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ABSTRACT

Neural networks necessitate nonlinearities to achieve universal approximability.
Traditional activation functions introduce nonlinearities through rigid feature rectifi-
cations. Recent self-gated variants improve traditional methods in fitting flexibility
by incorporating learnable content-aware factors and non-local dependencies, en-
abling dynamic adjustments to activation curves via adaptive translation and scaling.
While SOTA approaches achieve notable gains in conventional CNN layers, they
struggle to enhance Transformer layers, where fine-grained context is inherently
modeled, severely reducing the effectiveness of non-local dependencies leveraged
in activation processes. We refer to this critical yet unexplored challenge as the
non-local tension of activation. Drawing on a decision-making perspective, we
systematically analyze the origins of the non-local tension problem and explore the
initial solution to foster a more discriminative and generalizable neural activation
methodology. This is achieved by rethinking how non-local cues are encoded and
transformed into adaptive scaling coefficients, which in turn recalibrate the contri-
butions of features to filter updates through neural activation. Grounded in these
insights, we present FleS, a novel self-gated activation model for discriminative
pattern recognition. Extensive experiments on various popular benchmarks validate
our interpretable methodology for improving neural activation modeling.

1 INTRODUCTION

The essence of neural operations in pattern recognition lies in approximating the underlying input-
output relationships, which are inherently nonlinear at the level of individual neurons. This neces-
sitates the use of nonlinear activation functions for learning effective neural representations (Cy-
benko, (1989; [Hornik et al., [1989; |Hornik, [1991; [Leshno et al., [1993). Conventional activation
functions (Dugas et al., |2000; Nair & Hintonl |2010)), inspired by the neuronal stimulus-response
mechanism (Serre et al., 2005; Serre, 2006; [Serre et al., [2007; [Kouh!, 2007}, model neural activation
in arigid paradigm. Recent efforts (Hendrycks & Gimpel, 2016; |Elfwing et al., 2018} | Ma et al.|[2021)
have been made to enhance the fitting flexibility of activation by leveraging smooth self-gating or
incorporating content-aware inductive biases. A typical self-gated activation process ¢ : R — R can
be expressed as:

6(&) = p(@)7, )
where each Z = (w, ) + b € R represents a projected (affine/linear transformed) feature element,
computed from the inner product of a filter vector w and a feature vector x, together with a bias term
b. A weighting function p : R — R then assigns a gating weight p (Z) (typically lies in the interval
(0, 1)), to recalibrate the pre-activation Z.

However, current inspirations (Biswas et al., [2022bfa; Misral 2020; [Ramachandran et al., 2018)) for
activation modeling largely stem from empirical heuristics (e.g., biological cues), while the mecha-
nism of effective activation remains abstract and lacks robust theoretical guidance. This explanatory
gap hampers activation modeling and evaluation (Cail [2024b)), significantly limiting further progress.
For example, recent approaches have incorporated dynamic non-local cues to enhance self-gated
activation and provide additional fitting flexibility (Ma et al., 2021} |Chen et al.;, 2020). Although these
methods yield gains in standard CNNs, they fall drastically short in enhancing Transformer layers,
which inherently encode fine-grained non-local dependencies outside the activation module. More
intuitively, aggregating gains from non-local cues learned both within and beyond activation
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processes appears contradictory. We refer to this critical yet unstudied challenge as non-local
tension. Grounded in a decision-making perspective, our work is the first to investigate the non-local
tension problem in self-gated activation and to propose a principled approach for its resolution.

Intuition 1.1 (Decision-making-inspired interpretation of activation). Qur interpretation is inspired
by multi-criteria decision making, in particular grey relational analysis (Deng, 1982 |Liu,|2025) and
related models (Rezaei) 2016} |Qin et al.||2017; \Xu et al.| 2020} |Joshi & Kumar, | 2016|), where the goal
is to score and rank alternative solutions based on a given set of criteria, often by comparing each
alternative to one or more ideal solutions when raw criteria values are not directly comparable. We
view the neural affine—activation pipeline of a single neuron as an instance of this setting and make
the following identification. Specifically: (1) each filter (weight vector) w acts as an updatable ideal
alternative (solution) that aims to approximate an underlying ideal pattern w”; (2) each feature
vector x is treated as a realistic alternative that proposes a candidate update direction for w; (3) the
channels serve as decision criteria, since both w and x are represented as channel-wise vectors, and
(4) the pre-activation & = |w|| |@| cos O o + b is viewed as an indication signal of importance score
for x with respect to w™, where the Sfeature-to-filter similarity cos O, 4 is the primary contributor,
and the filter norm |w|, feature norm ||x||, and bias term b act as rectifying components. From this
perspective, the weighting function p(-) acts as a sign-aware recalibration mechanism for indication
signals of importance across alternatives and criteria, analogous to determining decision weights in
multi-criteria decision making. Under this view, the activation process can be interpreted as a form
of directed feature selection, and we leverage this conceptual lens to explore non-local tension.

In this view, we identify a key underlying factor—the trivially discriminative gating weights
phenomenon—as a major cause of non-local tension: given two feature (vectors) x; and x; and
a filter (vector) w, which correspond to the ideal patterns w™, even if x; is significantly more
important than x; w.r.t. w™, the smooth weighting function p may assign them close gating weights
p(Z;) and p(Z;), leading to only a trivial difference in the recalibration of their importance scores Z;
and 7 ;. As gating weights can modulate the contributions of features to filter updates (refer to Sec.

for a detailed discussion), insufficient discriminative power in the assigned weights may limit the
effective use of features for filter learning. Consequently, this phenomenon leads to a situation where,
when Transform layers integrate beneficial information provided by non-local cues into a feature, the
activation does not correspondingly increase the gating weight to reflect the pre-activation’s enhanced
importance, thereby causing the non-local tension problem (as detailed in Intuition[3.2).

We identify the saturation behavior of p in typical self-gated activation models as a critical cause
of the trivially discriminative gating weights phenomenon. We refer to this underlying issue as the
convergence limitation. Specifically, assuming that Z monotonically reflects the relative importance
of a feature & w.r.t. the w ™, then in cases where both Z; and Z; are relatively large positive values but
Z; is significantly larger than Z,, then, the gating weights p(z) and p(¥), remain distinguishable to
effectively recalibrate the pre-activations Z; and Z;, enabling the activation mechanism to effectively
emphasize or suppress the contributions of features (to filter update). However, saturate p, such as
Sigmoid and ERF-based functions, tend to lose discriminability under the above condition, causing
the contrast between feature contributions to vanish. Accordingly, we interpret the non-local tension
problem as a downstream effect of this limitation within self-gated activation.

This identification motivates our novel remedy, FleS, which addresses trivially discriminative gating
weights by modeling flexible scaling coefficients. Guided by decision-making principles, these
coefficients adaptively control the bound and steepness of p, enabling it to attend to informative
response intervals in accordance with appropriate non-local cues (see Sec.d). Consequently, FleS
sustains fine-grained recalibration for activation, preserving meaningful differences among relatively
important features even under convergence limitation, thereby mitigating non-local tension challenge.

Our main contributions are threefold: (1) We present new insights that extend decision-making-in-
spired activation analysis tools. We identify the convergence limitation as a key cause of non-local
tension, and highlight flexible scaling as a critical property for overcoming this limitation, enabling
more discriminative neural activation. (2) Based onm we address the under-explored non-local
tension problem by presenting the novel activation model FleS, which extends the methodology for
interpretable neural activation modeling for pattern recognition. (3) Extensive experiments across
popular vision and NLP benchmarks validate our new insights, highlighting the effectiveness, versa-
tility, robustness, and extensibility of the FleS methodology, and demonstrating its notable advantages
over SOTA activation methods, especially in neural networks with non-local token mixers.
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2 RELATED WORK

Inspired by the primate stimulus—response mechanism (Serre et al.l [2007; [2005; |Kouh, [2007),
activation functions such as Softplus (Dugas et al.,2000) and its hard approximation ReLU (Nair &
Hintonl [2010) were proposed. ReLU, in particular, leverages a rigid 0/1 mask to activate features,
effectively mitigating gradient vanishing in range-limited nonlinearities (e.g., Sigmoid and Tanh) and
motivating a series of variants: LeakyReLU (Maas et al., [2013)) alleviates “dead” units via a leakage
factor, while PReLU (He et al.| 2015) learns the negative slope adaptively. More recently, self-gated
alternatives relax such rigidity: SiLU (Elfwing et al.l 2018) enables soft selection via a sigmoid gate,
GELU (Hendrycks & Gimpel, 2016)) performs smooth feature recalibration based on Gaussian Error
Function (ERF), and Mish (Misral 2020) combines Tanh and Softplus to form a smooth weighting
curve. Although these self-gated functions improve the fitting capability of conventional activation
methods, their adaptability remains limited.

SOTA activation designs improve adaptivity via dynamic bounds and context-aware gating. Swish (Ra{
machandran et al., | 2018)) (a parametric SiLU) scales inputs within a sigmoid gate; ACON-C (Ma
et al., |2021)) further adds a learnable bound; |Biswas et al.| (2022a) extend GELU with ERF-based
parametrizations (ErfAct, Pserf via Softplus); SMUs (Biswas et al., 2022b) use a smoothed maximum
to enhance ERF-style rectification; and Meta-ACON (Ma et al.|, [2021) generalizes lightweight chan-
nel attention (Hu et al.l 2020) for context-conditioned modulation. However, these gates/attentions
inject relatively coarse non-local cues; on architectures that already model non-local context (e.g.,
Transformer layers), this often induces non-local tension, limiting gains and applicability.

More related to our work, |Cai|(2023) interpreted neural activation from a decision-making perspective
and identified the overlooked mismatched feature scoring (MFS) problem. They demonstrated that
standard CNNs, by addressing the MFS problem, can be strengthened to rival advanced Transformers
in image recognition solely by leveraging effective activation functions without major architectural
changes (Cai, |2024a). Nevertheless, prior interpretations underexplored the contradictory use of
different forms of non-local cues, thus struggling to enhance Transformers due to non-local tension.

In this work, we introduce new insights to extend activation analysis by elucidating the convergence
limitation in typical self-gated activation. This supports us to derive the first solution to non-local
tension by introducing a flexible, FleS-style scaling mechanism with explainability, designed to
adaptively recalibrate the bounds and steepness of activation functions to sufficiently leverage the
contributions of features.

3 NON-LOCAL TENSION CHALLENGE

We elucidate the cause of the non-local tension challenge (Fig. (1)) in self-gated activation, following a
step-by-step analysis. Our investigation is grounded in a simple yet effective decision-making lens,
which forms our methodological insights and motivates our FleS activation model as the first solution.
We first introduce the preliminaries and then clarify how the convergence limitation induces the
trivially discriminative gating weights phenomenon, which eventually triggers the non-local tension
challenge. Formal proofs and derivations supporting this section are provided in Sec.

3.1 PRELIMINARY

Our analysis is based on the preliminary settings (Cai, [2023;2024a), which involve simple settings
with image inputs: (1) A network includes 7' sequential learning layers, where each layer is indexed
byr =1,2,...,7. (2) Let X" € RE *H *L" denote the input feature map of layer-, where C™ and
H™ x L7 represent the number of channels and the spatial resolution, respectively. (3) The operation
at layer-7 at a spatial location (h,l) € Qprx - is defined as 277 (h,1) = ¢ (ZZ(h,l)), where
w7 (c) e R and 7 (h,1) € RC" denote the c-th filter vector and the feature vector at location (A, 1),
respectively. Here, Q- » 1~ represents the spatial lattice of X", and 7 (h, ) = (w” (c), 7 (h,1))+b.
denotes the pre-activation obtained by applying an affine transformation, parameterized by the filter
w7 (¢) and bias b, to the feature vector " (h,[). Notably, (i) layer-7 includes C, 1 filters and
(i)  : R — R represents an activation function. For simplicity, we omit the layer index (7) and
pixel coordinate (h, 1) in the following for simplicity. For example, w7 (¢), " (h, 1), ZZ(h,1), and b,
become w, x, T, and b respectively. Our analysis focuses on a typical self-gated activation process
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Figure 1: Illustration of the problem we address, namely non-local tension, and the key intuitions
behind our remedy, FleS (Intuition . (a) In a typical self-gated activation ¢(Z), a saturating,
monotonically non-decreasing function p(Z) is used to weight a pre-activation Z, thus recalibrating
the contribution of the corresponding input feature vector « to the filter w. When the pre-activations
become sufficiently large—even when they are identified as important by the non-local mechanism
and pushed to even larger values—p assigns almost indistinguishable gating weights to such z
that have notably different importance levels. This convergence limitation causes the additional
contributions brought by non-local cues to be nearly neutralized (trivially discriminative gating
weights), which in turn triggers non-local tension. (b) and (c) depict an intuitively accessible strategy
underlying FleS to alleviate non-local tension: an adaptive dual activation scaling, where vertical
scaling rectifies the activation range and horizontal scaling modulates the activation steepness.

¢ : R — R can be expressed by Eq. (1)) (i.e., ¢ (Z) = p (&) &), where we interpret a pre-activation
# as an importance measure associated with an input feature x, relative to the ideal pattern w ™,
from a decision-making perspective. Furthermore, we treat p(Z) as a gating weight that modulates
the response Z to emphasize/suppress the contribution of x to the update of w. More intuitively,
the more important z is for filter update, the larger the assigned weight p(Z) should be (the
supporting reasons are elaborated in Sec.[A.T). To ensure the convergence of model training, the
weighting function p is commonly required to satisfy that (Wu},2022): (1) limz_,_, p(Z)Z = 0;
(2) limg—, o p (Z) = M > 0. Moreover, our work considers a constant-sign monotonic function p
to ensure effective self-gated activation by adopting a relevant conclusion ((Cai, [2023, Proposition 2))
and assume p is non-negative without loss of generality. Note that we omit normalization layers (e.g.,
BN (Ioffe & Szegedy},2015) and LN (Ba et al.;[2016)) in the analysis for simplicity, as their inclusion
does not affect the conclusions.

3.2 PROBLEM ANALYSIS

Cause of trivially discriminative weights. We identify the trivially discriminative gating weights
phenomenon as a key underlying factor that triggers the non-local tension, which widely exists in the
p of popular/SOTA self-gated activation functions (e.g., Sigmoid in SiLU (Elfwing et al., 2018)) and
ERF in GELU (Hendrycks & Gimpel, 2016)).

To appropriately modulate the contribution of a feature « to updating a filter w by recalibrating its
raw response (i.e., the importance score) &, we further assume the weighting function p satisfies
two basic properties. Specifically, for arbitrary ; and x;, and a given filter w corresponding to
the ideal pattern w ™, their responses Z; and Z; are expected to satisfy: (a) Proper Importance
Scoring: #; > ¥; if x; is considered more important than x, relative to w ™. (b) Importance~Weight
Alignment: p (%;) > p(Z;) > 0if Z; > &;. However, typical functions p satisfying propertiesand
[(b)] alone are insufficient to guarantee effective self-gated activation due to the convergence limitation,
which happens if p has a fixed upper-bound (see preliminary condition[(2)):

Intuition 3.1 (Convergence limitation). Specifically, for any x; and x;, when their raw importance
measures Z; and I j, are both sufficiently large, the difference in their gating weights p (Z;) and p (Z;)
can become arbitrarily and trivially small. This indicates that even if ; contributes significantly
more to the update of w than x;, p may still fail to assign sufficiently discriminative weights to them,
thereby limiting the effective use of them for model learning.

We refer to this property as convergence limitation, which results in trivially discriminative gating
weights problem, which we characterized as follows:
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Figure 2: Operational illustration of FleS. Features from different channels are distinguished by
distinct color families, where darker shades within each color family indicate higher feature responses.

Theorem 3.1 (Convergence limitation). For any &; and & corresponding respectively to x; and x;
w.rt w, iflimg o0 p () = M > 0, then, for any given € > 0, there must exist a threshold X such
that for all Z;,%; > X, we have |p(Z;) — p(Z;)| < e.

Cause of non-local tension. We clarify the non-local tension challenge based on the trivially discrim-
inative gating weights phenomenon, which hinders the activation module from fully leveraging the
context cues already modeled outside activation:

Intuition 3.2 (Trivially discriminative gating weights cause non-local tension). Transformer layers
utilize the attention mechanism to capture non-local cues to enhance features. More generally,
consider an abstract self-gated activation process with inputs contained non-local cues, where a
token mixer casts dynamic translation a to modulate x, and then inputs the adjusted features into a
neuron (leveraging w and b) to produce the finer feature T’ for activation:

P =(w,(x+a)+b; ¢(@)=p@)z. 2)

Then, suppose we have x;,x; such that &;: {w,x;y +b > 0,%;: (w,x;) +b > 0, and the
adjustments introduced by a; and a; effectively push the finer outputs further away from zero,

such that T; > &; and &', > Ij, respectively. Suppose that T} and I’; are sufficiently large such

that the differences between the weights assigned by p (%)) and p (f;) become trivial (i.e., almost
degrading to ReLU’s rigid masking process), the learning contributions introduced by a; and a; can
be significantly neutralized. This leads to a failure to fully exploit non-local cues from informative
features for model learning.

4 MODELING

Based on the theoretical awareness, we identify effectively resolving the non-local tension challenge
as a key avenue to enhancing self-gated activation models in networks that leverage non-local token
mixers. In particular, addressing the non-local tension challenge hinges on resolving the convergence
limitation. These insights underpin our novel methodology: FleS-style adaptive scaling mechanism.

4.1 PROTOTYPE: FLES-PROTO

Overview. Drawing on the insights and conclusions in Sec.[3.2] we introduce FleS prototype:

¢ (T) = Fuep (Khol) T, 3)

where k., and Ky, denote the vertical and horizontal scaling coefficients, respectively.

New insights into scaling from non-local cues. We embody the modeling of . and xp, based on a
set of interdependent heuristic insights:

Intuition 4.1. (/) non-local tension is a statistical effect: For a given filter, a subset of features
that exhibit high importance, relative to the overall feature space in a given layer, may collectively
trigger non-local tension, leading to their contributions being underutilized. (2) Based on (1), any
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numerical modulation of an activation process for a given feature (or its response) should consider
its relative relation to a reference feature group. Independent modulation of individual activation
input is thus inadequate for capturing the contextual nature of non-local tension. (3) Each
channel displays the responses of a particular filter applied to input features. Given that different
filters may vary significantly in both magnitude and direction, two implications follow: (a) The
responses across different filters can exhibit statistical magnitude differences even when responding
to the same group of features. Filters with larger norms are more likely to produce relatively higher
response magnitudes. When p is static, it is unable to adaptively account for such disparities,
potentially placing these high-magnitude responses into flatter regions of the gating curve, possibly
diminishing the discriminability of activation. (b) The triggering interval for non-local tension
may differ across filters. This arises because the same response magnitude can imply different levels
of relative feature contribution, depending on the intrinsic scale and orientation of the filter. For
example, if two filters share the same direction but differ significantly in norm, a given feature will
generally have a greater gradient influence on the smaller-norm filter. Hence, scaling strategies
should differentiate between channels to account for such discrepancies. (4) Any (ideal) pattern
can be represented by an order-sensitive sequence of filters. Object categories can be viewed as
semantically meaningful abstractions of high-level patterns. Following (3), we posit that object
category information offers a meaningful basis for grouping effective responses and converting
them into adaptive scaling coefficients.

In particular, insights and|[(3)|collectively suggest that: (i) different filters (i.e., channels) may
exhibit different triggering zones to non-local tension w.r.t. their pre-activation. (ii) non-local tension
is primarily associated with high-importance features and is negligibly influenced by unimportant
ones. Therefore, features should be utilized discriminatively according to their importance levels when
extracting statistical (non-local) cues for generating appropriate scale coefficients. (iii) Furthermore,
according to|(1)} different filters may adopt different criteria for “important features” based on their
responses. We posit that a feature is considered important if it yields at least a positive response. We
formalize this insight via Intuition[4.2] and Proposition [d.1] which play a key role in our methodology.

Intuition 4.2. For a given filter w, consider a set of features with positive responses, {x |z >0}, and
a set of features with negative responses, {x | T <0}. Assume that: (1) the contributions of features
are recalibrated by a sigmoid-like function p (Z) = Byesigmoid (8o ), where Bye, Bro € R are
fixed positive values (note that commonly used p can be approximated by a sigmoid-like function);
and (2) X ~ N (s, o), which represents the random variable as a proxy for generating filter responses.
Then, (i) positive features are more likely to have higher expected contributions than negative ones
after recalibration. Moreover, the more even the distribution is, the more likely positive features
are to dominate the overall contribution; (ii) particularly, for an extremely even distribution, the
contribution of negative features is negligible compared to that of positive features.

Proposition 4. 1] formalizes Intuition 4.2

Proposition 4.1 (Relative recalibration bias). For conditions assumed in Intuition for any fixed

E@IZ<0) ¢ 1risfies limy_o R (11, ) = 0.

u € R, the conditional expectation ratio: R (,0) = E(p@)F>0)

Further discussion and proofs of Intuition[4.2] are provided in Sec.
Modeling coupled scaling coefficients. We then follow the above insights to model the FleS-style

coupled vertical and horizontal scaling coefficients in a simple yet effective manner (more technical
choices are discussed in Sec. [E.15):

Kye = softplus (aveu ({fj}) + %e) , Kpo = softplus (aho,u ({@j}) + Vho) ) “)

respectively, where,

I} = meangex, {T | T >0}, )

denotes the mean filter response of non-negative features within the largest accessible set X, of
channel-c (e.g., in ImageNet model training, X, represents the set of feature vectors in channel-c
across the entire mini-batch). We refer to Z as the effective mean response, which isolates the
influence of negative features, preventing it from neutralizing the contribution of positive features
(further elaborated in Sec. Then, p ({Z}}) defines the normalized effective mean response
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Table 1: Evaluation of FleS-Proto on ImageNet dataset (Deng et al., 2009).

Backbone Activation #Shuffle  #Params. FLOPs  Top-1(%)1
GELU — 21.1M 2.6G 78.7
Swin-Micro — 85.2
FleS-Proto v 21.1M 2.6G 773
- Swin-Base | GELU | —  87M 151G 835

* The Swin-Micro (Liu et al.}|2021) backbone is applied, where FleS activation function
is compared with the GELU (Hendrycks & Gimpel, |2016) baseline.

across all the channels:

TS
n({zi}) = v=—- (6)
G 2ic1 T

Qe and ay,,, initialized to a small value (e.g., 1 x 1073), are a pair of learnable parameters that scales
w ({ZF}) to introduce adaptability. ~y,. and v3,, initialized to a fixed value (e.g., 0.6, ensuring that
Kye and Ky, are initially close to 1.0), are learnable parameters to stabilize training in the early stages.
Notably, Softplus function are applied to impose a smooth positive constraint, as the importance
levels measured by pre-activations are sign-sensitive.

In particular, we identify that this interpretable yet simple design of FleS-Proto can introduce
incredible enhancements to Transformer layers (using Swin-Transformer for example (Liu et al.,
2021))) on ImageNet with the standard non-shuffle evaluation setting. Specifically, in the non-shuffle
setting, images are arranged in the order of their categories, so that the largest clean channel-specific
statistical range corresponds to the entire mini-batch. This provides highly valid channel-wise
effective responses {z}} for calculating k. and kp,.

As shown in Tab. (1} using the standard 300-epoch Transformer-tailored recipe (Touvron et al.,|2021}
Liu et al.|[2021) without auxiliary training data, a small-size Swin-Micro variant (i.e., Swin-[1, 2, 2, 2],
consisting of 9 blocks, requires only about 50% of the computational cost of Swin-T (Liu et al.,
2021)) achieves significant performance improvements only by replacing GELU with FleS-Proto for
activation. It outperforms Swin-B by a remarkable margin (85.2% vs. 83.5%) while requiring only
approximately 1/6 of the computational cost (2.6G FLOPs vs. 15.1G FLOPs). However, when the
channel effective mean responses are calculated on a shuffled batch for evaluation, they can no longer
provide clean class-specific statistics. As a result, the Top-1 accuracy of FleS-Proto Swin-Micro
drops to 77.3%, performing even worse than the vanilla Swin-Micro baseline. These two phenomena
motivate our practical design of FleS for broader applicability.

4.2 PRACTICAL MODEL: FLES

Practical modeling. Experimental evidence in Tab. [I[|demonstrates that the decisive significance of
effective channel mean response for modeling scaling coefficients. Building upon this awareness, we
design FleS, applicable to scenarios where obtaining clean channel-specific statistics is challenging.
Specifically, we utilize a lightweight MLP (with a channel reduction ratio of 32 by default) as a
channel attribute recorder to compute each scaling coefficient as follows:

Koe = MLP,. (#%) , kno = MLPy, (21) . 7

Notably, for realistic recognition tasks, we compute each effective channel mean response T over

a readily accessible region in practice, X., where Z+ € R represents the effective channel mean
vector, and T its c-th element. For example, on ImageNet, we set Z7 = meanzex, {Z | & > 0},
where X _. is the c-th channel slice of the input feature map X € R”*Wx*C_ For dense tasks (e.g.,

object detection), XC uses a finer neighborhood (e.g., a 9 x 15 patch on COCO (Lin et al., 2014)).

As the key to realizing adaptive scaling in realistic pattern recognition tasks, MLPs exhibit translation
equivariance, allowing them to detect informative regularities in the effective channel mean vectors
£ € R across the inputs with complex class distributions (e.g., shuffled single-class images or
multi-class road scene images). These regularities are then adaptively converted into scale coefficients.
The operational diagram of FleS is illustrated in Fig.
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Table 2: Comparison of different activation functions on ImageNet (Deng et al., 2009) with (left) Swin-
Min (Liu et al.} 2021) (Swin-[1, 1,1, 1]) and (right) PoolFormer-S12 (Yu et al., 2022) backbones.

Backbone Swin-Min (Liu et al.} [2021) PoolFormer-S12 (Yu et al., 2022)
#Epochs 120 300

Activation #Params. FLOPs Top-1(%)1 | #Params. FLOPs Top-1 (%)%
GELU (Hendrycks et al., 2016) 11.8M 1.6G 68.7 11.9M 1.8G 77.2
ReLU (Nair & Hinton, |2010) 11.8M 1.6G 68.1 11.9M 1.8G 76.6
SiLU(EIfwing et al}2018) 11.8M 1.6G 68.9 11.9M 1.8G 77.0
Mish(Misral 2020) 11.8M 1.6G 68.6 11.9M 1.8G 77.1
Pserf(Biswas et al.| [2022a) 11.8M 1.6G 69.0 11.9M 1.8G NaN
SMU(Biswas et al., [2022b) 11.8M 1.6G 68.9 11.9M 1.8G 71.3
ITEU(Cail [2023) 13.4M 1.6G 69.5 14.3M 1.8G 78.6
AdaS(Cail [2024al) 13.7M 1.7G 69.7 15.1M 1.9G 78.2
StarReLU(Yu et al.| 2024) 11.8M 1.6G 69.1 11.9M 1.8G 76.8
Meta-ACON(Ma et al.| 2021) 13.4M 1.6G 68.3 14.3M 1.8G 78.0
FleS (Ours) 13.0M 1.6G 71.4 13.8M 1.8G 79.4

" FleS-AdaS | 41m™M 176 730 | 0 — 0 - =

* All competing methods are trained from scratch following the same recipe outlined in Implementation details.
“#Epochs” denotes the epochs of training; “NaN" denotes failed training; The baselines use GELU activation.

5 EXPERIMENT

We evaluate the effectiveness, versatility, and robustness of our proposed FleS. Experiments are con-
ducted on four major vision benchmarks: ImageNet (Deng et al., 2009) and CIFAR-100 (Krizhevsky,
2009) (I) for standard image classification, ImageNet-LT (Liu et al.,|2019) for classification under
long-tailed distributions (IH), and COCO (Lin et al.|[2014)) for object detection @) To further assess
its generalizability beyond vision, we validate FleS on GLUE (Wang et al.,2018) (C)), the popular
NLP benchmark. Moreover, by adapting FleS to context-sensitive semantics in NLP, we validate its
extensibility by introducing FleS-SeqGate, a stronger variant with markedly improved performance.

We evaluate FleS against widely used and SOTA activation functions. From our decision-making lens,
activation functions can be distinguished by the properties of p(-) (and thus the overall behavior
of ¢(-)). We summarize the main competing activation methods as follows: (i) Monotonic activation
functions ¢(-) with discontinuous p(-): Softplus (Dugas et al.,2000); ReLU (Nair & Hinton, 2010);
and StarReLU (Yu et al.| [2024). (ii) Static self-gated functions ¢(-) with a smooth, monotonic
p(+): GELU (Hendrycks & Gimpel, [2016); SiLU (Elfwing et al., 2018)); and Mish (Misra, [2020).
(iii) Dynamic self-gated functions ¢(-) with a modified p(-) integrating adaptive components;
Pserf (Biswas et al., 2022a); SMU (Misra, 2020); Meta-ACON (Ma et al., [2021)); IIEU (Cail, [2023));
AdaShift (Cail, 2024a); and FleS. Notably, FleS can be viewed as a particular form of dynamic
self-gated activation (category , where p(+) is constructed from sign-aware, channel-wise statistics
of a reference feature group, and these statistics are then processed by small MLPs to produce a
feature-importance-calibrated adaptive scaling of activations.

Furthermore, we provide methodological insights into the modeling of FleS-Proto/FleS through
targeted ablation studies in Sec. [5.2] with further details available in Appendix.

5.1 IMAGENET CLASSIFICATION

Implementation details. We evaluate FleS across two representative MetaFormer backbones to
validate its effectiveness in alleviating the non-local tension challenge, for activating neural features
intrinsically modeled non-local cues: (1) Swin-Transformer (Liu et al.l[2021), the most popular vision
Transformer backbone, ranging from Swin-Min (i.e., the minimal Swin model, Swin-[1, 1,1, 1])
to Swin-T (i.e., Swin-[2 — 2 — 6 — 2]); and (2) PoolFormer-S12 (Yu et al.l 2022, an efficient yet
effective MetaFormer model for visual recognition. To further validate the generalizability of our
insight and modeling, we also evaluate FleS with (3) ResNet (He et al., |2016), the most prevalent
CNN backbone (using ResNet-50). Note that the baseline Swin-Transformers and PoolFormer-S12
use GELU (Hendrycks & Gimpel, |2016)) activation functions, and ResNets employ ReLU (Nair &
Hinton, 2010)), respectively. For fair comparisons, (1) we adopt the standard training-evaluation
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Table 3: (Left) Comparison of the FleS-enhanced and vanilla GELU Swin-M(icro) (i.e., Swin-
[1,2,2,2]), Swin-T, and ViT-B/16 Dosovitskiy et al.[{(2021) models on ImageNet (Deng et al.,|2009).
(Right) Comparison of different activation functions on ImageNet using ResNet-50 backbone.

Activation | Backbone | #Params. FLOPs Top-1(%)! Activation |Backbone |#Params. FLOPs Top-1(%)?
GELU SIIM 266G 787 ReLU 256M  4.1G 772
SLU 211M 266 786 +SE-Net 28.IM  4.1G  77.8
SMU Swin-M | 21.IM 2.6G 788  PReLU 25.6M  41G 771
Mt-ACON 242M 2.6G 789  PWLU N/A — NA - 7738
FleS 235M 26G 803  SMU 25.6M 41G 775
777777777777777777777777777 SMU-1 256M  4.1G 769
GELU 283M  44G 813 FReLU |ResNet-50| 25.7M  4.0G  77.6
SiLU , 28.3M  44G 814 DY-ReLU 27.6M  N/A 772
Mt-ACON 327IM  44G 815 ' ' '
Mt-ACON 25.8M  39G  78.0
GELU | \rpie| 86.6M 169G 797 AdaS 256M  4.1G 799
FleS 974M 169G 807  mes | " [ 28IM 116G 80d

* Note: FleS with k.. and xp, omitted is equivalent to SiLU (Elfwing et al.| [2018)).

recipe (Touvron et al., 2021} [Liu et al., 2021} for Vision Transformers, except for (2) Swin-Min,
which we reduce the 300-epoch training to 120 epochs (due to time and resource constraints); (3) For
ResNets, we adopt the standard CNN training-evaluation recipe (Zhou et al.,[2021; Ma et al., 2021)
(details are included in Sec.[G). Experiments are conducted using four A6000 GPUs.

Experimental results. The comparative results of our activation function, FleS, and the
SOTA/popular competing methods across various types and sizes of MetaFormer and ResNet back-
bones are reported in Tabs. 2| and [3|and Tab. [3] respectively, leading to four key observations: On
Swin-Transformer and PoolFormer-S12 backbones, (1) FleS demonstrates significant improvements
over all existing popular and SOTA activation functions. In particular, the accuracy gains introduced
by FleS over SOTA activation methods are even more pronounced than the improvements
of those methods over the GELU baseline. Notably, prior to the introduction of FleS, SOTA
methods like Meta-ACON and SMUs also exploited non-local information to re-scale the bounds
of the activation functions but fell short in enhancing the static self-gated baseline, GELU, for
Transformer layers. This validates the critical importance of our interpretable methodological
insights for addressing the non-local tension challenge. Then, on ResNet backbones, (1) FleS
also demonstrates clear improvements over the prevailing and SOTA activation functions. Although
FleS requires additional parameters to capture meaningful statistical cues, it brings only negligible
computational cost (measured by FLOPs). (3) FleS exhibits remarkable scalability. It not only
works effectively when applied independently but is also capable of boosting other SOTA activation
functions. For example, incorporating FleS’s flexible scaling scheme into AdaShift (Cail, 2024a)
improves Swin-Min. (4) The effectiveness of FleS’s flexible scaling is consistently demonstrated
across different network architectures and sizes. These results comprehensively validate our insights
and practical designs for modeling discriminative neural activation methods. More experimental
results and relevant analysis are provided in the Appendix.

5.2 ABLATION STUDIES

We conduct extensive ablation studies on ImageNet to probe the theoretical and empirical insights
underpinning FleS. Here, We present three representative studies and include more studies in Sec. [E]

On w or w/o feature statistics for flexible scaling. We elucidate and demonstrate the significance
of channel effective mean responses (denoted by ‘“‘channel indicators” in the following text for
simplicity) in driving adaptive scaling for discriminative self-gated activation. Here, we validate this
insight by comparing our original FleS with a downgraded FleS variant (denoted as “FleS-DG”) that
omits the channel indicators. Specifically, the vertical and horizontal scaling coefficients of FleS-DG
are defined as k. = softplus (Yye) and kp, = softplus (v4,), respectively. The comparative results
are presented in Tab. 4] leading to two key observations: (1) W/o leveraging statistical cues in channel
indicators, FleS-DG exhibits significantly lower accuracy than FleS. (2) Despite this, FleS-DG still
outperforms the GELU baseline. These findings indicate that (1) statistical cues provided by channel
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Table 4: Ablation studies on (left) w/ or w/o the channel effective mean intensities {Z/ } for modeling
FleS coefficients; and (right) mining statistical cues within positive feature elements for FleS.

Activation| Backbone | #Params. FLOPs Top-1(%)1  Activation | Backbone |#Params. FLOPs Top-1(%)1

GELU 11.8M  1.6G 687 GELU 11.8M  1.6G  68.7
FleS-DG |Swin-Min| 11.8M 1.6G  69.1  FleS-P&N|Swin-Min| 13.0M 1.6G  69.8
FleS 130M  16G 714 FleS 130M  1.6G 714

* “FleS-DG” denotes the FleS variant omitting {z/ } in * The FleS variant “FleS-P&N" averages positive and
generating scaling coefficients. negative features for calculation of channel indicators.

indicators are critical guidance; and (2) scaling coefficients remain beneficial for self-gated activation,
even in the absence of channel statistical cues. These validate our insights.

On mining statistical cues in positive features. We elucidate the necessity of treating positive and
negative features differently in the modeling of non-local cues (in Sec.[4.1), aiming to prevent the
neutralization effect induced by negative features on positive ones in adaptive scaling. Accordingly,
we propose excluding negative responses when computing channel indicators as a simple yet effective
design strategy. We validate this insight by comparing our original FleS with a tailored FleS variant
(denoted as “FleS-P&N™) that averages both positive and negative responses to calculate channel
indicators. As reported in Tab.[d] FleS-P&N improves upon the GELU baseline but yields clearly
inferior results to the original FleS. This supports our theoretical analysis.

05 Positive: stage-1
Positive: stage-2
0.4 g
—Positive: stage-3
03 —Positive: stage-4
0.2 Negative: stage-1

Negative: stage-2

0.1 Negative: stage-3

0 " — Negative: stage-4
0 10 20 30 40 50 60 70 80 90 100 110

Figure 3: Illustration of positive versus negative gradient magnitudes over 120 training epochs.
On empirical positive—negative gradient contributions. We conduct a tailored study on ImageNet
with Swin-Min + FleS and, for each epoch and stage, measuring the ratio between the mean gradient
magnitudes at positions with positive versus negative FleS outputs. Averaged over training, gradients
on positive responses are much larger than on negative ones: the mean positive-to-negative ratios
are about 5.3 %, 7.9x, 12.7x, and 13.8x for stages 1-4, respectively, with deeper stages exhibiting
stronger asymmetry. Over epochs, this gap widens from early to mid training and then remains high:
ratios increase roughly from 3-9x (epochs 0-9) to 6-15x (epochs 40-79), and stay clearly above the
early-phase levels in the late phase (epochs 80-119). Thus, as training proceeds, positive responses
increasingly dominate the effective gradient budget, especially in deeper stages. These findings align
with our sign-aware indicator design: the dominant optimization signal already lies on the positive
side, so emphasizing it in the indicator helps avoid cancellation effects. Fig. 3] visualizes these trends.

6 CONCLUSION

In this work, we identified and formalized the convergence limitation inherent in self-gated neural
activation, showing that it gives rise to the unstudied yet critical non-local tension challenge, which we
found to hinder the potential of activation functions in enhancing modern neural networks. Grounded
in decision-making principles and their encouraged insights, we derived the FleS-style dynamic
scaling scheme that provided the first principled remedy to non-local tension. Comprehensive
experiments on various popular benchmarks, together with targeted ablation studies, verified its
effectiveness, generalizability, robustness, and extensibility, indicating strong potential to advance
interpretable activation modeling for pattern recognition.

10
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A DISCUSSION & PROOFS OF SECTION[3]

A.1 RATIONALE BEHIND FEATURE CONTRIBUTION RECALIBRATION FOR FILTER UPDATE IN
NEURAL SELF-GATED ACTIVATION

In this appendix, we clarify the rationale behind treating the gating weights p(Z) as a key factor
in recalibrating the influence (i.e., contribution) of features to the update of filters. Note that this
appendix inherits the preliminary settings and assumptions proposed in the main paper.

Motivation. Grounded in the decision-making perspective, we revisit the physical meaning of neural
activation from the viewpoint of back-propagation. Specifically, at a learning layer 7, we consider
the activation process, ¢ (Z), as a form of contribution recalibration: for a given input feature vector
@ and a filter vector w, the pre-activation (e.g., £ = (w, x), where we omit the bias term b to
simplify the following analysis) can be viewed as a similarity-based score that estimates the relative
importance of x with respect to w. The activation function then accordingly assigns a gating weight
p(Z) to modulate this raw score, effectively emphasizing or suppressing the influence of = on the
update of w.

Proxy objective. Then, we consider a recognition scenario and build upon several key behavioral
properties of the cross-entropy (CE) loss:

(1) The CE gradient is dominated by prediction error, producing a clear push-pull effect that
penalizes incorrect classes and pulls toward the correct one;

(2) Atthe logit layer, the gradient can be simplified as the product of a prediction deviation term
and the input feature, exhibiting a locally linear response;

(3) In early training or at shallower layers, the back-propagated CE gradient approximately
retains a first-order structure;

(4) Each sample’s contribution to parameter updates can be modeled independently, without
involving global interactions or higher-order coupling.
Based on these properties, we adopt the following proxy objective to approximate the CE gradient
behavior at layer 7:

[Proxy _

(6 (2) — ¢ (3))° . ®)
Notably, we let
¥ = (w*, ) , ©)

denoting the virtual ideal feature-filter response, as a reference to help simplify the representation of
the effective loss. Here, w™* denotes the ideal pattern (i.e., effective objective) with respect to the
filter w.

Then, the gradient of £LP™*Y about w can be calculated as:

OLPTY (¢ (%) — ¢ (z%))

Vo LPTOY = I CETIC) . = (10)
_ay 04 (%)
T (@) - e (@) ow (1)
_ O LProxy (p(@)-&) o0&
(0 (F) — () 0% ow 2)
= (@@ -0@)- (¢ @ +r(@) 2. (13)

As the reference group, we consider the case where the activation is removed. In this case, the
gradient is calculated as:

VLl = (7 — 3%) - x. (14)

Feature contribution recalibration.
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Intuition A.1. In particular, for a significantly large i—that is, when the corresponding x is of
relatively high importance with respect to w (or w* in a physical sense)—under the condition where
we expect the potential occurrence of the non-local tension phenomenon, we identify that the proxy
gradient V ., LP*Y can be further approximately simplified as follows:

VLl = (¢(2) = ¢ (&%) - p(3) -z, (15)
i.e., the term p’ (%) - & is negligible.
We formalize the conclusion in Intuition [A.T|by Proposition[A.T]
Proposition A.1. For a self-gated activation function ¢ (Z) = p (Z) T satisfies:

(1) lims—s—op p (7) & = 0;
(2) andlimz_, 1o p (Z) = M > 0.

we have:
lim p/ (2)-Z=0. (16)

Fo+0
Proof. core insight. lim; o p/ ()% = 0 «— p/(Z) = 0(%) (@ — +o) (i.e., the term
p/(&) is an infinitesimal of higher order than 1). That is, if p(Z), where limz_, 1 p (Z) = M,
grows more slowly than In(Z) by an order (or orders) of magnitude as & — +o0, then we have
limz 1o p/(2) - % = 0.

Proof by contradiction. Our following proof is carried out using the Fundamental Theorem of
Calculus, the Lagrange Mean Value Theorem, and contradiction.
Suppose 3G > 0 and an unbounded increasing sequence {Z,,} such that:

|Zn -0/ ()| > G ,Vn, 17)

i.e., suppose that the convergence of p’ (Z)- Z is not ensured (the contradictive case to Proposition|A.1)),
thus, we have:

Corollary A.2. |p/ (Z,)| > %

Further, assume that p is differentiable on the interval [Z,,, 2%, ], by using Corollaryand Lagrange
Mean Value Theorem, we have: 3¢, € [Z,,,2%,] ,Z, > 0 such that

p(2-i'n) —p (-%n) = P/ (fn) . (2-%71 - i’n) = p/ (gn) . jn 3 (18)
therefore, G p p
0 (2%n) = p(&0)] = |0 (€2)] - Tn > g Iz gz dn=g. (19)

This leading to a contradictive conclusion to the pre-assumed condition[2)] (i.e., |p (2Z,,) — p (Zy)|
is a convergent function).

In other words, for any given small value € > 0, there exists a threshold x such that the inequality
p'(Z) - T < € holds for all Z > x. This conclusion is equivalent to limz_, o, p’ (Z) - & = 0, and
explains why we treat the term p’(Z) - T as negligible when Z is sufficiently large.

This completes the proof of Proposition[A.T] O

Then, under the assumption that z is sufficiently large, we have:

VWl = (¢ (%) — ¢ (&%) - p(3) - @ (20)
= (p(@)E—pE*)T*) (D) @ @1
= Mp (&) (& — &%) - x (22)
= Mp (&) Vu L7, 23)

That is, M p(Z) can be interpreted as the effect of recalibration. Furthermore, since M is a fixed value
for each p, we posit that p(Z) acts as the primary contributor to feature contribution recalibration
through a self-gated activation process.

This supports the intuitions and insights we proposed based on feature contribution recalibration.
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A.2 PROOF OF THEOREM [3.1]

In the main paper, we present Theorem [3.1]to formalize the problem of convergence limitation, which
may underlie the non-local tension challenge and is inherently present in typical self-gated functions
characterized by the general form:

¢ (1) =p(2)T, (24)
where Z = (w, ) + b € R is a given feature element (scalar), derived from the inner product of the
filter w and feature vectors x along with a bias term b, and p : R — R assigns a score p (Z) to weight
Z. Typically, the weighting function p is commonly required to satisfy that (Wul 2022):

(D) limz o p (%) T = 0;
(2) and limz_, 1o p () = M > 0.

Retrospect. For ease of reference, we restate Theorem [3.1]from the main text as Theorem[A.3]here.

Theorem A.3 (Convergence limitation: restatement of Theorem . For any &; and % ; correspond-
ing respectively to x; and x; w.rt. w, if limz_, o, p () = M >0, then, for any given ¢ > 0, there
must exist a threshold X such that for all &;, &; > X, we have |p(Z;) — p(Z;)| < e

Proof. By the definition of limits, the given assumption:

lim p(Z) =M, (25)

T—+00

where M > 0, implies that: for any € > 0, there exists a sufficiently large scalar X" such that for all
T > X, we have:

- €
p (@)~ M| < 5. 26)

Therefore, VZ;,Z; > X, applying the above conclusion, we have:

- € N €
|p(wi)7/\/l\<§, |p(:cj)f./\/l|<§. (27)
Based on the triangle inequality, we have:
- - € €

|P(fﬂz‘)—ﬂ(wg‘)|<§+§=€- (28)
This completes the proof. O

B DISCUSSION & PROOFS OF SECTION [4]
B.1 DISCUSSION AND PROOFS OF INTUITION [A.1] AND PROPOSITION [A.1]

Overview. We propose Proposition to help clarify our intuition that inspires the modeling of the
non-local indicators {Z } (Eq. (5) in the main text), i.e., we posit that positive and negative features
should be used in a discriminative manner to produce the non-local indicators for inducing FleS-style
adaptive scaling scheme, so as to prevent the contributions of positive features from being neutralized
by negative ones. In particular, we identify that positive features tend to have relatively higher
accumulated contributions than negative features, and this advantage becomes more pronounced
when the input distribution is relatively flat.

Before proving Proposition [.1] we first discuss a more general case to clarify Intuition 4.1} All
discussions and proofs in this appendix inherit the assumptions and pre-conditions established therein.

Advantage of positive contribution after activation. Through self-gated activation, the contributions
of positive and negative features are relatively emphasized and suppressed, respectively, thereby
giving positive features a relative advantage over negative ones in their overall influence.

This finding can be clarified as follows:
Proposition B.1. Let
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(1) p(z) = Byesigmoid (BroZ) denote a sigmoid-like function, where By, fro > 0 and & € R;
(2) X ~ N (s, 0) representing the random variable as a proxy for generating filter responses;

(3) ¢ (&; p, o) denote the Gaussian density with mean . and standard deviation o;

(4) f(u,0) = SJOO p(Z) o(Z; p,0)dx — SEOO p(Z) o(Z; p, o) A define the cumulative gap of
gating weights (i.e., indicator of recalibrated contribution).

Then, for any given o > 0:
(i) Yu >= 0, we have f(u,0) > 0;
(ii) Jpo < 0 such that VY € (po,0), f(u, o) > 0.

Proof. First, Proposition clearly holds, we then omit its detailed proof, as ¢ (Z; i1, 0) | >0 is

symmetric about & = p and p(&) > p(—2) for any & > 0. This ensures SS’OO p(Z) p(Z; p,0) dz >
0 N o

§” o p(%) @(Z; p, 0) dE, de., f(,0) |us=0> 0.

We thereby focus on Proposition in the following.

Fix any o > 0. By the continuity of p(Z) and ¢(Z; i, o), and by dominated convergence on compact
p-intervals, the mapping p — f(u, o) is continuous. Invoking Item|(i)l we have f(0,0) > 0. Hence,
by continuity at ;4 = 0, there exists § = d(o) > 0 such that |u| < & implies f(u,0) > 0. In
particular, letting po := —d < 0 yields f(u,0) > 0 forall y € (o, 0).

This completes the proof. O

Remark B.1. Proposition indicates that, under a standard self-gated activation, the aggregate
influence of positive features tends to be amplified relative to negatives, thus tending to yield higher
contributions to filter updates during the activation process.

Furthermore, we present an extension of Proposition [B.T]as follows. This conclusion helps clarify
how the relative advantage of the contributions of positive features becomes more pronounced when
the input distribution is relatively flat:

Proposition B.2. Consider f(u, o) that holds negative interval (this condition is satisfiable, e.g., for
p (%) = sigmoid (&) and o = 1, then, numerically we can verify that f(u,0) |,<—1< 0). Let o (o)
denote the unique negative root of f(u,c) = 0. Then the function g (o) is strictly decreasing in
o> 0.

Proof. We apply the implicit function theorem to the identity f(uo (¢),0) = 0. Then

dpo of /oo
—_— = . 2
do of/op @)
We compute the partial derivatives of f. First, note that
o 1 (@—p)?
0?090(337%0) = (T p,0) (‘U t—0 ) (30)
Hence,
of _ (% i2vols @-mw?> 1\ (0 @—pw? 1\ .
3 ), p(Z)p(Z; p, 0) (03 - dz — f_oo p(2)o(Z; pu, o) s dz .
3D

Because p(7) is monotonic and much larger on & > 0 than on # < 0, and (7 — ) grows quickly on
- . . of
Z > 0, the first integral dominates. Thus, 0> 0.

Next, we compute the derivative with respect to 4 as:

o . T — -
aw(fv;m o) = %@(JC;M,U)- (32)
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Therefore, we have:

of 1[

0 0
S-S @G- weanoai- [ @@ -pe@na s 6y

0

When 1 < 0, both integrals involve (Z — 1) > 0, but the second is weighted by smaller p(Z). Hence
the second term dominates, and %{ < 0.

Combining the above, we conclude that:

d
o __0F/00 _ (34)
do of/ou

and therefore 11 (o) is strictly decreasing in o.

This completes the proof. O

Notably, Propositions [B.T|and [B.2|underpin our intuition for Proposition 4.1l which can be regarded
as an extreme case of Proposition|[B.T} We now address Proposition[4.T]and also clarify two related
conclusions (i.e., Lemma [B.4]and Proposition to further support our intuition.

Retrospect. For ease of reference, we restate Proposition 4. 1| from the main text as Proposition
here.

Proposition B.3 (Relative contribution recalibration bias: restatement of Proposition [@.1). For

conditions assumed in Proposition for any given 1 € R, the conditional expectation ratio:
E(p(2)|7 . .
R (u,0) = %};igg satisfies lim, o0 R (1, 0) = 0.

Proof. We first consider p () = sigmoid (%), i.e., B, = 1 and Sp, = 1 for simplicity, and then
generalize the conclusion to general sigmoid-like functions.

LetCy (p,0) = §3 (@5 p,0)dz and C— (p,0) = SSDO p(Z) ¢(Z; pu, o) A indicate the cumu-
lative recahbrated contrlbutlons of positive and negative features, respectively.

core insight. As o increases, the Gaussian distribution ¢(Z; 1, o) becomes increasingly flat. In the
limit o — o0, the contributions restricted to any finite interval [a, b] vanish:

Cyl -0, C_|. ., —0. 35)

z€(a,b] z€(a,b]

Thus, the total contributions C';. and C'_ are entirely determined by the behavior over the tails of the
distribution.

We focus on two semi-infinite regions: (M_,0) with M_ « 0, and (0, M) with M, > 0, where

C.~C- |m€ M_,0)° C+ ~ O+|m6 0,My) " (36)
In this regime, the gating function satisfies:
p(x) > 1 forze (0,M,), p(Z) >0 forze (M_,0). (37)
As a result, the ratio of negative to positive cumulative contributions tends to zero:
c|.
T lee(M_0) 0, (38)
C+’ze(o,M+)
which implies:
¢ 0 (39)
Cy ’

since the excluded portions [M_, 0] and [0, M ] are finite intervals whose contribution becomes
negligible in the limit ¢ — 0.

Proof based on the core insight. Fix any 1 > 0. To analyze the ratio C_/C . as ¢ — oo, we partition
each integral into contributions over finite and infinite intervals.
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Let M_ < 0 < M, be two constants. We split:

M_ 0
c_ - f (@) (F; 1, 0) di + f p(#)p(@ . 0) d, (40)
\700 ~~ o ~~ =
I® [finite
My ©
Co= [ ootz [ p@etmorar. (1)
0 M,
~ ~- RN ~ ~
Iime If

Finite region vanishing. For any € > 0, since ¢(Z; u, o) converges uniformly to O on any compact
interval as o — o0, we can find ¥ > 0 such that for all o > ¥,

inite < g pfinite < ¢ (42)

Asymptotic behavior on infinite tails. Note that on & € (M_,0), p(Z) — 0, and on & € (M, 0),
p(Z) — 1. Thus, for large enough o,

M_ M_
IZ< sup  p(@) J P(T;p,0)dz < p(M-) J (&5 p,0)dz. (43)
ze(—oo,M_) —o0 )
Similarly,
0] 0
I > inf  p(3) J o(T;p,0)dz = p(M) J @(T;p,0)dz. (44)
Te(My,00) M, M

Since p(M_) « 1 and p(M, ) ~ 1, and since ¢(Z; i, o) is normalized, we can always choose M_
and M so that:

© M-
J o(Z;p,0)dz » J o(Z; p,0)dz  forall large o . (45)

My —0

Conclude the ratio vanishes. For all large o,

. M_ ~
C_(p,0) I*+ 1M p(M_)-\" p(x)dz + e

= — < — 0. 46
Cypo)  IF I = p(My) - (5 o(#)dE — ¢ o

Hence, we have:

Lemma B.4. For the conditions assumed in Proposition we have: lim,_, o g; gzz; =0.
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Then, by using Lemma|[B.4] we have the following conclusion:

- . E(p@)]Z<0)
S R (n,0) = lim E(p() 750 47)
0 ~ ~ ~
_ FG=0) Voo P(Z) (&3 1, 0) AT )
AL e o7 p(@) (5, 0) di
cp(l_i*‘) So—oc p(~) (,D(LU,/,L,O') dz
= lim 1" — . (49)
oo 1-a(=£) Jo p(Z) o(Z; p, o) d
1 (0 ~ - N
F07 Voo P(T) (T p, 0) AT
= im ¢§O)wa()~ (~ ) — (50)
7t 1—3(0) So p(7) o(T; p, o) AT
280 p(@) (@, 0)dE
= lim . - - 51)
o=+ 2§77 p(Z) (T3 p, 0) AT
{0 p(&) o(&: p, o) di
- Yoo oo o - (52)
o=t (7 () o(; p, o) AT
=0 (53)
where ) )
®2) =& St 54
(2) mﬁwe (54)

denotes the Gaussian error function (i.e., ERF).

Note that the above conclusions are applicable to general sigmoid-like functions, since simultaneously
changing 8, and Sy, in both C; (u, ) and C_ (u, o) does not affect the results.

This completes the Proof. O

A variant case: for uniformly distributed inputs. Here, we generalize our Intuition 4 to the case
where the inputs  obeys an uniform distribution.
Proposition B.5. For & ~ U (6=,0%), where 6~ < 0 and 6" > 0, we have following conclusion:
0 R
s— p(@)dz

hm —_ + = - =
07 ——0,8% =400 SS+ p(%)dE

Proof. Because limz_,_op(Z)Z = 0, we have: limz_,_o, p(Z) = 0. Further, since
limz 400 p (%) = M >0 = limz_,_o p (Z), we have two derived conclusions:

(1) p(Z) is monotonically non-decreasing and p (%) = 0;

(2) JA™ such that p (Z) > 0 forany & > A™T .

Without loss of generality, suppose p () = K |z=a+, where K > 0 is a constant, we have:

5t AT 5t
im [ p(#)di - f p(F)di+ lim | p()di (55)
ot —+40 Jg 0 0t —+00 Ja+
5+
> lim p(%)dz (56)
ot—+00 JA+
6+
> lim Kdi (57)
ot—+00 JA+
- 4. (58)

.
Therefore, we have: limg+_, | o Sg p(2)dz = +o0.
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Then, we prove lims—_, Sg, p (&) dZ is upper-bounded.
Because limz_,_o, p () = 0, we have:

p (=) . p(=7) (59)

Without loss of generality, let g () = p (—z), we have: g (&) = o(4) as & — +o0. That is,
JA~™ > 0 such that VZ > A~ we have:

- 1
g(Z) <Cﬁa (60)

where C' > 0 and € > 0 are constants.

Based on the derived conclusions above, we have:

st AT 5t

im | g(3)di— f g@di+ lm | g(7)dz ©61)
6t —>+00 0 0 0t—+00 JA—
6+
=C1+ lim g (z)dz, (62)
ot—+4+w JAa-

where C > 0 is a constant, and:

st o i1t
lim g(#)dz < C lim d5c=C’[ ] —C-Cy—C-0=C-Cy <+,

0t—+00 JA— ot—+00 JA- glte € o0
(63)
where Cy > 0 is a constant. This proves that limgs— _, o, Sg, p (Z) dZ is upper-bounded.
Therefore, we have the conclusion: lims—_, o 5+ 400 Rp (67,07) =0
This completes the proof. O

C GENERALIZATION BEYOND VISION: GLUE EVALUATION

To further assess the generalizability of FleS beyond vision, we validate it on the GLUE bench-
mark (Wang et al., 2018).

Adapting vision FleS to NLP. FleS aims to extract, encode, and inject task-relevant commonalities
across a semantically meaningful group of inputs (“reference feature group”). In vision, class labels
provide a natural grouping; in NLP, although token semantics are highly context-sensitive, task-
dependent regularities still emerge (e.g., sentiment). Thus, when adapting FleS to NLP, the critical
step is the construction of the indicator (class-/group-relevant statistics) under contextual volatility,
while the modulation mechanism (e.g., MLP-based scaling) can remain largely unchanged. We adapt
the practical FleS from the vision domain to NLP based on these heuristic insights.

Practical models. Here, we introduce two NLP FleS variants:

* FleS-NLP: direct adaptation of vision FleS to sequences; replace hard positive selection
with Softplus to stably extract indicators on short sequences. Moreover, because each
token already encodes condensed semantics and token meanings can vary substantially
within a sentence, we compute a token-level “class” indicator rather than a sentence-level
mean.

* FleS-SeqGate: lightweight enhancement that mimics state evolution via a depthwise 1D
conv inside a simple Sigmoid-based gate-MLP (with a channel reduction ratio of 8 by
default). This adds only ~6% parameters/FLOPs over the baseline model with GELU
activation. Notably, this SeqgGate indicator provides sequence-aware, content-adaptive
smoothing akin to a lightweight state evolution, while remaining permutation-equivariant to
batch ordering.
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Training protocol.

* Backbone. BERT-Tiny.

* Pretraining. BookCorpus + Wikipedia from scratch; tokenizer=bert-base-uncased,
max len=128, batch=4096, Ir=6x 104, epochs=50, warmup=0.1, wd=0.01, mixed precision.

* Fine-tuning. GLUE (9 tasks): batch=128, Ir=3x10"%; epochs: CoLA/STS-B=100,
MRPC=10, others=4.

Table 5: Comparative results on GLUE benchmark (full-task evaluation).

Backbone BERT-Tiny BERT-Mini | BERT-Small
Activation GELU : FleS-NLP : FleS-SeqGate GELU GELU
#Params. 438M . 45IM  : 466M  4.66M | 11.20M 28.80M
#Num-Attn-Blocks 2 2 ) 2 4 4
#Pretrained-Ep. 50 50 14 50 50 50
CoLA  MCC 1213 ¢ 2068 1 2348 22.04 17.38 27.24
SST-2  Acc. 81.54 : 8245 : 8372 84.17 83.65 89.79
mrpe H 707 7778 8175 8320  83.56 76.35 87.10
Acc. 69.61 - 7132 - 73.77 75.98 76.68 81.13
QQP CFI 7800 @ 7857 1 8199 8221 80.55 84.86
Acc. 8321 ¢ 8325 : 86.50 86.48 85.80 88.73
gTs.p Pearson | 2365 : 2372 1 77.03  79.68 84.25 85.20
Spearman 2372 - 2288 - 7637 79.14 84.33 85.13
MNL]  M(Ace) | 6558 1 6725 i 7177 7244 67.47 77.42
-MM (Acc.) | 65.66 1 6831 I 7225 7294 67.72 77.97
QNLI ~ Acc. | 63.77 : 6537 : 8159 81.37 73.84 83.87
RTE Acc. 5126 © 5560 : 57.04 55.96 57.04 58.84
WNLI*  Acc. 50.70 5634 - 5634 56.34 49.30 45.07
SCORE 56.72 1 5944 @ 69.97 70.18 67.59 74.32

* BERT-Tiny enhanced with FleS-NLP and FleS-SeqGate are compared against the GELU baseline
and substantially larger models, i.e., BERT-Mini and BERT-Small. Note that “WNLI” (marked by
“x”) is excluded from the final score as recommended (Wang et al., [2018]).

Findings. Our observations are threefold:

* FleS-NLP enjoys clear improvements over the GELU baseline with minimal overhead,
aligning with the vision findings.

* FleS-SeqGate delivers remarkably powerful gains over both GELU and FleS-NLP with
only marginal additional cost.

* Well-suited for fast pretraining: FleS-SeqGate achieves near—50-epoch performance after
just 14 epochs, suggesting fast convergence and favorable optimization behavior.

¢ Challenging significantly larger models: FleS-SeqGate enables BERT-Tiny to surpass
much larger models, i.e., BERT-Mini (~ 2.5 x in parameters and computational cost) by a
notable margin, while remaining competitive with BERT-Small (> 6 x in parameters and
computational cost).

These demonstrate the effectiveness, generalizability, and extensibility of our theoretical and heuristic
insights, as well as the strong potential of the FleS activation methodology inspired by them.

D FURTHER ELABORATION ON THE USE OF POSITIVE AND NEGATIVE
PRE-ACTIVATIONS IN FLES INDICATOR MODELING

A central design principle in FleS is to construct channel-wise indicators via a sign-aware re-
calibration that monotonically emphasizes positive features and suppresses negative ones before
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summarizing pre-activations. The positive-only indicator used in our default configuration is the
simplest instantiation of this idea: it explicitly distinguishes positive and negative responses and
focuses the statistics on positively activated features.

We suggest choosing between the positive-only indicator and softer alternatives based on the applica-
tion scenario. For ImageNet-style vision benchmarks, a positive-only design is typically sufficient:
these datasets exhibit relatively mild semantic variation in appearance, and a hard separation between
positive and negative responses already provides reliable per-channel statistics at very low compu-
tational cost. In contrast, for NLP tasks with more abrupt token-level semantic changes, we adopt
a Softplus-based indicator (Sec. [C)), which offers numerically smoother and more stable behavior.
More generally, in applications that demand numerically safer behavio—for example, when negative
values carry informative semantic meaning—we recommend using the two additional instantiations
described in Sec.[E.T5] with the Softplus-based variant being generally preferred.

To clarify how we interpret positive and negative pre-activation responses, consider a self-gated
activation of the form (revisiting Eq. (I))

where p() is viewed as a soft importance score indicating how strongly a response & should be
retained. In this perspective, positive and negative responses are not globally absolute concepts, but
are defined relative to a given filter. Suppose a layer includes two filters w;, wo € RC with C' > 2,
and let € R® be an input feature vector. The corresponding output & € R? has two channels,
where 71 = {(x,w) and T = (&, ws) (omitting bias terms for simplicity). The same x may be
strongly suppressed by w; (e.g., 1 < 0) while still being informative for ws (e.g., T2 > 0). Being
down-weighted in one channel does not imply that a feature is discarded by the layer; it may be
emphasized in other channels whose filters are better aligned with it.

Based on this understanding, we propose that an effective principle for constructing channel-wise
indicators in FleS is to introduce differential feature rectification that mitigates confusion caused
by positive—negative cancellation. Concretely, we apply a monotonic, sign-aware recalibration
that emphasizes positive features and attenuates negative ones before summarizing pre-activation
responses. This makes the resulting statistics more faithfully reflect genuine per-channel intensity,
rather than confusing truly weak channels with channels that have strong but mixed-sign responses. In
contrast, aggregating positive and negative responses in a symmetric manner may incur “—1+1”-style
cancellation effects, which increases the burden on the MLP that predicts scaling factors from the
indicator, because its input no longer reliably encodes filter-level importance statistics (Tab. [ (right)
empirically supports this observation). Importantly, even if a response is negative for the dominant
filter of one channel, the same feature can still be positively emphasized in other channels; FleS only
rectifies the statistics used for scaling, not the global availability of features.

From a decision-making perspective, the scenario where negative values carry informative semantic
meaning can be viewed as follows: in sufficiently complex applications, before filters have been
updated enough to reliably indicate feature importance, the sign of a pre-activation response (positive
versus negative) may not reliably reflect utility. Under this mechanistic view, it is often preferable to
use a numerically safer indicator (e.g., the Softplus-based variant) rather than aggressively maximizing
efficiency via a strictly positive-only design.

E COMPLEMENTARY ABLATION STUDIES FOR SECTION [3.2]

We present further key ablation studies examining the insights underpinning FleS, complementing
Sec.[5.2] Unless otherwise specified, each ablation experiment is conducted on ImageNet using the

Swin-Min [2021) or PoolFormer-S12 [2022) backbones.

E.1 ON THE SATURATION REGIME

We quantify saturation on ImageNet using the original Swin-Micro and PoolFormer-S12 trained for
120 epochs. For each epoch and for every MLP block, we measure the fraction of activations whose
self-gating weight p(Z) exceeds 0.9 (for GELU, 0 < p(Z) < 1), and aggregate these fractions per
hierarchical stage.
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For Swin-Micro, saturation is clearly depth-dependent in early training: in the first few epochs, only
about 0.1%-0.2% of activations are saturated in stages 1-2, compared to roughly 0.6% in stage 3
and 2.5%-3% in stage 4. As training progresses, stages 2—4 stabilize around 1%-2%, while stage 1
increases to about 4%-5%, rising from almost zero to a higher steady level. On average, stages 2—4
remain in a moderate range (around 1%-2%), whereas stage 1 eventually accounts for a larger
saturated fraction.

PoolFormer-S12 exhibits stronger saturation under the same protocol, especially in deeper stages. In
early epochs, stages 3—4 already reach roughly 3% and 6%-7%, respectively. During mid training,
saturation becomes more evenly distributed across depth: stage 1 rises to about 4%-5%, while
stages 2—4 settle around 2%-3%. After the middle stage, these ratios remain relatively steady.
Overall, except for the very first few epochs, a non-trivial fraction of features stays in the saturation
regime throughout training.
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Figure 4: Fraction of activations in the positive-side saturation regime (p(z) > 0.9) for (a) Swin-
Micro and (b) PoolFormer-S12 on ImageNet. For each epoch and each hierarchical stage, we compute
the proportion of MLP activations whose self-gating weight exceeds 0.9 and aggregate per stage. The
curves show that (i) saturation is initially stronger in deeper stages, (ii) saturation levels gradually
stabilize as training proceeds, and (iii) except for the very first few epochs, a non-trivial fraction of
features remains in the saturation regime throughout training.

From the non-local training perspective, these patterns suggest that non-local effects tend to accumu-
late in deeper blocks at the beginning of training: before the model has acquired stable knowledge,
deeper blocks operate at a higher semantic level, so non-local information aggregates there and drives
a subset of features into the high-activation (and saturated) region. As training enters the mid—late
phase, the model converges to a more effective allocation of activation mass across stages: saturation
ratios stabilize, fluctuations shrink, and each stage maintains a characteristic saturation level that
reflects its role in the hierarchy. Figure ] visualizes the saturation dynamics for both architectures.

E.2 INITIALIZATION OF 7,, AND 73,

FleS introduces two learnable log-scale parameters, 7y,. and ¥,, which are mapped to non-negative
scaling factors k. and kj, through a Softplus transform. In all main experiments, we set v, =
Ynho = 0.6, which yields an “identity-safe” configuration where r,, and kj, are initialized close to
1.0. This keeps FleS near the baseline activation at initialization and avoids aggressive changes to the
optimization landscape.

To quantify sensitivity to this initialization, we perform an ablation on ImageNet using the Swin-
Min backbone, jointly varying the initialization of 7,. and -y, in the range [—1.0, 2.0]. Tab1e|§|
summarizes the results. For values around 0-2, FleS is not sensitive to the exact initialization of v: all
settings consistently yield substantial gains over the GELU baseline (from 68.7% to ~ 71% top-1),
suggesting that AdamW with warmup can absorb moderate changes in the initial gate steepness and
range. A more aggressive negative initialization (7 = —1.0, corresponding to x ~ 0.31) leads to a
small but noticeable drop, likely because the very small initial scaling reduces effective gradients
and mimics an overly small base learning rate in early training; even with AdamW and warmup, the
optimizer then struggles to reach the best trajectory. Relatively large positive values slightly increase
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the initial steepness but only induce minor, non-systematic fluctuations in accuracy, indicating that
the optimizer tolerates moderately over-scaled initial gates. Based on these observations, we adopt

Yve = Yho = 0.6 as the default setting.

Table 6: Sensitivity of FleS to the initialization of v, and 7, on Im-
ageNet with the Swin-Min backbone. The parameters x,. and xyp, are
derived from 7, and 73, via a Softplus transform.

Activation | Backbone | Init. Yye, Vho | Init. Kye, Kpo | Top-1 (%)
GELU Swin-Min | — 68.7
FleS Swin-Min | 0.6 (default) | ~ 1.0375 71.4

. 00 | ~0.6931 | 712

-1.0 ~ 0.3133 70.8
. . 1.0 ~ 1.3133 71.4
FleS Swin-Min | ) ~ 1.6204 71.2
1.7 ~ 1.8678 71.3
2.0 ~ 2.1269 71.1

E.3 EVOLUTION OF Ky AND Kpo

We study how the FleS scaling factors evolve during training by running a 120-epoch ImageNet
experiment with Swin-Min + FleS and, at each epoch, recording for each of the four stages (i) the
stage-wise mean of xp, and (ii) the mean of the top 10% k.. values.

k_{ve}: stage-1
k_{ve}: stage-2
——x_{ve}: stage-3

—1x_{ve}: stage-4

k_{ho}: stage-1

k_{ho}: stage-2

\

60
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——x_{ho}: stage-4
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Figure 5: Stage-wise evolution of FleS scaling factors on ImageNet with the Swin-Min backbone.
For each epoch and each stage, we record (1) the stage-wise mean of the horizontal scaling xp,; and
(2) the mean of the top 10% vertical scaling values «,,.. Both factors start near 1, rapidly become
depth-dependent in early training, and eventually settle into a regime where shallow and mid stages
exhibit mild scaling, whereas the deepest stage maintains the strongest horizontal and vertical scaling,
reflecting its role in non-local evidence aggregation.

At initialization (epoch 0), both xy,, and x,. are close to 1 across all stages, i.e., FleS starts from
an approximately identity-like scaling. Within the first few epochs, they quickly become depth-
dependent. In stages 2-3, the vertical scaling factor k.. rises from ~ 1 to about 2.4-3.1, and the
horizontal factor xy, rises to around 5-7. Stage 1 also strengthens but more moderately, with .,
peaking at ~ 3.1 and kp, at &~ 2.6. Stage 4 shows the most aggressive early horizontal scaling: xp,,
grows rapidly from ~ 1.1 to about 7.4, while x,,. increases more gradually over a longer period,
eventually peaking around 5.0.

After this early phase, stages 1-3 gradually relax to stable, mid-range values. By the end of training
(e.g., epoch 119), stage-1 k. has decreased from its peak ~ 3.1 to &~ 1.23, and xy,, stabilizes around
A~ 2.47. Stages 2-3 similarly converge to milder scaling, with k.. around ~ 1.06—1.31 and kp,
around ~ 2.85-3.78. In contrast, the deepest stage 4 consistently maintains the strongest scaling
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throughout training: even at epoch 119, it still has the largest values, with £, ~ 2.14 and kp, ~ 4.68.
The variances exhibit a similar depth-dependent pattern: deeper stages show larger dispersion in the
early epochs (especially stage 4), which gradually contracts as training converges.

Overall, this 120-epoch run reveals a clear depth-dependent gating pattern: mid—shallow stages
converge to mild scaling, while the last stage maintains the most aggressive horizontal and vertical
scaling. This is consistent with our non-local training perspective, where deeper blocks bear more
of the non-local evidence aggregation and thus benefit from stronger, persistent gating. Figure 3]
visualizes the per-stage <, and kp, dynamics over training.

E.4 STABILITY IN IRREGULAR SMALL-BATCH REGIMES.

To assess the stability of FleS under non-standard small-batch constructions, we consider an irregular
two-stage training schedule on ImageNet with Swin-Min. In the standard setting, we use a batch
size of 1024. In the irregular setting, we train for 60 epochs with batch size 132 and learning rate
3 x 107*, followed by 60 epochs with batch size 92 and learning rate 2 x 10~*. The results are
summarized in Table[7}

Table 7: Performance of FleS and GELU under a standard
large-batch regime and an irregular small-batch schedule
on ImageNet with the Swin-Min backbone.

Activation | Backbone | Batch Setting | Top-1 (%)1
GELU . . 68.7
FleS Swin-Min 1024 71.4
GELU . . 68.2
FleS Swin-Min 132 +92 70.3

Both the GELU baseline and FleS exhibit a small drop in top-1 accuracy under the irregular batch
schedule (from 68.7% to 68.2% for GELU, and from 71.4% to 70.3% for FleS), with a comparable
degree of degradation. Importantly, FleS still delivers clear improvements over GELU in both regimes,
indicating that FleS maintains similar tolerance to irregular/small-batch training while achieving
consistently higher accuracy.

E.5 INTERACTION WITH BATCH NORMALIZATION.
We further examine how FleS interacts with batch normalization by replacing layer normalization

(LN) with batch normalization (BN) in each Transformer block of Swin-Min and re-training on
ImageNet with the same recipe for all variants.

Table 8: Ablation study on interaction between FleS and normalization.

Activation | Backbone | Norm. | #Params | FLOPs | Top-1 (%)1
GELU Swin-Min LN 11.8M 1.6G 68.7
FleS Swin-Min LN 13.0M 1.6G 71.4
GELU Swin-Min BN 11.8M 1.6G 69.3
FleS Swin-Min BN 13.0M 1.6G 73.8

* Replacing layer normalization (LN) with batch normalization (BN)
brings a modest gain for GELU, but a much larger gain when combined
with FleS.

As shown in Table[8] BN yields a modest but noticeable improvement for the GELU baseline (top-1:
68.7 — 69.3). When combined with FleS, however, the gain from BN is substantially larger (top-1:
71.4 — 73.8), which is notable given that FleS already operates in a higher-accuracy regime where
improvements are typically harder to obtain. This suggests a non-trivial interaction between FleS’s
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activation scaling and batch-normalized feature statistics. A detailed analysis of this phenomenon is
beyond the scope of this work, but it points to an interesting direction for future investigation.

E.6 PRACTICAL EFFICIENCY AND RUNTIME OVERHEAD

Beyond FLOPs and parameter counts, we also quantify the practical overhead in efficiency introduced
by FleS. We measure single-GPU throughput (images per second) on an RTX 3090 under a common
torch.compile-based setup for Swin-Min, Swin-Micro, and Swin-Tiny on ImageNet with a
standard image resolution setting of 224 x 224; results are reported in Table[9]

Table 9: Evaluation of practical efficiency (by throughput).

- FLOPs | Throughput | Top-11
Activation | Backbone G) images/sec. (%)
GELU Swin-Min 1.6 4207.2 68.7
FleS Swin-Min 1.6 4011.3 71.4
GELU Swin-Micro 2.6 2775.6 78.7
FleS Swin-Micro 2.6 2616.8 80.3
GELU Swin-Tiny 4.4 1622.5 81.3
FleS Swin-Tiny 4.4 1545.2 82.3

* We report single-GPU throughput (images per second) on an
RTX 3090 under a common torch.compile-based setup.
FleS introduces a modest runtime overhead while consistently
improving top-1 accuracy.

Across backbones of different sizes, FleS incurs an acceptable, modest overhead of about 4%—6%
in practical efficiency across these backbones, while consistently improving Top-1 accuracy by a
substantial margin. This validates the practical efficiency of FleS’s design.

E.7 LINEAR LAYER VERSUS MLP IN THE INDICATOR HEAD

To assess the effect of replacing MLPs with linear layers, we conduct an ablation on ImageNet with
the Swin-Min and Swin-Micro backbones. Specifically, we replace each FleS MLP with a low-rank
linear module (i.e., an MLP with reduction ratio but without nonlinearity), denoted as FleS-LRL,
under a comparable parameter budget.

Table 10: Ablation of the indicator design: MLP vs. a low-rank linear (FleS-LRL) variant.

Activation Backbone Ratio r | #Params FLOPs Throughput Top-11
(G) images/sec. (%)
GELU Swin-Min — 11.8M 1.6 4207.2 68.7
CFleS-LRL | | 32 | 130M | 1.6 | 40167 | 710
FleS (original) Swin-Min 32 13.0M 1.6 4011.3 71.4
FleS-LRL v 24 13.4M 1.6 4013.6 71.2
FleS (original) 24 13.4M 1.6 4001.0 71.5
GELU Swin-Micro — 21.1M 2.6 2775.6 78.7
FleS-LRL Swin-Micro 32 23.5M 2.6 2633.8 79.7
FleS (original) 32 23.5M 2.6 2616.8 80.3

* FleS-LRL replaces the MLP with two linear layers of the same reduction ratio . FleS
outperforms FleS-LRL at close computational cost.

On the Swin-Min backbone, we evaluate two reduction ratios (r = 32, our default, and » = 24
with slightly more parameters). In both cases, FleS-LRL yields a small but consistent drop in top-1
accuracy compared to the original FleS, while still clearly outperforming the GELU baseline. On the
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deeper Swin-Micro backbone, the gap between FleS-LRL and FleS becomes more pronounced, in
a regime where marginal gains in top-1 are harder to obtain. In terms of cost, FleS-LRL and FleS
have almost identical FLOPs and very similar throughput (single RTX 3090, torch.compile),
and both introduce only a light overhead over the baselines. Given the higher accuracy gains at close
cost, we adopt the MLP-with-reduction version as the default configuration (Table [T0).

Intuitive elaboration on using MLPs. Our decision-making interpretation suggests two key intuitions

that guide the practical design of FleS indicators. First, extracting and translating importance
descriptors is central: a main challenge in mitigating non-local tension is to construct descriptors that
numerically reflect the inter-channel importance of pre-activations and then translate these descriptors
into activation scales. In other words, the interpretive view reduces the problem to how to build
and exploit channel-wise statistics that genuinely encode feature importance for scaling. Second,
sign-aware recalibration matters: in the affine—activation pipeline, the affine projection provides an
initial signal of how strongly each input feature should influence the update direction of a given filter,
but this signal alone is insufficient. When features with positive and negative affine projections induce
gradients of comparable magnitude but opposite effect, their contributions can partially cancel out,
making it harder for the filter to follow an update trajectory dominated by informative features. This
motivates a sign-aware recalibration step before summarizing channel statistics for scaling.

To probe these intuitions, we first constructed a prototype variant, FleS-Proto. On ImageNet, when
very clean, class-aligned channel-importance statistics are available at test time (Tab.[I]in Sec. A1),
simple linear mappings from these statistics to activation scales already yield very strong gains.
However, when the batch is fully shuffled or the batch size is reduced, these gains shrink markedly or
even disappear. This suggests that in realistic regimes—where clean and sufficiently rich channel
statistics are rarely accessible—refining and translating noisy channel-importance cues becomes the
central practical challenge. We therefore hypothesize that the mapping from channel-wise rectified
statistics to effective activation scales is generally more complex than a single affine transform can
capture. In FleS, the small MLP head acts as a lightweight universal approximator that refines these
rectified statistics within its receptive field and transforms them into scales that better adapt to the
current activation process. Empirically, this design yields a consistent accuracy benefit over the
low-rank linear variant FleS-LRL at essentially the same computational cost (Tab. [T0), supporting the
use of an MLP-based indicator in the final algorithm.

E.8 ABLATION ON NEIGHBORHOOD SIZE FOR OBJECT DETECTION

In the vision instantiation of FleS for dense recognition tasks, a spatial neighborhood (window)
size needs to be chosen to compute the indicator statistics. In practice, we select this window size
empirically based on the input resolution and the typical pixel extent of objects. For example, on
COCO we adopt 2 9 x 15 window: COCO images are typically resized to 800 x 1333, and small
objects usually occupy more than 102 pixels, so a 9 x 15 window can capture relatively clean class-
relevant statistics. We then use an MLP to aggregate cross-window cues by scanning over the image
to construct the indicators.

Table 11: Ablation study of neighborhood size (realized by window) on COCO object detection using
PoolFormer-S12 encoder with RetinaNet.

Activation | Window | mAP (%)} | APso(%)} | APrs(%)} | APs(%)} | APy(%)1 | APL(%)1
GELU — 35.5 55.5 37.5 19.5 38.7 46.3
FleS 9 x 15 36.2 57.0 38.1 20.7 40.1 46.8
FleS 9x9 36.1 56.6 37.9 20.5 40.0 46.8
FleS 5x5 35.8 57.0 37.5 20.0 39.6 46.7

* FleS remains robust when reducing the window from 9 x 15 to 9 x 9, while a smaller 5 x 5 window leads to a
modest performance drop but still improves over the GELU baseline.

To investigate appropriate neighborhood settings, we vary the window size in COCO object detection
with PoolFormer-S12 as the encoder and RetinaNet as the detection head. As summarized in Tab. [TT]
FleS is reasonably robust when reducing the window from 9 x 15 to 9 x 9 (mAP 36.2 — 36.1),
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while a smaller 5 x 5 window leads to a modest drop, yet still outperforms the GELU baseline. These
results suggest that using a window covering roughly 50 or more pixels is preferable, while still
focusing on a compact local range to facilitate the extraction of relatively simple class-relevant cues.

E.9 NORMALIZING PRE-ACTIVATIONS BEFORE THE INDICATOR MLP

We investigate whether it is beneficial to normalize the pre-activations before feeding them into the
FleS MLP that produces the channel-wise indicators. Using the same ImageNet setup with Swin-Min,
we compare three variants: the vanilla FleS design, FleS with an additional BatchNorm applied to the
indicator input, and FleS with an additional LayerNorm applied to the indicator input. The results are
summarized in Tab.

Table 12: Ablation study of inserting an additional normalization
layer on the indicator input.

Activation Backbone | #Params | FLOPs | Top-1 (%)?1
GELU Swin-Min | 11.8M 1.6G 68.7
FleS (vanilla) 13.0M 1.6G 71.4
FleS (+ BN) Swin-Min | 13.0M 1.6G 71.4
FleS (+ LN) 13.0M 1.6G 71.1

* Adding BatchNorm on the indicator path brings no notable accu-
racy benefit, while adding LayerNorm slightly hurts performance.

We observe that adding BatchNorm on the indicator path introduces no notable accuracy improvement
over the vanilla design, while adding LayerNorm actually yields a slight drop in accuracy (top-1:
71.4 — 71.1). Based on these results, and to keep the architecture simple, we adopt the vanilla
setting without additional normalization on the indicator path as the default configuration. For
applications where extra numerical stability is required, it remains reasonable to optionally insert a
normalization layer on this path and tune the specific choice (e.g., BN, LN, or GN) according to the
data characteristics.

E.10 SCOPE OF NON-LOCAL TENSION ACROSS ARCHITECTURES

On classical CNNs (e.g., ResNet), we observe that the performance gains of FleS are mainly driven
by the general benefits of its adaptive scaling mechanism, rather than by a non-local tension (NLT)
effect of the same strength as in token-mixer—based architectures (e.g., Swin and PoolFormer). In
relatively deep blocks, a classical CNN can also capture non-local information to some extent through
its enlarged effective receptive field, but the resulting non-local signals are more diffuse and less
explicit than those in token-mixer—based blocks, so the opportunities for strongly triggering NLT
are comparatively rarer. This picture, where FleS primarily boosts CNN blocks via general adaptive
scaling rather than a fully developed NLT regime, is consistent with our empirical observations.

As shown in Tab. @, on ResNet-50 (as a representative classical CNN), two state-of-the-art activation
functions, IIEU (Top-1: 79.7%; parameters: 25.6M; FLOPs: 4.2G) and AdaShift (Top-1: 79.9%;
parameters: 25.6M; FLOPs: 4.1G), achieve slightly lower accuracy than FleS (Top-1: 80.1%;
parameters: 28.1M; FLOPs: 4.1G), while using fewer parameters and similar FLOPs. In contrast,
on Swin and PoolFormer, FleS exhibits a substantially larger margin over all competitive activation
methods. This contrast suggests that, for classical CNNs, the main benefit of FleS stems from its
adaptive scaling mechanism, whereas the NLT phenomenon is more pronounced in architectures that
explicitly model non-local/token-mixing interactions.

Notably, we view the channel-wise indicator design—which models interpretable, lightweight non-
local cues—as a critical factor underlying the gains of FleS on both CNNs and Transformers. To
probe this, we conduct an additional ablation on ResNet-50 where we remove the key component
implied by our decision-making interpretation, namely the monotonic sign-aware recalibration that
emphasizes positive and suppresses negative pre-activation responses. Without this component,
the Top-1 accuracy of FleS on ResNet-50 drops from 80.1% to 79.4%, making it inferior to IIEU
and AdaShift. This supports the view that, on classical CNNs without explicit block-wise non-
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Table 13: Investigation of non-local tension in ResNet.

Activation | Backbone | #Params | FLOPs | Top-1 (%)?1
RelLU ResNet-50 25.6M 4.1G 77.2
IIEU 25.6M 4.2G 79.7
AdaS ResNet-30 | s'sm | 4.1G 79.9
“FleS | o oo | 28.0M | 4.1G | 801
FleS-P&N | ROSNet30 1 oo in | 416 79.4

* “FleS-P&N” denotes a FleS variant that aggregates positive and
negative pre-activations in a balanced (symmetric) manner.

local modeling, the gains mainly arise from FleS’s principled adaptive scaling mechanism, with
the decision-making—guided, sign-aware indicator modeling serving as a key driver of the observed
improvements.

E.11 FLES oN 100M+ MODELS

To assess the applicability of FleS on larger attention-based models, we conduct experiments on
ImageNet with the efficient Transformer Hiera Ryali et al.| (2023). Concretely, we consider a 100M+
Hiera-Large-Slim configuration (local-to-global, multi-scale attention; layer setting [2, 3, 20, 3] for a
total of 28 attention—FFN blocks; base embedding dimensions [144, 288, 576, 1152]). This variant is
slightly slimmed compared to the original Hiera-Large, but remains in the 100M+ parameter regime.

Table 14: Evaluation of FleS on Hiera-Large-Slim.

Activation | Backbone #Params | FLOPs | Top-1 (%)1
GELU Hiera-Laree-Slim 131.0M | 22.9G 82.9
FleS era-Large 147.7M | 23.0G 83.2

Since an official MAE-style training—evaluation recipe for Hiera is not yet available, we adopt the
standard 300-epoch non-MAE recipe used for Swin-Base and train from scratch. To better match the
empirical optimization characteristics of Hiera, we reduce the base learning rate from 1.0 x 1072 to
6.0 x 10~ per batch of 1024.

As summarized in Tab.[T4] FleS improves the original GELU-based Hiera-Large-Slim model from
82.9% to 83.2% top-1 accuracy on ImageNet, with only a very small increase in FLOPs (22.9G —
23.0G) and parameters (131.0M — 147.7M). We do not observe numerical instability or training
pathologies in this regime. Given the strong diminishing returns around the 83% accuracy level, this
constitutes a meaningful improvement and indicates that FleS remains stable and effective on 100M+
Transformer models.

E.12 ON POSITIVE CONSTRAINTS FOR SCALING COEFFICIENTS

We posit that positive constraints are decisive for FleS-style adaptive scaling in self-gated activation,
based on our analysis in Sec. [3] as each pre-activation Z is a sign-sensitive importance measure of a
feature. That is, negative values of k... and ky, will reverse p(Z) and Z, thereby compromising their
physical meaning in decision-making.

We validate this heuristic intuition by comparing the original FleS with ablated FleS variants that
omit the positive constraints on: (1) the vertical scaling coefficient x,. (denoted as “—pc,, "), (2)
the horizontal scaling coefficient xp, (denoted as “—pc,., ), and (3) both x,,. and xp, (denoted as
“—pc,, . ,.”). Based on the comparative results in Tab. we observe the following: (1) Omitting
pos,,. . results in a significant drop in accuracy. (2) Omitting pos,;, = leads to a clear decrease in
accuracy, but not as severe as (1), because the base function (i.e., Sigmoid) itself provides a positive
constraint on the overall scaled inputs. (3) Omitting both pos,, and pos,, results in the worst
performance. These phenomena support our intuition.
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Table 15: Ablation study on positive constraints for vertical and horizontal scaling
coefficients. “BSL” denotes “Baseline.”

Activation Backbone Variant #Params. | FLOPs | Top-1(%)?1
GELU (BSL) — 11.8M 1.6G 68.7
—PCy,. 13.0M 1.6G 68.1
FleS Variant | Swin-Min —PC,, . 13.0M 1.6G 71.1
“PClrre rino} 13.0M 1.6G 67.9
“FlesS | | Original | 13.0M | 16G | - 714

E.13 ON INDEPENDENT USE OF THE VERTICAL/HORIZONTAL SCALING COEFFICIENT

We model k.. and K, as scaling coefficients for activation functions, responsible for controlling
the bounds and steepness, respectively, thus enabling targeted modulation of different aspects of the
activation shape.

Table 16: Ablation study on the independent use of vertical or horizontal scaling.

Activation Backbone Variant #Params. | FLOPs | Top-1(%)?1
GELU (BSL) — 11.8M 1.6G 68.7
N —Fve | 126M | 1.6G | 696
FleS Variant | Swin-Min —FKho 12.6M 1.6G 70.8
{Kve, Kho} 12.6M 1.6G 68.9
“Fles | Original | 13.0M | 16G | 714

* Note that the FleS variant “—{x,., kno}” is equivalent to SiLU (Elfwing et al.,
2018) activation function. “BSL” denotes “Baseline.”

We compare the original FleS with two ablated variants, omitting (1) the vertical scaling coefficient
Kye (denoted as “—k,.”") and (2) the horizontal scaling coefficient xp, (denoted as “—kp,”), to
examine their individual contributions. As shown in Tab. our key observations are as follows: (1)
Both control groups, “—k,.” and “—kp,”, lead to a decrease in accuracy, with “—x,,.”” demonstrating
a more severe decrease than “—xp,”. (2) Despite the performance degradation, both “—k,.” and
“—Kpo still enjoy significant improvements over the GELU baseline. These observations support our
insights.

E.14 GENERALIZABILITY ACROSS VARIOUS WEIGHTING FUNCTIONS

In this work, we apply the Sigmoid function as the default weighting function p. Since our assumptions
generalize across different forms of self-gated functions, we posit that the FleS-style adaptive scaling
scheme is applicable to various choices of p.

To investigate the generalizability of FleS across various weighting functions, we conduct a tailored
ablation study. Specifically, we validate four FleS variants, each of which employs a different
p function. Each FleS variant is compared with its baseline counterpart (the reference group),
which uses the same p but excludes the FleS-style scaling augmentation. The references and their
corresponding FleS-augmented variants include: (1) baseline SiLU (Elfwing et al.,|2018)) and FleS,
using Sigmoid p; (2) baseline GELU (Hendrycks & Gimpel, 2016) and GELU-FleS, using ERF-
based p; (3) baseline Mish (Misra, [2020) and Mish-FleS with p (-) = tanh (softplus (-)); and (4)
TanhGate (a simple Tanh-based function suggested by in (Cail 2024al)) and TanhGate-FleS, where
p() =05 (tanh (1) + 1) = Y1420,

As reported in Tab. each FleS variant demonstrates significant improvements over its baseline
counterpart. This validates the generalizability of FleS’s methodology.
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Table 17: Ablation study on the generalizability of FleS scaling scheme using different p.

Activation Backbone weighting p (Z) Prototype ¢ (Z) Top-1(%)1
P(B)T  Foep (Knol) T
R P TR O
OBy (Hendryeks etal, 2010 | gyin-Min | 0.5 (1 +erf (7v2) | ¥ y o
ﬁiizllll_(Fl\‘;Ié;ra, 2020) Swin-Min | tanh (softplus (%)) v v ggg
L e e P

* Each activation function with the suffix “-FleS” refers to a FleS-augmented variant, where the corresponding p
is applied with FleS-style scaling.

E.15 ON POLARITY-SELECTIVE INDICATOR: DEFAULT & ALTERNATIVES

In Sec..T|(see Eq. (3)) in the main paper and the corresponding clarification), we introduce our default
method for implementing the discriminative use of positive and negative features in modeling the
non-local indicator that drives FleS-style scaling scheme. Notably, Eq. (3)) (main paper) is motivated
by Intuition #.2] and alternative technical formulations can be used in its place.

Table 18: Ablation study on technical choices for implementing selective use of positive
and negative features in FleS. “BSL” denotes “Baseline.”

Activation Backbone Variant #Params. | FLOPs | Top-1(%)1
GELU (BSL) — 11.8M 1.6G 68.7
. Softplus-based 13.0M 1.6G 71.4
FleS Variant | Swin-Min | “y b i linear | 13.0M | 1.6G 713
"FleS | | Original | 130M | 1.6G | 714

To investigate the modeling of non-local indicator (denoted as Z;7), we conduct a targeted ablation
study comparing our default method with two functionally similar variants, used as reference groups:

(1) The Softplus-based variant:
z} = softplus (7.2 + Bc) |zex, , (65)
where 7. and 3. are learnable factors to dynamically adjust the shape of Softplus function;
(2) The quasi-linear variant:
z, ifz>n,
z .
7 - exp (—1), ifz<n,
n

where 1) is a small threshold (e.g., 0.1 in this ablation study). Note that Eq. (66) defines a
differentiable function on R.

Ty = (66)

As reported in Tab. [18] these three variants achieve similar improvements over the baseline, while the
default method attains these improvements with relatively minimal technical effort.

E.16 FROM FLES-PROTO TO PRACTICAL FLES: WHAT BATCH-CLASS COHERENCE REVEALS

Setup. Here we present an extended ablation study that helps clarify our findings on FleS-Proto
and justifies the FleS design they inspire.

To this end, we use a Category-Block Shuffled Evaluation Protocol on ImageNet:
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(1) group validation images by ground-truth labels (50 per class);
(2) form each class group into a contiguous block;
(3) randomly permute the order of class blocks;

(4) uniformly shuffle image order within each block. Sequential sampling thus yields evaluation
batches that typically contain same-class samples, while the global class order is disrupted.

We denote this as “#Class-Block-Shuffle” and vary the evaluation batch size. We also consider
“#Total Batch Shuffle,” which mixes classes across all batches.

Table 19: Effect of evaluation batch size (BS) under the Class-Block Shuffle protocol (ImageNet).

Activation Backbone | #CB-Shuffle | #TB-Shuffle | #Eval. BS | #Params. | FLOPs | Top-1(%)?
— — 256 21.1M 2.6G 85.2
v — 256 21.1M 2.6G 85.2
v — 128 21.1M 2.6G 854
v — 64 21.1M 2.6G 85.5
v — 32 21.1M 2.6G 84.9
FleS-Proto Swin-Micro v — 16 21.1M 2.6G 83.1
v — 8 21.1M 2.6G 80.1
v — 4 21.1M 2.6G 74.9
v — 2 21.1M 2.6G 66.7
v — 1 21.1M 2.6G 54.1
— v 256 21.1M 2.6G 77.3
— — 256 21.1M 2.6G 78.7
GELU (BSL) | Swin-Micro — v 256 21.1M 2.6G 78.7
v — 1 21.1M 2.6G 78.7
— — 256 23.5M 2.6G 80.3
FleS Swin-Micro — v 256 23.5M 2.6G 80.3
v — 1 23.5M 2.6G 80.3

* “#Class-Block (CB)-Shuffle” indicates whether the block protocol is applied; “#Total-Batch (TB)-Shuffle”
shuffles samples globally across batches.

Observations. (1) When batches remain class-coherent (CBS) and the evaluation batch size is
moderate (= 8), FleS-Proto shows stable, strong performance. (2) As the batch size shrinks (e.g.,
< 4), FleS-Proto degrades, indicating under-representative per-batch statistics. (3) FleS and GELU
are insensitive to both class-order and global shuffling, as they do not rely on inter-sample batch
statistics. These phenomena support the view that the drop with FleS-Proto arises from insufficiently
representative statistics in small or mixed batches.

From prototype to practice. FleS-Proto is a proof of concept serving to expose modeling cues
on how to extract and aggregate class-specific statistics. Guided by these cues, FleS replaces hand-
crafted batch statistics with learned transformations that infer robust class-relevant indicators even
under shuffled or noisy batches.

On the role of MLPs in FleS (capturing shared regularities through translation equivariance).
Core principle. Effective adaptive activation scaling—designed to mitigate non-local tension that
hampers neural selectivity—should extract, encode, and inject common statistical characteristics
among samples under a task-relevant grouping rule (cf. the “reference feature group”). Such shared
characteristics obey statistical regularities: the more samples, the more representative the statistics; in
image classification, the class identity naturally yields a meaningful grouping.

Why MLPs? Generalizing to shuffled batches. In fully or heavily shuffled batches, clean class-specific
statistics are unavailable; when the number of same-class samples drops to < 4, direct aggregation
becomes under-representative due to large intra-class variance in C-dimensional descriptors. In the
extreme case of full shuffling, we cannot infer any grouping beyond a single image.

Hypothesis. Although descriptors from the same class may differ in the original space, their channel-
wise distributions may follow a latent pattern learnable via transformation.
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Goal. Learn a transformation that maps noisy, sample-level descriptors to meaningful scaling
coefficients, recovering shared structure even when class-coherent batches are absent.

Properties needed.

(i) Universal approximability: MLPs can approximate continuous functions, making them
suitable for mapping noisy statistics to scaling coefficients with compact parameterization.

(i) Permutation equivariance across tokens and batches: MLPs apply the same pointwise
transformation to every token, independent of position. As a result, moving a token to a
different position yields the same value for that token; changing the token order merely
reorders the outputs one-to-one. This position-agnostic, tokenwise permutation equivariance
makes the layer robust to token and batch ordering.

Instantiation. We (a) extract preliminary descriptors (e.g., token/patch-level mean responses per
sample); (b) feed them to an MLP that projects them into a shared space where class-commonalities
become salient; (c) use the outputs to guide adaptive activation scaling, restoring discriminative
signals lost under batch shuffling.

Beyond shuffled classification: object detection. The design extends to detection, where an image
contains multiple object classes and background. Semantic objects are typically spatially continuous;
for a non-boundary pixel I, a small neighborhood B(I,, €) contains same-class pixels. One can first
compute fine-grained local statistics (e.g., pooled or masked aggregation) and then apply the same
MLP transformation to drive adaptive scaling in mixed-class settings.

Takeaway. Batch-class coherence diagnostics reveal why FleS-Proto succeeds under class-coherent
batches yet drops under heavy shuffling, and how these phenomena motivate FleS: learn transforma-
tions that infer robust, class-relevant indicators without relying on inter-sample batch statistics.

E.17 ON ROBUSTNESS TO BATCH SIZE

Setup. We conduct a controlled ablation on ImageNet with the Swin-Micro backbone, varying the
global batch size B € {256, 1024, 2048} for FleS while keeping all other training settings fixed; the
learning rate is scaled approximately linearly with B. A GELU baseline at B=1024 is included for
reference.

Table 20: Ablation of training batch size on ImageNet.

Activation Backbone #Params. | FLOPs | Batch Size | LR Top-1(%)1

GELU Swin-Micro 21.1M 2.6G 1024 1x1073 78.7
256 2.5x107* 80.1

FleS Swin-Micro | 23.5M 2.6G 1024 1x1073 80.3
2048 2x107? 80.3

* With LR scaled approximately linearly with batch size by following (Goyal et al.,|2017). FleS
maintains stable Top-1 across a wide range of batch sizes.

Results. As shown in Tab. [20] FleS exhibits strong stability across an 8x range of batch sizes
(80.1-80.3% Top-1). At test time, FleS is batch-size invariant; evaluating with batch size = 1 yields
80.1% Top-1, consistent with the design that avoids inter-sample batch statistics at inference.

E.18 CHANNEL REDUCTION RATIO OF LIGHTWEIGHT MLP IN FLES

Setup. We analyze the sensitivity of FleS to the channel reduction ratio r, which directly controls
the hidden size of the two lightweight MLP heads: H = | D/r| for input/output scaling (all other
settings fixed). Unless stated otherwise, the backbone is Swin-Micro on ImageNet; we set r = 32
by default.
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Table 21: Ablation on the channel reduction ratio 7.

Activation | Backbone #Params. | Ratior | Top-1(%)1
GELU Swin-Micro 21.1M — 78.7
] 228M | 48 | 797
FleS Swin-Micro 23.5M 32 80.3
25.9M 16 80.4

* Larger MLPs (smaller ) improve accuracy but with diminishing
returns relative to parameter growth.

Findings. As r decreases (i.e., the MLP size increases), accuracy improves, but the marginal gain
becomes small compared with the considerable additional parameters. Overly small MLPs (r=48)
lead to noticeable performance degradation. Overall, r=32 strikes a robust balance between accuracy
and model size; we therefore adopt it as the default.

E.19 ROBUSTNESS TO INITIALIZATION

Setup. We assess initialization sensitivity on PoolFormer-S12, training with identical settings
while varying the random seed {42, 0, 31415, 2025}. A GELU baseline (seed = 42) is included for
reference.

Table 22: Robustness to random initialization.

Activation Backbone #Seed Top-1(%)1
GELU PoolFormer-S12 42 77.2
I R R R 794
0 79.4
FleS PoolFormer-S12 31415 793
2025 79.5

* FleS demonstrates robustness across seeds and consistently
outperforms GELU.

Findings. Across seeds, FleS remains stable (79.3-79.5% Top-1 acc.) and consistently exceeds the
GELU baseline by a significant margin, indicating robustness to initialization.

F ROBUSTNESS UNDER LONG-TAILED DISTRIBUTIONS

Setup. We evaluate FleS on ImageNet-LT (long-tailed distribution) using PoolFormer-S12. To
isolate the intrinsic effect of activation strategies, we do not apply any specialized long-tail techniques
(e.g., re-weighting/re-sampling, deferred re-balancing). Training follows common long-tail practice:
300 epochs, 20 warm-up epochs, cosine LR, base LR 5x10~%, AdamW, weight decay 0.05.

Table 23: Comparative evaluation on ImageNet-LT.

Activation | Backbone #params. | FLOPs | Top-1(%)1
GELU PoolFormer-S12 11.9M 1.8G 37.1
" FleS | PoolFormer-SI2 | 13.8M | 1.8G | 40.6

* No specialized long-tail mitigating techniques applied.

Findings. FleS substantially outperforms GELU under class-imbalance, indicating stronger adapt-
ability to long-tailed distributions even without any imbalance-specific heuristics.
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G IMPLEMENTATION RECIPES FOR IMAGENET EXPERIMENTS

For fair comparisons, (1) we adopt the standard training-evaluation recipe (Touvron et al., 2021}
Liu et al.,[2021) for Vision Transformers, except for (2) Swin-Min, where we reduce the 300-epoch
training to 120 epochs (due to time and resource constraints); (3) For ResNets, we adopt the standard
CNN training-evaluation recipe (Zhou et al.,|2021; Ma et al., 2021). The implementation protocols
are detailed as follows:

1. For Swin-Micro (Liu et al.l 2021}, Swin-T (Liu et al.,[2021)), and PoolFormer-S12 (Yu et al.,
2022), we adopt the standard data augmentation suggested in (Touvron et al.| 2021} |Liu
et al.| [2021)) and widely used AdamW optimizer (Loshchilov & Hutter,2019) to train each
implemented model with the standard cosine scheduler through 300 epochs (including 20
linear warm-up epochs). The learning rate starts from 1 x 10~ with an effective batch size
of 1024 by default and decays to 1 x 1075, smoothly. The weight decay is set to 0.05 and
label-smoothing of 0.1. We follow the common practice to stabilize the model weights by
10 cool-down epochs with the minimum learning rate 1 x 10~ after the main epochs.

2. For Swin-Min, we retain most of the recipes from the above configuration [I] except that we
reduce the training epochs from 300 to 120 to shorten the training duration, as we train our
model and the competing models from scratch.

3. For ResNets (He et al., 2016), we adopt the common data augmentation strategy (Zhou
et al.l 2021) and the standard SGD optimizer to train each model for 120 epochs, including
5 linearly increasing warm-up epochs. The learning rate starts at 0.1 with a batch size of
256 and decays to 1 x 107°. The momentum and weight decay are set to 0.9 and 174,
respectively. We follow the common practice to stabilize the model weights by 10 cool-down
epochs with the minimum learning rate 1 x 10~° after the main epochs.

Following the common practice, we (1) train and test all models with an image size of 224 x 224; (2)

report the results of our models and the official results for the baseline methods in terms of Top-1
Accuracy, rounded to one decimal place.
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Figure 6: The accuracy curve (left) and loss curve (right) of PoolFormer-S12 (Yu et al., [2022)
backbone with different activation models.

We show the convergence curves of PoolFormer-S12(s) (Yu et al.,|2022) equipped with our FleS and
other competing baseline/popular/SoTA activation functions. Note that each model is trained by the
standard 300-epoch recipe (suggested in (Touvron et al., 2021} |Liu et al.,|2021) and introduced in
training configure[I)) from scratch to convergence, respectively.

Fig.[6]depicts the convergence trends in Top-1 accuracy (the higher the better) and training loss (the
lower the better) of the PoolFormer-S12(s) equipped with our FleS function and other activation
functions, respectively, where the baseline PoolFormer-S12 uses GELU function. Our Fles-B achieves
the highest Top-1 accuracies and lowest loss values over the varying of epochs. This validates the
favorable convergence attributes of our activation functions FleS.
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I CIFAR-100 CLASSIFICATION

Implementation details. We further compare our FleS with other SOTA/popular activation functions
on CIFAR-100 (Krizhevskyl [2009), using CIFAR-Swin-T as the backbone. CIFAR-Swin-T is a
modified version of the original Swin-T (Liu et al.,|2021), which was designed for ImageNet (Deng
et al.,[2009) and downstream tasks. Specifically, we reduce the base embedding dimension from 96
to 24 to prevent redundant parameters, as CIFAR-100 contains far fewer images than ImageNet and
has significantly lower image resolution.

To ensure fair comparisons, all models are trained from scratch using the same standard training-
evaluation recipe. To construct this recipe, we adopt most of the training protocols and data augmen-
tations suggested in (L1 et al., 2019), with slight modifications to fit the Transformer-based backbone.
Specifically, each model is train for 350 epochs with a batch-size of 256, by an AdamW optimizer
with a weight-decay of 0.05. The learning rate starts from 1~3 and decreases to 1~% by following
the standard cosine learning rate schedule. All the input images are fixed to the size of 32 x 32 by
following the common practice.

Experimental results. Comparative results are shown in Tab. [24] where our FleS-B improves upon
the SOTA and popular competing methods by a significant margin. This observation is consistent
with our observations on ImageNet, further supporting the adaptability of FleS across datasets of
different scales.

Table 24: Comparison of different activation functions on CIFAR-100 benchmark dataset.

Backbone Method GELU SiLU Mish Pserf IIEU AdaS \ FleS
. Top-l(%)] | 667403 658402 657403 660403 667102 670402 | 68.9+03
CIFAR-SWin-T | 4 ams. 1.8M 1.8M 1.8M 1.8M 2.0M 2.0M 2.0M

* Each model is trained 8 times, and the mean and standard deviation of its Top-1 accuracy are reported.

J MS COCO OBJECT DETECTION

Implementation details. In this Appendix, we further validate the versatility and generalizability
of our activation function FleS on MS COCO (Lin et al.;2014) object detection. We evaluate FleS
by comparing it with a series of popular and SOTA self-gated activation functions, including (1)
GELU (Hendrycks & Gimpel, 2016) (the most widely used activation function in Transformers),
(3) SMU (Biswas et al.,[2022b), and (4) Meta-ACON (Ma et al., 2021). Meta-ACON generalizes
lightweight channel attention (Hu et al.| 2020) to perform context-aware dynamic scaling on input
features. Thus, it is functionally relevant to FleS and has a similar number of additional parameters,
but with a fundamentally different motivation, philosophy, and methodological insights. We conduct
the experiment using the popular PoolFormer-S12 (Yu et al.,[2022) backbone and RetinaNet detector
(Lin et al.| 2017)).

For fair comparisons, we train each RetinaNet equipped with different activation models from
scratch using the same implementation configure constructed on the 1x schedule in MMDetection
toolbox (Chen et al.| |2019). To better suit Transformer layers, we replace the default SGD optimizer in
the 1x schedule with AdamW optimizer. The learning rate starts at 2 x 10~3 and decays to 1 x 1075,
gradually. Following common practice, the weight decay is set to 0.05. We report the results using
standard evaluation metrics, i.e., mAP as the primary metric for average precision and AP, A Prs,
APg, APy;, APy as specific APs for different scales. Each PoolFormer-S12 (Yu et al.| [2022)
backbone using different activation function is initialized with its corresponding ImageNet pre-trained
weights. To ensure reproducibility, we maintain deterministic mode in each implementation.

Experimental results. The comparative results are reported in Tab. 25 where FleS achieves clear
improvements over all the competing popular and SOTA activation models across almost all evaluation
metrics, especially in A Pg, which measures performance on challenging small objects. This further
validates the generalizability of FleS.

Note that as discussed in Section 4.2 of our main paper, for dense recognition tasks such as object
detection, each image contains multiple semantic classes of objects, which requires computing the
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Table 25: Comparative evaluation on MS COCO (Lin et al., 2014) object detection. The PoolFormer-
S12 2022) is applied as the encoder with the popular RetinaNet detector 2017).

Activation Encoder MmAP (%) | APso(%)1 | AP:5(%)?1 | APs(%)1 | AP (%) | APL(%)1

GELU 35.5 55.5 37.5 19.5 38.7 46.3

Meacon |PoelFomersiz| e |8 | 08 | er | wa | e
FleS (Ours)| | 3 362 | 570 | 381 | 207 | 400 | 468

channel indicators &1 with finer ranges to mitigate class information confusion (e.g., image patches).
Due to time and resource constraints, we use a brute-force approach to calculate channel indicators
for each feature patch of size 9 x 15), and leave the investigation of the optimal patch size for future
exploration.

K ELABORATION ON INTUITION BEHIND FLES-NLP & FLES-SEQGATE

For NLP tasks, our design is motivated by the fact that token-level semantics are highly context-
dependent and can change abruptly along the sequence. In this setting, a naive sequence-level mean
tends to wash out local, context-specific cues. Therefore, instead of using a global indicator as in the
vision setting, FleS-NLP and FleS-SeqGate construct token-level indicators, so that each position is
modulated by statistics adapted to its own semantic neighborhood; the integration of channel-wise
cues is largely delegated to the FleS MLP in this design.

In FleS-SeqGate, to make these indicators expressive yet lightweight, we further use a depthwise
1D convolution along the sequence as a low-cost way for each channel to aggregate information
from nearby tokens. This provides a more suitable mechanism than a simple mean for estimating
context-aware per-channel importance, while keeping the computational overhead small. The design
is partially inspired by scan-style state-space models (e.g., Mamba), but we adopt 1D depthwise
convolutions as a much cheaper proxy, while preserving the core FleS principle of monotonic,
sign-aware recalibration of pre-activations.

More broadly, presenting both FleS-NLP and FleS-SeqGate serves to illustrate that the decision-
making perspective is not only useful for interpreting existing nonlinear mechanisms, but can also
guide the design of new ones. In particular, viewing nonlinear activations through this lens naturally
leads to token-level indicators and lightweight sequence-wise aggregation as principled ways to
handle context-dependent semantics in NLP, analogous to how attention has inspired a variety of
subsequent token-mixing architectures.

L. POTENTIAL LIMITATIONS

We note one practical limitation of the current vision instantiation of FleS for dense recognition tasks
is that a spatial window size needs to be chosen to compute the indicator statistics. In practice, we
select this neighborhood (window) size empirically based on the input resolution and the typical pixel
extent of objects. For example, on COCO we adopt a 9 x 15 window, since images are typically
resized to 800 x 1333 and small objects usually occupy more than 102 pixels, so such a window can
capture relatively valid class-relevant statistics. We then use MLPs to integrate cross-window cues by
scanning over the image to construct the indicators. This additional design choice slightly increases
the deployment burden.

M ON POTENTIAL EXTENSIONS OF FLES

As a possible direction for future work, we plan to explore FleS variants with improved adaptability,
in particular unified and adaptive schemes for extracting valid, fine-grained rectified statistics on
pre-activations to construct more effective indicators.
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LLM USAGE

ChatGPT was used to aid in polishing the writing. Specifically, it was employed to correct grammar,
improve readability, and refine the clarity of sentences.
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