
On the Variance of the Fisher Information
for Deep Learning

Alexander Soen
The Australian National University
alexander.soen@anu.edu.au

Ke Sun
CSIRO’s Data61, Australia

The Australian National University
sunk@ieee.org

Abstract

In the realm of deep learning, the Fisher information matrix (FIM) gives novel
insights and useful tools to characterize the loss landscape, perform second-order
optimization, and build geometric learning theories. The exact FIM is either un-
available in closed form or too expensive to compute. In practice, it is almost
always estimated based on empirical samples. We investigate two such estimators
based on two equivalent representations of the FIM — both unbiased and consis-
tent. Their estimation quality is naturally gauged by their variance given in closed
form. We analyze how the parametric structure of a deep neural network can af-
fect the variance. The meaning of this variance measure and its upper bounds are
then discussed in the context of deep learning.

1 Introduction

The Fisher information is one of the most fundamental concepts in statistical machine learning.
Intuitively, it measures the amount of information carried by a single random observation when the
underlying model varies along certain directions in the parameter space: if such a variation does not
change the underlying model, then a corresponding observation contains zero (Fisher) information
and is non-informative regarding the varied parameter. Parameter estimation is impossible in this
case. Otherwise, if the variation significantly changes the model and has large information, then
an observation is informative and the parameter estimation can be more efficient as compared to
parameters with small Fisher information. In machine learning, this basic concept is useful for
defining intrinsic structures of the parameter space, measuring model complexity, and performing
gradient-based optimization.

Given a statistical model that is specified by a parametric form p(z |θ) and a continuous domain
θ ∈ M, the Fisher information matrix (FIM) is a 2D tensor varying with θ ∈ M, given by

I(θ) = Ep(z | θ)

(
∂ℓ

∂θ

∂ℓ

∂θ⊤

)
, (1)

where Ep(z | θ)(·), or simply Ep(·) if the model p is clear from the context, denotes the expectation
w.r.t. p(z |θ), and ℓ := log p(z |θ) is the log-likelihood function. All vectors are column vectors
throughout this paper. Under weak conditions (see Lemma 5.3 in Lehmann and Casella [16] for the
univariate case), the FIM has the equivalent expression I(θ) = Ep(z | θ)

(
−∂2ℓ/∂θ∂θ⊤). Given

N i.i.d. observations z1, . . . , zN , these two equivalent expressions of the FIM lead to two different
estimators

Î1(θ) =
1

N

N∑
i=1

(
∂ℓi
∂θ

∂ℓi
∂θ⊤

)
and Î2(θ) =

1

N

N∑
i=1

(
− ∂2ℓi
∂θ∂θ⊤

)
, (2)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

where ℓi := log p(zi |θ) is the log-likelihood of the i’th observation zi. The notations Î1(θ) and
Î2(θ) are abused for simplicity as they depend on both θ and the random observations zi.

These estimators are universal and independent to the parametric form p(z |θ). They are expressed
in terms of the 1st- or 2nd-order derivatives of the log-likelihood. Usually, we already have these
derivatives to perform gradient-based learning. Therefore, we can save computational cost and reuse
these derivatives to estimate the Fisher information, which in turn can be useful, e.g., to perform
natural gradient optimization [1, 25]. Estimating the FIM is especially meaningful for deep learning,
where the computational overhead of the exact FIM can be significant.

It is straightforward from the law of large numbers and the central limit theorem that both estimators
in Eq. (2) are unbiased and consistent. This is formally stated as follows.

Proposition 1.

Ep(z | θ)

(
Î1(θ)

)
= Ep(z | θ)

(
Î2(θ)

)
= I(θ).

∀ϵ > 0, lim
N→∞

Prob
(∥∥∥Î1(θ)− I(θ)

∥∥∥
F
+
∥∥∥Î2(θ)− I(θ)

∥∥∥
F
> ϵ
)
= 0,

where Prob(·) denotes the probability of the parameter statement being true and ∥ · ∥F is the Frobe-
nius norm of a tensor (with ∥ · ∥2 as the regular vector L2-norm)

The Fisher information can be zero for non-regular models or infinite [7]. However, these properties
may not be preserved by the empirical estimators.

How far can Î1(θ) and Î2(θ) deviate from the “true FIM” I(θ), and how fast can they converge to
I(θ) as the number of observations increases? To answer these questions, it is natural to think of the
variance of Î1(θ) and Î2(θ). For example, an estimator with a large variance means the estimation
does not accurately reflect I(θ); and any procedure depending on the FIM consequently suffers
from the estimation error. Through studying the variance, we can control the estimation quality and
reliably perform subsequent measurements or algorithms based on the FIM.

Towards this direction, we made the following contributions that will unfold in the following Sec-
tions 2 to 4:

• We review and rediscover two equivalent expression of the FIM in the context of deep
feed-forward networks (Section 2);

• We give in closed form the variance (extending to meaningful upper bounds) and discuss
the convergence rate of the estimators Î1(θ) and Î2(θ) (Section 3);

• We analyze how the 1st- and 2nd-order derivatives of the neural network can affect the
estimation of the FIM (Section 4).

We discuss related work in Section 5 and conclude in Section 6.

2 Feed-forward Networks with Exponential Family Output

This section realizes the concept of Fisher information in a feed-forward network with exponentially
family output and explains why its estimators are useful in theory and practice.

Consider supervised learning with a neural network. The underlying statistical model is p(z |θ) =
p(x)p(y |x,θ), where z = (x,y), the random variable x represents features, and y is the target
variable. The marginal distribution p(x) is parameter-free, usually fixed as the empirical distribution
p(x) = 1

M

∑M
i=1 δ(x−xi) w.r.t. a set of observations {xi}Mi=1, where δ(·) is the Dirac delta. In this

paper, we consider w.l.o.g. M = 1 as the FIM w.r.t. observations {xi}Mi=1 is simply the average over
FIMs of each individual observation. All results generalize to multiple observations by taking the
empirical average. The predictor p(y |x,θ) is a neural network with parameters θ = {Wl−1}Ll=1

2

and exponential family output units, given by

p(y |x) = exp
(
t⊤(y)hL − F (hL)

)
,

hL = WL−1h̄L−1,

hl = σ(Wl−1h̄l−1), (l = 1, . . . , L− 1)

h̄l = (h⊤
l , 1)

⊤,

h0 = x, (3)

where t(y) is the sufficient statistics of the prediction model, F (h) = log
∫
exp(t⊤(y)h)dy is the

log-partition function, and σ : ℜ → ℜ is an element-wise non-linear activation function. Moreover,
Wl is a nl+1 × (nl + 1) matrix, representing the neural network parameters (weights and biases)
in the l’th layer, where nl := dim(hl) denotes the size of layer l. We use W−

l for the nl+1 × nl

weight matrix without the bias terms, obtained by removing the last column of Wl. hl is a learned
representation of the input x. All intermediate variables hl are extended to include a constant scalar
1 in h̄l, so that a linear layer can simply be expressed as Wlh̄l. The last layer’s output hL with
dimensionality nL specifies the natural parameter of the exponential family.

We need the following Lemma which gives the FIM w.r.t. hL, which is a nL × nL matrix in simple
closed form for commonly used probability distributions.
Lemma 2. For the neural network model specified in Eq. (3),

I(hL) = Cov(t(y)) =
∂η

∂hL
,

where Cov(·) denotes the covariance matrix w.r.t. p(y |x,θ), η := η(hL) := ∂F/∂hL is the
expectation parameters, and the vector-vector-derivative ∂η/∂hL denotes the Jacobian matrix of
the mapping hL → η.

The derivatives of the log-likelihood ℓ(θ) := log p(x,y |θ) characterize its landscape and are es-
sential to compute the FIM. By Eq. (3), the score function (gradient of ℓ) is

∂ℓ

∂θ
=

(
∂hL

∂θ

)⊤

(t(y)− η(hL)) =
∂ha

L

∂θ
(ta − ηa). (4)

In this paper, we mix the usual Σ-notation of summation with the Einstein notation: in the same term,
an index appearing in both upper- and lower-positions indicates a sum over this index. For example,
tah

a =
∑

a taha. Hence, in our equations, upper- and lower-indexes have the same meaning: both
ha and ha mean the a’th element of h. For convenience and consistency, we take quantities w.r.t.
θ as upper indexed and other quantities as lower indexed, i.e., Iij(θ) versus Iij(hL). This mixed
representation of sums helps to simplify our expressions without causing confusion. From Eq. (4)
and Lemma 2, the Hessian of ℓ is given by

∂2ℓ

∂θ∂θ⊤ = (ta − ηa)
∂2ha

L

∂θ∂θ⊤ − ∂ha
L

∂θ

∂ηa

∂θ⊤ = (ta − ηa)
∂2ha

L

∂θ∂θ⊤ − ∂ha
L

∂θ
Iab(hL)

∂hb
L

∂θ⊤ . (5)

Similar to the case of a general statistical model, the FIM is equivalent to the expectation of the
Hessian of −ℓ as long as the activation function is smooth enough.
Theorem 3. Consider the neural network model in Eq. (3). For any activation function σ ∈ C2(ℜ)
(both σ′(z) and σ′′(z) exist and are continuous), we have I(θ) = Ep

(
− ∂2ℓ

∂θ∂θ⊤

)
.

Remark 3.1. ReLU networks do not have this equivalent expression as ReLU(z) is not differen-
tiable at z = 0.

Through the definition of the FIM, or alternatively its equivalent formula in Theorem 3, we arrive at
the same expression

I(θ) =
(
∂hL

∂θ

)⊤

I(hL)
∂hL

∂θ⊤ =
∂ha

L

∂θ
Iab(hL)

∂hb
L

∂θ⊤ . (6)

Equation (6) takes the form of a generalized Gauss-Newton matrix [18]. This general expression
of the FIM has been known in the literature [24, 25]. Under weak conditions, I(θ) is a pullback

3

metric [30] of I(hL) in Lemma 2 associated with the mapping θ → hL. To compute I(θ) in closed
form, one need to first compute the Jacobian matrix of size nL × dim(θ) then perform the matrix
multiplication in Eq. (6). The naive algorithm to evaluate Eq. (6) has a computational complexity of
O(n2

L dim(θ)+nL dim2(θ)), where the term O(nL dim2(θ)) is dominant as dim(θ) ≫ nL in deep
architectures. Once the parameter θ is updated, the FIM has to be recomputed. This is infeasible in
practice for large networks where dim(θ) can be millions or billions.

The two estimators Î1(θ) and Î2(θ) in Eq. (2) provide a computationally inexpensive way to esti-
mate the FIM. Given θ and x, one can draw i.i.d. samples y1, . . . ,yN ∼ p(y |x,θ). Both ∂ℓi/∂θ
and ∂2ℓi/∂θ∂θ

⊤ can be evaluated directly through auto-differentiation (AD) that is highly opti-
mized for modern GPUs. For Î1(θ), we already have ∂ℓi/∂θ to perform gradient descent. For Î2(θ),
efficient methods to compute the Hessian are implemented in AD frameworks such as PyTorch [26].
Using these derivatives, the computational cost only scales with the number N of samples but does
not scale with nL.

We rarely need the full FIM of size dim(θ)×dim(θ). Most of the time, only its diagonal blocks are
needed, where each block corresponds to a subset of parameters, e.g., the neural network weights of
a particular layer. Therefore the computation of both estimators can be further reduced.

If p(y |x,θ) has the parametric form in Eq. (3), from Eqs. (4) and (5), the FIM estimators become

Î1(θ) =
∂ha

L

∂θ
· 1

N

N∑
i=1

(ta(yi)− ηa)(tb(yi)− ηb) ·
∂hb

L

∂θ⊤ , (7)

Î2(θ) =

(
ηa −

1

N

N∑
i=1

ta(yi)

)
∂2ha

L

∂θ∂θ⊤ +
∂ha

L

∂θ
Iab(hL)

∂hb
L

∂θ⊤ . (8)

Recall that the notation of Î1(θ) and Î2(θ) is abused as they depend on x and y1 · · ·yN . Notably, in
Eq. (7), Î1(θ) is expressed in terms of the Jacobian matrix of the mapping θ → hL and the empirical
variance of the minimal sufficient statistic t(yi) of the output exponential family. In Eq. (8), Î2(θ)
depends on both the Jacobian and Hessian of θ → hL and the empirical average of t(yi). The
second term on the right-hand side (RHS) of Eq. (8) is exactly the FIM, and therefore the first term
serves as a bias term. Eqs. (7) and (8) are only for the case with exponential family output. If the
output units belong to non-exponential families, e.g., a statistical mixture model, one falls back to
the general formulae, i.e., Eq. (2) for the FIM.

As an application of the Fisher information, the Cramér-Rao lower bound (CRLB) states that any
unbiased estimator θ̂ of the parameters θ satisfies Cov(θ̂) ⪰ [I(θ)]−1. For example, in Lemma 2,
the FIM is w.r.t. the output of the neural network. As such, I(hL) can be used to study the estimation
covariance of hL based on random samples y1 · · ·yN drawn from p(y |x,θ). Similarly for Eq. (6),
we can consider unbiased estimators of the weights of the neural network. In any case, to apply
the CRLB, one needs an accurate estimation of I(θ). If the scale of I(θ) is relatively small when
compared to its covariance, its estimation Î(θ) is more likely to be a small positive value (or even
worse, zero or negative). The empirical computation of the CRLB is not meaningful in this case.

3 The Variance of the FIM Estimators

Based on the deep learning architecture specified in Eq. (3), we measure the quality of the two
estimators Î1(θ) and Î2(θ) given by their variances. Given the same sample size N , a smaller
variance is preferred as the estimator is more accurate and likely to be closer to the true FIM I(θ).
We study how the structure of the exponential family has an impact on the variance.

3.1 Variance in closed form

We first consider Î1(θ) and Î2(θ) in Eq. (2) as real matrices of dimension dim(θ)× dim(θ). As

Î1(θ) is a square matrix, the corresponding covariance is a 4D tensor
[
Cov

(
Î1(θ)

)]ijkl
of dimen-

sion dim(θ)× dim(θ)× dim(θ)× dim(θ), representing the covariance between the two elements

4

Îij
1 (θ) and Îkl

1 (θ). The element-wise variance of Î1(θ) is a matrix with the same size of Î1(θ),
which we denote as Var(Î1(θ)). Thus,

Var(Î1(θ))ij =
[
Cov

(
Î1(θ)

)]ijij
. (9)

Similarly, the covariance and element-wise variance of Î2(θ) are denoted as
[
Cov

(
Î2(θ)

)]ijkl
and

Var(Î2(θ))ij , respectively.

As the samples y1, . . . ,yN are i.i.d., we have

Cov(Î1(θ)) =
1

N
Cov

(
∂ℓ

∂θ

∂ℓ

∂θ⊤

)
and Cov(Î2(θ)) =

1

N
Cov

(
∂2ℓ

∂θ∂θ⊤

)
. (10)

Both Cov(Î1(θ)) and Cov(Î2(θ)) have an order of O(1/N). For the neural network model in
Eq. (3), we further have those covariance tensors in closed form.
Theorem 4.[
Cov

(
Î1(θ)

)]ijkl
=

1

N
· Cov

(
∂ℓ

∂θi

∂ℓ

∂θj
,
∂ℓ

∂θk

∂ℓ

∂θl

)
=

1

N
· ∂iha

L(x)∂jh
b
L(x)∂kh

c
L(x)∂lh

d
L(x) · (Kabcd(t)− Iab(hL) · Icd(hL)) ,

where the 4D tensor

Kabcd(t) := E [(ta − ηa(hL(x)))(tb − ηb(hL(x)))(tc − ηc(hL(x)))(td − ηd(hL(x)))]

is the 4th (unscaled) central moment 1 of t(y) and ∂ihL(x) := ∂hL(x)/∂θi.
Remark 4.1. The 4D tensor (Kabcd(t)− Iab(hL) · Icd(hL)) is the covariance of the random ma-
trix

∂ℓ

∂hL

∂ℓ

∂h⊤
L

= (t(y)− η)(t(y)− η)⊤,

where y ∼ p(y |hL). This random matrix is an estimator of I(hL), i.e. the FIM w.r.t. the nat-
ural parameters hL. Theorem 4 describes how the covariance tensor adapts w.r.t. the coordinate
transformation hL → θ.

Notably, as t(y) is the sufficient statistics of an exponential family, the derivatives of the log-
partition function F (h) w.r.t. the natural parameters h are equivalent to the cumulants of t(y). The
cumulants correspond to the coefficients of the Taylor expansion of the logarithm of the moment
generating function [20]. Importantly, the cumulants of order 3 and below are equivalent to the cen-
tral moments (see e.g. Lemma 2). However, this is not the case for the 4th central moment which
must be expressed as a combination of the 2nd and 4th cumulants, as stated in the following Lemma.
Lemma 5.

Kabcd(t) = κabcd + Iab(hL) · Icd(hL) + Iac(hL) · Ibd(hL) + Iad(hL) · Ibc(hL),

where

κabcd :=
∂4F (h)

∂ha∂hb∂hc∂hd

∣∣∣∣
h=hL(x)

.

Remark 5.1. In the 1D case, the 4th central moment simplifies to K(t) = F ′′′′(hL)+ 3(F ′′(hL))
2.

For the second estimator Î2(θ), the covariance only depends on the 2nd central moment of t(y).
Theorem 6.[

Cov
(
Î2(θ)

)]ijkl
=

1

N
· Cov

(
− ∂2ℓ

∂θi∂θj
,− ∂2ℓ

∂θk∂θl

)
=

1

N
· ∂2

ijh
α
L(x)∂

2
klh

β
L(x)Iαβ(hL),

where ∂2
ijhL(x) := ∂2hL(x)/∂θi∂θj

2.
1The kurtosis of a random variable is defined by its 4th standardized (both centered and normalized) moment.

Here, K(·) denotes the 4th central moment but not the kurtosis.
2In this paper, the derivatives are by default taken w.r.t. θ. Therefore, ∂i :=

∂
∂θi

and ∂2
ij := ∂2

∂θi∂θj
.

5

Remark 6.1. By Lemma 2, the matrix Iαβ(hL) is the covariance of the sufficient statistic t(y).
Hence, the covariance of Î2(θ) scales with the covariance of t(y). If t(y) tends to be deterministic,
then the covariance of Î2(θ) shrinks towards 0 and its estimation of the FIM becomes accurate.

The covariance in Theorems 4 and 6 has two different components: À the derivatives of the deep
neural network; and Á the central (unscaled) moments of t(y). The 4D tensor Kabcd(t) and the 2D
FIM Iαβ(hL) correspond to the 4th and 2nd central moments of t(y), respectively. Intuitively, the
larger the scale of the Jacobian or the Hessian of the neural network mapping θ → hL and/or the
larger the central moments of the exponential family, the lower the accuracy when estimating the
FIM.

3.2 Variance Bounds

We aim to derive meaningful upper bounds of the covariances presented in Theorems 4 and 6. Using
the Cauchy-Schwarz inequality, we can “decouple” the derivatives of the neural network mapping
and the central moments of the exponential family into different terms. This provides various bounds
on the scale of covariance quantities.

Theorem 7. ∥∥∥Cov (Î1(θ))∥∥∥
F
≤ 1

N
·
∥∥∥∥∂hL

∂θ

∥∥∥∥4
F

· ∥K(t)− I(hL)⊗ I(hL)∥F ,

where ⊗ is the tensor-product: (I(hL)⊗ I(hL))abcd := Iab(hL) · Icd(hL).

The scale
∥∥∥Cov (Î1(θ))∥∥∥

F
measures how much the estimator Î1(θ) deviates from I(θ). Theo-

rem 7 says that this deviation is bounded by the scale of the Jacobian matrix ∂hL/∂θ as well as
the scale of (K(t) − I(hL) ⊗ I(hL)). Recall from Remark 4.1 the latter measures the variance
when estimating the FIM I(hL) of the exponential family. Theorem 7 allows us to study these two
different factors separately. Similarly, we have an upper bound on the scale of the covariance of
Î2(θ).
Theorem 8. ∥∥∥Cov (Î2(θ))∥∥∥

F
≤ 1

N
·
∥∥∥∥∂2hL(x)

∂θ∂θ⊤

∥∥∥∥2
F

· ∥I(hL)∥F .

On the RHS, the Hessian ∂2hL(x)/∂θ∂θ
⊤ is a 3D tensor of shape nL × dim(θ)× dim(θ). There-

fore, the variance of Î2(θ) is bounded by the scale of the Hessian, as well as the scale of the FIM
I(hL) of the output exponential family.

We consider an upper bound to further simplify related terms in Theorems 7 and 8.

Lemma 9.

∥K(t)− I(hL)⊗ I(hL)∥F ≤
√
2

(
nL∑
a=1

(√
Kaaaa(t) + Iaa(hL)

))2

,

∥I(hL)∥F ≤
nL∑
a=1

Iaa(hL).

Remark 9.1. Using Lemma 9, it is straightforward to bound the scale of the covariance tensors
with the size of the Jacobian/Hessian, as well as the central moments Kaaaa(t) and Iaa(hL). These
bounds are meaningful but omitted for brevity.

Remark 9.2. By Lemma 9, ∥K(t)− I(hL)⊗ I(hL)∥F is in the order of O(n2
L) and ∥I(hL)∥F is

in the order of O(nL).

The scale of the tensors K(t)− I(hL)⊗ I(hL) and I(hL) is bounded by the diagonal elements of
K(t) and I(hL), or the element-wise central moments of t(y). Understanding the scale of these 1D
central moments helps to understand the scale of the moment terms in our key statements.

6

Table 1: Cumulants of univariate exponential family distributions, given by derivatives of the log-
partition function. p, µ and λ denote the mean of the Bernoulli, normal, and Poisson distributions,
respectively. † The normal distribution has unit standard deviation (σ = 1).

DIST. F (h) h ∂2F (h) ∂4F (h)

BERNOULLI log(1 + exp(h)) log p/1−p p(1− p) p(1− p)(6p2 − 6p+ 1)
NORMAL† h2

/2 µ 1 0
POISSON exp(h) log λ λ λ

0.00 0.25 0.50 0.75 1.00
p

0.0

0.1

0.2

(a) Bernoulli.

−1.0 −0.5 0.0 0.5 1.0
µ

1.00

1.25

1.50

1.75

2.00

(b) Normal (σ = 1).

0 5 10 15 20
λ

0

200

400

600

800
K (t)−Var2(t)
Var(t)

(c) Poisson.

Figure 1: The scale of K(t)−Var2(t) and Var(t) for the exponential family distributions in Table 1.

Table 1 presents some 1D exponential families and their cumulants. Figure 1 displays K(t)−Var2(t)
and Var(t) against the mean of these distributions. Based on Fig. 1a, if the neural network has
Bernoulli output units, then the scale of Kaaaa(t)− (Iaa(hL))

2 is smaller than Iaa(hL) regardless
of hL. Notably, when p = 0.5, the variance of the first estimator Î1(θ) is 0 — regardless of hL.
For normal distribution output units (corresponding to the mean squared error loss) in Fig. 1b, both
central moment quantities are constant. For Poisson output units in Fig. 1c, Iaa(hL) increases
linearly with the average number of events λ, while Kaaaa(t)− (Iaa(hL))

2 increases quadratically.
Thus, the upper bound of ∥Cov(Î1(θ))∥F increases faster than the upper bound of ∥Cov(Î2(θ))∥F
as hL enlarges. In this case, one may prefer Î2(θ) rather than Î1(θ) and/or control the scale of hL.
In general, hL is desired to be in certain regions in the parameter space of the exponential family
to control the estimation variance of the FIM. Techniques to achieve this include regularization on
the scale of hL; temperature scaling [12]; or normalization layers [4, 28]. Of course, they could
inversely increase the scale of the derivatives of the neural network, which can be controlled by
imposing additional constraints, i.e., Lipschitz requirements.

3.3 Positive Definiteness

By definition, the FIM of any statistical model is positive semidefinite (p.s.d.). The first estimator
Î1(θ) is naturally on the p.s.d. manifold (space of p.s.d. matrices). On the other hand, Î2(θ) can
“fall off” the p.s.d. manifold. It is important to examine the likelihood for Î2(θ) having a negative
spectrum and the corresponding scale, so that any algorithm (e.g. natural gradient) relying of the
FIM being p.s.d. can be adapted.

Eq. (8) can be re-expressed as the sum of a p.s.d. matrix and a linear combination of nL symmetric
matrices. We provide the likelihood for Î2(θ) staying on the p.s.d. manifold given conditions on the
spectrum of the Hessian.
Theorem 10. Let λmin(·), λmax(·), and ρ(·) denote the smallest eigenvalue, the largest eigen-
value, and the spectral radius (largest absolute value of the spectrum), respectively. Let ρ :=
(ρ(∂2h1

L), · · · ρ(∂2hnL

L)). If λmin(I(θ)) > 0, then with probability at least

1− nL · ∥ρ∥22 · λmax(I(hL))

N · λ2
min(I(θ))

,

the estimator Î2(θ) with N samples is a p.s.d. matrix.

The bound becomes uninformative as the output layer size nL increases, as the spectrum of the
Hessian of hL scales up, or as the spectrum of the FIM I(hL) enlarges. On the other hand, as the

7

minimal eigenvalue of the FIM I(θ) increases, Theorem 10 can give meaningful lower bounds. In
particular, with sample rate O(N−1), estimator Î2(θ) will be a p.s.d. matrix. In practice for over-
parametrized networks, λmin(I(θ)) is close to or equals 0 and Theorem 10 is not meaningful. In
any case, we need to consider the scale of the negative spectrum of Î2(θ).
Theorem 11.

λmin

(
Î2(θ)

)
≥ −ρ(∂2ha

L(x))

∣∣∣∣∣ηa −
1

N

N∑
i=1

ta(yi)

∣∣∣∣∣ .
Theorem 11 guarantees that in the worst case, the scale of the negative spectrum of Î2(θ) is con-
trolled. By Lemma 2, Var(ηa − 1

N

∑N
i=1 ta(yi)) = 1

N Iaa(hL). Therefore, as N increases or
Iaa(hL) decreases, the negative spectrum of Î2(θ) will shrink. Further analysis on the spectrum
of Î1(θ) and Î2(θ) can utilize the geometric structure of the p.s.d. manifold. This is left for future
work.

3.4 Convergence Rate

The rate of convergence for each of the estimators is of particular interest when considering their
practical viability. Through a generalized Chebyshev inequality [8], we can get a simple Frobenius
norm convergence rate.
Lemma 12. Let 0 < ε < 1. Then∥∥∥Î1(θ)− I(θ)

∥∥∥
F
≤ 1√

εN
·

√√√√dim(θ)∑
i,j=1

Var

(
∂ℓ

∂θi

∂ℓ

∂θj

)
holds with probability at least 1− ε; and

∥∥∥Î2(θ)− I(θ)
∥∥∥
F
≤ 1√

εN
·

√√√√dim(θ)∑
i,j=1

Var

(
− ∂2ℓ

∂θi∂θj

)
hold with probability at least 1− ε.

Each of these convergence rates only depends on the element-wise variance of the estimator terms in
Eq. (9). Moreover, each of the estimators has a convergence rate of O(N−1/2). The rate’s constants
are determined by the variance of the estimators given by Theorems 4 and 6, which are influenced
by the derivatives of the neural network and the moments of the output exponential family.

4 Effect of Neural Network Derivatives

The derivatives of the deep learning network can affect the estimation variance of the FIM. By
Theorem 4, the variance of the first estimator Î1(θ) scales with the Jacobian of the neural network
mapping θ → hL(x). By Theorem 6, the variance of Î2(θ) scales with the Hessian of θ → hL(x).
The larger the scale of the Jacobian or the Hessian, the larger the estimation variance. In this section,
we examine these derivatives in more detail.

We give the closed form gradient of the log-likelihood ℓ and the last layer’s output hL w.r.t. the
neural network parameters.
Lemma 13.

∂ℓ

∂Wl
= Dl

∂ℓ

∂hl+1
h̄⊤
l ,

∂ℓ

∂hl
= B⊤

l (t(y)− η(hL)) ,
∂ha

L

∂Wl
= DlB

⊤
l+1eah̄

⊤
l ,

where ea is the ath standard basis vector, Bl and Dl are recursively defined by

BL = I, Bl = Bl+1DlW
−
l ,

DL−1 = I, Dl = diag
(
σ′(Wlh̄l)

)
,

I is the identity matrix, and diag(·) means a diagonal matrix with given diagonal entries.

8

By Lemma 13, we can estimate the FIM w.r.t. the hidden representations hl through

Î1(hl) =
1

N

N∑
i=1

∂ℓi
∂hl

∂ℓi
∂h⊤

l

= B⊤
l

(
1

N

N∑
i=1

(t(yi)− η(hL)) (t(yi)− η(hL))
⊤

)
Bl. (11)

As Bl is recursively evaluated from the last layer to previous layers, the FIM can also be recur-
sively estimated based on Î1(θ). It is similar to back-propagation, except that the FIMs are back-
propagated instead of gradients of the network. This is similar to the backpropagated metric [23].

To investigate how the first estimator Î1(θ) is affected by the loss landscape, we bound the Frobenius
norm of the parameter-output Jacobian ∂hL/∂θ.

Lemma 14. If the activation function has bounded gradient and ∀z ∈ ℜ, |σ′(z)| ≤ 1, then∥∥∥∥ ∂hL

∂Wl

∥∥∥∥
F

= ∥Bl+1Dl∥F · ∥h̄l∥2 ≤
L−1∏
i=l+1

∥W−
i ∥F · ∥h̄l∥2, (12)

where ∂hL/∂Wl =
[
∂h1

L/∂Wl, · · · , ∂hnL

L /∂Wl

]
is the derivative of a vector w.r.t. a matrix that

is a 3D tensor.

Given Lemma 14, we see that the gradient ∂hL/∂Wl scales with both the neural network weights
Wi and the gradient of the activation function Dl. Common activation functions have both bounded
outputs and 1st-order derivatives; or at least are locally Lipschitz, i.e., sigmoid and ReLU activa-
tion functions. During training, regularizing the scale of the neural network weights is a sufficient
condition for bounding the variance of Î1(θ).
An alternative bound can be established which depends on the maximum singular values of the
weight matrices.

Lemma 15. Suppose that the activation function has bounded gradient ∀z ∈ ℜ, |σ′(z)| ≤ 1. Then∥∥∥∥ ∂hL

∂Wl

∥∥∥∥
2σ

≤

(
L−1∏
i=l+1

smax(W
−
i)

)
· ∥h̄l∥2, (13)

where smax(·) denotes the maximum singular value and ∥T ∥2σ denotes the tensor spectral norm for
a 3D tensor T , defined by

∥T ∥2σ = max {⟨T ,α⊗ β ⊗ γ⟩ : ∥α∥2 = ∥β∥2 = ∥γ∥2 = 1} .

Therefore, regularizing smax(W
−
i), or the spectral norm of the weight matrices, also helps to im-

prove the estimation accuracy of the FIM.

We further reveal the relationship between the loss landscape and the FIM estimators. For a given
target ỹ, the log-likelihood is denoted as l̃ := log p(ỹ |x,θ). Furthermore, let us define ∆Î1(θ) :=
(∂l̃/∂θ)(∂l̃/∂θ⊤)− Î1(θ) and ∆Î2(θ) := −∂2 l̃/∂θ∂θ⊤ − Î2(θ). By Eqs. (4) and (5),

∆Î1(θ) =
∂ha

L

∂θ

[
(ta(ỹ)− ηa)(tb(ỹ)− ηb)−

1

N

N∑
i=1

(ta(yi)− ηa)(tb(yi)− ηb)

]
∂hb

L

∂θ⊤ ,

∆Î2(θ) =

[
1

N

N∑
i=1

ta(yi)− ta(ỹ)

]
∂2ha

L

∂θ∂θ⊤ .

Hence, the difference between Î1(θ) (resp. Î2(θ)) and the squared gradient (resp. Hessian) of the
loss −ℓ̃ depends on how yi differs from ỹ. If the network θ is trained, then the random samples
yi ∼ p(y |x,θ) are close to the given target ỹ. In this case, Î1(θ) corresponds to the squared
gradient, and Î2(θ) corresponds to the Hessian. This is not true for untrained neural networks with
random weights.

9

5 Related Work

The two estimators Î1(θ) and Î2(θ) are not new as one usually utilizes one of them to compute
the FIM. Guo and Spall [11] analyzed their accuracy for univariate symmetric density functions
based on the central limit theorem. Fisher information estimation is also examined in latent variable
models [9]. Under the same topic, our work analyzes the factors affecting the variance of Î1(θ) and
Î2(θ) for deep neural networks.

A large body of work tries to approximate the FIM or define similar curvature tensors for per-
forming natural gradient descent [1, 18, 19, 14, 23, 31]. If the loss is an empirical expectation
of − log p(y |x,θ), its Hessian w.r.t. hL is exactly I(hL). Then, the FIM in Eq. (6) is in the form
of a Generalized Gauss-Newton matrix (GNN) [29, 18]. Ollivier [23] provided algorithm proce-
dures to compute the unit-wise FIM and discusses Monte Carlo natural gradient. The FIM can be
computed locally [31, 3] based on a joint distribution representation of the neural network. Efficient
computational methods are developed to evaluate the FIM inverse [24].

The estimator Î1(θ) is not the “empirical Fisher” (see e.g. [18, Section 11]) as yi is randomly sam-
pled from p(y |x,θ), making Î1(θ) an unbiased estimator. The difference between the empirical
Fisher and the FIM is clarified [15]. Similarly, the estimator Î2(θ) is not the Hessian of the loss, as
yi is randomly sampled rather than fixed to the given target.

Recently, the structure of the FIM (or its partial approximations) are examined in deep learning. The
FIM of randomized networks is analyzed [2], where the weights of the neural network are assumed
to be random. Often the analysis of randomized networks uses spectral analysis and random matrix
theory [27]. An insight from this body of work is that most of the eigenvalues of the FIM are close
to 0; while the high end of spectrum has large values [13]. In this paper, the estimators Î1(θ) and
Î2(θ) are random matrices due to the sampling of yi ∼ p(y |x) (the weights are considered fixed).

In information geometry [1, 22], the FIM serves as a Riemannian metric in the space of probabil-
ity distributions. The FIM is a covariant tensor and is invariant to diffeomorphism on the sample
space [22]. Higher order tensors are used to describe the intrinsic structure in this space. For exam-
ple, the Riemannian curvature is a 4D tensor, while the Ricci curvature is 2D. The third cumulants
of the sufficient statistics give an affine connection (belonging to the α-connections or the Amari-
Čensov tensor) of the exponential family. The FIM is generalized to a one-parameter family [21].

In statistics, our estimator Î2(θ) is Efron and Hinkley [10]’s “observed Fisher information”, which is
usually evaluated at the maximum likelihood estimation θ̂. Higher order moments of the maximum
likelihood estimator (MLE) were discussed (see e.g. Bowman and Shenton [5]). These moments
are associated with parameter estimators and differ from the concept of the FIM estimators. Similar
concepts are examined in higher-order asymptotic theory [1, Chapter 7].

6 Conclusion

The FIM is a covariant p.s.d. tensor revealing the intrinsic geometric structure of the parameter
manifold. It yields useful practical methods such as the natural gradient. In practice, the true FIM
I(θ) is usually expensive or impossible to obtain. Estimators of the FIM based on empirical samples
is used in the deep learning practice. We analyzed two different estimators Î1(θ) and Î2(θ) of the
FIM of a deep neural network. These estimators are convenient to compute using auto-differentiation
frameworks but randomly deviates from I(θ). Our central results, Theorems 4 and 6, present the
variance of Î1(θ) and Î2(θ) in closed form, which is further extended to upper bounds in simpler
forms. Two factors affecting the estimation variance are À the derivatives of neural network output
hL w.r.t. the weight parameters θ; and Á the property of hL as an exponential family distribution.
A large scale of the 1st- and/or 2nd-order derivatives leads to a large variance when estimating the
FIM. Our analytical results can be useful to measure the quality of the estimated FIM and could lead
to variance reduction techniques.

10

Acknowledgments and Disclosure of Funding

We thank the anonymous NeurIPS reviewers for their constructive comments. We thank Frank
Nielsen for the insightful feedback. We thank James C. Spall for pointing us to related work.

References
[1] Shun-ichi Amari. Information Geometry and Its Applications, volume 194 of Applied Mathe-

matical Sciences. Springer-Verlag, Berlin, 2016.
[2] Shun-ichi Amari, Ryo Karakida, and Masafumi Oizumi. Fisher information and natural gradi-

ent learning in random deep networks. In International Conference on Artificial Intelligence
and Statistics, pages 694–702. PMLR, 2019.

[3] Nihat Ay. On the locality of the natural gradient for learning in deep Bayesian networks.
Information Geometry, pages 1–49, 2020.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[5] K. O. Bowman and L. R. Shenton. Properties of Estimators for the Gamma Distribution.
Marcel Dekker, New York, 1988.

[6] Bilian Chen and Zhening Li. On the tensor spectral p-norm and its dual norm via partitions.
Computational Optimization and Applications, 75(3):609–628, 2020.

[7] Jiahua Chen and Pengfei Li. Hypothesis test for normal mixture models: The EM approach.
The Annals of Statistics, 37(5A):2523–2542, 2009.

[8] Xinjia Chen. A new generalization of Chebyshev inequality for random vectors. arXiv preprint
arXiv:0707.0805, 2007.

[9] Maud Delattre and Estelle Kuhn. Estimating Fisher information matrix in latent variable mod-
els based on the score function. In European Meeting of Statisticians (EMS), 2019.

[10] Bradley Efron and David V. Hinkley. Assessing the accuracy of the maximum likelihood
estimator: Observed versus expected Fisher information. Biometrika, 65(3):457–482, 1978.

[11] Shenghan Guo and James C. Spall. Relative accuracy of two methods for approximating ob-
served Fisher information. In Data-Driven Modeling, Filtering and Control: Methods and
applications, pages 189–211. IET Press, London, 2019.

[12] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[13] Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics of Fisher informa-
tion in deep neural networks: Mean field approach. In International Conference on Artificial
Intelligence and Statistics, pages 1032–1041. PMLR, 2019.

[14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[15] Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of the empirical Fisher
approximation for natural gradient descent. In Advances in Neural Information Processing
Systems, pages 4133–4144. Curran Associates, Inc., 2020.

[16] Erich L. Lehmann and George Casella. Theory of Point Estimation. Springer-Verlag New York,
second edition, 1998.

[17] Lek-Heng Lim. Singular values and eigenvalues of tensors: a variational approach. In 1st
IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Process-
ing, 2005., pages 129–132. IEEE, 2005.

[18] James Martens. New insights and perspectives on the natural gradient method. Journal of
Machine Learning Research, 21(146):1–76, 2020.

[19] James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored ap-
proximate curvature. In International Conference on Machine Learning, pages 2408–2417.
PMLR, 2015.

[20] Peter McCullagh. Tensor methods in statistics. Courier Dover Publications, 2018.

11

[21] Frank Nielsen. The α-representations of the Fisher information matrix, 2017. URL https:
//franknielsen.github.io/blog/alpha-FIM/index.html.

[22] Frank Nielsen. An elementary introduction to information geometry. Entropy, 22(10), 2020.
[23] Yann Ollivier. Riemannian metrics for neural networks I: feedforward networks. Information

and Inference: A Journal of the IMA, 4(2):108–153, 2015.
[24] Hyeyoung Park, Shun-ichi Amari, and Kenji Fukumizu. Adaptive natural gradient learning

algorithms for various stochastic models. Neural Networks, 13(7):755–764, 2000.
[25] Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. In Inter-

national Conference on Learning Representations, 2014.
[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems,
pages 8024–8035. Curran Associates, Inc., 2019.

[27] Jeffrey Pennington and Pratik Worah. The spectrum of the Fisher information matrix of a
single-hidden-layer neural network. In Advances in Neural Information Processing Systems,
pages 5415–5424, 2018.

[28] Tim Salimans and Durk P. Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. In Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc., 2016.

[29] Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural computation, 14(7):1723–1738, 2002.

[30] Ke Sun. Information geometry for data geometry through pullbacks. In Deep Learning through
Information Geometry (Workshop at NeurIPS 2020), 2020.

[31] Ke Sun and Frank Nielsen. Relative Fisher information and natural gradient for learning large
modular models. In International Conference on Machine Learning, pages 3289–3298. PMLR,
2017.

12

https://franknielsen.github.io/blog/alpha-FIM/index.html
https://franknielsen.github.io/blog/alpha-FIM/index.html

	Introduction
	Feed-forward Networks with Exponential Family Output
	The Variance of the FIM Estimators
	Variance in closed form
	Variance Bounds
	Positive Definiteness
	Convergence Rate

	Effect of Neural Network Derivatives
	Related Work
	Conclusion

