
Under review as a conference paper at ICLR 2023

MODULE-WISE TRAINING OF RESIDUAL NETWORKS
VIA THE MINIMIZING MOVEMENT SCHEME

Anonymous authors
Paper under double-blind review

ABSTRACT

Greedy layer-wise or module-wise training of neural networks is compelling in
constrained and on-device settings, as it circumvents a number of problems of end-
to-end back-propagation. However, it suffers from a stagnation problem, whereby
early layers overfit and deeper layers stop increasing the test accuracy after a
certain depth. We propose to solve this issue by introducing a simple module-
wise regularization inspired by the minimizing movement scheme for gradient
flows in distribution space. The method, which we call TRGL for Transport
Regularized Greedy Learning, is particularly well-adapted to residual networks.
We study it theoretically, proving that it leads to greedy modules that are regular
and that successively solve the task. Experimentally, we show improved accuracy
of module-wise trained networks when our regularization is added.

1 INTRODUCTION

End-to-end backpropagation is the standard training method of neural nets. But there are reasons
to look for alternatives. First, it requires loading the whole model during training which can be
impossible in constrained settings such as training on mobile devices Teng et al. (2020); Tang et al.
(2021). Secondly, it forces the training of systems of cooperative networks to be sequential and
synchronous, which is not flexible enough when the networks are distributed between a central
agent and clients that operate at different rates (Jaderberg et al. (2017)). Thirdly, it prohibits training
the layers in parallel. These limitations follow from the three locking problems that end-to-end
backpropagation suffers from: forward locking (each layer must wait for the previous layers to
process its input), update locking (each layer must wait for the end of the forward pass to be updated)
and backward locking (each layer must wait for errors to backpropagate from the last layer to be
updated) Jaderberg et al. (2017). Dividing the network into modules, a module being made up of one
or more layers, and greedily solving module-wise optimization problems sequentially (i.e. one after
the other) or in parallel (i.e. batch-wise), solves update locking (and so also backward locking). When
combined with batch buffers, parallel module-wise training solves all three problems (Belilovsky
et al. (2020)) and allows parallel training of the modules. Module-wise training is appealing in
memory-constrained settings as it works without most gradients and activations needed in end-to-end
training, and when done sequentially, only requires loading and training one module (so possibly one
layer) at a time. Despite its simplicity, module-wise training has been shown to scale well (Belilovsky
et al. (2020); Pyeon et al. (2021)), outperforming more complicated methods addressing the locking
problems e.g. synthetic (Jaderberg et al. (2017); Czarnecki et al. (2017)) and delayed (Huo et al.
(2018b;a)) gradients. We can also deduce theoretical results about networks of greedily-trained
shallow modules from the existing results about shallow networks (Belilovsky et al. (2019; 2020)).

The typical setting of (sequential) module-wise training for minimizing a loss L, is, given a dataset
D, to solve one after the other, for 1≤k≤K, Problems

(Tk, Fk) ∈ arg min
T,F

∑
x∈D

L(F, T (Gk−1(x)) (1)

where Gk = Tk ◦ ... ◦ T1 for 1≤k≤K and G0=id. Here, Tk is the module (one or many layers) and
it receives the output of module Tk−1, and Fk is an auxiliary classifier that processes the outputs of
Tk so the loss can be computed. The features are x and L has access to their label to calculate the
loss. See Figure 3 in Appendix E for a representation of this training. The final network trained this

1



Under review as a conference paper at ICLR 2023

way is FK ◦GK , but we can stop at any depth k and use Fk ◦Gk if it performs better. In fact, when
the modules are numerous and shallow, module-wise training suffers from a stagnation problem,
whereby greedy early modules overfit and learn more discriminative features than end-to-end training
(Marquez et al. (2018)), and deeper modules don’t improve the test accuracy (Wang et al. (2021)),
or even degrade it (see Figure 1). To tackle this issue, Wang et al. (2021) propose to maximize the
mutual information that each module keeps with the input, in addition to minimizing the loss. We
propose a different, transport-based perspective, leveraging the analogy between ResNets and the
Euler scheme for ODEs (Weinan (2017)). To preserve input information, we minimize the kinetic
energy of the modules along with the training loss. This has tight connections with the theories of
gradient flows in distribution space and optimal transport. Our approach is particularly well-adapted
to ResNets (He et al. (2016a;b)), which remain competitive (Wightman et al. (2021)) to this day, and
similar models such as ResNeXts (Xie et al. (2017)) and Wide ResNets (Zagoruyko & Komodakis
(2016)), but is easily usable on other architectures. Our contributions are the following:

• We propose a new method for module-wise training. Being a regularization, it is easier to
implement and lighter than many recent methods (e.g. PredSim (Nøkland & Eidnes (2019)),
InfoPro (Wang et al. (2021))) that train another auxiliary network besides the auxiliary
classifier for each module.

• Theoretically, we show that our method amounts to a transport regularization, which forces
the module to be an optimal transport map and makes it more regular and stable. We also
show that it amounts to a discretization of the gradient flow of the loss in distribution space,
which means that the modules successively minimize the loss and explains why the method
avoids the accuracy collapse or stagnation observed in module-wise training.

• We propose multi-lap sequential training, a variant of sequential module-wise training, that
for the same time and number of epochs, and the same memory usage, often performs better.

• Experimentally, we consistently improve the test accuracy of module-wise trained ResNets,
both in sequential and parallel module-wise training, whereas most recent methods, with the
exception of Belilovsky et al. (2019), focus on the parallel case. The method also works
when the modules are few and large, and when they are numerous and shallow, when many
methods focus on one setting or show problems in the other.

2 RELATED WORK

Layer-wise training has been considered as a pre-training and initialization method (Bengio et al.
(2006); Marquez et al. (2018)) and was shown recently to be competitive with end-to-end training
(Belilovsky et al. (2019); Nøkland & Eidnes (2019)). This has led to it being considered in practical
settings with limited resources such as embedded training (Teng et al. (2020); Tang et al. (2021)).
Many papers consider using a different auxiliary loss, instead of or in addition to the classification
loss: kernel similarity (Mandar Kulkarni (2016)), information-theory-inspired losses (Sindy Löwe
(2019); Nguyen & Choi (2019); Ma et al. (2020); Wang et al. (2021)) and biologically plausible losses
(Sindy Löwe (2019); Nøkland & Eidnes (2019); Gupta (2020); Bernd Illing (2020); Yuwen Xiong
(2020)). Paper Belilovsky et al. (2019) reports the best experimental results when solving the layer-
wise problems sequentially. Methods PredSim (Nøkland & Eidnes (2019)), DGL (Belilovsky et al.
(2020)), Sedona (Pyeon et al. (2021)) and InfoPro (Wang et al. (2021)) report the best results when
solving the module-wise problems in parallel. Belilovsky et al. (2019; 2020) do it simply through
architectural considerations regarding the auxiliary networks. However, Belilovsky et al. (2019) do
not consider ResNets and PredSim state that their method does not perform well on them. Sedona
applies architecture search to decide on where to split the network into up to 16 modules and what
auxiliary classifier to use before module-wise training. Only BoostResNet (Huang et al. (2018)) also
proposes a block-wise training idea geared for ResNets. However, their results only show better early
performance on limited experiments and end-to-end fine-tuning is required to be competitive. A
method called ResIST (Dun et al. (2021)) that is similar to block-wise training of ResNets randomly
assigns ResBlocks to one of up to 16 modules that are trained independently and reassembled before
another random partition. More of a distributed training method, it is only compared with local SGD
(Stich (2019)). These methods can all be combined with our regularization, and we use the auxiliary
architecture from Belilovsky et al. (2019; 2020).

2



Under review as a conference paper at ICLR 2023

Besides module-wise training, methods such as DNI (Jaderberg et al. (2017); Czarnecki et al. (2017)),
DDG (Huo et al. (2018b)) and FR (Huo et al. (2018a)), solve the update and backward locking
problems with an eye towards parallelization by using delayed or predicted gradients, or even
predicted inputs to address forward locking, which is what Sun et al. (2021) do. But they only split
networks into a small number of sub-modules (less than five) that don’t backpropagate to each other
and observe training issues with more sub-modules (Huo et al. (2018a)). This makes them compare
unfavorably to module-wise training (Belilovsky et al. (2020)). The high dimension of the predicted
gradient which scales with the size of the network renders Jaderberg et al. (2017); Czarnecki et al.
(2017) challenging in practice. Therefore, despite its simplicity, greedy module-wise training is more
appealing when working in a constrained setting.

Viewing ResNets as dynamic transport systems (de Bézenac et al. (2019); Karkar et al. (2020))
followed from their view as a discretization of differential equations (Weinan (2017); Lu et al.
(2018)). Transport regularization was also used in Finlay et al. (2020) to accelerate the training of
the NeuralODE model (Chen et al. (2018)). Transport regularization of ResNets in particular is
motivated by the observation that they are naturally biased towards minimally modifying their input
(Jastrzebski et al. (2018); Hauser (2019)). We further link this transport viewpoint with gradient
flows in the Wasserstein space to apply it in a principled way to module-wise training. Gradient
flows in the Wasserstein space operating on the data space appeared recently in deep learning. In
Alvarez-Melis & Fusi (2021), the focus is on functionals of measures whose first variations are
known in closed form and used, through their gradients, in the algorithm. This limits the scope of
their applications to transfer learning and similar tasks. Likewise, Gao et al. (2019); Liutkus et al.
(2019); Arbel et al. (2019); Ansari et al. (2021) use the explicit gradient flow of f -divergences and
other distances between measures for generation and generator refinement. In contrast, we use the
minimizing movement scheme which does not require computation of the first variation and allows
to consider classification.

3 TRANSPORT-REGULARIZED MODULE-WISE TRAINING

In this section we state the module-wise optimization problems we solve. We show that successively
solving these problems means following a minimizing movement scheme in distribution space that
maximizes the separability of the embedding distributions. We then show that the solution modules
exist and have some regularity as they are optimal transport maps. Appendices A and B give the
necessary background on optimal transport, gradient flows and the minimizing movement scheme.

3.1 METHOD STATEMENT

To keep greedily-trained modules from overfitting and destroying information needed later, we
penalize their kinetic energy to force them to preserve the geometry of the problem as much as
possible. If each module is a single ResBlock (i.e. a function T = id+r), its kinetic energy is simply
the squared norm of its residue r = T−id, which we add to the loss L in the target of the greedy
problems (1). Given τ>0 used to weight the regularization, we now solve, for 1≤k≤K, Problems

(T τk , F
τ
k ) ∈ arg min

T,F

∑
x∈D

L(F, T (Gτk−1(x)) +
1

2τ
‖T (Gτk−1(x))−Gτk−1(x)‖2 (2)

where Gτk=T τk ◦..◦T τ1 for 1≤k≤K and Gτ0=id. The final network is now F τK◦GτK . Intuitively,
we can think that this biases the modules towards moving the points as little as possible, thus at
least keeping the performance of the previous module. We focus on ResNets because they are
already biased towards small displacements and that this bias is desirable and should be encouraged
(Jastrzebski et al. (2018); Zhang et al. (2019); Hauser (2019); De & Smith (2020); Karkar et al.
(2020)), and because T (x)−x can always be computed as both terms have the same dimension. But
the method can be applied to any module where this quantity can be computed.

To facilitate the theoretical analysis, we rewrite the method in a more general formulation using data
distribution ρ, which can be discrete or continuous, and the distribution-wide loss L that arises from
the point-wise loss L. Then Problem (2) is equivalent to Problem

(T τk , F
τ
k ) ∈ arg min

T,F
L(F, T]ρ

τ
k) +

1

2τ

∫
Ω

‖T (x)− x‖2 dρτk(x) (3)

with ρτk+1=(T τk )]ρ
τ
k and ρτ1=ρ. So data embedding distributions ρτk are pushed forward by maps T τk .

3



Under review as a conference paper at ICLR 2023

3.2 LINK WITH THE MINIMIZING MOVEMENT SCHEME

We now show that solving Problems (3) successively means following a minimizing movement
scheme in distribution space for minimizing Z(µ) = minF L(F, µ), which represents the loss of
the best classifier on distribution µ. If we restrict ourselves to linear classifiers, Z(ρτk) represents
the linear separability of our representation ρτk at module k of the input data distribution ρ. When
auxiliary networks are not necessary, for example in generative tasks where the output has the same
shape as the input, or when the auxiliary network F is fixed, Z reduces essentially to L.

The distribution space we work in is the metric Wasserstein space W2(Ω) = (P(Ω),W2), where
Ω ⊂ Rd is a convex compact set, P(Ω) is the set of probability distributions over Ω and W2 is the
Wasserstein distance over P(Ω) derived from the optimal transport problem with Euclidean cost:

W 2
2 (α, β) = min

T s.t. T]α=β

∫
Ω

‖T (x)− x‖2 dα(x) (4)

where we further assume that ∂Ω is negligible and that the distributions we are dealing with are
absolutely continous. Given Z : W2(Ω) → R, the minimizing movement scheme is a discretized
gradient flow that is well-defined in non-Euclidean metric spaces and minimizes (under some
conditions) Z starting from ρτ1 ∈ P(Ω). It is given by

ρτk+1 ∈ arg min
ρ∈P(Ω)

Z(ρ) +
1

2τ
W 2

2 (ρ, ρτk) (5)

Equation (5) can be interpreted as a non-Euclidean version of the implicit Euler scheme for following
the gradient flow of Z , or as a Wasserstein proximal step to minimize Z . Indeed, if Z is lower-semi
continuous then problems (5) always admit a solution because P(Ω) is compact. If Z is also λ-
geodesically convex for λ>0, we have convergence of ρτk as k→∞ and τ→0 to a minimizer of Z ,
potentially under more technical conditions (see Appendix B for details). Even though a machine
learning loss will usually not satisfy these conditions, this analyses offers hints as to why our method
avoids in practice the problem of stagnation or collapse in performance of module-wise training along
the depth k, as we are making proximal local steps in Wasserstein space to minimize the loss. This
convergence discussion also suggests taking τ as small as possible and many modules T τk in practice.

So under the mentioned hypotheses on Ω and absolute continuity of the distributions, we have:

Proposition 3.1. The distributions ρτk+1 = (T τk )]ρ
τ
k, where the functions T τk are found by solving

(3) and ρτ1 = ρ is the data distribution, coincide with the minimizing movement scheme (5) for
Z = minF L(F, .).

Proof. The minimizing movement scheme (5) is equivalent to taking ρτk+1 = (T τk )]ρ
τ
k where

T τk ∈ arg min
T :Ω→Ω

Z(T]ρ
τ
k) +

1

2τ
W 2

2 (T]ρ
τ
k, ρ

τ
k) (6)

under conditions that guarantee the existence of a transport map between ρτk and any other measure,
and absolute continuity of ρτk suffices, and the loss can ensure that ρτk+1 is also absolutely continuous.
Among the functions T τk that solve problem (6), is the optimal transport map from ρτk to ρτk+1. To
solve specifically for this optimal transport map, we have to solve the equivalent Problem

T τk ∈ arg min
T
Z(T]ρ

τ
k) +

1

2τ

∫
Ω

‖T (x)− x‖2 dρτk(x) (7)

Problems (6) and (7) have the same minimum value, but the minimizer of (7) is now an optimal
transport map between ρτk and ρτk+1. This is immediate from the definition (4) of the W2 distance.
Equivalently minimizing first over the auxiliary F in (3), and from the definition of Z , Problems (3)
and (7) are equivalent, which concludes.

When solving over neural networks in practice, their representation power shown by universal
approximation theorems is important here to get close to equivalence between (5) and (6) when
restricting the optimization to neural networks.

4



Under review as a conference paper at ICLR 2023

3.3 REGULARITY RESULT

We can show that Problem (3) has a solution and that the solution module T τk is an optimal transport
map between its input and output distributions, which means that it comes with some regularity. We
assume that the minimization in F is over a compact set F , that ρτk is absolutely continuous, that L is
continuous and non-negative, that Ω is convex and compact and that ∂Ω is negligible.
Theorem 3.2. Problem (3) has a minimizer (T τk , F

τ
k ) such that T τk is an optimal transport map. And

for any minimizer (T τk , F
τ
k ), T τk is an optimal transport map.

The proof is in Appendix C. OT maps have regularity properties under some boundedness assumptions.
Given Theorem A.1 in Appendix A and taken from Figalli (2017), T τk is η-Hölder continuous almost
everywhere and if the optimization algorithm we use to solve the discretized problem (2) returns an
approximate solution pair (F̃ τk , T̃

τ
k ) such that T̃ τk is an ε-optimal transport map, i.e. ‖T̃ τk −T τk ‖∞ ≤ ε,

then we have (using the triangle inequality) the following stability property of the module T̃ τk :

‖T̃ τk (x)− T̃ τk (y)‖ ≤ 2ε+ C‖x− y‖η (8)

for almost every x, y ∈ supp(ρτk) and a constant C > 0. Karkar et al. (2020) show that these networks
generalize better and overfit less in practice. Naively composing these stability bounds on T τk and T̃ τk
allows to get stability bounds for the composition networks Gτk and G̃τk = T̃ τk ◦ .. ◦ T̃ τ1 .

4 PRACTICAL IMPLEMENTATION

4.1 MULTI-BLOCK MODULES

For simplicity, we have presented in (2) the case where each module is a single ResBlock. However, in
practice, we often split the network into modules that are made-up of many ResBlocks each. We show
here that regularizing the kinetic energy of such modules still amounts to a transport regularization,
which means that Theorem 3.2, the regularity bound (8) and the link with gradient flows still apply.

If each module Tk is made up of M ResBlocks, i.e. applies xm+1 = xm + rm(xm) for 0 ≤ m < M ,
then its total discrete kinetic energy for a single data point x0 is the sum of its squared residue norms∑
‖rm(xm)‖2, since a ResNet can be seen as a discrete Euler scheme for an ordinary differential

equation (Weinan (2017)) with velocity field r:

xm+1 = xm + rm(xm) ←→ ∂txt = rt(xt) (9)

and
∑
‖rm(xm)‖2 is then the discretization of the total kinetic energy

∫ 1

0
‖rt(x)‖2 dt of the ODE.

If ψxm denotes the position of a point x after m ResBlocks, then regularizing the kinetic energy of
multi-block modules means solving

(T τk , F
τ
k ) ∈ arg min

T,F

∑
x∈ρ̃0

(L(F, T (Gτk−1(x)) +
1

2τ

M−1∑
m=0

‖rm(ψxm)‖2) (10)

s.t. T = (id + rM−1) ◦ ... ◦ (id + r0), ψx0 = Gτk−1(x), ψxm+1 = ψxm + rm(ψxm)

We also want to minimize this sum of squared residue norms instead of ‖T (x) − x‖2 (the two no
longer coincide) as it works better in practice, which we assume is because it offers a better and more
localized control of the transport. As expressed in (9), a ResNet can be seen as an Euler discretization
of a differential equation and this new Problem (10) is then the discretization of Problem

(T τk , F
τ
k ) ∈ arg min

T,F
L(F, T]ρ

τ
k) +

1

2τ

∫ 1

0

‖vt‖2L2((φ·
t)]ρ

τ
k) dt (11)

s.t. T = φ·1, ∂tφ
x
t = vt(φ

x
t ), φ·0 = id

where ρτk+1 = (T τk )]ρ
τ
k and rm is the discretization of vector field vt at time t = m/M . Here,

distributions ρτk are pushed forward through the maps T τk which correspond to the flow φ at time
t = 1 of the kinetically-regularized velocity field vt. We recognize in the second term in the target
of (11) the optimal transport problem in its dynamic formulation (Benamou & Brenier (2000)), and
given the equivalence between the Monge OT problem (4) and the dynamic OT problem (16) in
Appendix A, Problem (11) is in fact equivalent to the original continuous formulation (3), and the
theoretical results in Section 3 follow immediately (see also the proof in Appendix C).

5



Under review as a conference paper at ICLR 2023

4.2 SOLVING THE MODULE-WISE PROBLEMS

The module-wise problems can be solved in one of two ways. One can completely train each module
with its auxiliary classifier for N epochs before training the next module, which receives as input
the output of the previous trained module. We call this sequential module-wise training. But we can
also do this batch-wise, i.e. do a complete forward pass on each batch but without a full backward
pass, rather a backward pass that only updates the current module T τk and its auxiliary classifier F τk ,
meaning that T τk forwards its output to T τk+1 immediately after it computes it. We call this parallel
module-wise training. It is called decoupled greedy training in Belilovsky et al. (2020), which shows
that combining it with batch buffers solves all three locking problems and allows a linear training
parallelization in the depth of the network. We propose a variant of sequential module-wise training
that we call multi-lap sequential module-wise training, in which instead of training each module for
N epochs, we train each module from the first to the last sequentially for N/R epochs, then go back
and train from the first module to the last for N/R epochs again, and we do this for R laps. For the
same total number of epochs and training time, and the same advantages (loading and training one
module at a time) this provides a non-negligible improvement in accuracy over normal sequential
module-wise training in most cases, as shown below. Despite our theoretical framework being that of
sequential module-wise training, our method improves the test accuracy of all three module-wise
training regimes.

4.3 VARYING THE REGULARIZATION WEIGHT

The discussion in Section 3.2 suggests taking a fixed weight τ for the transport cost that is as small as
possible. However, instead of using a fixed τ , we might want to vary it along the depth k to further
constrain with a smaller τk the earlier modules to avoid that they overfit or the later modules to
maintain the accuracy of earlier modules. We might also want to regularize the networks further in
earlier epochs when the data is more entangled. To unify and formalize this varying weight τk,i across
modules k and SGD iterations i, we use a scheme inspired by the method of multipliers to solve
Problems (2) and (10). To simplify the notations, we will instead consider the weight λk,i:=2τk,i
given to the loss. We denote θk,i the parameters of both Tk and Fk at SGD iteration i. We also denote
L(θ, x) and W (θ, x) respectively the loss and the transport regularization as functions of parameters
θ and data point x. We now increase the weight λk,i of the loss every s iterations of SGD by a value
that is proportional to the current loss. Given increase factor h>0, initial parameters θk,1, initial
weight λk,1≥0, learning rates (ηi) and batches (xi), we apply for module k and i≥1:{

θk,i+1 = θk,i − ηi∇θ(λk,i L(θk,i, xi) +W (θk,i, xi))

λk,i+1 = λk,i + hL(θk,i+1, xi+1) if i mod s = 0 else λk,i
(12)

The weights λk,i will vary along modules k even if we use the same initial weights λk,1 = λ1 because
they will evolve differently with iterations i for each k. They will increase more slowly with i for
larger k because deeper modules will have smaller loss. This method can be seen as a method of
multipliers for the problem of minimizing the transport under the constraint of zero loss (a reasonable
assumption as recent deep learning architectures have shown to systematically achieve near zero
training loss (Zhang et al. (2017); Jacot et al. (2018); Belkin et al. (2018; 2019)). Therefore it is
immediate by slightly adapting the proof of Theorem 3.2 or from Karkar et al. (2020) that we are
still solving a problem that admits a solution whose non-auxiliary part is an optimal transport map
with the same regularity as stated above. This method works better than a simple fixed τ in many
experiments, but has more hyperparameters to tune. In practice, we found that fixing a value of τ
between 0.5 and 5 for the first half of the modules and twice as big for the second half is a simple
heuristic that works well.

5 EXPERIMENTS

We test our method on classification tasks, L being the cross-entropy loss. We call vanilla greedy
module-wise training without our regularization VanGL, which we include as a baseline in all tables
for ablation study purposes. We call our method TRGL for Transport-Regularized Greedy Learning.
For the auxiliary classifiers, we use the architecture from Belilovsky et al. (2019; 2020), that is a
convolutional layer followed by an average pooling layer and a fully connected layer.

6



Under review as a conference paper at ICLR 2023

5.1 PARALLEL MODULE-WISE TRAINING WITH FEW MODULES

To compare with other methods, we focus here on parallel module-wise training with few modules, as
it performs better than sequential training and is explored more in recent papers. The first experiment
is training in parallel a ResNet-152 divided into 4 modules on TinyImageNet. We compare in Table
1 our results in this setup to three of the best recent parallel module-wise training methods: DGL
(Belilovsky et al. (2020)), PredSim (Nøkland & Eidnes (2019)) and Sedona (Pyeon et al. (2021)) from
Table 2 in Pyeon et al. (2021). The good performance of VanGL comes from the auxiliary architecture,
and the regularization allows to be more accurate than Sedona without using their architecture search
phase that splits the network into 4 uneven modules and chooses the auxiliary architecture. As in
their paper, parallel module-wise training with 4 modules does better than end-to-end training on
TinyImageNet. Module-wise training in this case consumes 20% less memory than E2E training.

Table 1: Test accuracy of parallel TRGL and VanGL with 4 modules, compared to methods DGL,
PredSim and Sedona from Pyeon et al. (2021) that also split a ResNet-152 into 4 module-wise-
parallel-trained modules, and E2E training, on TinyImageNet.

Parallel VanGL (ours) Parallel TRGL (ours) DGL PredSim Sedona E2E

63.65 64.35 57.64 51.76 64.1 62.32

In Table 2, we compare our method using a ResNet-101 split into 2 modules trained in parallel to
the two delayed gradient methods DDG and FR from Huo et al. (2018a) on CIFAR100 (Krizhevsky
(2009)). Here again, parallel module-wise training is competitive with end-to-end training.

Table 2: Test accuracy of parallel TRGL and VanGL with 2 modules, compared to methods DDG and
FR from Huo et al. (2018a) that also split a ResNet-101 into 2 module-wise-parallel-trained modules,
and E2E training, on CIFAR100 (average and 95% confidence interval over 3 runs).

Parallel VanGL (ours) Parallel TRGL (ours) DDG FR E2E

77.31 ± .27 77.87 ± .44 75.75 76.90 76.57 ± 1.02

To show that our method works well with all types of module-wise training when using 2 modules,
we train the same ResNet-101 split in 2 modules on CIFAR100, this time sequentially and multi-lap
sequentially. Results are in Table 3 below. We see that our idea of multi-lap sequential training adds
one percentage point of accuracy to sequential training, and that the regularization further improves
the accuracy by about half a percentage point.

.

Table 3: Test accuracy of sequential (Seq) and multi-lap sequential (MLS) TRGL and VanGL with 2
modules on CIFAR100 using ResNet-101 (average of 2 runs).

Seq VanGL Seq TRGL MLS VanGL MLS TRGL

73.31 73.61 74.34 74.78

5.2 SEQUENTIAL FULL BLOCK-WISE TRAINING

We now focus on full block-wise training, meaning that each module is a single ResBlock, mostly
sequentially. We propose here to use shallower and initially wider ResNets with a downsampling
and 256 filters initially and a further downsampling and doubling of the number of filters at the
midpoint, no matter the depth. In these ResNets, we use the ResBlock from He et al. (2016a) with
two convolutional layers. If such a network is divided in K modules of M ResBlocks each, we call
the network a K−M ResNet. These wider shallower architectures are well-adapted to layer-wise

7



Under review as a conference paper at ICLR 2023

training as seen in Belilovsky et al. (2019). We check in Table 6 in Appendix D that this architecture
works well with parallel module-wise training by comparing favorably on CIFAR10 (Krizhevsky
(2009)) a 2-7 ResNet with DGL, InfoPro (Wang et al. (2021)) and DDG Huo et al. (2018b). The 2-7
ResNet has 45 millions parameters, which is about the same as the ResNet-110 divided in two used
by the other methods, and performs better when trained in parallel.

We now train a 10-block ResNet block-wise on CIFAR100 (a 10-1 ResNet in our notations). We
report even the small improvements in accuracy to show that our method works in all settings (parallel
or sequential with many or few splits), which other methods don’t do. For sequential training, block
k is trained for 50+10k epochs where 0≤k≤10, block 0 being the encoder. This idea of increasing
the number of epochs per layer along with the depth is found in Marquez et al. (2018). For multi-lap
sequential training, block k is trained for 10+2k epochs, and this is repeated for 5 laps. In block-wise
training, the last block does not always perform the best and we report the accuracy of the best block.
In Table 4, we see that MLS training improves the test accuracy of sequential training by around 0.8
percentage points when the training dataset is full, but works less well on small training sets. Of
the two, the regularization mainly improves the test accuracy of MLS training. The improvement
increases as the training set gets smaller and reaches 1 percentage point. That is also the case for
parallel module-wise training, which already performs quite close to end-to-end training in the
full data regime and much better in the small data regime. Combining the multi-lap trick and the
regularization improves the performance of sequential training by 1.2 percentage points. These results
are averaged over 10 runs and the confidence intervals are provided in Tables 7 and 8 in Appendix D.

Table 4: Average test accuracy of 10-1 ResNet over 10 runs on CIFAR100 with different train sizes
and sequential (Seq), multi-lap sequential (MLS) and parallel (Par) TRGL and VanGL, and E2E.

Seq MLS Par E2E

Train size VanGL TRGL VanGL TRGL VanGL TRGL

50000 68.74 68.79 69.48 69.95 72.59 72.63 75.85
25000 60.48 60.59 61.33 61.71 64.84 65.01 65.36
12500 51.64 51.74 51.30 51.89 55.13 55.40 52.39
5000 36.37 36.40 33.68 34.61 39.45 40.36 36.38

We report further results for full block-wise training on MNIST (LeCun et al. (2010)) and CIFAR10,
but now we report the accuracy of the last block. We see again greater improvement due to the
regularization as the training set gets smaller, gaining as much as 6 percentage points (Table 5, and
Tables 9 and 10 in Appendix D). The 88% accuracy of sequential training on CIFAR10 in Table 5 is
the same as for sequential training in table 2 of Belilovsky et al. (2019), which is the best method for
layer-wise sequential training available, with VGG networks of comparable depth and width.

Table 5: Average last block test accuracy and 95% confidence interval of 10-1 ResNet over 10 runs
on CIFAR10 with different train sizes and sequential (Seq) TRGL and VanGL, compared to E2E.

Train Seq VanGL Seq TRGL E2E

50000 88.02 ± .18 88.20 ± .24 91.88 ± .18
25000 83.95 ± .13 84.28 ± .22 88.75 ± .27
10000 76.00 ± .39 77.18 ± .34 82.61 ± .35
5000 67.74 ± .49 69.67 ± .44 73.93 ± .67
1000 45.67 ± .88 51.34 ± .90 50.63 ± .98

Finally, in Figure 1, we look at the test accuracy of each block after block-wise training with and
without the regularization. On the left, from experiments with sequential block-wise training from
Table 5 on a train set of 1000 CIFAR10 images, we see a large decline in performance after the
first block (block 0 being the encoder) that the regularization completely avoids. On the right, from
experiments with parallel block-wise training from Table 8 on a train set of 5000 CIFAR100 images,

8



Under review as a conference paper at ICLR 2023

we see a steeper increase in test accuracy along the blocks with the regularization. We see the same
pattern in Figure 2 in Appendix D from experiments with multi-lap sequential block-wise training
from Table 7 on a train set of 5000 CIFAR100 images.

Figure 1: Highest test accuracy after each block of 10-1 ResNet models averaged over 10 runs with
95% confidence intervals. Left: sequential vanilla (VanGL, in blue) and regularized (TRGL, in red)
block-wise training on 2% of the CIFAR10 training set. Right: parallel vanilla (VanGL, in blue) and
regularized (TRGL, in red) block-wise training on 10% of the CIFAR100 training set.

6 CONCLUSION

We introduced a transport regularization for module-wise training of ResNets that links module-wise
training to gradient flows of the loss in distribution space. Our method provably leads to more regular
modules and experimentally consistently improves the test accuracy of module-wise and block-wise
sequential, parallel and multi-lap sequential (a variant of sequential training that we introduce)
training, especially in small data regimes. Through this simple method that does not complexify
the architecture or the implementation, we aim at making module-wise training competitive with
end-to-end training while benefiting from its computational advantages: reduced memory usage and
parallelism that is complementary to model and data parallelism in the case of parallel module-wise
training, and training only one module at a time in constrained settings such as training on mobile
devices in the case of sequential module-wise training. The method can easily be implemented for
layer-wise training of non-residual networks and combined with other methods of layer-wise training.
Future work can also experiment with working in Wasserstein space Wp for p 6= 2, i.e. regularizing
with a norm ‖.‖p with p 6= 2. One can also ask how far the obtained composition network GK is
from being an OT map itself, which could provide a better stability bound than the one obtained by
naively chaining the stability bounds (8) that follow from each module Tk being an OT map.

REPRODUCIBILITY STATEMENT

The code is available at https://github.com/block-wise/module-wise-training
and implementation details are in Appendix E.

REFERENCES

David Alvarez-Melis and Nicolò Fusi. Dataset dynamics via gradient flows in probability space.
ICML, 2021.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savare. Gradient Flows in Metric Spaces and in the
Space of Probability Measures. Birkhäuser Basel, 2005.

Abdul Fatir Ansari, Ming Liang Ang, and Harold Soh. Refining deep generative models via discrimi-
nator gradient flow. In ICLR, 2021.

Michael Arbel, Anna Korba, Adil Salim, and Arthur Gretton. Maximum mean discrepancy gradient
flow. In NeurIPS, 2019.

9



Under review as a conference paper at ICLR 2023

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. In ICML, 2019.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of cnns.
In ICML, 2020.

M. Belkin, S. Ma, and S. Mandal. To understand deep learning we need to understand kernel learning.
In ICML, pp. 540–548, 2018.

M. Belkin, S. Ma, and S. Mandal. Reconciling modern machine-learning practice and the classical
bias–variance trade-off. In PNAS, volume 116, pp. 15849–15854, 2019.

J.D. Benamou and Y. Brenier. A computational fluid mechanics solution to the monge-kantorovich
mass transfer problem. Numerische Mathematik, 2000.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of
deep networks. In NeurIPS, 2006.

Guillaume Bellec Bernd Illing, Wulfram Gerstner. Towards truly local gradients with clapp: Con-
trastive, local and predictive plasticity. arXiv, 2020.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential equations.
In NeurIPS, 2018.

Wojciech Marian Czarnecki, Grzegorz Świrszcz, Max Jaderberg, Simon Osindero, Oriol Vinyals, and
Koray Kavukcuoglu. Understanding synthetic gradients and decoupled neural interfaces. In ICML,
2017.

Soham De and Samuel L. Smith. Batch normalization biases residual blocks towards the identity
function in deep networks. In NeurIPS, 2020.

Emmanuel de Bézenac, Ibrahim Ayed, and Patrick Gallinari. Optimal unsupervised domain translation.
arXiv, 2019.

Chen Dun, Cameron R. Wolfe, Christopher M. Jermaine, and Anastasios Kyrillidis. Resist: Layer-
wise decomposition of resnets for distributed training. arXiv, 2021.

A. Figalli. The Monge-Ampere Equation and Its Applications. Zurich lectures in advanced mathemat-
ics. European Mathematical Society, 2017.

Chris Finlay, Jorn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Oberman. How to train your
neural ode. In ICML, 2020.

Yuan Gao, Yuling Jiao, Yang Wang, Yao Wang, Can Yang, and Shunkang Zhang. Deep generative
learning via variational gradient flow. In ICML, 2019.

Shashi Kant Gupta. A more biologically plausible local learning rule for anns. arXiv, 2020.

M. Hauser. On residual networks learning a perturbation from identity. arXiv, 2019.

K. He, X. Zhan, S. Ren, and J. Sun. Identity mappings in deep residual networks. In ECCV, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016b.

Furong Huang, Jordan Ash, John Langford, and Robert Schapire. Learning deep resnet blocks
sequentially using boosting theory. In ICML, 2018.

Zhouyuan Huo, Bin Gu, and Heng Huang. Training neural networks using features replay. In
NeurIPS, 2018a.

Zhouyuan Huo, Bin Gu, Qian Yang, and Heng Huang. Decoupled parallel backpropagation with
convergence guarantee. In ICML, 2018b.

Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence and
generalization in neural networks. In NeurIPS, pp. 8580–8589, 2018.

10



Under review as a conference paper at ICLR 2023

M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves, D. Silver, and K. Kavukcuoglu.
Decoupled neural interfaces using synthetic gradients. In ICML, 2017.

Stanislaw Jastrzebski et al. Residual connections encourage iterative inference. In ICLR, 2018.

Skander Karkar, Ibrahim Ayed, Emmanuel de Bézenac, and Patrick Gallinari. A principle of least
action for the training of neural networks. In ECML-PKDD, 2020.

Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto
Technical Report, 2009.

Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. MNIST handwritten digit database.
yann.lecun.com/exdb/mnist, 2010.

Antoine Liutkus, Umut Imşekli, Szymon Majewski, Alain Durmus, and Fabian-Robert Stoter. Sliced-
wasserstein flows: Nonparametric generative modeling via optimal transport and diffusions. In
ICML, 2019.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. In ICML, 2018.

Wan-Duo Kurt Ma, J.P. Lewis, and W. Bastiaan Kleijn. The hsic bottleneck: Deep learning without
back-propagation. In AAAI, 2020.

Shirish Karande Mandar Kulkarni. Layer-wise training of deep networks using kernel similarity. In
DLPR workshop, ICPR, 2016.

Enrique S. Marquez, Jonathon S. Hare, and Mahesan Niranjan. Deep cascade learning. IEEE
Transactions on Neural Networks and Learning Systems, 2018.

Thanh T. Nguyen and Jaesik Choi. Layer-wise learning of stochastic neural networks with information
bottleneck. Entropy, 21, 2019.

Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In ICML,
2019.

Myeongjang Pyeon, Jihwan Moon, Taeyoung Hahn, and Gunhee Kim. Sedona: Search for decoupled
neural networks toward greedy block-wise learning. In ICLR, 2021.

F. Santambrogio. Optimal Transport for Applied Mathematicians. Birkhäuser, 2015.

F. Santambrogio. Euclidean, metric, and wasserstein gradient flows: an overview. arXiv, 2016.

Andrew M. Saxe, James L. Mcclelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics
of learning in deep linear neural network. In ICLR, 2014.

Bastiaan Veeling Sindy Löwe, Peter O’Connor. Putting an end to end-to-end: Gradient-isolated
learning of representations. In NeurIPS, 2019.

Sebastian U. Stich. Local sgd converges fast and communicates little. In ICLR, 2019.

Qi Sun, Hexin Dong, Zewei Chen, Jiacheng Sun, Zhenguo Li, and Bin Dong. Layer-parallel training
of residual networks with auxiliary-variable networks. arXiv, 2021.

Yin Tang, Qi Teng, Lei Zhang, Fuhong Min, and Jun He. Layer-wise training convolutional neural
networks with smaller filters for human activity recognition using wearable sensors. IEEE Sensors
Journal, 2021.

Qi Teng, Kun Wang, Lei Zhang, and Jun He. The layer-wise training convolutional neural networks
using local loss for sensor-based human activity recognition. IEEE Sensors Journal, 2020.

Cédric Villani. Optimal Transport: Old and New. Springer-Verlag, 2008.

Yulin Wang, Zanlin Ni, Shiji Song, and Gao Huang Le Yang. Revisiting locally supervised learning:
an alternative to end-to-end training. In ICLR, 2021.

11



Under review as a conference paper at ICLR 2023

E Weinan. A proposal on machine learning via dynamical systems. Commun. Math. Stat, 2017.

Ross Wightman, Hugo Touvron, and Herve Jégou. Resnet strikes back: An improved training
procedure in timm. arXiv, 2021.

Saining Xie et al. Aggregated residual transformations for deep neural networks. In CVPR, 2017.

Raquel Urtasun Yuwen Xiong, Mengye Ren. Loco: Local contrastive representation learning. In
NeurIPS, 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires
rethinking generalization. In ICLR, 2017.

Jingfeng Zhang et al. Towards robust resnet: A small step but a giant leap. In IJCAI, 2019.

12



Under review as a conference paper at ICLR 2023

A BACKGROUND ON OPTIMAL TRANSPORT

The Wasserstein space W2(Ω) with Ω a convex and compact subset of Rd is the space P(Ω) of
probability measures over Ω, equipped with the distance W2 given by the solution to the optimal
transport problem

W 2
2 (α, β) = min

γ∈Π(α,β)

∫
Ω×Ω

‖x− y‖2 dγ(x, y) (13)

where Π(α, β) is the set of probability distribution over Ω × Ω with first marginal α and second
marginal β, i.e. Π(α, β) = {γ ∈ P(Ω × Ω) | π1]γ = α, π2]γ = β} where π1(x, y) = x and
π2(x, y) = y. The optimal transport problem can be seen as looking for a transportation plan
minimizing the cost of displacing some distribution of mass from one configuration to another. This
problem indeed has a solution in our setting and W2 can be shown to be a geodesic distance (see for
example Santambrogio (2015); Villani (2008)). If α is absolutely continuous and ∂Ω is α-negligible
then the problem in (13) (called the Kantorovich problem) has a unique solution and is equivalent to
the Monge problem, i.e.

W 2
2 (α, β) = min

T s.t. T]α=β

∫
Ω

‖T (x)− x‖2 dα(x) (14)

and this problem has a unique solution T ? linked to the solution γ? of (13) through γ? = (id, T ?)]α.
Another equivalent formulation of the optimal transport problem in this setting is the dynamical
formulation Benamou & Brenier (2000). Here, instead of directly pushing samples of α to β using
T , we can equivalently displace mass, according to a continuous flow with velocity vt : Rd → Rd.
This implies that the density αt at time t satisfies the continuity equation ∂tαt +∇ · (αtvt) = 0,
assuming that initial and final conditions are given by α0 = α and α1 = β respectively. In this case,
the optimal displacement is the one that minimizes the total action caused by v :

W 2
2 (α, β) = min

v

∫ 1

0

‖vt‖2L2(αt)
dt (15)

s.t. ∂tαt +∇ · (αtvt) = 0, α0 = α, α1 = β

Instead of describing the density’s evolution through the continuity equation, we can describe the
paths φxt taken by particles at position x from α when displaced along the flow v. Here φxt is the
position at time t of the particle that was at x ∼ α at time 0. The continuity equation is then equivalent
to ∂tφxt = vt(φ

x
t ). See chapters 4 and 5 of Santambrogio (2015) for details. Rewriting the conditions

as necessary, Problem (15) becomes

W 2
2 (α, β) = min

v

∫ 1

0

‖vt‖2L2((φ·
t)]α) dt (16)

s.t. ∂tφxt = vt(φ
x
t ), φ·0 = id, (φ·1)]α = β

and the optimal transport map T ? that solves (14) is in fact T ?(x) = φx1 for φ that solves the
continuity equation together with the optimal v? from (16). We refer to Santambrogio (2015); Villani
(2008) for these results on optimal transport.

Optimal transport maps have some regularity properties under some boundedness assumptions. We
mention the following result from Figalli (2017):
Theorem A.1. Let α and β be absolutely continuous measures on Rd and T the optimal transport
map between α and β for the Euclidean cost. Suppose there are bounded open sets X and Y , such
that the density of α (respectively of β) is null on Xc (respectively Y c) and bounded away from zero
and infinity on X (respectively Y ).

Then there exists two relatively closed sets of null measure A ⊂ X and B ⊂ Y , such that T is
η-Hölder continuous from X \A to Y \B, i.e. ∀ x, y ∈ X \A we have

‖T (x)− T (y)‖ ≤ C‖x− y‖η for constants η, C > 0

B BACKGROUND ON GRADIENT FLOWS

We follow Santambrogio (2016); Ambrosio et al. (2005) for this background on gradient flows. Given
a function L : Rd → R and an initial point x0 ∈ Rd, a gradient flow is a curve x : [0,∞[→ Rd that

13



Under review as a conference paper at ICLR 2023

solves the Cauchy problem {
x′(t) = −∇L(x(t))

x(0) = x0
(17)

A solution exists and is unique if∇L is Lipschitz or L is convex. Given τ > 0 and xτ0 = x0 define a
sequence (xτk)k through the minimizing movement scheme:

xτk+1 ∈ arg min
x∈Rd

L(x) +
1

2τ
‖x− xτk‖2 (18)

L lower semi-continous and L(x) ≥ C1 − C2‖x‖2 guarantees existence of a solution of (18) for
τ small enough. L λ-convex meets these conditions and also provides uniqueness of the solution
because of strict convexity of the target. See Santambrogio (2015; 2016); Ambrosio et al. (2005).

We interpret the point xτk as the value of a curve x at time kτ . We can then construct a curve xτ as
the piecewise constant interpolation of the points xτk. We can also construct a curve x̃τ as the affine
interpolation of the points xτk.

If L(x0) < ∞ and inf L > −∞ then (xτ ) and (x̃τ ) converge uniformly to the same curve x as τ
goes to zero (up to extracting a subsequence). If L is C1, then the limit curve x is a solution of (17)
(i.e. a gradient flow of L). If L is not differentiable then x is solution of the problem defined using
the subdifferential of L, i.e. x satisfies x′(t) ∈ −∂L(x(t)) for almost every t.

If L is λ-convex with λ > 0, then the solution to (17) converges exponentially to the unique minimizer
of L (which exists by coercivity). So taking τ → 0 and k →∞, we tend towards the minimizer of L.

The advantage of the minimizing movement scheme (18) is that it can be adapted to metric spaces
by replacing the Euclidean distance by the metric space’s distance. In the (geodesic) metric space
W2(Ω) with Ω convex and compact, for L : W2(Ω)→ R∪{∞} lower semi-continuous for the weak
convergence of measures in duality with C(Ω) (equivalent to lower semi-continuous with respect to
the distance W2) and ρτ0 = ρ0 ∈ P(Ω), the minimizing movement scheme (18) becomes

ρτk+1 ∈ arg min
ρ∈P(Ω)

L(ρ) +
1

2τ
W 2

2 (ρ, ρτk) (19)

This problem has a solution because the objective is lower semi-continuous and the minimization is
over P(Ω) which is compact by Banach-Alaoglu.

We can construct a piecewise constant interpolation between the measures ρτk, or a geodesic inter-
polation where we travel along a geodesic between ρτk and ρτk+1 in W2(Ω), constructed using the
optimal transport map between these measures. Again, if L(x0) <∞ and inf L > −∞ then both
interpolations converge uniformly to a limit curve ρ̃ as τ goes to zero. Under further conditions on L,
mainly λ-geodesic convexity (i.e. λ-convexity along geodesics) for λ > 0, we can prove stability and
convergence of ρ̃(t) to a minimizer of L as t→∞, see Santambrogio (2015; 2016); Ambrosio et al.
(2005).

C PROOF OF THEOREM 3.2

Proof. Take a minimizing sequence (F̃i, T̃i), i.e. such that C(F̃i, T̃i)→ min C, where C ≥ 0 is the
target function in (3) and denote βi = T̃i]ρ

τ
k. Then by compacity F̃i → F ? and βi ⇀ β? in duality

with Cb(Ω) by Banach-Alaoglu. There exists T ? an optimal transport map between ρτk and β?. Then
C(F ?, T ?) ≤ lim C(F̃i, T̃i) = min C by continuity of L and because∫

Ω

‖T ?(x)− x‖2 dρτk(x) = W 2
2 (ρτk, β

?) = limW 2
2 (ρτk, βi) ≤ lim

∫
Ω

‖T̃i(x)− x‖2 dρτk(x)

as W2 metrizes weak convergence of measures. We take (F τk , T
τ
k ) = (F ?, T ?). It is also immediate

that for any minimizing pair, the transport map has to be optimal. Taking a minimizing sequence
(F̃i, ṽ

i) and the corresponding induced maps T̃i we get the same result for Problem (11). Problems
(3) and (11) are equivalent by the equivalence between Problems (14) and (16).

14



Under review as a conference paper at ICLR 2023

D ADDITIONAL EXPERIMENTS

Table 6: Average test accuracy and 95% confidence interval of 2-7 ResNet over 10 runs on CIFAR10
with parallel TRGL and VanGL, compared to DGL and DDG from Belilovsky et al. (2020) and
InfoPro from Wang et al. (2021) that split a ResNet-110 in 2 module-wise-parallel-trained modules.

Parallel VanGL (ours) Parallel TRGL (ours) DGL DDG InfoPro

94.01 ± .17 94.05 ± .18 93.50 93.41 93.58

Table 7: Average highest test accuracy and 95% confidence interval of 10-1 ResNet over 10 runs on
CIFAR100 with different train sizes and sequential (Seq) and multi-lap sequential (MLS) TRGL and
VanGL, compared to E2E.

Train size Seq VanGL Seq TRGL MLS VanGL MLS TRGL E2E

50000 68.74 ± .45 68.79 ± .56 69.48 ± .53 69.95 ± .50 75.85 ± .70
25000 60.48 ± .15 60.59 ± .14 61.33 ± .23 61.71 ± .32 65.36 ± .31
12500 51.64 ± .33 51.74 ± .26 51.30 ± .22 51.89 ± .30 52.39 ± .97
5000 36.37 ± .33 36.40 ± .40 33.68 ± .48 34.61 ± .59 36.38 ± .31

Table 8: Average highest test accuracy and 95% confidence interval of 10-1 ResNet over 10 runs on
CIFAR100 with different train sizes and parallel (Par) TRGL and VanGL, compared to E2E.

Train Par VanGL Par TRGL E2E

50000 72.59 ± .40 72.63 ± .40 75.85 ± .70
25000 64.84 ± .19 65.01 ± .27 65.36 ± .31
12500 55.13 ± .24 55.40 ± .35 52.39 ± .97
5000 39.45 ± .23 40.36 ± .23 36.38 ± .31

Table 9: Average last block test accuracy and 95% confidence interval of 20-1 ResNet (32 filters,
fixed encoder, same classifier) over 20/50 runs on MNIST with different train sizes and parallel (Par)
TRGL and VanGL, compared to E2E.

Train Par VanGL Par TRGL E2E

60000 99.07 ± .04 99.08 ± .04 99.30 ± .03
30000 98.90 ± .05 98.93 ± .06 99.22 ± .03
12000 98.52 ± .06 98.59 ± .06 98.96 ± .06
6000 98.05 ± .09 98.16 ± .07 98.62 ± .06
1500 96.34 ± .12 96.91 ± .07 97.19 ± .08
1200 95.80 ± .12 96.58 ± .09 96.88 ± .09
600 91.35 ± .99 95.16 ± .15 95.30 ± .17
300 89.81 ± .73 92.86 ± .24 92.87 ± .28
150 81.84 ± 1.22 87.48 ± .42 87.82 ± .59

15



Under review as a conference paper at ICLR 2023

Table 10: Average last block test accuracy and 95% confidence interval of 20-1 ResNet (100 filters,
fixed encoder, same classifier) over 10 runs on CIFAR10 with different train sizes and parallel (Par)
TRGL and VanGL, compared to E2E.

Train Par VanGL Par TRGL E2E

50000 85.98 ± .28 86.02 ± .26 93.11 ± .19
25000 80.94 ± .25 81.09 ± .32 89.10 ± .29
10000 72.49 ± .46 73.01 ± .31 80.52 ± .46
5000 62.31 ± .54 64.06 ± .57 69.44 ± .88
500 38.61 ± .47 41.44 ± .44 40.40 ± .60

Figure 2: Highest test accuracy after each block of 10-1 ResNet averaged over 10 runs with 95%
confidence intervals with multi-lap sequential vanilla (VanGL, in blue) and regularized (TRGL, in
red) block-wise training on 10% of the CIFAR100 training set.

Figures 1 and 2 suggest that our regularization helps most when looking at the accuracy of the last
block. We confirm this by including in Table 11 the accuracy achieved by the best block for the
same experiment as in Table 5 and we notice a more important improvement from the regularization
in the accuracy of the last block than in the accuracy of the best block. We also observe that with
the regularization the difference between the accuracy of the last block and that of the best block is
smaller than without the regularization. We further confirm this through the following experiment.
As the network gets deeper (50 blocks trained for 10 epochs each sequentially), we expect training it
block-wise to become more difficult, and indeed the improvement from the regularization is slightly
larger than usual when looking at the accuracy of the last block for both sequential training methods
(Table 12). We also include in Table 13 results from block-wise training of ResNeXt-50-32×4d Xie
et al. (2017), which turns out to be difficult to train block-wise.

Table 11: Average highest test accuracy and 95% confidence interval of 10-1 ResNet over 10 runs on
CIFAR10 with different train sizes and sequential (Seq) TRGL and VanGL, compared to E2E.

Train Seq VanGL Seq TRGL E2E

50000 88.14 ± .14 88.34 ± .22 91.88 ± .18
25000 84.15 ± .17 84.46 ± .22 88.75 ± .27
10000 76.62 ± .40 77.47 ± .35 82.61 ± .35
5000 69.60 ± .43 70.22 ± .50 73.93 ± .67
1000 51.59 ± .91 52.06 ± .71 50.63 ± .98

16



Under review as a conference paper at ICLR 2023

Table 12: Average last block test accuracy and 95% confidence interval of 50-1 ResNet over 10 runs
on CIFAR100 with sequential (Seq) and multi-lap sequential (MLS) TRGL and VanGL, compared to
E2E.

Seq VanGL Seq TRGL MLS VanGL MLS TRGL E2E

63.40 ± .46 63.86 ± .56 62.59 ± .64 63.24 ± .50 63.34 ± 2.41

Table 13: Average test accuracy and 95% confidence interval of ResNeXt over 10 runs on CIFAR100
with sequential (Seq), multi-lap sequential (MLS) and parallel (Par) TRGL and VanGL. End-to-end
training in this setting achieves an accuracy of 72.97 ± 1.18.

Seq VanGL Seq TRGL MLS VanGL MLS TRGL Par VanGL Par TRGL

52.29 ± .53 52.42 ± .65 52.59 ± .63 52.84 ± .65 57.86 ± .49 57.93 ± .51

E IMPLEMENTATION DETAILS

Figure 3: Module-wise training.

We use standard data augmentation and standard implementations for ResNet-101, ResNet-110 and
ResNet-152 (the same as for the other methods in Section 5.1).

For sequential and multi-lap sequential training, we use SGD with a learning rate of 0.007. For
parallel training we use SGD with learning rate of 0.003. For end-to-end training we use a learning
rate of 0.1 that is divided by five at epochs 120, 160 and 200. Momentum is always 0.9. For parallel
and end-to-end training, we train for 300 epochs. For sequential and multi-lap sequential training, the
number of epochs varies per module (see Section 5.2).

For experiments in Section 5.1, we use a batch size of 256, orthogonal initialization (Saxe et al.
(2014)) with a gain of 0.1, label smoothing of 0.1 and weight decay of 0.0002. For experiments
in Section 5.2, we use a batch size of 128, orthogonal initialization with a gain of 0.05, no label
smoothing and weight decay of 0.0001.

In Table 1, we use τ = 500000 for the first two modules and then double it for the last two modules
for TRGL. In Table 2, we use (12) with λk,1 = 1, h = 1 and s = 50 for TRGL.

17


	Introduction
	Related work
	Transport-regularized module-wise training
	Method statement
	Link with the minimizing movement scheme
	Regularity result

	Practical implementation
	Multi-block modules
	Solving the module-wise problems
	Varying the regularization weight

	Experiments
	Parallel module-wise training with few modules
	Sequential full block-wise training

	Conclusion
	Background on optimal transport
	Background on gradient flows
	Proof of Theorem 3.2
	Additional experiments
	Implementation details

