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ABSTRACT

A protein can focus on different structure levels to implement its functions. Each
structure has its own merit and driving forces in describing specific characteristics,
and they cannot replace each other. Most existing function prediction methods
take either the primary or the tertiary structure as input, unintentionally ignoring
the other levels of protein structures. Considering protein sequences can determine
multi-level structures, in this paper, we aim to realize the comprehensive poten-
tial of protein sequences for function prediction. Specifically, we propose a new
prompt-guided multi-task pre-training and fine-tuning framework. Through the
prompt-guided multi-task pre-training, we learn multiple prompt signals to steer
the model, called PromptProtein, to focus on different levels of structures. We also
design a prompt fine-tuning module to provide downstream tasks the on-demand
flexibility of utilizing respective levels of structural information. Extensive exper-
iments on function prediction and protein engineering show that PromptProtein
outperforms state-of-the-art methods by large margins. To the best of our knowl-
edge, this is the first prompt-based pre-trained protein model.

1 INTRODUCTION

Pre-trained language models (PTLMs) have prevailed in natural language processing (NLP). Re-
cently, some methods (Alley et al., 2019; Elnaggar et al., 2021; Rives et al., 2021) use PTLMs to
encode protein sequences to predict biological functions, which are called pre-trained protein models
(PTPMs). In contrast to natural languages, there are four distinct levels of protein structures (Kessel
& Ben-Tal, 2018). The primal is the protein sequence consisting of amino acids, the second refers
to the local folded structures (e.g., α helix and β pleated sheet), the tertiary describes the natural
folded three-dimensional structure, and the quaternary is a protein multimer comprising multiple
polypeptides. A protein can focus on different structure levels to implement its specific functions,
including reserving a piece of the sequence, manifesting the whole 3D structure as conformational
elements, or even cooperating with other proteins. Therefore, when predicting protein functions, it
is vital to flexibly utilize multi-level structural information.

AlphaFold2 (Jumper et al., 2021) makes great progress in the tertiary structure prediction based on
protein sequences. However, directly learning from predicted structures can be unachievable as the
prediction of proteins without homologous sequences is inaccurate. More importantly, the quater-
nary structure of protein multimers which faithfully depicts protein functions is usually different
from the tertiary (see Figure 1) and reliable predictive models have not been released. Fortunately,
protein sequences are easy to obtain and can determine all the other levels of structures. This pa-
per aims to realize the full potential of protein sequences in function prediction by prompting a
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PTPM to exploit all levels of protein structures during pre-training. The main challenges are two-
fold: 1) how to design proper pre-training tasks for different protein structures? and 2) how
to efficiently integrate these tasks in the pre-training phase and transfer the implicit protein
structure knowledge for function prediction in fine-tuning phase.
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Figure 1: A comparison of protein CDK1
in the tertiary (left) and quaternary (right)
structures.

For the first challenge, we design three comple-
mentary pre-training tasks across multiple structure
levels, targeting both fine and coarse resolutions.
Specifically, we use the de facto Mask Language
Modeling (MLM) task to exploit the primary struc-
ture information, where the model needs to predict
randomly masked amino acids in a protein. For
the secondary and tertiary structure, we propose the
alpha-carbon CooRDinate prediction (CRD) task,
where the model should output the relative posi-
tions between residues. For the quaternary structure,
we propose the Protein-Protein Interaction predic-
tion (PPI) task, where the model is required to esti-
mate the interaction probability. We collect millions
of data covering different levels of protein structures
from UniRef50 (Consortium, 2021), Protein Data
Bank (Berman et al., 2000), and STRING (Szklar-
czyk et al., 2019).

For the second challenge, a straightforward strategy is to leverage multi-task learning to combine
the losses of different pre-training tasks. However, many works (Wu et al., 2019; Yu et al., 2020)
find that task interference is common when tasks are diverse. This problem can be more severe in
multi-task pre-training due to the gap between pre-training and downstream tasks, causing negative
knowledge transfer. For example, BERT (Kenton & Toutanova, 2019) leverages MLM and Next
Sentence Prediction (NSP) to learn the sequential dependency and sentence relationship simulta-
neously, while RoBERTa (Liu et al., 2019) finds the performance will be slightly improved when
removing the NSP loss. We postulate this problem also exists in multi-level protein structures, as
different structures can be inconsonant. The MLM task emphasizes the neighboring relations along
the sequence, while the CRD task shall focus more on long-range amino acid pairs which can be
spatially close in the tertiary structure.

To address this challenge, inspired by recent prompt learning, we propose a prompt-guided multi-
task pre-training and fine-tuning framework, and the resulting protein model is called PromptProtein.
The prompt-guided multi-task pre-training associates multiple pre-training tasks with dedicated sen-
tinel tokens, called prompts. To utilize the prompt tokens, we introduce a prompt-aware attention
module, which modifies two components of the Transformer architecture: 1) Attention mask, which
is designed to block attention calculation from input data to a prompt as a prompt should be task-
dependent instead of sample-dependent. 2) For skip connection, a prompt is used to calculate a
skip weight, which can filter out task-irrelevant information. At the fine-tuning phase, we propose a
prompt fine-tuning module to coordinate all prompt tokens, such that the model is capable of lever-
aging multi-level protein structure information flexibly, enabling the positive transfer of learned
structural knowledge to downstream tasks.

We conduct experiments on function prediction and protein engineering as downstream tasks, where
PromptProtein significantly outperforms state-of-the-art on all datasets, especially on low-resource
protein engineering tasks where PromptProtein achieves an average improvement of 17.0%.

2 RELATED WORKS

Protein Representation Models. Proteins have complex structures that determine their biological
functions (Epstein et al., 1963). A growing body of work focuses on how to leverage structural in-
formation. Since evolution through natural selection has spoken protein sequences as their “natural
language”, various natural language processing methods have been extended to proteins. Asgari
& Mofrad (2015); Yang et al. (2018) apply word embedding algorithms (Mikolov et al., 2013) to
obtain protein representations. Dalkiran et al. (2018); Öztürk et al. (2018) use one-dimensional con-
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Figure 2: The architecture overview of PromptProtein. In the pre-training stage, we pre-train our
model with three structure-related tasks, including mask language modeling, alpha-carbon predic-
tion, and protein-protein interaction prediction. For each task, the model takes the protein sequence
and the task-specific token as input and learns to produce a representation encoding the correspond-
ing structure information. In the fine-tuning stage, a prompt-tuning module τθ(·) can flexibly com-
bine structure information via the learned prompt tokens for diverse downstream tasks.

volutional neural networks to predict the functions. Furthermore, Alley et al. (2019); Elnaggar et al.
(2021); Rives et al. (2021) explore whether the pre-training and fine-tuning paradigm, the trans-
former architectures, and the objective functions can effectively transfer from natural languages to
proteins. Zhang et al. (2021a) align the amino acid sequence and the text sequence to obtain informa-
tive protein representation. To utilize the tertiary structure, Hermosilla et al. (2020); Somnath et al.
(2021); Ganea et al. (2021); Zhang et al. (2022) build protein graphs and employ message-passing
neural networks to produce structure-aware representations. Bepler & Berger (2021) employ contact
map prediction and structural similarity prediction to pre-train the protein model. Although primary
and tertiary structures have been studied, few works try to enrich protein representation with the qua-
ternary structure which faithfully depicts protein functions. In this paper, we show that systematic
modeling and flexible utilization of multi-level structures are the keys to improving the performance
of function prediction and protein engineering.

Multi-task Learning. The goal of multi-task learning is to take advantage of inductive transfer
across tasks and achieve better generalization performance. When tasks are diverse, using a naive
shared MTL model can suffer from task interference. Prior methods have been proposed to de-
conflict gradients from different tasks. Chen et al. (2018) dynamically adjust gradient magnitudes
so different tasks can be trained at similar scales. Yu et al. (2020) take the gradient direction into
account and drop the projection of one task gradient direction onto another if they are conflicting.
Rather than clipping the conflict gradient direction, Javaloy & Valera (2021) learn a rotation ma-
trix for each task to bring different optima closer to each other. However, these methods are not
designed for multi-task pre-training and cannot properly deal with the knowledge transferability to
downstream tasks. We provide a schematic comparison of these methods in Appendix A.1.

Prompts for Pre-trained Models. In-context learning (Brown et al., 2020) is introduced to steer
the pre-trained model to produce task-desired representations. In the NLP area, the prevailing ap-
proaches to designing prompts can be divided into two categories: discrete prompt designing and
continuous prompt tuning. The discrete prompt technique (Schick & Schütze, 2021) adds task de-
scription tokens from a vocabulary to the context to obtain enriched sentence embeddings. However,
the hand-crafted prompts may provide disturbance of human bias and are limited to discrete vocab-
ulary spaces. In contrast, Li & Liang (2021); Zhang et al. (2021b) generate optimal prompt vectors
in continuous spaces. Inspired by these works, we extend the concept of prompt tuning to the
pre-training stage, associate multi-level protein structural information with dedicated prompt tokens
during pre-training, and adaptively combine these learned prompts for downstream tasks.

3 METHODOLOGY

To acquire multiple information from the input data x, conventional multi-task learning usually
produces a universal representation h. The whole objective can be formulated as a weighted sum of
individual task objectives: L =

∑
i αiLi(h), where {αi} are the hyper-parameters to balance these

losses. However, multi-level protein structures can be inconsonant: the primary structure focuses
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more on the dependency along the sequence, whereas the tertiary and quaternary structure weights
more on the spatial organization, which can cause the problem of task interference. This problem can
lead to more severe negative transfer in multi-task pre-training due to the gap between pre-training
and downstream tasks. To solve this problem, we propose a prompt-guided multi-task pre-training
and fine-tuning framework that utilizes a prompt token p to produce a task-specific representation
hp. Multiple learned tokens can be flexibly combined to steer the pre-trained model for various
downstream tasks, bridging the gap between pre-training and downstream tasks.

This section first describes how to use prompts to modify the Transformer architecture, such that
different tasks can be processed by different neural layers and reduce task interference. Then we
present the three pre-training tasks to acquire multi-level protein structural information: (1) masked
language modeling, (2) alpha-carbon coordinate prediction, and (3) protein-protein interaction pre-
diction. Finally, we introduce the prompt-guided pre-training and fine-tuning framework where
multiple information can be acquired in the pre-training stage and combined on-demand for down-
stream tasks. The resulting PromptProtein model is illustrated in Figure 2.

3.1 PROMPT-AWARE ATTENTION MODULE

To reduce interference between pre-training tasks, we use the prompt token to modify the Trans-
former architecture so that multiple information can be effectively acquired by the pre-trained model.
Specifically, we modify two parts of the Transformer: attention mask and skip connection, and the
resulting architecture is called Prompt-aware Transformer. Given an input protein sequence x and
a prompt token p, we define the whole input xp denote xp = x||p , where || is concatenation. Let
xip be the i-th token of the whole input and h

(l)
p be the representation of xp at the l-th layer.
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Figure 3: Prompt-aware Attention Module.
A pink circle represents an amino acid token
and a purple circle represents a prompt token.
We decouple prompt tokens from amino acid
tokens by the attention mask. The embed-
ding of decoupled prompt token determines
the weight of the residual connection. In
the fine-tuning stage, we use a prompt-tuning
module τθ(·) to learn the downstream task-
desired composed prompt.

Attention mask. The conventional self-
attention is formulated as: Attn(h

(l)
p ) =

Softmax((QKT )/
√
d)V, where Q, K, and V

are the linear projection of h
(l)
p . Each token in

the whole sequence can attend to others at any
position which means the condition prompt will be
affected by the input sequence. A more reasonable
way is to keep only the effect of the prompt on
the input sequence and eliminate the reverse effect,
as a prompt should be task-dependent instead of
sample-dependent. As illustrated in Figure 3, we
design an attention mask matrix M to fulfill this
requirement. Let Mij denote the (i, j)-element of
the mask matrix, and we define:

Mij =

{
0,xip ∈ p and xjp ∈ x

1, others.
(1)

Skip connection. Skip connection enables deep
neural networks easier to train (He et al., 2016). To
encourage different tasks to be processed by differ-
ent layers and reduce task interference, we design a
weighted skip connection. That is, the prompt to-
ken is used to calculate a weight for the output of the
attention module. The whole process can be:

h(l+1)
p = h(l)

p + (1− g(l)p )Attn(h(l)
p ), (2)

where g(l)p , a scalar, is linear projection of l-th layer embedding of prompt p. After L layers of the
prompt-aware attention module, we have the task-specific representation hp = h

(L)
p .

3.2 PROTEIN MULTI-LEVEL STRUCTURES LEARNING

To acquire multi-level protein structure information, we consider three complementary pre-training
tasks: (1) masked language modeling, which has been commonly used by existing PTPMs and can
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capture the primary structure information; (2) coordinate prediction, which acquires the secondary
and tertiary structure; and (3) interaction prediction, which acquires the quaternary structure.

Masked language modeling. This task uses all available amino acid tokens to recover the masked
ones. Let Y be the set of masked out tokens, and V be the vocabulary of amino acid tokens. The
MLM loss is formulated:

q(y|hp) =
exp(p(y|hp))∑
v∈V exp(p(v|hp))

, LMLM(hp) =
∑
y∈Y

− log q(y|hp). (3)

Alpha-Carbon Coordinate Prediction. Since a secondary structure can be inferred from the pro-
tein 3D coordinates (Kabsch & Sander, 1983), we use an α-C coordinate prediction task to learn
both secondary and tertiary structures. Given the sequence length |x|, we denote the ground-truth
naturally folded 3D structure of protein as Z ∈ R|x|×3 and the structure predictor, a 2-layer MLP
network, as κ, then the predicted structure is κ(hp) ∈ R|x|×3. By translating and rotating (Kabsch,
1976) the predicted structure, we can get the minimal root mean square deviation between ground-
truth and predicted structure, and the loss is calculated based on this deviation. In this way, there is
no need to consider spatial invariance or equivariance, but only need to focus on the relative positions
between residues. The CRD loss can be calculated as the mean square error (MSE):

LCRD(hp) = MSE(Z,Kabsh(κ(hp))). (4)

Protein-Protein Interaction prediction. To acquire the quaternary structure information, we con-
duct the third pre-training task: predicting whether them-th and n-th proteins can interact with each
other within batched data. Let hmp be the m-th protein in a mini-batch and ym,n is the ground-truth.
We first calculate pair-aware protein representation hm,np , then formulate the PPI loss:

Attnm,n = Sigmoid(
(hmp W )(hnpW )T√

d
),

hm,np = mean(AttnTm,nh
m
p )||mean(Attnm,nh

n
p)),

LPPI(hp) =
∑

m,n∈N
BCE(ym,n, p(ym,n)|hm,np ), (5)

where W ∈ RdW×dW is a projection matrix, BCE is the binary cross-entropy loss function, N is
the batch size. More details of the pre-training tasks are provided in Appendix A.2.

3.3 PROMPT-GUIDED MULTI-TASK PRE-TRAINING AND FINE-TUNING

Corresponding to the three pre-training tasks, the prompt can be instantiated as one of the three
tokens, i.e., p ∈ P = {[MLM], [CRD], [PPI]}. The task-specific representation is thus denoted as
h[MLM], h[CRD], h[PPI]. The objective function of the prompt-guided multi-task pre-training can be
formulated as:

L = α1LMLM(h[MLM]) + α2LCRD(h[CRD]) + α3LPPI(h[PPI]). (6)
When we pre-train a model with multiple tasks as Equation 6, both model parameters ψ and prompts
p are optimized. In this way, the model does not necessarily need to learn the optimal representation
for all tasks, but only needs to learn the respective optimal representation for each task. Hence, the
problem of task interference can be alleviated.

Furthermore, to bridge the gap between pre-training and downstream tasks, since the model can ac-
quire each type of information conditioned on the learned prompt tokens, we can combine these to-
kens with prompt-tuning to flexibly mix the acquired information on-demand. We denote a prompt-
tuning module as τθ(·), and the downstream task-desired protein representation hp′ can be obtained
by feeding the tuned prompt p′

p′ = τθ(p[MLM],p[CRD],p[PPI]). (7)
Then the pre-trained model can produce hp′ and conduct predictions for the downstream task of
interest. Equation 7 shows how to flexibly utilize the pre-training task information at the fine-tuning
stage. Note that, in the pre-training stage, we only append one prompt to acquire one type of task-
specific information, while in the fine-tuning stage, we feed all the learned prompt tokens to τθ(·)
and flexibly combine the acquired information. Here, we leverage a linear layer as our prompt-tuning
module to combine three learned prompts. For sake of understanding, we provide the pseudo-code
of the prompt-guided multi-task pre-training and fine-tuning framework in Appendix A.3.
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Table 1: Model performance on EC numbers and GO terms prediction tasks. †: the results taken
from Wang et al. (2022), ‡: the results taken from Zhang et al. (2022).

DATASET
EC GO-BP GO-MF GO-CC

AUPRpair Fmax AUPRpair Fmax AUPRpair Fmax AUPRpair Fmax

CNN 0.540 0.545 0.165 0.244 0.380 0.354 0.261 0.387
RESNET 0.137 0.187 0.166 0.280 0.281 0.267 0.266 0.403
LSTM 0.032 0.082 0.130 0.248 0.100 0.166 0.150 0.320
TRANSFORMER 0.187 0.219 0.135 0.257 0.172 0.240 0.170 0.380

GAT† 0.320 0.368 0.171 0.284 0.329 0.317 0.249 0.385
GVP† 0.482 0.489 0.224 0.326 0.458 0.426 0.278 0.420
DEEPFRI 0.547 0.631 0.282 0.399 0.462 0.465 0.363 0.460
GearNet− Edge‡ 0.892 0.874 0.292 0.490 0.596 0.650 0.336 0.486

ESM− 1b‡ 0.889 0.864 0.343 0.470 0.639 0.657 0.384 0.488
ProtBERT− BFD† 0.859 0.838 0.188 0.279 0.464 0.456 0.234 0.408
LM−GVP† 0.710 0.664 0.302 0.417 0.580 0.545 0.423 0.527
MT-LSTM 0.851 0.817 0.324 0.442 0.608 0.591 0.381 0.492

MTL 0.892 0.869 0.325 0.445 0.651 0.640 0.415 0.503
GRADNORM 0.893 0.874 0.331 0.466 0.647 0.643 0.415 0.504
ROTOGRAD 0.895 0.876 0.334 0.470 0.648 0.638 0.416 0.509
PROMPTPROTEIN (OURS) 0.915 0.888 0.363 0.495 0.665 0.677 0.457 0.551

4 EXPERIMENTS

4.1 PRE-TRAINING SETUP

For the primary structural information, we use UniRef50 (Suzek et al., 2015) which is a clustering
of UniRef90 seed sequences at 50% sequence identity. For the secondary and tertiary structural
information, we use Protein Data Bank (PDB) (Berman et al., 2000), which includes 200,000 pro-
tein 3D structures obtained by experimental methods. For the quaternary structure information, we
use the STRING dataset (Szklarczyk et al., 2019) that contains amino acid sequences and protein-
protein interaction pairs. In the STRING dataset, protein interactions are divided into 7 categories.
We selected the physical-only interaction subset from STRING which contains 65 million protein
sequences from 14,095 species and 2.7 billion protein-protein interaction pairs.

We implement PromptProtein using Pytorch (Paszke et al., 2019) and Fairseq (Ott et al., 2019).
PromptProtein has 650M parameters with 33 layers and 20 attention heads. The embedding size is
1280. The learning rate is 1× 10−4 with no weight decay. We use an inverse square root learning
rate schedule. All models are trained on 2×A100 40G GPUs for 270k steps of updates. After
pre-training, the average error of the coordinate prediction task on a single residue is 5 Å, and the
accuracy of physical binding prediction is greater than 90.0%. Unless otherwise specified, we use
this model in all downstream experiments. The source code will be available online. Please refer to
Appendix B for the details of all the pre-training and downstream task dataset statistics.

4.2 DOWNSTREAM TASKS: FUNCTION ANNOTATION

Datasets and Metrics. Gene ontology (GO) terms and enzyme commission (EC) numbers are
two standard classification schemes that organize myriad protein functions. These function pre-
diction tasks can be regarded as multiple binary classification tasks. We follow the dataset split
method in (Gligorijević et al., 2021). The evaluation metrics are protein-centric maximum F-score
(Fmax) and term-centric area under precision-recall (AUPR) curve, which are used in the CAFA
challenges (Radivojac et al., 2013).

Baselines. There are four categories of baselines. (1) Sequence-based encoders. CNN (Shanehsaz-
zadeh et al., 2020), ResNet, LSTM, and Transformer (Rao et al., 2019) only take amino acid se-
quence as input; (2) Geometric learning method. GAT (Veličković et al., 2018), GVP (Jing et al.,
2020), DeepFRI (Gligorijević et al., 2021), and GearNet-Edge (pre-trained by Multiview Con-
trast) (Zhang et al., 2022) take protein 3D coordinates as additional input to obtain informative
representation; (3) Pre-trained protein models. ESM-1b (Rives et al., 2021), ProtBERT-BFD (El-
naggar et al., 2021), and LM-GVP (Wang et al., 2022) learn the pattern from large protein corpus.
MT-LSTM (Bepler & Berger, 2021) uses contact map and structure similarity to enrich the embed-
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Table 2: Model performance on protein engineering tasks. Results with two decimal places are
token from Dallago et al. (2021).

DATASET STABILITY FLUORE. THERMO AAV GB1
MIXED 1-VS-R 1-VS-R 2-VS-R 3-VS-R

CNN 0.51 0.67 0.34 0.48 0.17 0.32 0.83
RESNET 0.73 0.21 0.353 0.173 0.117 0.210 0.291
LSTM 0.69 0.67 0.317 0.215 0.124 0.349 0.491
ESM-UNTRAINED 0.452 0.337 0.36 0.01 0.05 0.05 0.46

ESM-1B 0.71 0.68 0.68 0.04 0.32 0.36 0.54
ESM-1V 0.726 0.507 0.67 0.18 0.32 0.32 0.77
PROTBERT-BFD 0.732 0.675 0.651 0.234 0.303 0.387 0.654
LSTM-MT 0.741 0.648 0.665 0.258 0.335 0.402 0.741
PROMPTPROTEIN (OURS) 0.767 0.683 0.694 0.551 0.403 0.550 0.783

dings. (4) Multi-task learning framework. We employ naive multi-task learning (MTL) and two
optimization methods (GradNorm (Chen et al., 2018), RotoGram (Javaloy & Valera, 2021)).

Results. We present the evaluation results of proposed PromptProtein and state-of-the-art baselines
in Table 1. Compared with all baselines, PromptProtein achieves new state-of-the-art performance
on all tasks, which indicates that systematic modeling of multi-level structure information is bene-
ficial. Although the multi-task learning baselines integrate the same information as PromptProtein,
they cannot learn multiple information well and transfer properly to downstream tasks. Their inferior
performance in GO-BP and GO-CC suggests that there is a gap between downstream task-desired
representations and universal pre-trained representations. Flexible composing of structural informa-
tion significantly improves the performance of the model for downstream tasks.

4.3 DOWNSTREAM TASKS: PROTEIN ENGINEERING TASKS

Datasets and Metrics. Protein engineering is regarded as a sequence regression task that, given a
protein, models are required to identify the functional strength, often termed the fitness landscape.
Here, we employ five datasets (stability, fluorescence, thermostability, AAV, and GB1) coming from
TAPE (Rao et al., 2019) and FLIP (Dallago et al., 2021) to evaluate whether the model can produce
accurate quantitative predictions of these functions. We report the commonly-used Spearman’s ρ
(rank correlation coefficient) to measure the degree to which the landscape was learned. Results of
other tasks on FLIP can be found in Appendix 5.

Baselines. For proteins without 3D structures, geometric methods cannot directly apply to these
tasks. We choose sequence-based methods (CNN, LSTM, Transformer) and pre-trained protein
methods (ESM-1b, ESM-1v (Meier et al., 2021), ProteinBert-BFD, LSTM-MT) as baselines for
protein engineering tasks. As Dallago et al. (2021) purport that the various pooling choices perform
inconsistently across datasets and splits, for a fair comparison, we utilize the mean pooling method
to obtain protein representation.

Table 3: Ablation of PromptProtein with different compo-
nents.

METHOD GB1 AAV THERMO

CONVENTIONAL MTL. 0.238 0.525 0.651
PROMPTPROTEIN 0.279 0.544 0.672

- ATTENTION MASK 0.264 0.531 0.663
- LAYER SKIP 0.270 0.520 0.659
- MLM OBJECTIVE 0.240 0.493 0.629
- CRD OBJECTIVE 0.262 0.535 0.647
- PPI OBJECTIVE 0.253 0.532 0.654

Results. From Table 2, we observe
that PromptProtein obtains better
performance than all baselines. It
confirms that pre-training on struc-
tural objectives contributes to pro-
tein engineering tasks and system-
atic modeling of protein multi-level
structure leads to further improve-
ments. Note that LSTM-MT, which
leverages the tertiary structural in-
formation to enhance protein repre-
sentations, cannot surpass ESM-1b
on all datasets, while our proposed approach obtains superior performances. This observation
demonstrates that not all structural information leads to positive transfer and flexible utilization
of structural information is the key to improved performance. Moreover, PromptProtein can obtain
17.0% improvement on average in low-resource settings of the AAV and GB1 datasets, compared
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Figure 4: Skip connection visualization and prompt correlation. (a) We visualize the learned skip
weight at all neural layers. The darkness of a block represents the weight of that block utilized for
the given prompt. (b) We provide the Pearson’s correlation between skip weights. The skip patterns
between the [MLM] prompt and the other two prompts are negatively correlated, whereas the pattern
between the tertiary and quaternary structures is positively correlated.

to the well-performed PTPM baselines. These results indicate that the prompt-guiding PTPM is a
better few-shot learner.

4.4 ABLATION STUDY

The ablation study is conducted to validate the effectiveness of designed modules in PromptProtein,
i.e., prompts, attention mask, or skip connection. As illustrated in Table 3, the performance will
decay if any one of the modules is absent, demonstrating that all the modules are advantageous.
Furthermore, we notice that skip connection contributes most to the performance, confirming the
necessity of reducing task interference.

4.5 ANALYSIS AND DISCUSSION

How do prompts determine the processing pathways of structural information?

In Figure 4(a), we visualize the skip weights of three pre-trained prompts at different neural layers,
and compute the Pearson’s correlation (Benesty et al., 2009) of these skip weights to measure the
mutual correlations between the pre-training tasks (Figure 4(b)). We have the following key obser-
vations. (a) The skip weights are similar in the bottom layers (1-13) across all prompts, indicating
all three tasks are processed by these layers. The MLM task information is mainly acquired by the
middle layers (14-29), whereas the CRD and PPI information is more acquired by the top layers
(30-33). (b) We clearly observe that the [CRD] and [PPI] prompts are more correlated. This is con-
sistent with the intuition that the tertiary and quaternary levels are 3D structures whose amino acids
attend to spatially adjacent neighbors, resulting in similar skip weight patterns. Further analysis of
the model layer can be found in Appendix B.3.

Can PromptProtein learn multi-level structures?

To examine whether prompt-guided pre-training can learn multiple structure information, we con-
duct experiments to visualize the protein representations conditioned on different pre-trained prompt
tokens. We use t-SNE (van der Maaten & Hinton, 2008) to reduce the dimension of embeddings.
Figure 5(a) illustrates amino acid embeddings conditioned on [MLM]. We observe that amino acid
embeddings in a protein are grouped according to their type. Figure 5(b) illustrates amino acid em-
beddings conditioned on [CRD]. We find that amino acids are linearly arranged in 2D space along
their sequence in the protein. To obtain a more accurate relationship between representations and
structures, we compare the protein contact map and the coordinate of embedding. The strong corre-
lation between them demonstrates the CRD objective can effectively learn information about protein
3D structures. In Figure 5(c), we visualize the amino acid embeddings with traditional multi-task
pre-training and highlight serine (a class of amino acids). The embeddings attempt to merge multi-
ple structural features at the same time, which leads to an unclear pattern. These results show that
prompt-guided pre-training mitigates task interference and allows the multiple structure information
to be learned well, resulting in promising performance.
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[MLM] Guided Embedding [CRD] Guided Embedding Without Prompt-Guided Embedding

(a) (b) (c)

Hydrophobic alphatic
Charged basic
Charged acidic
Charged acidic
Unique
Hydrophobic aromatic

Coil
Alpha-helix

Disorder
Beta-sheet

Figure 5: The comparison of amino acid embeddings with different learning methods. We visu-
alize protein representations from prompt-guided multi-task pre-training in (a) and (b), and naive
multi-task learning in (c). Each letter represents an amino acid and is colored according to the
physicochemical properties in (a), and the secondary structure types in (b) and (c). The superscripts
of letters represent the sequential number of amino acids from the C-terminal to the N-terminal.

��������

�����������������������
��

TAF4

TAF5

(a) (b) (c)

MLM-task Embedding

PPI-task Embedding

Figure 6: Visualization of the difference of [MLM] and [PPI] prompts. The two proteins are Tran-
scription initiation factor TFIID subunit4 (TAF4) and Transcription initiation factor TFIID subunit
5 (TAF5). Left: Visualize the embedding of amino acids conditioned on [MLM] and [PPI] prompts
(TAF4) by MDS. Middle: Visualize distances of corresponding amino acids in (a). Right: Visualize
the amino acids with the most variation embeddings (red).

Furthermore, since the [PPI] prompt is trained to provide quaternary structure information, we ana-
lyze what exactly the amino acid representations have changed. As shown in Figure 6(a), we firstly
visualize the embeddings of amino acids of the TAF4 protein conditioned on [MLM] or [PPI] based
on MDS (Kruskal, 1964). Then we calculate the distances between two embeddings of the same
amino acid and plot them in Figure 6(b). We mark 30 amino acids with the most variation embed-
dings in red (Figure 6(c)). The observation that marked amino acids are all on the protein surface is
consistent with the fact that modeling the quaternary structure cares about the surface conformation,
not the core (Yan et al., 2008).

5 CONCLUSION AND FUTURE WORK

In this paper, we extend the concept of prompts from NLP to protein representations. We propose
the prompt-guided multi-task pre-training and fine-tuning framework. With this framework, we pro-
pose three complementary pre-training structures to acquire multi-level structure information, and
flexibly combine them for various downstream tasks. Experimental results on function prediction
and protein engineering show that the proposed approach can produce satisfactory improvements
when compared to the conventional PTPMs. The improvement is especially significant in low-
resource settings. In the future, we are interested in examining the effectiveness of the proposed
prompt-guided multi-task pre-training and fine-tuning framework in domains where hierarchical
task information is required in the pre-training stage.
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A MORE DETAILS OF PROMPTPROTEIN

A.1 PROMPT-GUIDED MULTI-TASK PRE-TRAINING

One of the key problem to multi-task learning is what to share. Naive and gradient-based methods
try to learn a shared MTL model. To overcome between task interference between tasks, they
adjust magnitude and direction of gradients . However, negative transfer between pre-training and
downstream tasks cannot be mitigated. To realize the potential of positive transfer, multi-task pre-
training requires to learn and use task differences on-demand. Both adapter-based approaches and
our proposed prompt-based approaches can learn task differences, whereas, for the flexibility of
input, only prompt-based approach can use them on-demand. Figure 7 compares the mentioned
multi-task methods.
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Figure 7: Comparison of multi-task pre-Training.

A.2 PRE-TRAINING TASKS

In Figure 8, we illustrate our proposed two additional pre-training tasks.

Alpha-Carbon Coordinate Prediction. We use a MLP network to project protein embeddings into
3D space. To equip the model with 3D invariance, after predicting the protein coordinates, we first
recenter the ground-truth coordinate Z and predicted coordinate Ẑ and then employ Kabsch algo-
rithm (Kabsch, 1976) to calculate the optimal rotation matrix that minimizes the root mean squared
deviation. We first calculate cross-covariance matrix between two sets of coordinates:H = ZT Ẑ.
Then the covariance matrix can be decomposed by singular value decomposition: H = UΣV T .
The optimal rotation matrix R can be formulated as: R = UV T .

Protein-Protein Interaction Prediction. Since the limitation of GPU memory, it is not feasible
to input two proteins in the same sequence. Instead, we leverage the representations of proteins
to calculate protein-pair attention in decoder. Then the pair-aware protein representations can be
obtained by multiplication of protein representations and the attention.

A.3 ALGORITHMS FOR PROMPT-GUIDED MULTI-TASK PRE-TRAINING AND FINE-TUNING

To more easily appreciate the whole procedure of the prompt-guided multi-task pre-training and
fine-tuning framework, we provide pseudo codes as follows.

B ADDITIONAL DETAILS OF EXPERIMENTAL SETTING

B.1 PRE-TRAINING DATASET

To exploit primary structure information, language modeling has been prove effective (Elnaggar
et al., 2021; Alley et al., 2019). We follow Rives et al. (2021) to use UniRef50 (Consortium, 2021)
dated March 28, 2018. 10% of UniRef50 clusters are randomly selected as a held-out evaluation set.
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Figure 8: The Overview of Two Additional Pre-training Tasks. Left: Alpha-Carbon Coordinate
Prediction. Right: Protein-Protein Interaction Prediction.

Algorithm 1: Prompt-Guided Multi-Task Pre-Training
Data: Input protein x, prompt pool p ∈ P = {[MLM], [CRD], [PPI]}, task objectives Lp,

the learning rate ζ.
Result: Model parameters ψ

while not converge do
for p ∈ P do

Initialize the task-specific input xp = x||p
Compute the feature hp = fψ(xp;ψ)

// fψ contain L layers Prompt-aware Attention Module
Compute the loss Lp(hp) according to Equation 3, 4 or 5

end for
Update the model parameters ψ = ψ −∑

p(αp · ζ∇ψLp) according to Equation 6
Update the prompt parameters p = p− αp · ζ∇pLp, ∀p ∈ P

end while

Algorithm 2: Prompt-Guided Fine-tuning
Data: Input protein x, downstream task object L′

p,
learned prompt pool P = {[MLM], [CRD], [PPI]}, pre-trained model parameters ψ,
the learning rate ζ.

Result: Prompt-tuning module parameters θ.
while not converge do

Compute combined prompt p′ = τθ(p) according to Equation 7
Initialize the input xp′ = x||p′

Compute the feature hp′ = f(xp′ ;ψ)
Compute the loss Lp′ = Lp′(hp′)
Update the prompt-tuning module parameters θ = θ − ζ∇θLp′

end while
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For secondary and tertiary structure information, we extract data from Protein Data Bank
(PDB) (Berman et al., 2000). For compatibility with pre-trained protein models, we only use pro-
teins whose amino acid sequence length is less than 1,024. There are many ways to define the
coordinates of protein residues. Here we use the coordinates of carbon alpha atoms.

The pre-training dataset for quaternary structures is constructed based on the latest STRING (Szklar-
czyk et al., 2019) database with only the physical-only mode, which means edges between the pro-
tein pairs indicate evidence of their binding or forming a physical complex. The database contains
in total 65 million protein sequences from 14,094 species and 2.7 billion protein-protein interaction
pairs. Note that there is no edge between proteins that come from different species.

We observe that the PPI network has a problem of uneven distribution, as illustrated in Figure 9,
the largest network contains 60,000 proteins and 3.5 × 107 edges. Such data distributions can lead
models to over-focus on proteins from a single species. We pre-process our dataset by choosing
the species networks with comparable sizes. Figure 10 illustrates the data distribution after pre-
processing.

Figure 9: Visualization of the number of nodes and the number of edges in the original database.

Figure 10: Visualization of the number of nodes and the number of edges in the pre-processed
database.

B.2 DOWNSTREAM TASK DATASETS.

The statistical results of the downstream datasets are shown in Table 4.

Evaluation Metrics For multiple binary classification tasks, we employ protein-centric maximum
F-score Fmax and pair-centric area under precision-recall curve AUPRpair to evaluate protein mod-
els. For regression tasks, we employ spearman’s correlation ρ to evaluate protein models.
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Table 4: Statistics of the downstream datasets.

DATASET #TRAIN #VALIDATION #TEST TASK

ENZYME COMMISSION 15,551 1,729 1,919 CLASSIFICATION
GENE ONTOLOGY 29,902 3,323 3,416 CLASSIFICATION
STABILITY 53,679 2,447 12,839 REGRESSION
FLUORESCENCE 21,446 5,362 27,217 REGRESSION
THERMOSTABILITY 24,817 - 3,314 REGRESSION
AAV (1-VS-REST) 1,170 - 81,413 REGRESSION
GB1 (1-VS-REST) 29 - 8,704 REGRESSION
GB1 (2-VS-REST) 427 - 8,306 REGRESSION
SABDAB 345 48 99 REGRESSION

• Fmax. Given a target protein i, we denote its experimentally determined function terms
as Ti. Given a set of decision threshold t ∈ [0, 1], we denote predicted function terms as
Pi(t). The precision and recall of this protein can be formulated as:

precisioni(t) =

∑
f I[f ∈ Pi(t) ∩ Ti]∑
f I[f ∈ Pi(t)]

, (8)

recalli(t) =

∑
f I[f ∈ Pi(t) ∩ Ti]∑

f I[f ∈ Ti]
, (9)

where I[·] is an indicator function that is equal to 1 if and only if the condition is true.
Combining these two measures, the Fmax is defined as the maximum value of F-measure:

Fmax = max
t

{2 · precision(t) · recall(t)
precision(t) + recall(t)

}, (10)

where precision(t) = 1
M(t)

∑
i precisioni(t), and precision(t) = 1

N

∑
i recalli(t). The

N is denoted as the number of proteins and M(t) is denoted as the number of proteins on
which at least one prediction result is above threshold t.

• AUPRpair. The pair-centric area under precision-recall curve is exactly the micro average
precision score where precision and recall are for each term f :

precisionf (t) =

∑
i I[f ∈ Pi(t) ∩ Ti]∑
i I[f ∈ Pi(t)]

, (11)

recallf (t) =

∑
i I[f ∈ Pi(t) ∩ Ti]∑

i I[f ∈ Ti]
. (12)

• ρ. Spearman’s is a nonparametric measure of rank correlation for ground-truth Y and
predicted Ŷ landscape. We denote R()̇ as ranks. The correlation coefficient is:

ρ =
cov(R(Y),RŶ))

σR(Y )σR(Ŷ )

, (13)

where cov(·, ·) is the covariance of the variables, and σR(·) is the standard deviations of the
rank variables.

Enzyme Commission and Gene Ontology. EC numbers are selected from the third and fourth
levels of the EC tree, forming 538 binary classification tasks. GO terms are hierachically organized
into three ontologies – biological process (1943 binary classification tasks), molecular function (489
binary classification tasks), and cellular component (320 binary classification tasks). Following
DeepFRI (Gligorijević et al., 2021), we use the protein sequences in the test set with 95% sequence
identity to the training set.

Stability Landscape Prediction (Rocklin et al., 2017). This is a regression task that maps each
protein to a label, measuring the most extreme case where the protein maintains its fold above a
concentration threshold. This task aims to test the ability to generalize from a broad sampling of
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relevant sequences to local neighborhood of a few sequences. The train set includes proteins from
experimental design, while the test set contains single mutants.

Fluorescence Landscape Prediction (Sarkisyan et al., 2016). This is a regression task that maps a
protein to a label corresponding to the log-fluorescence intensity. This task aims to test the ability to
distinguish mutants. The train set includes triple mutants of the wild-type green fluorescent protein
(GFP), while the test set contains more mutants.

Thermostability Landscape Prediction (Jarzab et al., 2020). This is a regression task that maps
a protein to a thermostability label. We adopt the mixed split proposed by Dallago et al. (2021) that
using MM-seqs2 (Steinegger & Söding, 2017) at a threshold of 20% sequence identity creates one
split. The train set includes all sequences in 80% of clusters, while the test contains the remaining
20% of clusters.

Adeno-associated virus (AAV) Landscape Prediction (Bryant et al., 2021). This is a regression
task that predicts fitness for a long mutated sequence. We adopt the 1-vs-rest split, where wild type
and single mutants are assigned to train set, while test set contains the rest. This split are common
in protein engineering application.

GB1 Landscape Prediction (Wu et al., 2016). This is a regression task that predicts the effects of
interactions between mutations. We adopt the 1-vs-rest (and 2-vs-rest) split, where wild type and
single mutants (and double mutants) are assigned to train set, while test set contains the rest.

Antibody-antigen Affinity Prediction (Dunbar et al., 2014). This is a regression task that takes
a pair of proteins as input and predicts the affinity between them. We adopt random split which
contains 493 pairs, 431 antibodies and 401 antigens.

Table 5: Model performance on FLIP benchmark.

DATASET
THERMO AAV GB1

MIXED HUMAN HUMAN-CELL 1-VS-R 2-VS-R 1-VS-R 2-VS-R 3-VS-R LOW-VS-HIGH

ESM-1B 0.68 0.70(0.691) 0.75(0.673) 0.04 0.26 0.32 0.36 0.54 0.13
OURS 0.683 0.702 0.684 0.551 0.595 0.403 0.550 0.783 0.294

To illustrate the advantage of prompt-tuning in low-resource scenarios, we only selected a subset
of tasks in the FLIP benchmark. In Table 5, we report the performance of our model on other
tasks. Note that, although we use the reported results of esm-1b in the above table, we additionally
provide the reproduced results of esm-1b on Thermo(Human) and Thermo(Human-cell). These
values (surrounded by brackets) are lower than reported.

Figure 11: Attention visualization. We select GB1 protein as an example and visualize attentions
of the 15-th layer (high skip weight for [MLM]) and the 33-th layer (high skip weight for [CRD] and
[PPI]).
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B.3 ANALYSIS OF NEURAL LAYERS

In Figure 11(a), we visualize the attentions in the 15-th layer (a high skip weight for [MLM]) and the
33-th layer (a high skip weight for [CRD] and [PPI]). We observe that one amino acid in the 15-th
layer can only attend to the local neighbors in the sequence, whereas the amino acid in the 33-th layer
can attend to those amino acids that are more distant along the sequence but potentially closer in the
3D space. This observation demonstrates the primary structural knowledge learned by MLM pays
more attention to sequential dependency, whereas the tertiary structural and quaternary structural
knowledge learned by CRD and PPI tasks can capture the information from adjacent amino acids in
the 3D space.

B.4 ADDITIONAL EXPERIMENT RESULTS

Do downstream tasks benefit from the acquired information on-demand by prompt tuning?

To further analyze the importance of prompt-guided fine-tuning, we conduct an ablation study on
the binding affinity prediction task on the SAbDab dataset (Dunbar et al., 2014). From Figure 12,
we observe that PromptProtein performs worst without any prompt tokens. In contrast, adding either
of the three prompt tokens, especially the token corresponding to the PPI task, can significantly im-
prove performance. By combining different prompts without prompt tuning, we can obtain protein
representations enhanced by multiple structural information. By doing that, we find the combination
of the [MLM] and [PPI] prompts empowers PromptProtein to achieve the best performance. It is also
notable that, by comparing the results of adding [MLM] and [PPI] prompts and adding all prompts,
the [CRD] prompt leads to a performance decrease. These results evidence that not all structure in-
formation from pre-training is beneficial for downstream tasks, and adaptively combining acquired
information via prompt-tuning leads to better performance.
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Figure 12: Ablation of PromptProtein with different prompt tokens on SAbDab (spearman’s ρ ).
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