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Abstract

Millimeter-wave (mmWave) point-cloud radar shows
great promise in enabling responsive human-machine in-
terfaces (e.g., through pose and gesture tracking and for
emerging augmented reality approaches). However, gen-
erating dense and temporally consistent 3D human point
clouds from sequential mmWave signals is challenging due
to point-cloud sparsity, jitter, and noise. Existing ap-
proaches have made progress in single-frame densification,
but are inaccurate over multiple frames. This work re-
defines the problem as a 3D point cloud denoising task,
leveraging reverse diffusion processes to transform sparse
mmWave data into detailed and accurate whole-body rep-
resentations. Our proposed method, mmDiffusion, effec-
tively exploits diffusion models and temporal context within
mmWave sequences to learn the denoising process, result-
ing in denser and temporally coherent human point clouds.
For the first time, we also introduce an evaluation metric
tailored to measure temporal consistency for sequential 3D
human point clouds. Experimental results demonstrate that
mmDiffusion significantly outperforms existing methods.

1. Introduction

The potential use-cases of millimeter wave (mmWave)
point clouds in human monitoring, motion capture, and ma-
chine interaction are substantial, owing to the unique char-
acteristics of mmWave radar such as highly accurate rang-
ing and sensitivity to subtle movements [15, 31]. For in-
stance, mmWave-based sensing has demonstrated promis-
ing results in vital sign monitoring [2, 32], gesture recogni-
tion [22], and human activity analysis [20, 39, 42], amongst

other domains. However, a major challenge lies in the
sparse nature of mmWave point clouds, which impedes the
development of corresponding applications. To address this
limitation and fully harness the capabilities of mmWave-
based human sensing, researchers have focused on generat-
ing high-quality human point clouds from mmWave radar
data [3, 41]. Some previous studies have made significant
progress in this direction, employing advanced signal pro-
cessing and machine learning techniques to enhance the
density of mmWave point clouds, thereby enabling more
accurate and detailed human representation [35].

Despite these promising results, existing methods face a
crucial issue when dealing with mmWave signal sequences.
Existing methods are typically designed and trained on in-
dividual mmWave frames independently, overlooking the
continuous nature of mmWave signal acquisition. In prac-
tice, mmWave radar signals are captured as sequences of
consecutive frames over time. Consequently, methods ex-
clusively trained on isolated frames often exhibit unsatis-
factory temporal stability, leading to perceptible visual ar-
tifacts such as flickering over time in the resulting dense
point clouds. This temporal inconsistency poses a signif-
icant challenge in real-world applications where reliable
and coherent human representations are essential for pre-
cise analysis and decision-making.

In this paper, we present a novel and effective approach
to address the challenge of temporal consistency in 3D
human point cloud generation from mmWave signal se-
quences, as in Fig. 1. To the best of our knowledge, this is
the first attempt to tackle this crucial aspect explicitly. Our
method consists of two main parts: the mmWave feature
encoding part and the point clouds generation part. For the
first part, we devise an mmWave temporal encoder, which
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Figure 1. We design a novel architecture, called mmDiffusion, to generate temporally consistent 3D human dense point clouds from
sequential mmWave signals.

combines an mmWave encoder with Gated Recurrent Units
(GRUs). The mmWave encoder is responsible for learn-
ing mmWave features, while the GRUs capture the temporal
dependencies present in human motion patterns within the
signal sequences. By effectively integrating the two, our
proposed temporal encoder enables the extraction of infor-
mative and coherent representations from the mmWave sig-
nal sequences. In the second part, we reformulate the point
cloud generation task as a point cloud denoising problem.
We then employ the diffusion technique to solve this point
cloud denoising problem. Moreover, to realize the gen-
eration of 3D human dense point clouds, human-oriented
mmWave signals are acting as conditions to guide the dif-
fusion procedure, resulting an mmWave-conditioned dif-
fusion model. The mmWave-conditioned diffusion model
leverages the learned temporal context from our mmWave
temporal encoder to resolve ambiguities present in the point
cloud generation process. This results in smoother and more
temporally consistent outputs, as quantified by our proposed
measure of temporal consistency. By conducting extensive
experiments on public benchmarks, we validate the effi-
cacy of our approach. Our results demonstrate that the inte-
gration of temporal information significantly enhances the
quality and stability of the generated dense point clouds,
providing a notable advancement in the field of mmWave-
based human sensing and point cloud generation. The con-
tributions of this work are three-fold:
• For the first time, we present a novel formulation of

mmWave-based 3D human point cloud generation as a 3D
point cloud denoising problem. By leveraging the concept
of diffusion, the proposed method tackles the sparsity is-
sue in mmWave point clouds, effectively enhancing the
density and quality of the generated point clouds.

• We introduce mmDiffusion, a novel and effective method
for dense 3D human point cloud generation from se-
quential mmWave signals. Leveraging diffusion models,

mmDiffusion efficiently learns the denoising process for
point clouds, exploiting the temporal context in the se-
quential mmWave signals to achieve superior results.

• To evaluate the stability of sequential 3D human point
cloud generation results over frames, we design a new
evaluation metric. This metric provides a quantifiable
measure of temporal consistency in the generated point
clouds, enabling a comprehensive assessment of the per-
formance of the proposed method in capturing coherent
human motion patterns.

2. Related works

mmWave point clouds. mmWave radars, renowned
for their robustness against adverse environments, cost-
effectiveness, and privacy-preserving nature, have become
integral in human-centric applications [33], notably in hu-
man motion sensing [8, 16, 45], gesture and activity recog-
nition [1, 34, 38], human tracking and identification [5, 43,
44], human pose estimation [12, 13] and human mesh re-
construction [36, 37].

Operating using radio frequency (RF) signals in the tens
of GHz range, these radars discern three-dimensional spa-
tial information of detected objects, facilitating the gener-
ation of detailed 3D point clouds [6, 26]. By analyzing
these point clouds, mmWave radars enable intricate under-
standing and intelligent sensing of targets, thus addressing
both privacy concerns and the need for spatial cognition in
modern applications. For instance, mmFall [11] employs
an mmWave radar sensor to obtain the human body’s point
cloud data, which is subsequently processed using a Hybrid
Variational RNN AutoEncoder (HVRAE) for human fall
detection. RadHAR [29] introduces a framework for human
activity recognition using sparse and non-uniform point
clouds from millimeter-wave (mmWave) radars. However,
low-cost mmWave radar systems produce point clouds that



mmWave sequences

(8 frames)

GRU

mmWave temporal encoder

time

mmWave-conditioned diffusionInput

conditioning

iterations

Output

Point cloud

Diffusion Model

Gaussian 

3D sphere

mmWave feature

mmWave

Encoder

Figure 2. Architecture of the proposed mmDiffusion for 3D human dense point clouds generation from sequential mmWave signals. The
network consists of two main components: an mmWave temporal encoder and an mmWave-conditioned diffusion module. The temporal
encoder takes mmWave sequences as input and outputs mmWave features with temporal information. The diffusion module then generates
3D point clouds under the conditioning of these mmWave features. GRU: Gated Recurrent Unit.

are sparse (e.g. 64-128 points) and not uniformly sampled,
making fine-grained activity classification challenging. In
addition, there is significant background noise from reflec-
tions and small movements. Recently, mmPoint [35] fo-
cuses on generating dense human 3D point clouds from
mmWave signals via formulating the point cloud generation
task as a point cloud deformation problem, which is solved
by a first-densify-then-deform strategy performed on a tem-
plate human point cloud. However, temporal information,
which is important for applications involving human mo-
tion analysis, is not taken into consideration in mmPoint,
resulting in its poor performance on sequential mmWave
signals. In this paper, instead of processing single-frame
mmWave signals separately, we propose to introduce tem-
poral information to ensure the consistency of 3D shapes
along sequential mmWave signals.

3D diffusion models. Diffusion models, inspired by
nonequilibrium thermodynamics [30], have emerged as
a more promising generative modelling paradigm than
GANs [9]. The pioneering work, Denoising Diffusion
Probabilistic Models (DDPM) [10], introduces this class of
generative models and applies them to image generation
tasks, demonstrating their ability to produce high-quality
image synthesis results. After that, several image genera-
tion methods based on diffusion models have been devel-
oped [7, 21, 27, 28]. Encouraged by these achievements in
image generation, researchers have extended diffusion mod-
els to the realm of 3D shape generation [4, 25], within 3D
diffusion model-based frameworks. This adaptation show-
cases the versatility and promise of diffusion models in the
generation of complex 3D structures, offering new possibil-
ities in the field of 3D content synthesis.

Focusing on 3D point clouds, [17] introduces diffusion
models into the 3D point cloud generation task for the
first time, by viewing points in point clouds as particles
in a thermodynamic system. In [46], a novel probabilis-

tic generative model called Point-Voxel Diffusion (PVD)
is introduced, which combines denoising diffusion models
with a hybrid point-voxel representation to generate high-
fidelity 3D shapes and complete partial point clouds. Point
Diffusion-Refinement (PDR) paradigm [18] is introduced
for 3D point cloud completion, combining a Conditional
Generation Network (CGNet) for coarse completion with
a ReFinement Network (RFNet) for refinement. Similar to
our work, [19] presents PC2, which leverages projection-
conditioned point cloud diffusion to reconstruct 3D point
clouds from a single RGB image, achieving high-resolution
geometries closely aligned with the input image. Distinct
from the aforementioned approaches that primarily focus
on RGB images or traditional visual cues, our work lever-
ages mmWave radar signals to condition a point cloud dif-
fusion model, enabling the generation of dense point clouds
specifically tailored to human targets, presenting a novel in-
tersection of radar technology and point cloud generation.

3. Method

The overall framework of mmDiffusion is summarised in
Fig. 2. Our framework comprises two key components: the
mmWave temporal encoder and the mmWave-conditioned
diffusion. For a single-person input mmWave signal se-
quence of length T frames (T = 8 in our experiments),
we initially employ an mmWave encoder to extract frame-
level features. Next, we train a temporal encoder, integrat-
ing Gated Recurrent Units (GRUs) to capture temporal de-
pendencies, generating latent variables with past and future
context. These augmented mmWave features, combining
temporal information, are then used to condition a point
cloud diffusion model for dense 3D point cloud generation.
This comprehensive framework ensures that temporal co-
herence is embedded within the generated point clouds, re-
sulting in smoother and visually consistent representations



of human motion over time.

3.1. mmWave Temporal Encoder

In the first place, we extract informative features from each
frame Ft(t = 1, . . . T ) of the mmWave signal sequence.
To achieve this, we employ the mmWave encoder in [35],
which is a convolutional network and outputs a vector ft ∈
R128. This encoder is adept at capturing the intricate nu-
ances of mmWave data, enabling it to generate rich frame-
level representations. More details about the architecture
of this encoder can be referred to [35]. With the frame-level
features f1, . . . fT in hand, we proceed to train a specialized
temporal encoder. This temporal encoder is a dynamic com-
ponent, comprising a Gated Recurrent Unit (GRU) layer
that yields latent feature vectors l1, . . . lT ∈ R128. The GRU
layer plays a pivotal role in capturing the temporal depen-
dencies present in the sequential mmWave signals. Impor-
tantly, the bidirectional architecture ensures that informa-
tion from both past and future frames is incorporated into
the encoding process. The output of this temporal encoder
comprises latent variables that embody the evolving dynam-
ics of human motion throughout the sequence. The output
from our mmWave temporal encoder combines the inherent
mmWave features with the crucial temporal context cap-
tured by the bidirectional GRUs. This enriched represen-
tation of mmWave data is instrumental in overcoming the
sparsity challenge associated with mmWave point clouds,
as it encapsulates both spatial and temporal information.

3.2. mmWave-Conditioned Diffusion

Armed with the augmented mmWave features, we proceed
to generate dense 3D point clouds. To achieve this, we em-
ploy a point cloud diffusion model, which is conditioned on
the mmWave features enriched with temporal information.

Diffusion models unconditionally generate meaningful
content via learning a Markov Chain that gradually transfers
a simple distribution, such as isotropic Gaussian N (0, I),
into a data distribution [10]. Given a 3D point cloud with
N points P0 ∈ R3×N sampled from a data distribution
q(P0) representing a human with posture, a 3D Gaussian
noise point cloud PS can be obtained by gradually adding
noise to P0 with S steps, forming a series of latent vari-
ables P1, . . . , PS of the same dimensionality. At each step,
the noise addition (i.e., diffusion) process can be seen as a
Gaussian translation:

q (Ps | Ps−1) = N
(√

1− βsPs−1, βsI
)
, (1)

where {βs}Ts=1 is a fixed variance schedule. Given Eq. 1,
sampling Ps from P0 for any timestep s can be written as:

q (Ps | P0) = N
(√

ᾱsP0, (1− ᾱs) I
)
, (2)

where αs := 1 − βs and ᾱs :=
∏s

s=1 αs. From Eq. 2, we
then have:

Ps =
√
ᾱsP0 +

√
1− ᾱsϵ, (3)

where ϵ ∼ N(0, I) has the same dimensionality as data
P0. The reverse q (Ps−1 | Ps) of the above diffusion pro-
cess can then be used as a generative model via denoising
an arbitrary Gaussian noise to a data distribution. Since
q (Ps−1 | Ps) is intractable, we then train a network fθ to fit
the reversal process, which is equivalent to learning to pre-
dict the noise ϵ in Eq. 3. Given a clean sample input P0 and
a random Gaussian noise ϵ, the noise prediction network fθ
can be learned by minimizing the L2 distance between the
true noise and the predicted noise:

L(θ) = Es,P0,ϵ

[∥∥ϵ− fθ
(√

ᾱsP0 +
√
1− ᾱsϵ, s

)∥∥2]
(4)

Once the network is trained well, we can then sam-
ple a noise latent variable PS−1 from the distribution
q (Ps−1 | Ps). Iteratively, we can finally arrive at a clean
point cloud P0. However, this denoising process is uncon-
ditional [10], which means we cannot control the shape of
the final generated point clouds.

In this paper, we formulate the 3D human point cloud re-
construction task as a conditional generation problem. That
is, instead of learning the original vanilla target distribu-
tion q(P0), we propose to learn a conditional distribution
q(P0|M) where M represents an mmWave signal by the
noise prediction network fθ(P0, s,M). Following [46], a
Point-Voxel CNN (PVCNN) [14] is adopted as the base of
our noise prediction network fθ. The architecture of fθ is
illustrated in Fig. 3. As shown, we have four PVConv-SA
layers to downsample points and extract features and four
PVConv-FP layers to upsample points and propagate fea-
tures. For step s, the point cloud diffusion network takes
noisy point clouds Ps as input, and predicts the noise. We
can then get a point cloud Ps−1 with less noise for step s−1.

To condition the denoising (i.e., the noise prediction pro-
cess), we design an mmWave Conditioning (MMC) layer to
manipulate point features with mmWave features. MMC
layers are placed after each SA and FP layer. The architec-
ture of MMC is illustrated in Fig. 3. Given the intermediate
point feature fp ∈ Rnf×np produced by SA or FP layers, as
input, MMC aims to perform a feature-wise affine transfor-
mation on it to get a conditioned point feature f

′

p. nf and
np are the number of feature channels and the number of
points. Inspired by the general conditioning layer proposed
in [24], MMC learns two fully connected layers which take
the mmWave feature fm ∈ R128 as input and output con-
ditioning parameters λ ∈ Rnf and β ∈ Rnf . We then
substitute the conditioned version feature f

′

p for fp:

f
′

p = ReLU [(1− γ)⊙ fp ⊕ β] , (5)
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Figure 3. Architecture of the proposed mmWave-conditioned diffusion model for point cloud generation. We employ a Point-Voxel CNN
(PVCNN) [14] as the base encoder and design an mmWave conditioning (MMC) layer to integrate mmWave information to the point cloud
generation procedure. SA and FP layers are native components within the PVCNN architecture. More details about this two layers can be
referred to [14].
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Figure 4. Illustration of how the valid correspondence mask Mt

is established. When the correspondence of a point pti is not con-
sistent with the correspondences of the point’s neighboring points,
the correspondence is a wrong correspondence, i.e., Mt(i) = 0.
On the contrary, it is a valid correspondence and Mt(i) = 1.

where ⊙, ⊕ represent the elementwise multiplication and
addition operations. In this way, the original point feature
fp is scaled by λ and translated by β.

3.3. Metric of Temporal Consistency

To assess the stability of sequential point cloud data, it is
crucial to quantify the variations in 3D space across the en-
tire point cloud sequence. Thus, we present a metric of sta-
bility measurement for human point cloud sequences.

We first employ a human-oriented point cloud corre-
spondence method [40] to establish a correspondence map,
denoted as C, between two consecutive point clouds, Pt and

Pt+1. With this correspondence map, we can readily iden-
tify corresponding points between the two frames. Specif-
ically, for each point pti in Pt, its corresponding point in
Pt+1 can be represented as C(pti). However, we notice that
the correspondence map C established by [40] may not be
perfect. Thus, it is necessary to identify and remove these
wrong correspondences to obtain a valid mask, Mt, indicat-
ing which point has a correct correspondence. To construct
a valid mask Mt, we implement a correspondence score by
comparing the correspondences of each point pti with those
of its k-nearest neighbors, denoted as Npt

i
, as illustrated in

Fig. 4. k is 20 in our paper. Specifically, the validity of
the correspondence for pti is assessed by ensuring consis-
tency between C(pti) and the correspondences C(Npt

i
) of

its neighboring points Npt
i
. Let ptij be the j-th point in Npt

i
,

we introduce a binary indicator function, denoted as I(ptij),
to determine whether the corresponding point of a neigh-
boring point ptij lies within the neighborhood of NC(pt

i)
.

Formally, I(ptij) equals 1 if C(ptij) falls within NC(pt
i)

, and
0 otherwise. That is,

I(ptij) =

{
1, C(ptij) ∈ NC(pt

i)

0, otherwise
(6)

To obtain an overall correspondence score Sc(p
t
i) for a

point pti, we sum the values of I(ptij) across all neighboring
points Npt

i
. That is,

Sc(p
t
i) =

k∑
j=1

I(ptij). (7)



Ideally, this score should be close to k if the neighboring
correspondences are correct, as illustrated in the lower case
in Fig. 4. In practice, when the score is below a predefined
threshold thrc (10 in our experiments), we consider the cor-
respondence of point pti as invalid.

With the valid mask Mt in place, we can now quanti-
tatively measure the variation between point clouds Pt and
Pt+1. By calculating the pairwise distances between cor-
responding points in Pt and Pt+1, we can obtain a vanilla
measurement of the 3D spatial fluctuations across the point
cloud sequence. However, this vanilla measurement based
on absolute distance may fail to account for the influence
of object motion speed. When a person moves slowly, even
small distance variations between adjacent frames can lead
to significant perceptual flickering. Conversely, when a per-
son moves rapidly, the distance variations may be large,
even if the point clouds remain consistent. To address this
issue, we propose a metric that takes into consideration the
ratio of change, instead of the absolute distance, thereby
introducing a measure of relative difference. Specifically,
given a predefined distance threshold thrd, we calculate the
percentage of points whose distance variations fall below
this threshold among all valid matching points. This met-
ric quantifies the proportion of matching points that exhibit
modest variation at frame t, considering the relative changes
in their distances:

TCt =

∑|Pt|
i=1 Mt(i) · (∥pti − C(pti)∥2 < thrd)∑|Pt|

i=1 Mt(i)
. (8)

This metric provides a more nuanced temporal consistency
assessment, accounting for object motion speed and in-
formation on the percentage of matching points exhibiting
modest variation in the frame t. An example is given in
Fig. 11 in supplementary material. In summary, our pro-
posed metric ensures robust point cloud correspondence and
enables the assessment of stability by validating correspon-
dences and measuring variations in 3D space. This method-
ology provides a foundation for analyzing the stability of se-
quential point clouds generated from mmWave signal data.

4. Experiments
4.1. Training and Dataset

PyTorch [23] is used in our paper. The model is trained with
batch size of 8 for a total of 200 steps. For mmWave feature
extraction, we use the mmWave encoder in mmPoint [35].
We employ a two-stage training strategy. Specifically, we
first train a network without GRU. We then train the pro-
posed network while loading and fixing the weights from
the first stage training. That is, we only need to train the
GRU network at the second stage. We use point clouds with
2048 points to maintain consistency with mmPoint. We will
make our code publicly available upon acceptence.

Scenes
Metrics Methods

#1 #2 #3 #4 #5
mmMesh [36] 11.56 10.63 8.81 13.11 9.87
mmPoint [35] 3.21 2.87 2.97 3.55 2.92CDL1↓

ours 3.15 3.09 2.78 3.27 2.73
mmMesh [36] - - - - -
mmPoint [35] 0.615 0.609 0.535 0.517 0.560TC↑

ours 0.774 0.808 0.689 0.721 0.739

Table 1. Comparison of 3D dense human point cloud generation
performance.

We use the dataset in [35] which proposes to gener-
ate pesudo-ground truth point clouds by image-based 3D
human mesh reconstruction on the HuPR [13] dataset.
The original dataset in mmPoint contains human mmWave
signal-point cloud pairs for 58 scenes, each of which con-
sists of 600 frames data. Given that our proposed network
possesses a higher parameter count than mmPoint, we en-
hance the original dataset for a more comprehensive train-
ing. Specifically, we augmented the dataset to 70 scenes
using the dataset generation approach in mmPoint. Among
them, 5 scenes are used for testing. We employ the L1
version of the Chamfer distance×102 (CDL1) and our pro-
posed temporal consistency (TC) as quantitative evaluation
metrics to assess the efficacy of the proposed methodology.
For TC, the distance threshold thrd is 0.3, and we compute
the average value for 599 adjacent frame pairs in the whole
600 frames for each scene.

4.2. Comparison.

Tab. 1 compares the performance of the proposed novel
method for 3D dense human point cloud generation from
mmWave signals against the most related prior work, mm-
Point [35]. We also compare with mmMesh [36], in which
a traditional method is designed to generate 3D point cloud
from mmWave signals and a point-to-mesh network is pro-
posed to finally get 3D human mesh from the 3D point
clouds. Following mmPoint, we focus on the 3D point
cloud generation part in mmMesh since it is more related
to our method. The results are segmented into five different
scenes for a comprehensive analysis. The proposed method
demonstrates an improvement over mmPoint in all scenes
for both metrics, except for scene #2. For CDL1, the im-
provements range from 0.08 to 0.28 across the scenes, with
our method consistently yielding lower distances, indicating
better accuracy of the point cloud reconstruction. In terms
of TC, mmDiffusion shows a significant increase in per-
centage points across all scenes, with improvements rang-
ing from 11.4% to 17.9%, demonstrating a more consistent
moving action of the sequential point clouds. These results
suggest that the proposed method is capable of generat-
ing more accurate and more consistent human point clouds
from sequential mmWave signals compared to the existing
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Figure 5. Visual comparison on 3D human point clouds between different methods.

approach. Fig. 5 qualitatively shows the comparison of the
previous state-of-the-art mmPoint and our method.

4.3. Ablation study

GRU. In our investigation into the significance of temporal
information, we employed a GRU to encode these temporal
dynamics. The results, as presented in Tab. 2a, emphati-
cally demonstrate the benefits of this approach. Without
GRU, the generation results are 3.18, and 0.658 for met-
rics CDL1 and TC. However, when equipped with GRU
to encode temporal information, the performance improved
markedly. This enhancement underscores the pivotal role
of temporal dynamics in mmWave features, and the effi-
cacy of the GRU in capturing and leveraging these dynam-
ics for more accurate and robust point cloud generation. We
also give visual results with and without GRU in Fig. 6. As
shown, integrating temporal information helps improve the
stability of the output results.

Conditioning strategy. We assess the efficacy of our
MMC layer, in comparison to two baseline strategies:
concat-V1 and concat-V2. The concat-V1 strategy is a
straightforward method wherein the mmWave feature and
the input point cloud are directly concatenated before they
are fed into the point cloud diffusion model. Concat-V2
follows the same overall architecture as ours, but within its
conditional layers, mmWave features are simply fused via
direct concatenation with point features. Detailed archi-

Metrics CDL1 ↓ TC↑
w/o GRU 3.18 0.658
w/ GRU 3.00 0.746

(a)

Condition strategy CDL1 ↓ TC↑
concat-V1 3.13 0.702
concat-V2 3.07 0.718

MMC (Ours) 3.00 0.746
(b)

Table 2. Ablation study results. (a) Impact of encoding temporal
information using a GRU on the mmWave features. (b) Perfor-
mance of the conditioning layers. All the results are average val-
ues over 5 testing scenes.

tectures is in Sec. 6 of the supplementary material. As in
Tab. 2b, our MMC significantly outperforms the baseline
methods. For CDL1, MMC achieves 3.00, markedly better
than the 3.13 and 3.07 produced by concat-V1 and concat-
V2. A similar trend is observed in the TC metric. The supe-
rior performance of MMC can be attributed to its intricate
design that enables more effective integration of mmWave
features with point cloud data. Instead of mere concatena-
tion, MMC leverages a mechanism that possibly allows for
adaptive weighting and transformation of the point cloud
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Figure 7. (a) A smaller thrc could lead to missing some wrong correspondences. (b) A smaller thrd is more inclined to include more
noisy correspondences.

features based on the mmWave information, leading to a
more accurate point cloud diffusion outcome.

Thresholds in TC. There are two thresholds in TC:
the correspondence score threshold thrc and the distance
threshold thrd. The purpose of thrc is to eliminate wrong
correspondences. Small values may lead to the retention
of surplus wrong correspondences, as illustrated in Fig. 7a.
The second parameter thrd represents a distance tolerance,
implying that if the movement of a certain body part be-
tween adjacent frames exceeds this tolerance, it will be con-
sidered as an unreasonable (i.e., inconsistent) movement
distance, as in Fig. 7b. This assumption stems from the no-
tion that, ideally, the movement distances of various body
parts would be minimal over short time intervals. As eluci-
dated above, thrd needs to be adjusted according to differ-
ent datasets. For instance, in datasets where human move-
ments are rapid, compared to our current dataset, the move-
ment distances of various body parts over the same time in-
terval would also increase. This implies that the occurrence
of relatively large distances in correspondences between ad-
jacent point clouds is reasonable. Consequently, in such
scenarios, it is necessary to set a larger distance threshold to

prevent these relatively large correspondences from being
deemed as inconsistent.

5. Conclusion

In this paper, we present a pioneering approach to ad-
dress the challenges associated with 3D human dense point
clouds generation from sequential mmWave signals. Firstly,
we redefine the problem of 3D human point clouds gen-
eration from sequential mmWave signals as an mmWave-
conditioned 3D human point clouds denoising task, bridg-
ing the gap between sparse mmWave data and coherent
human representations through reverse diffusion processes.
Secondly, our proposed method, mmDiffusion, leverages
GRUs within the mmWave temporal encoder to capture and
incorporate rich temporal dependencies, leading to dense
and temporally coherent point clouds. Furthermore, our in-
troduction of a novel evaluation metric tailored to measure
temporal consistency adds a unique dimension to the as-
sessment of generated point clouds. Experimental results
underscore the exceptional performance of our framework.
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