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Abstract
Speculative Decoding (SD) is a promising001
method for reducing the inference latency002
of large language models (LLMs). A well-003
designed draft model and an effective draft can-004
didate tree construction method are key to en-005
hancing the acceleration effect of SD. In this006
paper, we first propose the Effective Draft De-007
coder (EDD), which treats the LLM as a power-008
ful encoder and generates more accurate draft009
tokens by leveraging the encoding results as010
soft prompts. Furthermore, we use KL diver-011
gence instead of the standard cross-entropy loss012
to better align the draft model’s output with the013
LLM. Next, we introduce the Pruned Candi-014
date Tree (PCT) algorithm to construct a more015
efficient candidate tree. Specifically, we found016
that the confidence scores predicted by the draft017
model are well-calibrated with the acceptance018
probability of draft tokens. Therefore, PCT es-019
timates the expected time gain for each node in020
the candidate tree based on confidence scores021
and retains only the nodes that contribute to ac-022
celeration, pruning away redundant nodes. We023
conducted extensive experiments with various024
LLMs across four datasets. The experimental025
results verify the effectiveness of our proposed026
method, which significantly improves the per-027
formance of SD and reduces the inference la-028
tency of LLMs.029

1 Introduction030

Large language models (LLMs) have achieved ex-031

cellent performance in various natural language032

processing tasks and have garnered much atten-033

tion (OpenAI, 2023; Touvron et al., 2023; Zheng034

et al., 2023). However, the autoregressive decoding035

paradigm adopted by LLMs requires generating to-036

kens one by one, which results in high inference la-037

tency. To overcome the speed bottleneck of this se-038

rial generation method, speculative decoding (SD)039

has been proposed as a feasible solution (Leviathan040

et al., 2022; Chen et al., 2023a). As shown in Fig-041

ure 1, the primary process of SD involves quickly042
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Figure 1: Comparison between autoregressive decoding
(left) and speculative decoding (right).

generating multiple draft tokens through a draft 043

model and then verifying whether these tokens are 044

accepted in parallel by a target model (LLM). This 045

process leverages the parallel computing capabili- 046

ties of devices such as GPUs, significantly reducing 047

inference latency. More importantly, SD is a loss- 048

less acceleration method that can strictly ensure the 049

final generated result is completely consistent with 050

autoregressive decoding. 051

Existing works on SD improvement can be di- 052

vided into two main directions. The first direction 053

focuses on enhancing the draft model (Cai et al., 054

2024; Zhou et al., 2023; Elhoushi et al., 2024). 055

For example, MEDUSA (Cai et al., 2024) uses a 056

non-autoregressive approach to generate draft to- 057

kens, increasing the draft model’s inference speed. 058

DistillSpec (Zhou et al., 2023) adapts knowledge 059

distillation to better align the draft model with the 060

target model, thereby increasing the acceptance 061

rate of draft tokens. However, these methods treat 062

the draft model as an independent model and do 063

not utilize the results encoded by LLMs to assist 064

in generating draft tokens. The second direction is 065

to generate multiple draft candidate sequences to 066

improve the average acceptance length (Du et al., 067

2024; Cai et al., 2024; Miao et al., 2023). For in- 068

stance, SpecInfer (Miao et al., 2023) constructs 069

a candidate tree-based speculative inference and 070

verification system to improve the decoding effi- 071
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ciency of LLMs. However, the candidate trees072

constructed by previous methods contain many re-073

dundant nodes, leading to unnecessary computation074

and time overhead.075

Therefore, in this paper, we propose new solu-076

tions from the two aforementioned perspectives077

to address the shortcomings of previous methods078

and further improve the efficiency of SD. First, we079

design an Effective Draft Decoder (EDD), which080

generates subsequent draft tokens based on the en-081

coding results from LLMs. LLMs have powerful082

text understanding capabilities and can effectively083

encode the semantic information of input sentences.084

Previous studies (Kasai et al., 2020; Gu and Kong,085

2020) have shown that, given a powerful encoder,086

a single-layer autoregressive decoder is sufficient087

to achieve excellent generation quality. Therefore,088

we treat the LLM as an encoder to generate soft089

prompts, which allows the EDD to obtain more090

contextual information and make more accurate091

predictions. In addition, unlike previous methods092

(Du et al., 2024; Cai et al., 2024; Li et al., 2024b)093

that use cross-entropy loss to fit the output of the094

draft model to the training set, we use KL diver-095

gence to directly align the probability distribution096

predicted by the draft model with the target model,097

thereby further improving the acceptance rate.098

Second, we found that the prediction confidence099

of the draft model is well-calibrated with the token100

acceptance rate through experiments. Based on101

this, we proposed the Pruned Candidate Tree (PCT)102

algorithm, which dynamically prunes the candidate103

tree according to the confidence score of the draft104

tokens and intelligently determines the depth of the105

tree. Specifically, we estimate the impact of each106

node on the expected inference latency and remove107

nodes that could increase this value, significantly108

improving the final inference speed.109

We chose the LLaMA2-Chat series (Touvron110

et al., 2023) and the Vicuna1.5 series (Zheng et al.,111

2023) LLMs as the target models and conducted112

experiments on four datasets across different tasks.113

The experimental results verify the effectiveness114

of our method. First, EDD effectively utilizes the115

information encoded by LLMs, and its predicted116

results are closer to the target model. Second, the117

PCT algorithm fully unleashes the potential of the118

draft model and significantly increases the average119

acceptance length. When combining the two, our120

method achieves speedups of 3.27× and 3.38× for121

LLaMA2-Chat 13B and Vicuna1.5 13B on the MT-122

Bench (Zheng et al., 2023). The main contributions123

of this paper are summarized as follows: 124

• We designed the EDD framework, which 125

incorporates the encoded information from 126

LLMs into the draft model and trains it using 127

the knowledge distillation method, allowing it 128

to better align with the target model. 129

• We proposed the PCT algorithm, which effec- 130

tively prunes candidate trees while maintain- 131

ing a high average acceptance length, signifi- 132

cantly reducing inference latency. 133

• Extensive experiments verify the effectiveness 134

of our proposed method, which can be easily 135

applied to various LLMs and achieves better 136

performance than previous SD methods. 137

2 Preliminaries 138

Speculative decoding allows autoregressive LLMs 139

to generate multiple tokens in a single forward 140

pass without compromising generation quality 141

(Leviathan et al., 2022). Each iteration of spec- 142

ulative decoding is divided into two stages: draft- 143

ing and verification (as shown in Figure 1). In 144

the drafting stage, SD uses a draft model, which is 145

more efficient than the target model, to generate the 146

subsequent m draft tokens (di+1, di+2, ..., di+m) 147

based on the previous content t≤i. In the veri- 148

fication phase, SD determines whether to accept 149

these draft tokens based on the prediction results 150

of the target model. There are two acceptance 151

strategies: speculative decoding and speculative 152

sampling, which correspond to the greedy search 153

and standard sampling of the target model, respec- 154

tively. In this work, we primarily adopt the specula- 155

tive decoding acceptance strategy. After inputting 156

t≤i and draft tokens into the target model for a 157

forward pass, the subsequent prediction results 158

(ti+1, ti+2, . . . , ti+m, ti+m+1) are obtained in par- 159

allel through greedy search. Among these, due to 160

the causal mask, the generation process of ti+1 is 161

identical to autoregressive decoding, so ti+1 must 162

be accepted. This ensures that at least one new 163

token is generated in each iteration. Subsequently, 164

SD performs judgments from left to right: 165{
Accept tj , if dj−1 = tj−1

Reject tj , if dj−1 ̸= tj−1
(1) 166

where i+2 ≤ j ≤ i+m+1. In addition, SD only 167

accepts tokens before the first rejection to ensure 168

that the generated results are exactly the same as 169
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Figure 2: Overview of our proposed Effective Draft Decoder. EDD treats LLM as an encoder and uses the hidden
state of LLM as a soft prompt to generate subsequent token drafts autoregressively.

the autoregressive decoding. Finally, the accepted170

tokens are concatenated with the previous content171

as the input for the next iteration. From the SD172

generation process, it can be seen that ensuring173

both the efficiency of the draft model and the ac-174

ceptance rate of the generated draft tokens is the175

key to reducing inference latency.176

3 Method177

This section introduces the two components of our178

approach. In Section 3.1, we present the model179

architecture and training process of the proposed180

EDD. In Section 3.2, we analyze the correlation181

between the predicted confidence and the accep-182

tance rate, and provide the design principle and183

implementation details of our PCT algorithm.184

3.1 Effective Draft Decoder185

Model Architecture. In this paper, we use186

decoder-only LLMs as the target models, which187

typically consist of an embedding layer, multiple188

Transformer layers, and an LM head. The main189

time consumption during the forward pass is caused190

by the multiple Transformer layers. Our EDD uses191

the same model structure as the LLMs but contains192

only one Transformer layer. Therefore, although193

it still employs autoregressive decoding, its gener-194

ation speed is significantly faster than that of the195

LLMs, ensuring the efficiency of the draft model.196

However, the size gap between the draft model and197

the target model can lead to a significant perfor-198

mance gap, resulting in a low acceptance rate. As199

a result, we no longer consider the draft model as200

a separate model but rather as an extension mod-201

ule of the LLM. Specifically, we treat the LLM202

as an encoder that can effectively encode previous 203

content. At the same time, the draft model acts 204

as a decoder, generating subsequent draft tokens 205

based on the hidden states provided by the LLM 206

(as shown in Figure 2). 207

Previous research (Kasai et al., 2020; Gu and 208

Kong, 2020) has shown that, given a powerful en- 209

coder, even a shallow decoder can achieve excellent 210

generation quality. Therefore, EDD leverages the 211

powerful encoding capabilities of LLMs, signifi- 212

cantly improving model performance. In addition, 213

unlike GLIDE (Du et al., 2024) and EAGLE (Li 214

et al., 2024b), our approach uses the LLM encoding 215

result as a soft prompt for EDD without any modi- 216

fications to the draft model, ensuring consistency 217

between the draft and target models. 218

Training Strategies. We copy the parameters of 219

the embedding layer and LM head from the tar- 220

get LLM to EDD for better initialization. We then 221

train the EDD in a manner similar to the standard 222

encoder-decoder model training process. Specifi- 223

cally, we first use the LLM (frozen) to encode the 224

input text T = (t1, t2, . . . , tn) to obtain the hid- 225

den states H = (h1, h2, . . . , hn). Next, we employ 226

the teacher-forcing strategy to input both T and H 227

into the EDD, generating its predicted probability 228

distribution: 229

Pd(T | H) =

n∏
i=1

Pd (ti | t<i, H) (2) 230

However, EDD cannot obtain the encoding infor- 231

mation of all texts during inference and can only 232

generate subsequent tokens based on the previous 233

text. To maintain consistency with the inference 234
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(a) dual-block attention mask (b) The relationship between confidence and acceptance rate

Figure 3: (a) Example of a dual-block attention mask
where the block length L is set to 2. (b) Average accep-
tance rate of draft tokens in different confidence bins.

process, we propose a dual-block mask mechanism235

for efficient training. Specifically, we divide T into236

multiple blocks of length L, corresponding to the237

multiple draft processes. As shown in Figure 3(a),238

when the draft model predicts ti in the j-th block,239

the mask ensures that the draft model can only ac-240

cess the previous tokens in the j-th block and the241

hidden states corresponding to blocks 0 to j − 1:242

Pd(T | H) =
n∏

i=1

Pd (ti | tj∗L:i, h≤j∗L) (3)243

where j =
⌊
i
L

⌋
. Additionally, since the number244

of accepted draft tokens may vary in each itera-245

tion during inference, we randomly select different246

block lengths for the division at each step during247

the training phase to improve the model’s robust-248

ness.249

Furthermore, we found that previous methods250

(Leviathan et al., 2022; Du et al., 2024) use the251

standard cross-entropy loss to train the draft model,252

which deviates from the actual training objective.253

Even if the draft model perfectly fits the training254

data, its acceptance rate may still be low. Therefore,255

we use KL divergence as the training loss to force256

the probability distribution predicted by the EDD257

to be close to that of the LLM:258

DKL (Pt∥Pd) =
∑
x

Pt(x) log
Pt(x)

Pd(x)
(4)259

where Pt is the probability distribution predicted260

by the LLM, which can be obtained simultaneously261

during the encoding process. Through this soft-262

label knowledge distillation training method, the263

EDD can learn more fine-grained information and264

effectively align with the target model.265

3.2 Pruned Candidate Tree266

Previous works (Cai et al., 2024; Li et al., 2024b)267

constructed draft candidate trees to improve the268

average acceptance length. However, their candi- 269

date tree, constructed with a fixed width and depth, 270

contains many redundant nodes, resulting in unnec- 271

essary overhead. To address this issue, we propose 272

the PCT algorithm, which intelligently determines 273

the width and depth of the candidate tree. 274

Analysis. Inspired by GLIDE (Du et al., 2024), 275

we first explored the correlation between the draft 276

model’s prediction confidence (maximum probabil- 277

ity) and the acceptance rate through experiments. 278

Specifically, we trained EDD as the draft model, 279

used LLaMA2-Chat 13B as the target model, and 280

conducted experiments on the MT-Bench (Zheng 281

et al., 2023). We required EDD to generate a draft 282

sequence of length 10 each time and counted the 283

confidence score and acceptance rate of each draft 284

token1. We divided the confidence scores into 10 in- 285

terval bins and plotted the corresponding reliability 286

diagrams. As shown in Figure 3(b), the confidence 287

is well-calibrated (Guo et al., 2017) with the ac- 288

ceptance rate (Expected Calibration Error = 0.019), 289

showing a high positive correlation. Therefore, we 290

can effectively prune the candidate tree based on 291

the confidence score of the draft tokens. 292

Design Principle. We first focus on a specific 293

draft sequence (d1, d2, . . . , dm) in the candidate 294

tree. Assume that the time required for a forward 295

pass of the draft model and the target model is 296

sd and st, respectively, and that the probability of 297

accepting the j-th draft token dj is pj . So, the ex- 298

pected time gain from performing the j-th drafting 299

step can then be evaluated as follows: 300

(1− pj)∗(st + sd)+pj∗sd−st = sd−pj∗st (5) 301

Therefore, if pj < sd/st, the j-th drafting step is 302

more likely to increase the inference latency and 303

should not be executed. Note that dj is accepted, 304

meaning that it and all the draft tokens before it are 305

accepted: pj =
∏j

i=1 ai, where ai represents the 306

probability of each token being accepted indepen- 307

dently. Furthermore, the results of the above anal- 308

ysis experiment show that the confidence output 309

by the draft model is well-calibrated with the inde- 310

pendent acceptance rate, so pj ≈
∏j

i=1 ci, where 311

ci represents the confidence score of each draft to- 312

ken. Therefore, we can estimate the acceptance 313

probability of each node and effectively prune the 314

candidate tree. 315

1Tokens after the first rejection are not included to ensure
independence.
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Figure 4: An example of PCT implementation, where
sd/st = 0.1, and leaf nodes with an overall acceptance
confidence less than 0.05 are removed.

Implementation Details. Figure 4 shows an ex-316

ample of the PCT construction process. First, the317

draft model predicts the top-k child nodes based318

on the expandable nodes from the previous layer319

to form the current layer. Then, PCT calculates the320

acceptance confidence of each node in the current321

layer and marks the nodes with an overall accep-322

tance confidence less than sd/st to prevent them323

from being used in the next layer’s node genera-324

tion. Finally, the construction process terminates325

if there are no expandable leaf nodes or the tree326

depth reaches the maximum depth. Additionally,327

we remove leaf nodes whose overall acceptance328

confidence is below a given threshold, further re-329

ducing the number of nodes. Finally, we flatten the330

candidate tree into a one-dimensional sequence and331

construct a specific tree attention mask (Cai et al.,332

2024) for the LLM to verify the entire candidate333

tree in parallel. The recently proposed EAGLE-2334

(Li et al., 2024a) is similar to our approach, but335

the depth used in its candidate tree construction336

process is fixed. In contrast, our PCT algorithm337

can adaptively determine the depth of the candi-338

date tree based on the expected time gain at each339

step in the drafting process, effectively reducing340

unnecessary computational overhead.341

4 Experiments342

In this section, we verify the effectiveness of our343

proposed method on different datasets and LLMs.344

We first introduce our experimental setup in Section345

4.1, then report the main results in Section 4.2.346

Analysis experiments are presented in Section 4.3.347

4.1 Experimental Setup348

Models and Datasets. We selected two widely349

used LLMs, LLaMA2-Chat (7B, 13B) (Touvron350

et al., 2023) and Vicuna1.5 (7B, 13B) (Zheng et al.,351

2023), as the target models for our experiments.352

Our EDD uses the exact same architecture as the 353

target models but contains only one Transformer 354

layer. Similar to previous methods (Du et al., 2024; 355

Cai et al., 2024; Li et al., 2024b), we train the 356

draft models on the ShareGPT (ShareGPT, 2023) 357

dataset. To comprehensively evaluate our method, 358

we selected four datasets from different tasks: MT- 359

Bench (Zheng et al., 2023) for multi-turn dialogue, 360

GSM8k (Cobbe et al., 2021) for mathematical rea- 361

soning, CNN/DM (See et al., 2017) for abstractive 362

summarization, and HumanEval (Chen et al., 2021) 363

for code generation. For CNN/DM, we randomly 364

selected 1,000 samples from its test set for our ex- 365

periments. Baselines and implementation details 366

can be found in Appendix A and Appendix B. 367

Metrics. Since SD can achieve lossless acceler- 368

ation, we do not need to evaluate the quality of 369

the generated results. We use three metrics to as- 370

sess the acceleration effect of different methods: 371

(1) Walltime speedup: The actual speedup ratio 372

relative to autoregressive decoding, which may be 373

affected by different operating environments. (2) 374

Acceptance rate α: The average acceptance ratio 375

of draft tokens. When using draft candidate trees, 376

the acceptance rate is calculated by dividing the 377

final accepted sequence length by the maximum 378

depth of the candidate tree. A higher acceptance 379

rate indicates that the output of the draft model is 380

more consistent with the target model. (3) Average 381

acceptance length τ : The average number of new 382

tokens generated in each iteration. If the time con- 383

sumed by the drafting process is the same, a larger 384

τ indicates a better acceleration effect. Both α and 385

τ are not affected by hardware configuration and 386

provide a more objective evaluation. 387

4.2 Main Results 388

The main experimental results are shown in Table 1 389

and Table 2. Our proposed EDD and PCT methods 390

effectively improve the acceleration effect of SD 391

and achieve better performance than the baselines. 392

First, compared to other draft models, EDD gen- 393

erates results closer to the target model. Specif- 394

ically, when compared with VDM, EDD signif- 395

icantly improves the average acceptance length, 396

indicating that EDD can make full use of the encod- 397

ing information from the LLM to enhance model 398

performance. MEDUSA-1 improves the generation 399

speed of draft tokens through non-autoregressive 400

decoding, but its average acceptance rate is low, so 401

its speedup ratio is similar to that of VDM. Further- 402
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MT-bench GSM8K CNN/DM HumanEval

Model Method Speedup α τ Speedup α τ Speedup α τ Speedup α τ

LLaMA2-Chat 7B

VDM 1.49x 0.39 1.96 1.37x 0.36 1.80 1.11x 0.30 1.51 1.69x 0.40 2.15
MEDUSA-1 1.48x 0.34 1.71 1.40x 0.33 1.63 1.20x 0.28 1.41 1.78x 0.39 1.97
EAGLE 1.82x 0.50 2.50 1.75x 0.51 2.54 1.50x 0.38 1.92 2.01x 0.55 2.73
EDD 1.97x 0.55 2.73 1.83x 0.51 2.57 1.58x 0.41 2.06 2.09x 0.57 2.87

LLaMA2-Chat 13B

VDM 1.53x 0.39 1.95 1.44x 0.37 1.84 1.14x 0.30 1.52 1.68x 0.40 2.03
MEDUSA-1 1.59x 0.36 1.71 1.46x 0.32 1.58 1.26x 0.28 1.40 1.72x 0.38 1.91
EAGLE 1.95x 0.53 2.66 1.99x 0.51 2.54 1.48x 0.41 2.04 2.09x 0.55 2.75
EDD 2.03x 0.54 2.68 2.08x 0.54 2.68 1.61x 0.42 2.10 2.16x 0.57 2.86

Vicuna1.5 7B

VDM 1.53x 0.40 2.02 1.37x 0.47 1.83 1.11x 0.37 1.51 1.69x 0.51 2.16
MEDUSA-1 1.58x 0.36 1.81 1.37x 0.33 1.63 1.17x 0.28 1.41 1.81x 0.41 2.06
EAGLE 1.91x 0.54 2.70 1.73x 0.49 2.44 1.45x 0.36 1.81 1.89x 0.52 2.60
EDD 2.00x 0.55 2.77 1.81x 0.51 2.54 1.58x 0.41 2.05 2.00x 0.55 2.77

Vicuna1.5 13B

VDM 1.58x 0.40 2.01 1.43x 0.37 1.83 1.14x 0.30 1.49 1.72x 0.43 2.13
MEDUSA-1 1.66x 0.38 1.81 1.47x 0.33 1.63 1.24x 0.28 1.39 1.80x 0.39 1.95
EAGLE 2.01x 0.54 2.68 1.68x 0.47 2.34 1.36x 0.38 1.90 1.83x 0.51 2.55
EDD 2.08x 0.56 2.80 1.80x 0.49 2.46 1.60x 0.42 2.09 1.95x 0.53 2.63

Table 1: Performance comparison of our proposed EDD and the baseline draft model. In each draft stage, we allow
the draft model to generate a draft sequence of length 5 using greedy search. VDM denotes the vanilla draft model,
which has the same model structure as EDD but does not utilize encoding information from LLMs. For a fair
comparison, all baselines were re-implemented in our experimental environment.

more, EDD even outperforms the strong baseline,403

EAGLE. We believe this may be because EDD is404

more consistent with the target model, and using405

KL divergence during training helps align its output406

better with the target model.407

Second, PCT can efficiently construct candidate408

trees and achieve faster inference speeds than base-409

line methods. In particular, VDM can achieve a410

high acceptance rate, but its large number of nodes411

increases inference latency. Although CAPE can412

automatically determine the number of nodes in413

each layer of the candidate tree, it only expands414

based on the top-1 node each time, resulting in415

decreased candidate diversity. Moreover, while416

EAGLE-2 re-ranks and filters nodes based on con-417

fidence scores, the number of nodes and the tree418

depth still remain fixed. In contrast, our method419

adaptively determines the width and depth based420

on the expected time gain at each node, effectively421

reducing redundant calculations.422

Finally, combining EDD with PCT can achieve423

excellent acceleration effects. As shown in Table424

2, our method can achieve a walltime speedup of425

2.04x-3.62x across different datasets, with the best426

performance on HumanEval and the worst perfor-427

mance on CNN/DM. We believe this is because428

the code generation task follows a fixed template,429

which reduces the difficulty of draft token genera-430

tion. In contrast, the texts in CNN/DM are more431

diverse, making the generated drafts more different432

from the target tokens. In addition, our method433

achieves better speedup on larger LLMs because 434

the speed difference between the draft model and 435

the target model is greater. In the future, we will 436

verify our method on even larger models. 437

4.3 Analysis 438

4.3.1 Impact of Hyperparameters 439

We explore the impact of different hyperparame- 440

ter settings on our method by conducting experi- 441

ments on 1,000 samples randomly selected from 442

the GSM8k training set. 443

Impact of Hidden States. The hidden states at 444

different layers of LLMs contain varying types of 445

information (Men et al., 2024; Jin et al., 2024). 446

We use LLaMA2-Chat 7B as the target model and 447

explore the effects of its hidden states at different 448

layers on EDD. The experimental results are shown 449

in Figure 5. When using hidden states from the last 450

layer or shallow intermediate layers, the average 451

acceptance length is relatively low, as these lay- 452

ers tend to overemphasize either global or local 453

information. Moreover, the best performance is 454

achieved when using the hidden states from the 455

28th (fourth-to-last) layer, indicating that the infor- 456

mation encoded in this layer provides effective as- 457

sistance for the draft decoding process. Therefore, 458

we utilize the hidden states from the fourth-to-last 459

layer as the encoding results of the LLMs. 460

Impact of Node Expansion Width. The expan- 461

sion width of each node significantly affects the 462
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MT-bench GSM8K CNN/DM HumanEval

Model Method Speedup α τ Speedup α τ Speedup α τ Speedup α τ

LLaMA2-Chat 7B

VCT 2.49x 0.71 3.56 2.36x 0.69 3.44 1.76x 0.50 2.53 2.83x 0.78 3.91
CAPE 2.56x 0.67 3.35 2.38x 0.63 3.13 1.83x 0.49 2.47 2.93x 0.74 3.71
EAGLE-2 2.87x 0.67 3.99 2.68x 0.64 3.83 1.91x 0.46 2.77 3.13x 0.72 4.31
PCT 3.04x 0.74 3.99 2.87x 0.72 3.80 2.04x 0.69 2.74 3.35x 0.75 4.49

LLaMA2-Chat 13B

VCT 2.63x 0.74 3.71 2.97x 0.72 3.61 1.86x 0.51 2.53 3.13x 0.78 3.88
CAPE 2.68x 0.71 3.53 3.07x 0.70 3.52 1.81x 0.47 2.35 3.15x 0.73 3.66
EAGLE-2 3.08x 0.69 4.15 3.27x 0.71 4.24 2.27x 0.53 3.15 3.35x 0.71 4.26
PCT 3.27x 0.75 4.13 3.49x 0.75 4.24 2.39x 0.70 3.03 3.62x 0.74 4.39

Vicuna1.5 7B

VCT 2.51x 0.72 3.59 2.43x 0.71 3.54 1.78x 0.51 2.55 2.80x 0.78 3.90
CAPE 2.56x 0.67 3.37 2.36x 0.62 3.09 1.83x 0.50 2.49 2.90x 0.72 3.62
EAGLE-2 3.01x 0.70 4.20 2.70x 0.65 3.88 2.03x 0.47 2.80 3.05x 0.70 4.19
PCT 3.08x 0.74 4.09 2.95x 0.74 3.89 2.04x 0.70 2.70 3.30x 0.72 4.22

Vicuna1.5 13B

VCT 2.76x 0.75 3.77 2.51x 0.64 3.19 1.92x 0.51 2.53 2.93x 0.72 3.58
CAPE 2.78x 0.73 3.65 2.57x 0.58 2.92 1.97x 0.49 2.45 2.99x 0.71 3.56
EAGLE-2 3.17x 0.73 4.35 2.77x 0.64 3.82 2.17x 0.50 3.01 3.15x 0.69 4.12
PCT 3.38x 0.75 4.36 2.89x 0.70 3.72 2.33x 0.70 2.84 3.32x 0.72 4.07

Table 2: The performance of our proposed PCT and baseline candidate tree construction methods on the EDD. VCT
represents the vanilla candidate tree, where the node expansion width is fixed at 3, and the tree depth is fixed at
5. For CAPE (Du et al., 2024) and EAGLE-2 (Li et al., 2024a), we conduct experiments following the settings
described in their original papers.

Figure 5: The impact of hidden states at different layers
of LLMs on EDD performance.

construction of the candidate tree, so we conducted463

experiments to explore the impact of different node464

expansion widths on our PCT method. As shown465

in Figure 6, when the node expansion width is466

less than 5, both the average acceptance length467

and the average number of nodes increase as the468

width grows. However, when the node expansion469

width exceeds 5, its effect on PCT becomes neg-470

ligible. These experimental results demonstrate471

that PCT can effectively prune candidate trees and472

remove redundant nodes. More importantly, com-473

pared to EAGLE-2, PCT contains only about half474

the number of nodes while achieving a competitive475

average acceptance length. This shows that PCT476

accurately retains the truly valuable nodes through477

Figure 6: The influence of node expansion width on the
average acceptance length and the average number of
nodes in the PCT method.

the expected time gain at each step. 478

4.3.2 Ablation Study 479

We conduct ablation experiments based on 480

LLaMA2-Chat 7B to verify the effectiveness of 481

each proposed module. Specifically, we compare 482

several variants of our method: (1) w/o encoding 483

result: the draft model does not use the encoding 484

results of the LLM; (2) w/o KL divergence: the 485

standard cross-entropy loss is used for training; (3) 486

w/o random division length: the block length is 487

fixed to 5 during training; (4) w/o expected time 488

gain: the expected time gain is not estimated, and 489

confidence score is directly used to prune the candi- 490

date tree; (5) w/o removing leaf nodes: leaf nodes 491
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Method Speedup α τ

EDD+PCT 3.04x 0.74 3.99

w/o encoding result 2.58x 0.55 3.04
w/o KL divergence 2.86x 0.67 3.60
w/o random division length 2.95x 0.69 3.72
w/o expected time gain 2.73x 0.58 3.45
w/o remove leaf nodes 2.95x 0.74 3.99

Table 3: Ablation study of our method on MT-bench.

whose overall acceptance confidence is lower than492

the threshold are not removed.493

The experimental results are shown in Table 3.494

As we can see, removing any module causes a495

decline in the performance of our method. First,496

not using encoding results leads to significant per-497

formance degradation. This indicates that the en-498

coding results from the LLM improve the perfor-499

mance of EDD, enabling it to generate more accu-500

rate draft tokens. Additionally, KL divergence and501

random block division length further enhance the502

EDD training process. Second, directly using confi-503

dence to prune candidate trees significantly reduces504

both the average acceptance rate and the average505

acceptance length. This demonstrates that expected506

time gain is a better node evaluation criterion, ef-507

fectively retaining valuable nodes. Third, failing508

to delete redundant leaf nodes leads to a decreased509

speedup ratio. Although this variant does not affect510

the average acceptance length, it introduces more511

nodes during the verification phase and increases512

latency. Due to space constraints, more analysis is513

presented in Appendix C.514

5 Related Work515

Significant efforts have been made to improve the516

efficiency of LLMs, including techniques such as517

knowledge distillation (Yang et al., 2023; Chen518

et al., 2023b), pruning (Sun et al., 2023; Yin et al.),519

quantization (Lin et al., 2024; Yao et al., 2024), and520

early exit (Chen et al., 2023c; Zeng et al., 2024).521

However, these methods can only improve the for-522

ward pass speed of LLMs and do not address the523

speed bottleneck of autoregressive decoding.524

To enable LLMs to generate multiple tokens in a525

single forward pass, SD was proposed (Leviathan526

et al., 2022). This approach uses a draft model to527

quickly generate multiple tokens, which are then528

verified in parallel using LLMs. The performance529

of SD is primarily determined by the efficiency of530

the draft model and the acceptance rate of the draft531

tokens. Therefore, improving the acceptance rate532

while maintaining the generation speed of the draft 533

model is key to optimizing the SD method. 534

The vanilla SD method trains a separate autore- 535

gressive model that is much smaller than LLMs 536

to generate draft tokens quickly. However, there 537

is a significant gap between the performance of 538

vanilla draft models and LLMs, resulting in a low 539

acceptance rate. Medusa (Cai et al., 2024) adds 540

additional decoding heads to LLMs to generate 541

multiple future tokens in parallel. However, this 542

non-autoregressive generation method suffers from 543

the multimodality problem (Gu et al., 2017), which 544

affects the acceptance rate. Another line of work 545

uses the substructure of LLMs as the draft model to 546

achieve self-speculative decoding (Elhoushi et al., 547

2024; Liu et al., 2024; Xia et al., 2024). Although 548

these methods can achieve a high acceptance rate, 549

the inference speed of the draft model is slow, lead- 550

ing to an insignificant acceleration effect. Unlike 551

the above methods, EDD fully leverages the en- 552

coding ability of LLMs and uses KL divergence 553

to align with LLMs, enabling it to generate draft 554

tokens accurately with a tiny model size. 555

On the other hand, previous works have shown 556

that predicting multiple candidate sequences to con- 557

struct a draft candidate tree can significantly im- 558

prove the acceptance rate (Du et al., 2024; Cai et al., 559

2024; Li et al., 2024a; Miao et al., 2023; Guan et al., 560

2024). However, these methods typically generate 561

candidate trees based on fixed widths and depths, 562

resulting in many redundant nodes that increase 563

latency during the draft and verification phases. To 564

address this issue, we propose the PCT algorithm, 565

which effectively prunes candidate trees based on 566

expected time gain, reducing redundant time over- 567

head while maintaining a high acceptance rate. 568

6 Conclusion 569

This paper proposes two methods to improve the ac- 570

celeration effect of speculative decoding, focusing 571

on draft model design and candidate tree construc- 572

tion. First, we design the EDD, which treats the 573

LLM as an encoder and uses its encoding results as 574

soft prompts to help generate more accurate draft 575

tokens. Second, we propose the PCT algorithm, 576

which estimates the expected time gain of each 577

node based on confidence and effectively prunes 578

candidate trees. Experimental results verify the 579

effectiveness of our method, which significantly 580

improves the performance of speculative decoding. 581
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7 Limitations582

Although our method can significantly improve the583

acceleration effect of speculative decoding, it also584

has some limitations.585

First, the proposed EDD needs to be trained. Ad-586

ditionally, since EDD relies on the encoding results587

of LLMs, this further increases the training time.588

However, the required computational overhead for589

training remains acceptable because EDD is very590

small.591

Second, similar to previous speculative decoding592

methods, our approach is more suitable for scenar-593

ios with a batch size of 1. We believe that LLMs594

will be more widely deployed on personal devices595

in the future, so our method still holds great poten-596

tial for application.597

Third, we have not yet verified the effectiveness598

of our method on larger LLMs. In the future, we599

will conduct experiments on a broader range of600

LLMs to explore whether our method can achieve601

better acceleration effects with larger models.602
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A Baselines 764

To verify the effectiveness of our method, we se- 765

lected various baselines for comparison. The base- 766

lines for our EDD model include: 767

1. Vanilla Draft Model (VDM) (Leviathan et al., 768

2022): Trains an autoregressive draft model 769

independently without utilizing the encoding 770

information of LLMs. 771

2. MEDUSA-1 (Cai et al., 2024): Adds ad- 772

ditional decoding heads to LLM for non- 773

autoregressive decoding. During training, the 774

parameters of the LLMs are frozen, and only 775

the decoding heads are fine-tuned. 776

3. EAGLE (Li et al., 2024b): The draft model 777

performs autoregressive decoding at the fea- 778

ture level of LLMs. 779

Additionally, we selected three different candidate 780

tree construction methods as baselines for compari- 781

son with PCT: 782

1. Vanilla Candidate Tree (VCT): Uses fixed 783

width and depth to construct candidate trees. 784

We set the node expansion width to 3 and the 785

tree depth to 5. 786

2. CAPE (Du et al., 2024): Selects different pre- 787

set expansion sizes based on the draft model’s 788

confidence scores to construct candidate trees. 789

Following the original paper, we fix the candi- 790

date tree depth to 5, with the expansion width 791
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Figure 7: Average acceptance length (left) and distribution of PCT node numbers (right) on different task categories
of MT-bench. For simplicity, we do not plot the outliers in the box plots.

of each layer set to 7, 5, 3, and 1 for confi-792

dence score levels in the ranges of (0, 0.3],793

(0.3, 0.6], (0.6, 0.8], and (0.8, 1], respectively.794

3. EAGLE-2 (Li et al., 2024a): Re-ranks the795

nodes of the candidate tree by confidence796

scores and retains the top-k nodes. Follow-797

ing the original paper, we set the total number798

of draft tokens to 50, with a draft tree depth of799

6, and select 10 nodes during the expansion800

phase.801

For a fair comparison, all baselines were re-802

implemented in our experimental environment.803

B Implementation Details804

We conducted experiments on NVIDIA RTX805

A6000 48GB GPUs. During the training of the806

draft model, we randomly sampled block lengths807

ranging from 5 to 10 at each step to divide the808

input text. The hidden states of the fourth-to-last809

layer of LLMs were used as the encoding result810

for EDD. We set the batch size to 8, the learning811

rate to 1e-4, and used AdamW (Kingma and Ba,812

2014) to optimize the model parameters. The draft813

model was trained for only one epoch, and we kept814

the final checkpoint. In the inference phase, the815

expansion width of each node in the PCT was set to816

5, and the maximum depth was set to 10. Addition-817

ally, we calculated the average time required for818

one forward pass of both target models and draft819

models for PCT construction (7B: 1.1ms/29.8ms,820

13B: 1.4ms/50.1ms) and removed leaf nodes whose821

overall acceptance confidence was less than 0.01.822

Our evaluation focused on the scenario with a batch823

size of 1, representing the use case where LLMs824

are locally hosted for personal use.825

C More Analysis 826

C.1 Number of Nodes on Different Tasks 827

Our PCT algorithm can adaptively prune candi- 828

date trees. Therefore, we conducted experiments 829

on LLaMA2-Chat 7B to explore whether the num- 830

ber of nodes in the candidate trees constructed by 831

PCT varies across different task categories in the 832

MT-bench. As shown in Figure 7, PCT constructs 833

candidate trees of appropriate sizes based on di- 834

verse inputs. Specifically, PCT can distinguish the 835

difficulty of tasks and reserve more nodes for tasks 836

where draft tokens are more likely to be accepted, 837

thereby improving the average acceptance length. 838

Furthermore, for different inputs within the same 839

task category, PCT still generates candidate trees 840

with significant variations in the number of nodes. 841

These experimental results demonstrate that our 842

PCT method can effectively screen each node by 843

estimating its expected time gain, overcoming the 844

limitation of previous methods that generate a fixed 845

number of nodes for any input. 846

C.2 Case Study 847

We display generation examples of Vanilla SD and 848

our approach in Table 4. It can be seen that Vanilla 849

SD generates only a few tokens per iteration, re- 850

sulting in a poor acceleration effect. This result 851

shows the significant gap between the performance 852

of the vanilla draft model and the LLM, making it 853

challenging to align its output with that of the LLM. 854

In contrast, EDD generates multiple tokens per it- 855

eration, demonstrating its ability to leverage the en- 856

coding information from the LLM to significantly 857

improve the quality of draft tokens. Furthermore, 858

combining PCT with EDD can further enhance per- 859

formance, enabling the LLM to generate nearly 860

100 tokens in just a dozen iterations. 861
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Input Please describe the concept of machine learning. Could you elaborate on the differences between
supervised, unsupervised, and reinforcement learning? Provide real-world examples of each.

Vanilla SD Machine learning / is a / subfield / of artificial / intelligence ( / AI) / that involves / the use of algorithms
/ and statistical / models to enable / machines / to learn from data / , make decisions / , and improve /
their / performance on / a / specific / task over time / . Machine learning algorithms / are designed to
recognize / patterns / and relationships in data /, and use / this information / to make predictions / or /
decisions without / being explicitly / programmed / to do so. / There are three main types / of machine
learning: / super/ vised learning, un / supervised learning, / and rein / forcement learning. · · ·

EDD Machine learning is a / subfield of artificial / intelligence ( / AI) that involves the / use / of algorithms
and / statistical models to enable / machines to learn from / data, make / decisions, and improve / their
performance on a / specific task over / time. Machine / learning algorithms / are designed to / recognize
/ patterns and relationships / in data, / and use this / information to / make predictions / or decisions /
without being explicitly / programmed to do so. / There are three / main types of machine learn / ing:
super / vised learning, un / supervised learning, / and rein / forcement learning. · · ·

EDD + PCT Machine learning is a subfield of artificial intelligence / (AI) that involves the use / of algorithms and
statistical / models to enable / machines to learn from data / , make decisions / , and improve their
performance on a / specific task over time. / Machine learning algorithms are designed to / recognize
patterns and relationships / in data, and use / this information to make predictions or / decisions without /
being explicitly programmed to do so. / There are three main types / of machine learning: super / vised
learning, unsupervised learning, / and reinforcement learning. · · ·

Input The city of Vega intends to build a bridge that will span the Vegona River, covering a distance of 1.8
kilometers. The proposed location falls within a seismically active area that has experienced several
high-magnitude earthquakes. Given these circumstances, what would be the best approach to constructing
the bridge?

Vanilla SD Building / a struct / ural engineer / , I would / recommend / the following / approach to / construct / the
bridge / in / a seismically / active area: / 1. Site / -specific / seismic / ha / zard assessment: / Conduct a /
thorough analysis of / the / seismic hazard / at the / proposed bridge / location, / including / an assessment
of / the maximum / expected / earthquake magnitude / , peak / ground acceleration, / and response spectra
/ . This will / help determine the / appropriate / design and / construction / methods / to ensure the /
bridge can / withstand / seismic / forces. · · ·

EDD Building / a struc / tural engineer, / I would / recommend the following / approach / to construct the
bridge in a / seismically / active / area: / 1. Site / -specific seismic ha / zard assessment: / Conduct a
thorough analysis / of the / seismic hazard / at the proposed / bridge location, / including an assessment /
of the maximum / expected earthquake / magnitude, / peak ground / acceleration, / and response spectra.
/ This will help determine / the appropriate design and / construction / methods to ensure / the bridge can
withstand / seismic forces. · · ·

EDD + PCT Building a struct / ural engineer, I would recommend / the following approach to construct / the bridge in
/ a seismically active area: / 1. Site-specific seismic ha / zard assessment: Conduct a thorough / analysis
of the seismic hazard at / the proposed bridge location, / including an assessment of the maximum /
expected / earthquake magnitude / , peak ground / acceleration, and response spect/ ra. / This will help
determine / the appropriate design and / construction methods to ensure / the bridge can / withstand
seismic forces. · · ·

Input Imagine you are participating in a race with a group of people. If you have just overtaken the second
person, what’s your current position? Where is the person you just overtook?

Vanilla SD Great, / an exciting race / ! / Let / ’m see / ... / just / as I overto / ok the / second / person, / the race, / my
/ position has / now become / 2nd / place. / The / person / I / just / overto / ok is / now in / 3rd place.

EDD Great, / an exciting race / ! / Let’m see / ... / just / as I overto / ok the second person / , the race / , my
position has / now become / 2nd place. The / person / I just overto / ok is now in 3rd / place.

EDD + PCT Great, an exciting / race! Let’m see... / just as I over / took the second person, the race / , my / position
has now become / 2nd place. The person / I just overtook is / now in 3rd place.

Table 4: Examples from MT-bench for our method and Vanilla SD. The target model is LLaMA2-Chat 7B. We
employ / to divide the content generated by each iteration.
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