a2,−a2), the rank
constraint means that λiεi = sqi(ỹi + εi) for some scalar s
and all i = 1, 2, 3, 4. This allows us to express

εi = sqiỹi/(λi − sqi). (15)

Plugging the latter into the constraint of (14) yields a ratio-
nal function

R =
r6(s)∏

i(λi − sqi)2
, (16)

whose numerator r6(s) depends on ai, ỹi and is of degree
6 in s. It has too many terms to be displayed here, but the
Macaulay2 [8] code in the SM computes it explicitly. The
roots of the numerator correspond to the critical points of
the optimization (14), showing that the λ-degree is at most
6 for generic weights λ. This is in fact an equality since the
standard Euclidean distance problem (6) has ED-degree 6.

A priori, there are two ways how the λ-degree (i.e.,
the degree of the numerator above) can drop. For special
choices of weights λ, either the leading coefficient of r6(s)
can vanish, or r6(s) can share a common factor with the de-
nominator of R. The first case cannot happen, as the leading
coefficient is

a31a
3
2(a2λ

2
1ỹ

2
1 − a2λ

3
2ỹ

2
2 + a1λ

2
3ỹ

2
3 − a1λ

2
4ỹ

2
4), (17)

which is non-zero for generic ỹ.
Next we analyze under which conditions one of the fac-

tors (λi − sqi) of the denominator divides the numerator.
This is equivalent to that s = λi/qi is a root of the numera-
tor. Plugging s = λ1/q1 into the numerator yields

a−3
1 λ2

1 (λ1 + λ2)
2 ỹ21 (a1λ4 + a2λ1)

2 (a1λ3 − a2λ1)
2.
(18)

Due to ai, λj > 0, only the last factor in this expression can
be zero (for generic ỹ). That term being zero means that
(λ1, λ3) = µ(a1, a2) for some µ ∈ R>0. Hence, we have
shown that the latter condition is equivalent to (λ1 − sq1)
dividing the numerator.

Analogously, we obtain that (λ3 − sq3) divides the nu-
merator if and only if (λ1, λ3) = µ(a1, a2) for some µ ∈



R>0; and that (λ2−sq2) or (λ4−sq4) divide the numerator
if and only if (λ2, λ4) = ν(a1, a2) for some ν ∈ R>0.

Without loss of generality, we now assume that
(λ1, λ3) = µ(a1, a2) for some µ ∈ R>0. Then

R =
r4(s)

(λ2 − sq2)2(λ4 − sq4)2(µ− s)2
, (19)

whose numerator r4(s) depends on ai, ỹi and is of degree
4 in s. The code in the SM produces also this numerator.
Therefore, for generic λ2 and λ4, the λ-degree is now 4.
As before, the leading coefficient of the numerator of R
does not vanish for generic ỹ. Thus, the degree can only
drop further if one of the factors in the denominator of R
divides the numerator. The factor (µ − s) cannot divide
the numerator for generic ỹ, since plugging s = µ into the
numerator yields

µ2 (a1µ+ λ2)
2 (a2µ+ λ4)

2 (a1ỹ
2
1 + a2ỹ

2
3), (20)

which is positive for generic ỹ. Hence, the degree can only
drop further if (λ2 − sq2) or (λ4 − sq4) divide the numera-
tor. We have already shown above that this is equivalent to
(λ2, λ4) = ν(a1, a2) for some ν ∈ R>0. In this case,

R =
r2(s)

(µ− s)2(ν + s)2
, (21)

whose numerator r2(s) depends on ai, ỹi and is of degree 2
in s. (Its coefficients are explicit stated in (22); see proof of
Lemma 4.2). This shows that the λ-degree is now 2.

The weighted squared-error minimizations of λ-degree 2
and 4 from Theorem 4.1 can be explicitly solved. There-
fore, they are significantly faster to solve than the original
problem of ED-degree 6. This raises two natural questions:

• Which choice of scalars µ, ν is ‘best’ in the sense
that the solution to (14) best approximates the origi-
nal problem?

• How good is this ‘best’ approximation?
More concretely, we say that the best µ, ν are those such
that the minimizer ε(µ, ν) of (14) minimizes the standard
squared error

∑
i ε

2
i . Since the minimizer ε(µ, ν) is not af-

fected by multipying λ with a global scalar, we assume from
now on without loss of generality that µ = 1. (We could of
course also assume that a1 = 1, but choose not do so.)

We solve the two questions above for weights of the form
λ = (a1, νa1, a2, νa2). We find the optimal ν by theoretical
means in Theorem 4.3 and use this result to bound the error
EF in Proposition 4.4. We then perform experiments on the
quality of our proposed approximation in Sec. 5.

We begin by describing the critical points of (14) in
terms of

A := a1ỹ
2
1 − ν2a1ỹ

2
2 + a2ỹ

2
3 − ν2a2ỹ

2
4 ,

B := 2ν(a1ỹ
2
1 + νa1ỹ

2
2 + a2ỹ

2
3 + νa2ỹ

2
4),

C := ν2(a1ỹ
2
1 − a1ỹ

2
2 + a2ỹ

2
3 − a2ỹ

2
4),

(22)

and

∆ :=B2 − 4AC

=4ν2(ν + 1)2(a1ỹ
2
1 + a2ỹ

2
3)(a1ỹ

2
2 + a2ỹ

2
4).

(23)

Lemma 4.2. For λ = (a1, νa1, a2, νa2), the two critical
points of (14) are

ε±(ν) = (s±qiỹi/(λi − s±qi))
4
i=1, (24)

where s± = (−B ±
√
∆)/2A.

Proof. We consider the rational function R from the proof
of Theorem 4.1 whose roots correspond to the critical points
of (14). The numerator of R is As2+Bs+C. The discrimi-
nant ∆ of the numerator is positive for generic ỹ and ν > 0.
Thus, there are 2 real roots s± = (−B ±

√
∆)/2A. These

yield the critical points ε±i (ν) = s±qiỹi/(λi − s±qi).

Now we can describe the best ν in terms of

S = (ỹ21 + ỹ23)(a1ỹ
2
2 + a2ỹ

2
4), (25)

T = (ỹ22 + ỹ24)(a1ỹ
2
1 + a2ỹ

2
3), (26)

which we do in the next result. For the proof, we define
δ := (a1ỹ

2
1 + a2ỹ

2
3)(a1ỹ

2
2 + a2ỹ

2
4), which satisfies ∆ =

4ν2(ν + 1)2δ.

Theorem 4.3. Let λ = (a1, νa1, a2, νa2). For every ν > 0,
ε+(ν) minimizes both the weighted and the nonweighted
squared error, i.e.,

∑
i λi(ε

+
i (ν))

2 <
∑

i λi(ε
−
i (ν))

2 and∑
i(ε

+
i (ν))

2 <
∑

i(ε
−
i (ν))

2. Further, there is a unique
ν ∈ R>0 for which

∑
i(ε

+
i (ν))

2 is minimized. It is

ν =
T

S
. (27)

Proof. Evaluating the weighted squared-error at the critical
points in (24) yields∑

i

λi(ε
±
i (ν))

2 =
ν

ν + 1

((∑
|qi|ỹ2i

)
−±2

√
δ︸ ︷︷ ︸

α±:=

)
. (28)

The code that produces this identity is provided in the SM.
The minimizer is therefore ε+(ν). Note that

α± =
(√

a1ỹ21 + a2ỹ23 −±
√

a1ỹ22 + a2ỹ24

)2

, (29)

so that for generic data ỹi, α± > 0. Evaluating the non-
weighted squared-error at the critical points gives∑

i

(ε±i (ν))
2 =

α±(Sν2 + T )

δ(ν + 1)2
. (30)

The code that produces this identity is provided in the SM.
Since each α±, S, T, δ are > 0 for generic data, it follows
that ε+(ν) is the minimizer of the standard squared error.



Next we compute the best ν. The derivative of (30) for
± = + with respect to ν is

2α+(Sν − T )

δ(ν + 1)3
. (31)

Setting this expression to 0, the unique solution T/S is non-
negative. One can check that the second derivative at T/S
is positive, implying that this choice of ν yields the global
minimum.

Now we provide bounds on the error EF . Recall from
Proposition 3.2 that EF (x̃) = Eq(ỹ), and note that from the
proof of Theorem 4.3,

√
α+ =

∣∣√a1ỹ21 + a2ỹ23 −
√
a1ỹ22 + a2ỹ24

∣∣. (32)

Observe that α+ = 0 if and only if ỹ lies on the model, and
is strictly greater than 0 otherwise.

Proposition 4.4. The inequality

Eq(ỹ) ≤
√

α+

δ

ST

S + T
(33)

holds, along with the bounds
√
α+√

2max{a1, a2}
≤ Eq(ỹ) ≤

√
α+√

2min{a1, a2}
. (34)

The right-hand side of (33) can be simplified somewhat
by noting that

ST = (ỹ21 + ỹ23)(ỹ
2
2 + ỹ24)δ. (35)

The ratio between the upper and lower bounds of (34) is

√
max{a1, a2}
min{a1, a2}

. (36)

Therefore, the closer the ratio a2/a1 is to 1, the better the
these bounds are. In comparison, the upper bound (33) is a
better approximation, which follows from the proof. How-
ever, this comes at the cost of a more complicated expres-
sion.

Proof. Let ε∗ be the minimizer for the nonweighted prob-
lem. Then the minimizer from Theorem 4.3 gives an upper
bound for E2

q(ỹ) =
∑

(ε∗i )
2. As in the proof of Theorem

4.3, plugging ν = T/S into (30) for ± = +, we get that the
minimum value of (30) is

α+

δ

ST

S + T
, (37)

which proves the upper bound.

For the other part, we prove the lower bound and note
that the upper bound is proven the same way. We observe
that

max{λi}
∑

(ε∗i )
2 ≥

∑
λi(ε

∗
i )

2. (38)

Thus, Theorem 4.3 implies E2
q(ỹ) ≥

1
max{λi}

∑
λi(ε

+
i (ν))

2 for λ = (a1, νa1, a2, νa2)

and arbitrary ν > 0. By (28), the latter expression equals

ν

max{λi}(ν + 1)
α+. (39)

Note that max{λi} = max{1, ν}max{a1, a2}. Therefore,
(39) reaches its maximum value when ν = 1.

Finally, we investigate when the case a1 = a2 happens.

Proposition 4.5. We have a1 = a2 if and only if F2×2 is a
scalar times an orthogonal matrix.

This condition is satisfied for calibrated cameras C1 =[
I 0

]
and C2 = R

[
I −c

]
if and only if the last row of

R is (0, 0,±1) or c is a scalar times (r31, r32, r33 ± 1)⊤.

Recall that the last row of R encodes the optical axis of
the camera C2. So that row being (0, 0,±1) is equivalent
to the optical axes of both cameras being parallel, while the
latter condition in Proposition 4.5 means that the center of
C2 is proportional to the sum / difference of the optical axes.

Proof. The first statement is clear since a1, a2 are the sin-
gular values of F2×2. For calibrated cameras C1 =

[
I 0

]
and C2 = R

[
I −c

]
, we have F = R⊤[t]×, where

t = −Rc and

[t]× :=

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 . (40)

We note that F = R⊤[t]× = R⊤[−Rc]× = −[c]×R
⊤

due to rotation equivariance of the cross-product. If R =[
R′ 0
0 ±1

]
, then F2×2 = t3(R

′)⊤
[
0 −1
1 0

]
∈ t3O(2).

Next, we analyze the case r33 ̸= ±1 and (c1, c2) =
(r31, r32)

c3
r33±1 . For ± = +, a direct computation reveals

that F becomes

c3
r33 + 1

 r12 − r21 r11 + r22 r32
−r11 − r22 r12 − r21 −r31

−r23 r13 0

 . (41)

This can also be verified via Macaulay2 code provided in
the SM. In particular, we see that the top left 2× 2 block is
a scaled SO(2) matrix. Analogously, for ± = −, we obtain

F =
c3

r33 − 1

−r12 − r21 r11 − r22 −r32
r11 − r22 r12 + r21 r31
−r23 r13 0

 (42)
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Figure 2. 2D errors over correspondences from randomly sampled image pairs from the Pantheon dataset, when solving the triangulation
problem using different methods. The methods perform very similarly, but our weighted method is slightly worse than the others. Left:
Distance to ground truth projections; Right: Distance to measured 2D points.
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Figure 3. The eigenvalue ratios in our randomly sampled set of
5000 image pairs from the Pantheon dataset.

and so F2×2 is a scalar times an orthogonal matrix (of de-
terminant −1).

For the converse direction, we consider F = R⊤[t]× =
−[c]×R

⊤ for some rotation matrix R and t = −Rc such
that F2×2 is a scaling of an orthogonal matrix. We provide
Macaulay2 code in the SM for solving the resulting equa-
tions. Here we show a straightforward calculation of c1 in
the case of F2×2 having positive determinant. (Other cases
can be proven similarly.) We have that

F2×2 = −
[
r13c2 − r12c3 r23c2 − r22c3
−r13c1 + r11c3 −r23c1 + r21c3

]
, (43)

which is a scaled rotation if and only if

r13c2 − r12c3 = −r23c1 + r21c3

r23c2 − r22c3 = r13c1 − r11c3.
(44)

By multiplying the first equation with r23, the second with
r13, subtracting the first from the second equation and col-
lecting terms we obtain

(r213+r223)c1 = (r23(r21+r12)+r13(r11−r22))c3. (45)

We can rewrite the left-hand-side as (1 − r233)c1 by using
that the last column of R has unit norm. Further, since the
cross product of the first two rows of R equals the third row
we have r23r12 − r13r22 = r31 and since the columns of R

are orthogonal we have r23r21 + r13r11 = −r33r31. Thus,
we can rewrite (45) as

(1 + r33)(1− r33)c1 = r31(1− r33)c3. (46)

This means that when r33 ̸= ±1, we obtain c1 =
r31c3/(1 + r33), as we wanted to show.

5. Experiments

We evaluate the proposed triangulation method on 5000
randomly sampled image pairs from the Pantheon col-
lection of the Image Matching Competition training set
[1, 35], which has an associated 3D reconstruction from
COLMAP [29, 30]. We select pairs which have at least 100
covisible 3D points in the COLMAP reconstruction. Fig-
ure 3 shows the distribution of the eigenvalue ratio (38) over
the selected image pairs. Clearly, for most image pairs, the
ratio is close to 1, meaning that our reweighted cost function
is close to the original unweighted cost function.

In Figure 2, we show results for our method compared to
Lindstrom’s [21] and Hartley-Sturm’s [10] methods.1 We
take 2D correspondences from the COLMAP reconstruc-
tion, compute new 2D points using the respective methods
and measure the 2D distance both from the projected associ-
ated 3D point (which has been refined by bundle adjustment
in COLMAP) and to the original 2D keypoints. The three
methods all perform very similarly, with our method falling
slightly behind the others. Lindstrom’s method is further-
more very efficient, 1.3 – 1.4 times faster than our method in
our optimized implementations. We have not implemented
an optimized version of Hartley-Sturm’s method, but Lind-
strom reports that his method is around 50 times faster than
a fast implementation of Hartley-Sturm’s. Hence, practi-
cally, we recommend using Lindstrom’s method, except if
the eigenvalue ratio is known to be 1 (see Proposition 4.5 for
when this happens) in which case our method is optimal.

1When comparing with Lindstrom, we refer to his niter2-method
which is the fastest variant.
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Figure 4. Evaluation of the error bounds (33) and (34) under different amounts of relative rotation between cameras. For cameras with
close to the same viewing direction, the bounds are sharp as predicted by the theory. The markers are scaled (logarithmically) by the
eigenvalue ratio (38). We subsample 100 random correspondences to plot, for ease of viewing.

In Figure 4, we show the approximating quality of the
bounds in equation (33) (denoted “Best upper bound”) and
equation (34). The markers are scaled according to the
eigenvalue ratio (38), illustrating the fact that the bounds be-
come worse with increased ratio as predicted by the theory.
Our bounds can be used for outlier rejection, with computa-
tion time roughly identical to the Sampson error [27, 28].2

Under data-dependent assumptions, the Sampson method
provides bounds for the true error [27, Section 3], whereas
our bounds do not require any such assumptions. However,
we find that in practice, it should be recommended to use
the Sampson error as it more closely aligns with the opti-
mal value. The noise levels need to be extremely high for
Sampson to fail in approximating the true error well, so this
is not a practically relevant issue, see Figure 5.

In summary, the experiments show that our triangula-
tion method does not outperform the state-of-the-art but per-
forms competitively. In settings where the optical axes are
parallel, our method is preferred as it only involves solv-
ing a quadratic equation and it is guaranteed to be optimal.
This is promising for future development of reweighted cost
functions for other problems in multiple view geometry.

6. Conclusions
We showed that diagonalizing the constraint in optimal 2-
view triangulation makes it possible to devise a weighted
optimization objective such that the problem reduces from
finding the roots of a degree 6 polynomial to finding the
roots of a degree 2 polynomial. Further, we showed how to
choose the weights to perturb the minimum as little as possi-
ble from the unweighted objective. We also derived several
bounds on the unweighted objective as direct consequences.

While our experiments showed that prior methods may
be preferable in practice for some settings, we also found
that the methods developed in this paper are close to the

2P (F ) in Proposition 3.2 is diagonalized using a fast SVD of F2×2.
The diagonalization is computed once per image pair. Further, we can
avoid computationally expensive square roots when checking if the up-
per bound in (34) is smaller than an inlier threshold r, by using that
|
√
α−

√
β| < r is equivalent to (α+ β − r2)2 < 4αβ.
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Figure 5. Evaluation of the error bounds (33) and (34) under a
large amount of noise on the 2D correspondences. The markers
are scaled (logarithmically) by the eigenvalue ratio (38) as in Fig-
ure 4. We subsample 100 random correspondences to plot, for
ease of viewing. At this point Sampson fails to approximate the
optimal errors well, but all of the correspondences would anyway
be classified as outliers, so practically this failure is not relevant.

state-of-the-art and they provide approximation guarantees.
This illustrates the potential of reweighting the objective
to reduce the ED-degree as a method in multiple view ge-
ometry, and algebraic optimization more generally, which
opens up new avenues for future research. As an example,
can the 3-view triangulation problem — which is known to
have ED-degree 47 [23, 31] — be simplifed by reweighting?
By computational exploration we have found the intriguing

non-definite matrix Q =

[ 0 F12 F13

F⊤
12 0 F23

F⊤
13 F⊤

23 0

]
, where Fij denotes

the top-left 2 × 2 block of the fundamental matrix of the
matrix pair (Ci, Cj), such that minimizing ϵ⊤Qϵ instead of
the standard squared-error ∥ϵ∥2 during 3-view triangulation
reduces the ED-degree from 47 to 4. It remains a challeng-
ing problem to find all (positive-definite) matrices with that
low ED-degree, and determine which best approximates the
original squared-error minimization.
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