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ABSTRACT

Self-training has been proven to be an efficient strategy for unsupervised fine-
tuning of language models using unlabeled data and model-generated pseudo-
labels. However, the performance of self-trained models is unstable under dif-
ferent conditions of the training and evaluation data, influenced by both data dis-
tribution and pseudo-label accuracy. In this work, we propose an outlier robust
self-training method based on graduated non-convexity (GNC) to mitigate the
problem. We construct self-training as a non-convex optimization problem with
outlier training examples. The models are self-trained with robust cost functions
according to Black-Rangarajan Duality. The algorithm learns slack variables as
the loss weights for all training samples. The slack variables are used to calibrate
the loss items during training to update the model parameters. The calibrated loss
items lead to more robust self-trained models against different training and eval-
uation data and tasks. We conduct experiments on few-shot natural language un-
derstanding tasks with labeled and unlabeled data examples. Experimental results
show that the proposed loss calibration method improves the performance and sta-
bility of self-training on different tasks, benefiting the robustness against incorrect
pseudo-labels, imbalanced training data, overfitting, and adversarial evaluation
data.

1 INTRODUCTION

Recent developments in large-scale pretrained language models has significantly improved the per-
formance of natural language understanding tasks (Devlin et al., 2018; Liu et al., 2019; Clark et al.,
2020; He et al., 2020; Brown et al., 2020). After pretraining, these models are typically fine-tuned on
task-specific training data with human-generated labels. However, human-generated labels are not
available (or large enough) for all tasks of interest. When there is a significant number of unlabeled
examples, a pretrained model can utilize techniques such as self-training to improve performance
(He et al., 2019; Zoph et al., 2020). An issue with this approach is that the generated pseudo-labels
can be noisy (Zhao et al., 2021; Lang et al., 2022; Zhang & Zhou, 2011), since a pretrained model
can make wrong predictions for unseen examples.

We propose a learning-based loss calibration strategy that tunes the loss weights for each data ex-
ample during self-training. In this approach, a subset of training data are assigned low weights for
calculating the overall training loss, leading to less influence in parameter updates. To learn the
loss weights, we employ the graduated non-convexity (GNC) strategy (Yang et al., 2020) based on
Black-Rangarajan Duality (Black & Rangarajan, 1996). Under the fully supervised and outlier-free
setting, the model parameters are updated to optimize the total cost of all training samples, while
under the self-training setting, the training set usually contains outliers with wrong pseudo-labels.
We thus optimize a robust cost function

Lr =
∑
i

ρ[l(ŷi, xi); θ] (1)

where l(·) is the selected loss function and Dtrain = {(xi, yi)|i ∈ [0, N ]} is the training set, and θ
stands for the set of trainable parameters. ρ(·) is a robust cost function and ŷi stands for an element
of a noisy pseudo label set. Such methods have been widely applied in computer vision (Black
& Rangarajan, 1996) and robot perception (Yang et al., 2020) where there exists a ground-truth
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optimization target for the algorithm to predict. Few application examples have been seen in other
domains and the approach has not been applied in the area of self-training. The difficulty is that
unlike prediction, an optimal self-training loss on training examples does not guarantee minimal
loss on evaluation sets. In fact, adding noise in self-training can produce better performance, for
example with Dropout (He et al., 2019) and confidence regularization (Zou et al., 2019).

In this work, we propose GNC self-training that produces robust performance against incorrect
pseudo labels, imbalanced training data, overfitting, and adversarial evaluation data. The core idea
is penalizing outliers with wrong pseudo labels and over-confident training samples by assigning
low loss weights. As a result, such training samples contribute less to the updated model parameters
than other samples. In this work we make the following contributions,

Applying graduated non-convexity (GNC) in self-training. To the best of our knowledge, this
work is the first attempt of applying GNC for self-trained language models. While traditional GNC
methods treat high-loss observations as outliers, we noticed that in self-training, outliers include
both high-loss and over-confident examples. We propose a shifted robust cost function to deal with
over-confident cases, and the loss weights are tuned during self-training.

Robustness against different training and evaluation data. The difference within different train-
ing and evaluation corpora leads to significant performance gaps between the two because of the
accuracy of pseudo-labels and the difficulty/coverage of data examples. We find that the proposed
method is robust against different tasks, training corpora, and adversarial evaluation data, outper-
forming label-free self-training strategies and label-dependent few-shot learning baselines.

2 RELATED WORK

Recent pretrained language models are trained with a self-supervised learning strategy, including
predicting masked words (Devlin et al., 2018; Liu et al., 2019; He et al., 2020), predicting next words
(Brown et al., 2020; Raffel et al., 2020; Lewis et al., 2019), predicting the correctness of words (Clark
et al., 2020), and representing sentences (Gao et al., 2021; Chuang et al., 2022). Besides pretraining
on corpora without additional human-generated labels, textual entailment corpora, including SNLI
(Bowman et al., 2015) and MultiNLI (Williams et al., 2018) are also used for both sentence-level
pretraining (Reimers & Gurevych, 2019) and downstream tasks; for example relation extraction
(Obamuyide & Vlachos, 2018; Yin et al., 2019) and fact checking (Thorne & Vlachos, 2018).

While most self-supervised learning methods are agnostic to downstream tasks, self-training mod-
els learn to handle any downstream task by learning from synthetic data or pseudo-labels that are
automatically generated by the same or other models. Among recent research under the context of
self-training, back translation (He et al., 2019) and data augmentation methods (Xie et al., 2020;
Chen et al., 2020) use synthetic texts as inputs, pseudo labeling methods (Zoph et al., 2020; Zou
et al., 2019) use synthetic labels as training targets, and self-trained question answering methods
(Bartolo et al., 2021; Luo et al., 2022) use synthetic questions as inputs and synthetic answers as
target outputs.

Recent studies have discussed the efficiency and robustness of language models from different as-
pects, including different settings on training and evaluation data. The authors of Zang et al. (2019);
Jin et al. (2020); Bartolo et al. (2020); Wang et al. (2021) indicated that even state-or-the-art language
models make mistakes on adversarial evaluation examples. On the other hand, even for language
models pretrained on large corpora, their performance on downstream tasks might not be satisfying
if not enough task-specific training data is presented (Schick & Schütze, 2021; Le Scao & Rush,
2021). There is little work simultaneously dealing with the limitations of small training sets and
missing human-generated labels.

3 BACKGROUND: GRADUATED NON-CONVEXITY

Graduated non-convexity (GNC) is a popular optimization method in vision (Blake & Zisserman,
1987) and machine learning (Rose, 1998; Mobahi & Fisher, 2015). The core idea is optimizing
a robust cost function instead of a standard loss function, as shown in Equation 1. The robust cost
function ρ(·) is adjustable give a coefficient µ. When µ is large enough, ρ(l(yi, xi)) is approximately
convex. During the optimization, the value of µ is decreased at each step and the optimization prob-
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lem is gradually recovered to the original non-convex problem. A more convex iteration provides a
guess for the following optimization.

A typical robust surrogate cost function is the Geman-McClure (GM) function. The GM function
and the controlled GM function are shown as follows, as mentioned in (Yang et al., 2020),

ρ(l(·)) = c̄2l2

c̄2 + l2
; ρµ(l(·)) =

µc̄2l2

µc̄2 + l2
(2)

where c̄ is a parameter that decides the shape of the GM function, and represents the largest cost of
a threshold of outlier losses. According to Equation 2, when µ → ∞, ρµ(l) → l2; when µ = 1,
ρµ(l) = ρ(l). The optimization result of ρ(l) is reached by optimizing a high-quality guess of ρµ(l).

In practice, following (Yang et al., 2020), the optimization target we apply is a mutation of ρµ(l)
based on the Black-Rangarajan Duality (Black & Rangarajan, 1996), which proved that the problem
of optimizing ρµ(l) is equivalent to optimizing a weighted sum of l(·) and a weight penalty term
Φ. In other words, the optimization problem in Equation 1 has the same optimal solution with the
following task,

x = argminθ

∑
i

[wi · l(yi, xi; θ)
2 +Φ(wi)], wi ∈ [0, 1] (3)

The set of w = {w1, w2, . . . , wn} are slack variables to control each loss item l(yi, x). In the
robotic perception and computer vision areas, yi stands for a noisy observation of the i -th sensor
and x stands for the ground-truth location or shape of the physical object of interest. According to
Black & Rangarajan (1996), when the GM function is applied as the robust cost function, the weight
penalty function Φ(wi) can be written as

Φpµ(wi) = µc̄2(
√
wi − 1)2 (4)

In this work, we jointly optimize the weighted sum of the standard loss l(yi, x) and the weight
penalty loss Φ(wi).

4 METHOD: GNC SELF-TRAINING WITH SHIFTED GEMAN MCCLURE

4.1 ENTAILMENT PRETRAINING AND SUPPOSITION VERIFICATION

In this work, we investigate weakly supervised domain and task adaption of textual entailment mod-
els, where the size of training texts and the access to human-generated labels are limited. To enable
the adaptation, we formulate natural language understanding tasks to classifications tasks where a
model just needs to predict the truth value of input suppositions. We first pretrain entailment clas-
sifiers on MultiNLI (Williams et al., 2018) that learns to predict the truth values of the following
suppositions based on a hypothesis {x} and the premise {y} ,

s1mnli: {x} is entailed by {y}; s2mnli: {x} is not true when {y} is true.

According to the definition of entailment, s1p and s2p are contradictory, thus they cannot both be true
of false. A model trained to predict the truth value suppositions constructed by each hypothesis-
premise pair (hi, pi) can be applied to other tasks, if similar suppositions can be constructed. For ex-
ample, an entailment classifier can be applied to handle the movie review classification task (SST2)
(Socher et al., 2013). A sentiment analysis task can also be formulated as an entailment prediction
or supposition verification task, with the following potential suppositions,

s1sst2: I like the movie is entailed by my comment {x}; s2sst2: The movie is good because {x}.

We construct the suppositions following Anonymous (2022) for different tasks, including SST2,
RTE (Dagan et al., 2005), QNLI (Rajpurkar et al., 2016), QQP (Wang et al., 2018), and their adver-
sarial evaluation corpora (Wang et al., 2021).

4.2 SELF-TRAINING OF THE ENTAILMENT CLASSIFIER

In this work, we investigate learning task-specific models with a pretrained entailment classifier
with a limited amount of unlabeled training data Dtask = {x1, x2, . . . , xK}, where xi stands for an
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unlabeled data example. Given a pretrained entailment model M , We generated pseudo-labels for
each data example by feeding suppositions constructed based on xi,

ŷi = M [stask(xi)] (5)

The pseudo-labels are then used to train task-specific models. A new training set is constructed
as Dtrain = {(x1, ŷ1), (x1, ŷ2), . . . , (xK , ŷK)}. The new training set is used to fine-tune the pre-
trained entailment classifier. Note that the pretrained entailment model has three classes (entailment,
neutral, and contradiction), we just use the entailment and contradiction scores for the fine-tuning
and evaluation of downstream tasks.

4.3 CONVEXITY CONTROLLED TRAINING

The Black-Rangarajan Duality (Black & Rangarajan, 1996) suggests that optimizing the surrogate
robust cost function

∑
i ρ(l(yi, x)) is equivalent to optimizing the following cost function

Lρ =
∑
i

[wi · l2(yi, xi; θ) + Φ(wi)], wi ∈ [0, 1] (6)

In this work, we apply the Geman McClure (GM) function as the robust cost ρ(·). Before the
beginning of training, all slack variables wi are set to 1. We use the the alternating optimization
strategy proposed in Yang et al. (2020). At each optimization step t, we first update the model
parameters θ based on the weighted sum of base costs,

θt = argminθ

∑
i

wt−1
i · l2(yi, xi; θ) (7)

then we fix the learned θ and update the slack variables W = [w1, w2, . . . , wn], Note that in Yang
et al. (2020) and in related work in visual perception, n stands for the number of sensor observations,
but in our work n stands for the number of training examples. At each time step, wi is updated as

wt
i = argminwi

∑
i

[wi · l2(yi, xi; θ
t) + Φ(wi)] =

[
µc̄2

l2(yi, xi; θt) + µc̄2

]2
(8)

This analytic solution is obtained by solving ∂Lρ

∂wi
= 0 when θt is fixed. The output wt

i is used to cal-
culate θt+1 in the next episode. At the first training step, µ is initialized as µ = 2l2max(yi, xi; θ

0)/c̄2.
In the following training steps, we decrease it by µ = µ/2.8. The training stops when µ < 1.

It is straightforward to see that an observation, or training example (yi, xi) receives a low weight wi

when its corresponding loss l(yi, xi; θ) is high. In visual perception, this feature helps the algorithm
to find outlier sensors. In these tasks, excluding outliers benefits the accuracy of the predictions
because 1) the perception functions of the sensors are usually known, and 2) accurate object predic-
tions must lead to low cost if the observation is correct. The situation is different under the context
of training neural language models.

In neural language model training, the models are presented with (yi, xi) pairs instead of (yi, θ), so
there is no guarantee if the model tuning step in Equation 7 could find a global optimal solution of θ
under the current setting of w or not. On the other hand, a high-loss example in machine learning is
not necessarily an outlier - it might bring new knowledge that improves the model. Another difficulty
is that an outlier might also improve the model performance and robustness. Under the self-training
setting, a low cost might be associated with either a correct pseudo-label or a wrong pseudo-label
that the model is over-confident about. These difficulties prevent the direct application of GNC on
machine learning, especially self-training of neural language models.

To mitigate the problem, we introduce the shifted Geman McClure (SGM) function for graduated
non-convexity optimization. Besides the parameter c̄ that controls the maximum cost of non-outlier
examples, we set another parameter ϵ that bars the minimal normal cost of non-outlier examples.
Under this setting, the outlier set consists of two parts, including high-loss examples associated
with wrong pseudo-labels, and over-confident examples whose loss is too low that might lead to
overfitting of the trained model. The SGM function applied as our robust cost is

ρµ(l) =
µc̄2(l − ϵ)2

µc̄2 + (l − ϵ)2
(9)
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μ μ

Figure 1: Example of GM (left) and SGM (right) functions under different µ and loss values.

When l < ϵ, the robust cost ρ increases if l continues to decrease. We use this method to prevent
overfitting caused by over-confident examples. The shapes of GM and SGM functions are shown in
Figure 1. Higher µ values result in higher curves.

5 EXPERIMENTS

5.1 TASK AND DATA

MultiNLI. We use the multi-genre natural language inference (MultiNLI) (Williams et al., 2018)
corpus for pretraining entailment classifiers. The MultiNLI corpus contains 393k sentence pairs
that can be classified into 3 categories: entailed, neutral, and contradictory. We train a classifier to
predict the truth value of the constructed suppositions as mentioned in Section 4.1.

QNLI/AdvQNLI. The question natural language inference (QNLI) corpus contains question-
context pairs. The task is to predict if the answer to a given question is contained in its paired pas-
sage. We construct the following supposition for the task, sqnli: The answer to question
{q} is entailed by {p}.
QQP/AdvQQP. The Quora question pairs (QQP) task is proposed in Wang et al. (2018). In the
QQP task, a model learns to predict if two questions are duplicated. In most cases, the task is to
predict if two questions can be answer by the same answer. The adaptation from MultiNLI to QQP
is a cross-task adaptation, and the supposition for the QQP task is sqqp: The answer to {q1}
is entailed by the answer to {q2}.
RTE/AdvRTE. The recognizing textual entailment (RTE) task is a binary (entailment/contradiction)
entailment classification task based in the news domain. Each data example is a claim-passage pair
and the task is predicting if the claim is entailed by the paired passage or not. The adaptation
from MultiNLI to RTE is cross-domain adaptation and the suppositions are the same as MultiNLI
suppositions, as defined in Section 4.1.

SST2/AdvSST2. The Stanford Sentiment Treebank (SST-2) is a sentimental analysis corpus that
requires a model to predict if the attitude of a movie review is positive or negative. The adaptation
from MultiNLI to SST-2 is a cross-task adaptation. The construct supposition template is ssst2: The
movie is good is entailed by the comment {x}.

5.2 IMPLEMENTATION DETAILS

In this work, we train BERT (Devlin et al., 2018) and DeBERTa He et al. (2020) models as the
pretrained entailment classifiers, which are trained on the MultiNLI corpus Williams et al. (2018).
In GNC self-training, there are 2 key hyper-parameters: the threshold of outlier losses c̄ and the
amount of shift in the SGM function ϵ. For each task, we select a value from {1e−2, 1e−3, 1e−4}
for c̄. To find an appropriate ϵ, we calculate the losses l ∈ Rn on all training samples after each
training epoch and set ϵ = µ(l)− α(σ(l)/

√
n), α ∈ [1.2, 2.8]. More details are in Appendix B.

5.3 EXPERIMENTAL RESULTS

In this work, we investigated different experimental settings, including few-shot self-training and
the combination of few-shot fine-tuning and self-training.
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Method GLUE Method AdvGLUE

QNLI QQP RTE SST2 QNLI QQP RTE SST2

Few-shot (left) and supervised (right) medium LMs (350M) with human-generated labels
PET 61.3 67.6 65.7 91.8 R3F 47.5 40.6 50.1 38.5
LM-BFF 69.2 69.8 83.9 90.3 CTT 49.6 40.7 46.2 39.2
P-tuning 58.8 67.6 70.8 92.6 MT 47.5 41.5 52.5 51.3
PPT 68.8 67.2 67.9 92.3 BERT 39.8 37.9 40.5 33.0
UPT 70.1 72.1 68.9 92.9 DeBERTa 57.9 60.4 79.0 57.8

Few-shot large LMs (137B) with human-generated labels
LaMDA 55.7 58.9 70.8 92.3 \ - - - -
FLAN 63.3 75.9 84.5 94.6 \ - - - -

Zero-shot pretrained entailment classifiers based on medium LM (350M)
RoBERTa-PT 71.5 78.6 81.2 87.7 \ 62.1 52.6 61.7 59.9
DeBERTa-PT 77.3 79.9 84.5 90.1 \ 61.5 64.1 66.7 42.6

Few-shot Self-trained medium LMs (350M) without human-generated labels
RoBERTa-ST 71.2 78.9 81.4 86.0 \ 63.9 56.3 61.1 54.7
RoBERTa-GNC 77.4 79.1 80.8 88.1 \ 66.1 60.2 65.6 48.2
DeBERTa-ST 76.1 79.4 82.9 89.1 \ 63.2 64.7 69.2 47.0
DeBERTa-GNC 78.7 79.8 83.8 90.4 \ 65.3 68.6 69.0 47.5

Few-shot supervised + Self-trained medium LMs (350M) with labeled and unlabeled data
RoBERTa-ST 79.3 75.7 84.4 88.7 \ 61.9 60.0 64.9 52.7
RoBERTa-GNC 80.2 76.9 84.9 90.3 \ 62.9 60.0 64.7 57.8
DeBERTa-ST 79.6 78.2 85.1 90.7 \ 65.4 64.9 74.9 47.7
DeBERTa-GNC 83.1 79.4 85.5 91.1 \ 66.5 67.5 78.1 48.7

Table 1: Experimental results of few-shot supervised, fully-supervised, and few-shot self-training
(unsupervised) models and methods. BERT and DeBERTa results for AdvGLUE are trained with
entire training corpora. The self-training results are averaged with 20 independent experiments.

Few-shot self-training. Under the few-shot self-training setting, a pretrained entailment classifier
can only access a limited number (K = 12 or 132) of unlabeled data examples. The pretrained
models generate pseudo labels for fine-tuning. We evaluate pretrained DeBERTa and RoBERTa
entailment classifiers on both regular and adversarial evaluation sets. We conduct the evaluation
with 20 independent experiments and report the average performance.

Combined Few-shot fine-tuning and self-training. In many situations, the model can access a
limited number of training examples with human-generated labels and a larger number of unlabeled
data examples. In this case, we first fine-tune the pretrained models with the labeled data, and
self-train the fine-tuned model using unlabeled data with generated pseudo-labels. We evaluate
the regular self-training strategy with GNC self-training with few-shot fine-tuned models. In each
experiment, we use 12 human-labeled training examples and 132 unlabeled data examples.

We compare the performance of the proposed methods with strong few-shot and fully supervised
baselines. While the baseline models access task-specific human-generated labels, our pure self-
training method only process unlabeled data examples from each task. The few-shot learning base-
lines include PET Schick & Schütze (2021), LM-BFF Gao et al. (2020), P-tuning Liu et al. (2021),
PPT Gu et al. (2021), and UPT Wang et al. (2022), which are medium-sized models with around
350M parameters trained with 16 human-labeled examples. FLAN Wei et al. (2021) and LaMDA
Thoppilan et al. (2022) are large-scale language models with 137B parameters and are tuned with
up to 12 data examples. The robust baselines R3F Aghajanyan et al. (2020), CTT Xu et al. (2021),
and MT Tong et al. (2022) are trained on the full training corpora.

The experiment results are shown in Table 1. We found that the self-training methods receive signif-
icant improvement on adversarial evaluation data, while matching or outperforming the pretrained
entailment classifiers on regular evaluation sets. We cite the performance of baseline methods re-
ported by the authors, and summarize the self-training performance by averaging the results of 20
independent experiments. We found the self-training methods that are tuned with 12 unlabeled data
examples outperform the 16-shot and fully-supervised baselines in most experiments. Comparing
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DeBERTa DeBERTa + Confidence Regularization (CR) RoBERTa

GNC Strictly > ST GNC Softly > ST GNC Strictly < ST GNC Softly < STGNC Lower Risk GNC Higher Risk GNC Strictly > CR GNC softly > CR

Figure 2: The performance (%) of DeBERTa- and RoBERTa-large models with different self-
training strategies under the few-shot self-training setting. The black dots stand for mean perfor-
mance, the colored bars stand for the range of ±1 standard deviation, and the grey lines indicate the
minimum and maximum accuracy. All results are summarized with 20 independent experiments. ST
stands for the regular self-training and GNC stands for self-training with graduated non-convexity.
K stands for the number of unlabeled training examples processed by the models.

the best few-shot and fully-supervised results of medium language models, our GNC self-training
method improved 18.8%/7.4% on QNLI/AdvQNLI and 7.7%/8.2% on QQP/AdvQQP.

Although GNC constantly outperforms the regular self-training method, its performance is signif-
icantly lower than fully-supervised method on AdvRTE and AdvSST2. With 12 labeled and 132
unlabeled data examples, the GNC self-training method achieved the highest RTE and AdvSST2 per-
formance in addition, and the accuracy on AdvRTE and AdvSST2 is boosted to the fully-supervised
level (78.1% vs. 79.0%, 57.8% vs. 57.8%). In the self-training experiments, we use all unlabeled
training data and pseudo labels. We will analyze the effect of data selection in the next section.

6 ANALYSIS AND ABLATION STUDY

Stability and robustness of self-training. We characterize the stability of the model performance
from different perspectives, including the mean value, standard deviation, and minimum/maximum
accuracy with different pretrained models and training strategy. To assess the effect of the proposed
method, we propose the following metrics,

• A strictly more stable model achieves higher mean and minimum/maximum accuracy, with
lower standard deviation.

• A softly more stable model achieves higher mean and minimum accuracy.
• A less risky model achieves higher minimum accuracy and lower standard deviation.

Under the few-shot self-training setting, a pretrained entailment classifier can only access a limited
number (K = 12) of unlabeled data examples. The pretrained models generate pseudo labels
for fine-tuning. We evaluate pretrained DeBERTa and RoBERTa entailment classifiers with the
confidence regularization (CR) method proposed in Zou et al. (2019) on both regular and adversarial
evaluation sets. We conduct the evaluation with 20 independent experiments and report the mean,
minimum, maximum performance, and standard deviation in Figure 2.

The experimental results show the effect of GNC in self-training. In all 48 comparisons in Figure 2,
the GNC method is strictly more stable than the baselines in 23 cases, where all metrics (mean, std,
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min, max) indicate that GNC perform better. There are 35 (72.9%) cases where GNC is softly more
stable or less-risky than its baselines. There are only 2 cases where the baselines are strictly better
than GNC (AdvSST2, K = 12, 132, RoBERTa) and another 4 cases where the baselines are softly
better than GNC (AdvRTE, K = 12; RTE, K = 132).

GNC vs ST DeBERTa DeBERTA+CR RoBERTa Reg. K=12 Adv. K=12 Reg. K=132 Adv. K=132

Strictly Stable 11 4 8 7 5 6 5
Softly Stable 2 5 2 2 2 2 3
Less Risky 1 2 2 1 1 0 1
Total / Num of Exp. 14/16 11/16 12/16 11/12 8/12 8/12 9/12

Table 2: Number of evaluations in each performance category with different models and data.

GNC vs ST QNLI QQP RTE SST2 AdvQNLI AdvQQP AdvRTE AdvSST2

Strictly Stable 4 4 2 3 3 3 2 2
Softly Stable 1 2 0 1 1 2 2 0
Less Risky 0 0 0 1 0 1 0 1
Total/Exp. 5/6 6/6 2/6 5/6 4/6 6/6 4/6 3/6

Table 3: Number of evaluations in each performance category in different tasks.

We compare the model performance across methods and tasks. We first note that in 15 out of 16
tasks, the performance of DeBERTa+GNC is at least softly more stable than DeBERTa+CR. The
only exception is the AdvSST2 task when K = 12, where DeBERTa+GNC is less risky than CR as
defined. We also found that the DeBERTa-based models generally outperform RoBERTa, except for
adversarial QNLI and SST2 evaluations. We also compare the model performance under different
model and training data settings. Table 2 indicates that the GNC strategy is more effective on
DeBERTa and the improvement is most obvious when K = 12. This proves that when the size of
training data is limited, self-training is likely to be biased and the performance would be unstable.
Note that each experiment stands for the summarized result of 20 independent runs.

The performance analysis across different tasks is presented in Table 3, summarizing all model
and training data settings. We found that the QQP and AdvQQP tasks benefits most from the GNC
strategy, while the RTE task does not. We believe the reason is that the RTE task is also an entailment
classification task, so it is not difficult for the baseline self-training method to adapt.

Few-shot + self-training performance. We also analyze the experimental results under the com-
bined few-shot supervised and self-training settings on different tasks, where we first fine-tune the
pretrained entailment classifiers with 12 labeled data examples and then conduct self-training with
132 unlabeled examples. The results of RoBERTa and DeBERTa models are visualized in Figure
3. Out of 8 tasks, DeBERTa+GNC is the most stable strategy in general, while RoBERTa+GNC
achieves the best performance on the AdvSST2 task. The results indicate that besides the pretrained
entailment classifier, the GNC method is also robust for the self-training of few-shot supervised
models.

Figure 3: Results of self-training on few-shot supervised models with DeBERTa and RoBERTa
using 12 labeled examples and 132 unlabeled examples.

Geman McClure (GM) and Shifted Geman McClure (SGM) functions. We analyze the perfor-
mance of using GM and SGM as the robust cost function on QNLI and SST2 tasks.
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a. b. c.

d. e. f.

Figure 4: Analysis of the factors that influence self-training performance and the first-epoch weights
calculated by the GNC. P(pseudo label) stands for the average probability of the predicted pseudo
labels, while P(real label) stands for the average predicted probability of the human-generated labels.
Pseudo label bias stands for the percentage of the pseudo label in all selected data examples.

The experimental results are shown in Table 4. The results indicate that shifting the optimum point
of the GM function can lead to more stable performance, by comparing the mean and minimum
performance on QNLI and SST2 tasks. However, the variance of GM performance is larger and it
achieves higher maximum performance on the adversarial evaluations. Despite this fact, we can still
conclude that the SGM cost function introduces more stable and robust self-training performance.

QNLI AdvQNLI SST2 AdvSST2

GM

Mean 75.73 64.22 89.04 46.42
Std 6.13 3.72 4.1 3.24
Min 60.28 55.41 72.71 38.51
Max 82.39 70.95 92.09 52.03

SGM

Mean 78.67 65.27 90.4 47.5
Std 4.68 2.9 1.69 2.35
Min 66.08 60.14 86.35 41.89
Max 83.8 69.59 92.78 51.35

Table 4: Comparison of GM and SGM.

What Makes Self-training Unstable and How Does
GNC Help? We randomly selected 20 different train-
ing sets of the QNLI task, and then conduct the baseline
and GNC self-training on each training set. We plot the
relation of self-training performance and related factors
as shown in Figure 4 with data pairs and linear regres-
sions. From the upper plots, we find that the perfor-
mance is roughly related to the pseudo-label accuracy
and the pseudo-labeling perplexity. Figure 4.a indicates
that the confidence of the pseudo-labels affects the self-
training performance, and GNC is more robust against
the change. Figure 4.b and c suggest that the accuracy of pseudo-labeling has more impact. When
the accuracy labeling accuracy is high (∼ 90%), the baseline and GNC self-training methods achieve
similarly high performance. However, when the pseudo-labeling accuracy is low, the performance
of the baseline self-training method significantly drops, while the GNC self-training performance is
still robust even when the labeling accuracy is lower than 50%.

In Figure 4.a, b, and c we plot the loss weights wi in the first self-training epoch. We find that GNC
tends to highlight low-confident data to avoid overfitting as shown in Figure4.d, while it does not
highlight all data examples with correct pseudo labels (Figure 4.e). Figure 4.f indicates that when
the pseudo label set of the randomly selected data is imbalanced, the data examples of the majority
pseudo labels receives lower loss weights. This can mitigate the bias during self-training.

Additional analysis on data selection and adversarial evaluation data is presented in Appendix C.

7 CONCLUSION

We apply graduated non-convexity in robust self-training for natural language understanding. With
the Black-Rangarajan Duality, we transfer the optimization of a shifted robust cost function to op-
timizing a weight loss function, where the loss weights are learned to improve the stability and
robustness of self-trained language understanding models. Experimental results summarized from
20 independent runs show that the GNC method improves the performance, stability, and robustness
of self-training on 4 tasks and corresponding regular and adversarial evaluation corpora. Our label-
free method significantly outperforms strong label-dependent baselines. Through the analysis and
visualization, we found the GNC self-training strategy is more robust against wrong pseudo-labels,
imbalanced training data, overfitting, and adversarial evaluation data.
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ETHICS STATEMENT

In this work we propose a self-training method for language understanding. Traditionally, training
a language understanding model needs human annotation on large-scale corpora that contributes to
a number of annotation jobs. Our method requires much less human-generated labels, leading to
the risk of reducing the number of annotation jobs and pays. On the other hand, since the model
learns from its own outputs, it is still possible for the model to generate risky predictions, although
the method proposed in this manuscript helps mitigate the risk.

REPRODUCIBILITY STATEMENT

Data. We introduce the tasks and corpora we used for training and evaluation in Section 5.1 and
Appendix A. We mentioned how we use the data in Section 5.3.

Method. We introduce the background of the method in Section 3, the details of our method in
Section 4, and present the pseudo-code of our algorithm in Appendix B.2.

Hyper-parameter. We describe the key hyper-parameters of GNC self-training in Section 5.2, and
list other regular hyper-parameters in Appendix B.1.

Experiments. We describe the experiment results, number of independent runs, and visualized
analysis in Section 5.3, 6, and Appendix C to prove the statistical significance.

Source code. We will open-source the source code for reproducing the experiment results.
The code is currently hosted anonymously on https://anonymous.4open.science/r/
GNC-ST-DC8F/readme.md.
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A DATA AND TASK

MultiNLI. We use the multi-genre natural language inference (MultiNLI) (Williams et al., 2018)
corpus for pretraining entailment classifiers. The MultiNLI corpus contains 393k sentence pairs
that can be classified into 3 categories: entailed, neutral, and contradictory. The entailment relation
defined in the MultiNLI task is not strict logical entailment. The textual entailment is defined by “the
hypothesis is likely to be true when the premise is true.” The contradiction means “the hypothesis
cannot be true when the premise is ture”, and when the truth value of the hypothesis cannot be
inferred by the premise, the text pair is classified as neutral. We train a classifier to predict the truth
value of the constructed suppositions as mentioned in Section 4.1.

QNLI/AdvQNLI. The question natural language inference (QNLI) corpus contains question-
context pairs. The task is to predict if the answer to a given question is contained in its paired
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passage. The regular validation set of QNLI contains 5.6k question-passage pairs for evaluation.
AdvQNLI is the adversarial evaluation set proposed by Wang et al. (2021), containing examples
generated by textual adversarial attack. The AdvQNLI evaluation set contains 0.9k text examples.
The adaptation from MultiNLI to QNLI is a cross-task adaptation. The supposition for the task is

sqnli: The answer to question {q} is entailed by {p}.

QQP/AdvQQP. The Quora question pairs (QQP) task is proposed in Wang et al. (2018). In the QQP
task, a model learns to predict if two questions are duplicated. In most cases, the task is to predict
if two questions can be answer by the same answer. The regular evaluation set of QQP contains
391k question-question pairs and the adversarial set contains 0.4k examples. The adaptation from
MultiNLI to QQP is a cross-task adaptation, an the supposition for the QQP task is

sqqp: The answer to {q1} is entailed by the answer to {q2}.

RTE/AdvRTE. The recognizing textual entailment (RTE) task is a binary (entailment/contradiction)
entailment classification task based in the news domain. Each data example is a claim-passage pair
and the task is predicting if the claim is entailed by the paired passage or not. The different between
RTE and MultiNLI is that the texts of RTE is generally longer than MultiNLI. The regular evaluation
set of RTE contains 3k text pairs, and the adversarial evaluation set contains 0.3k data examples. The
adaptation from MultiNLI to RTE is cross-domain adaptation and the suppositions are the same as
MultiNLI suppositions, as defined in Section 4.1.

SST2/AdvSST2. The Stanford Sentiment Treebank (SST-2) is a sentimental analysis corpus that
requires a model to predict if the attitude of a movie review is positive or negative. The regular
evaluation set contains 1.8k test reviews and the adversarial evaluation set contains 1.4k examples.
The adaptation from MultiNLI to SST-2 is a cross-task adaptation with a gap between input for-
mats. While the inputs of all tasks described above are text pairs, the inputs of SST-2 are movie
reviews without any pair text. To apply the pretrained entailment classifier, we construct both label
descriptions and suppositions. The construct supposition template is

ssst2: The movie is good is entailed by the comment {x}.

B ADDITION IMPLEMENTATION DETAILS

B.1 HYPERPARAMETER TUNING

The models are pretrained and fine-tuned with the AdamW optimizer Loshchilov & Hutter (2017).
In pretrained, the learning rate is set to 5e-6 for BERT and 3e-6 for DeBERTa, and the weight decay
weight is set to 1e-5. For the downstream self-training step, the learning rate for both models is
set to 4e-6 and the weight decay is 1e-2. The learning rates and weight decay coefficients are fixed
across all tasks. We tune the baseline self-training models and found that the best epoch number is
6. In GNC self-training, the model automatically decides the epoch number.

B.2 GNC IMPLEMENTATION

We summarize the process of GNC self-training with pseudo code in Algorithm 1.

C ADDITIONAL ANALYSIS

Data selection. Lang et al. (2022) have mentioned that selecting high-quality data-pseudo label pairs
can benefit self-training. We hereby analyze the effect of model confidence-based data selection
(CS) on all tasks we investigate in this work. The experiment results are presented in Figure 5.

We noticed that under our setting where a limited number of unlabeled data is used for self-training,
the data selection strategy does not guarantee improvement on all tasks. However, we found the the
GNC method can also benefit the data selection strategy on all tasks except AdvRTE, improving the
average performance of 20 experiments and reduce the risk of getting low performance. On QQP,
RTE, and SST2, GNC self-training without data selection is still the most robust strategy.
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Algorithm 1 GNC self-training with shifted Geman McClure (SGM)
Require: Pseudo training set D = {(x0, y0), (x1, y1), . . . , (xn, yn)}, model M0, c̄, ϵ
δ ← 2.8 ▷ update step size of µ
µ← 100
t← 0 ▷ number of steps
[w0, w1, . . . , wn]← [1, 1, . . . , 1]
while µ > 1 do

lit = loss fn(Mt(xi), yi) ▷ Calculate training loss
Lt =

∑
i l

i
t · wi ▷ Calculate the weighted total loss

Mt+1 ← train(Mt, Lt) ▷ update model parameters using the total loss
eit = loss fn(Mt+1(xi), yi) ▷ calculate evaluation loss of training data
if t == 0 then

µ = 2 · maxie
2
i /c̄

2 ▷ initialize µ
else if t > 0 then

µ← µ/δ ▷ update µ
end if
wi =

[
µc̄2

(ei−ϵ)2+µc̄2

]2
▷ update wi

end while
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Figure 5: Ablation study of applying confidence-based data selection (CS) on baseline and GNC
self-training methods on each task with the DeBERTa model.

Adversarial evaluation analysis. We visualize the experiment results with baseline and GNC self-
training on AdvQNLI. The results are shown in 6. As the regular evaluation set, the GNC method is
also more robust against high pseudo label noises and labeling perplexities.
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