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Abstract
Similarity judgments provide a well-established
method for accessing mental representations, with
applications in psychology, neuroscience and ma-
chine learning. However, collecting similarity
judgments can be prohibitively expensive for nat-
uralistic datasets as the number of comparisons
grows quadratically in the number of stimuli. We
leverage recent advances in language models and
online recruitment, proposing an efficient domain-
general procedure for predicting human similarity
judgments based on text descriptions. Crucially,
the number of descriptions required grows only
linearly with the number of stimuli, drastically
reducing the amount of data required. We test this
procedure on six datasets of naturalistic images
and show that our models outperform previous
approaches based on visual information.

1. Introduction
Similarity judgments are at the heart of the study of mental
representations in the cognitive sciences as exemplified by
the method of multi-dimensional scaling (MDS) (Shepard,
1980) as well as by a large corpus of work that followed
(Shepard, 1987; Ghirlanda & Enquist, 2003; Battleday et al.,
2020; Peterson et al., 2018; Jha et al., 2020; Caplette & Turk-
Browne, 2022; Hebart et al., 2020). Moreover, similarity
judgments play an important role in other disciplines such
as neuroscience, e.g., in the method of representational
similarity analysis (Kriegeskorte et al., 2008), as well as in
machine learning, e.g., as a way to regularize latent spaces
so that they align with human representations and perception
(Esling et al., 2018).

Despite the success of similarity-based approaches, their
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reliance on pairwise comparisons that scale quadratically in
the number of stimuli poses a serious limitation on their scal-
ability. To reduce this burden, we leverage the deep relation-
ship between conceptual structure and language (Murphy,
2002) to use linguistic descriptions as a proxy for human
semantic representations. Intuitively, stimuli that are judged
to be highly similar are likely to evoke similar descriptions,
allowing us to use description similarity to predict pair-
wise similarity judgments. This approach offers two key
advantages over prior work: first, it is scalable. While pair-
wise similarity comparisons scale quadratically with the
number of stimuli (Shepard, 1980), text descriptions scale
linearly. Second, it is domain-general: unlike CNN repre-
sentations (Peterson et al., 2018), which are limited to visual
stimuli, our procedure could be applied to any domain.

Finally, we note that our approach leverages two dis-
tinct and important advances. First, text descriptions can
be easily crowd-sourced via online recruitment platforms
such as Amazon Mechanical Turk (AMT; https://www.
mturk.com/) and are part of the common practice in mod-
ern machine learning pipelines (Parekh et al., 2020). Second,
modern language models (Speer et al., 2017; Devlin et al.,
2018; Gao et al., 2021) provide rich latent representations
of text. It is therefore natural to ask: how far can we go in
predicting human similarity judgments based on language
alone?

We explore this question on a collection of six datasets of
naturalistic images for which the ground-truth similarity
matrices are known (Peterson et al., 2018). Our exploration
proceeds in three stages. In Study 1, we construct similarity
estimates by applying a state-of-the-art word embedding
model known as ConceptNet NumberBatch (CNNB) (Speer
et al., 2017) to pre-existing semantic labels for the dataset
images. In Study 2, we generalize this approach by crowd-
sourcing free text descriptions from AMT, then constructing
similarity estimates based on a variant of BERT (Devlin
et al., 2018) tuned for semantic representations known as
SimCSE (Gao et al., 2021). Finally, we combine the concept-
level representation of CNNB with the fine-grained textual
representation of SimCSE and generate a joint predictor
of similarity judgments. In the process, we benchmark
our models’ predictive accuracy against the CNN-based
approach of Peterson et al. (2018).

https://www.mturk.com/
https://www.mturk.com/
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2. General Methodology
Our general pipeline consists of collecting or using pre-
existing linguistic descriptors for the individual stimuli and
then using an embedding model to compute a proxy for
pairwise similarity (Figure 1).

2.1. Predicting Human Similarity

Given a set of stimuli and their linguistic descriptors (se-
mantic labels or free-text descriptions) as well as a suitable
embedding scheme (e.g., a word embedding model) we
used cosine similarity between the vectors representing two
stimuli as the metric for calculating their similarity. Peter-
son et al. (2018) showed that predicting human similarity
using CNN representations can be substantially enhanced
by linearly transforming those representations. Mathemati-
cally, this corresponds to substituting the dot product zT1 z2
with zT1 Wz2 where W is a suitable diagonal matrix and z1
and z2 are the embedding vectors. Moreover, Peterson et
al. showed that such a transformation can be found using
ridge regression with L2 normalization. We apply this ap-
proach to our linguistic representations, using the Python
library scikit-learn’s RidgeRegression and RidgeCV imple-
mentations. To avoid overfitting and simulate generalization
in practice, we performed 6-fold cross-validation over im-
ages which ensured that no images from the training set are
present in the validation set. This ensures that even when
combining SimCSE and CNNB representations, where the
number of features increases, overfitting is still avoided.
To facilitate comparison with previous work we quantified
performance by computing Pearson R2 scores (variance
explained) (Peterson et al., 2018; Jha et al., 2020).

Please describe the 
content of the image.

Wooden bookshelf composed of 
multiple open cubes.

Dark brown wooden shelves storage 
with nine cubicles.

A unique bookshelf that is slanted with many 
books sitting sideways.

Bookshelf with falling shelves that are ready for 
all your reading needs.
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Figure 1. Schematic of the similarity prediction procedure based
on text descriptions.

2.2. Stimuli

The six image datasets used in this paper were taken from
Peterson et al. (2018). The datasets were organized based
on six broad categories, namely, animals, fruits, vegetables,
automobiles, furniture and various objects, each comprising
120 unique images. For all categories except animals, the
datasets included semantic labels for each of the individual
images. In the case of animals, we manually labeled the
images. Sample images and labels appear in Figure 2.

3. Predicting Human Similarity Based on
Semantic Labels

To initiate our investigation we first considered using the
pre-existing semantic labels for the images in our datasets,
as they served as concise summaries of the content of the
images. We evaluated two representations for predicting
human similarity judgments based on these labels: a one-hot
representation and a word embedding representation.

3.1. One-hot Label Representation

The first approach served as a baseline and consisted of
using the semantic labels as class labels with a “one-hot”
representation.This representation implies that images with
the same semantic label are maximally similar whereas im-
ages with different semantic labels are maximally dissimilar.

Car Gorilla Blackberry

Figure 2. Sample images and their semantic labels.

This simple representation possessed non-trivial predictive
power, as indicated by its average raw (i.e. before linear
transformation) R2 score of 0.311 across the datasets (see
Appendix for all scores).

Finding positive but not strong correlations is not surprising
as the one-hot representation misses fine-grained similar-
ity between related (though not identical) semantic labels.
Indeed, although a tiger and a leopard are distinct animals,

1The sparsity of one-hot representations makes linear transfor-
mation ineffective. To remedy this, we applied label smoothing
(ϵ = 0.8, see Appendix) to all the one-hot vectors. Linear transfor-
mation then resulted in a small boost in performance (R2 = 0.40).
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Figure 3. Full similarity matrices for the “animals” dataset for human participants (left), with corresponding predictions based on class
labels, CNNB and SimCSE representations.

Table 1. R2 scores on held-out images for linearly transformed representations from the different models.

Model Animals Automobiles Fruits Vegetables Furniture Various ⟨R2⟩
CNNB 0.72 0.86 0.38 0.43 0.63 0.73 0.63
SimCSE 0.64 0.55 0.33 0.39 0.49 0.64 0.51
CNNB + SimCSE 0.78 0.83 0.47 0.55 0.62 0.76 0.67
CNN* 0.74 0.58 0.36 0.35 0.35 0.54 0.49

Note: ⟨R2⟩ is the average across all datasets. *CNN values are from Peterson et al. (2018). Additional
results are in the appendix.

they nevertheless share some intuitive semantic similarity
being members of the cat family; likewise for a chair and
a recliner, or a strawberry and a blackberry. This can be
seen in the absence of off-diagonal structure in the predicted
similarity matrix (Figure 3). Nevertheless, this preliminary
study serves as an initial evidence for the fact that people’s
judgments are indeed driven by semantic similarity.

3.2. Word-embedding Representation

To capture the structure of similarity between different
semantic labels we replaced the one-hot representation
with the latent representation of a state-of-art word embed-
ding model known as ConceptNet NumberBatch (CNNB).
CNNB is pre-trained on the ConceptNet knowledge graph
(https://conceptnet.io/) which is targeted at cap-
turing intuitive commonsense conceptual relations.

The use of CNNB representations resulted in a substan-
tial performance boost over one-hot representations.The
predicted similarity matrix is shown in Figure 3 and it is
clear that a substantial part of the off-diagonal structure
is recovered. To ensure that the linear transformation is
not overfitting the similarity matrices, we performed 6-fold
cross-validation as mentioned above and computed a con-
trol cross-validated (CCV) R2 score on held-out images.

These scores remained high (R2 = 0.63), outperforming
the CNN model of Peterson et al. (2018) (Table 1) on al-
most all datasets (except Animals, where it scored lower
by a small margin). This implies that CNNB representa-
tions generalize better to new data. We also note that the
dimensionality of the latent space of CNNB (d = 300) is
much lower than that of the CNN (d = 4096) reducing the
number of possible parameters to optimize over and hence
the risk of overfitting.

4. Predicting Human Similarity Based on Free
Text Descriptions

Concise semantic labels (and corresponding embeddings)
are not always available for stimuli of interest. A more gen-
eral approach would rely on free-text descriptions, which
can be easily crowd-sourced online. Such data, however, re-
quires a different kind of representations capable of flexibly
encoding entire sentences (as opposed to aggregating repre-
sentations of individual words which could lose important
within-sentence structure). To that end, we used the latent
representations of SimCSE (Gao et al., 2021) to embed free-
text descriptions for each of the individual images which we

https://conceptnet.io/
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crowd-sourced on AMT2. The data collection procedure as
well as example text descriptions are shown in Figure 1 (see
Appendix for details on the embeddings).

4.1. Results

We used the embeddings to produce similarity estimates
as before. We found that while the raw representations of
SimCSE did not constitute a strong predictor, the linearly re-
weighted SimCSE representations (d = 768) demonstrated
generalization performance comparable to the CNN-based
model (d = 4096) of Peterson et al. (2018) (Table 1), though
not as high as CNNB. One possible explanation for this dif-
ference is that CNNB predictors used single concise labels
per image whereas for SimCSE we averaged representa-
tions of multiple descriptions which could capture different
aspects of the image (Parekh et al., 2020). A more so-
phisticated approach could learn to pool embeddings from
different descriptions efficiently; however for the purpose
of the current work we chose to focus on simple linear
transformations.

As a last step, we constructed a combined predictor that
stacked CNNB and SimCSE representations to capture
broad concept-level knowledge as well as fine-grained de-
scriptions. The combined model resulted in the best aggre-
gated performance, improving further on the CNNB model
(Table 1).

5. Discussion
We proposed a highly efficient and domain-general pro-
cedure for predicting human similarity judgments based
on text descriptions with linear (as opposed to quadratic)
complexity. We tested our approach on six datasets of natu-
ralistic images, finding evidence for its validity as well as
outperforming previous models that rely on CNNs. These
results suggest that human similarity judgments are indeed
grounded in semantic understanding and language. Our
work also provides a new perspective on the representational
similarity between BERT and humans (Lake & Murphy,
2021).

In addition to psychological applications, our paradigm may
allow for advances in machine learning. First, enriching
machine learning datasets with similarity judgments and
behavioral data more generally can endow artificial models
with a variety of useful properties, such as human align-
ment and robustness against adversarial attacks (Peterson
et al., 2019). Collecting similarity judgments over all pairs
is infeasible for such datasets due to the large number of
stimuli. Nevertheless, in many real-life applications simi-
larity matrices tend to be sparse, i.e. only a small subset of
comparisons would yield non-vanishing similarity (Parekh

2We also tried vanilla BERT but SimCSE outperformed it.

et al., 2020). An efficient enrichment pipeline, therefore,
must exploit this sparsity and our procedure is a promising
candidate for guiding such methods by predicting which
pairs are likely to be informative a priori. Second, a system-
atic study comparing semantic and visual representations
such as those of CNN and CNNB to the ones arising from
human similarity could shed light on critical divergences
between human and machine representations (Figure 4). We
hope to engage with all of these avenues in future research.

Celtuce Seaweed CNN CNNB Human

0.0

0.5

Bear Chimpanzee CNN CNNB Human

0.0

0.5

Bed Bed CNN CNNB Human

0

1

Figure 4. Examples of image pairs that generated large discrepan-
cies between CNN and CNNB model predictions and their relation
to human similarity scores.
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A. Crowdsourcing Methodology
The recruitment and experimental pipeline were automated
using PsyNet (Harrison et al., 2020), a framework for experi-
mental design which builds on top of the Dallinger platform3

for recruitment automation. Overall, 328 US participants
completed the study and they were paid $12 per hour. Upon
completing a consent form participants had to take a stan-
dardized LexTALE English proficiency test (Lemhöfer &
Broersma, 2012) to ensure caption quality. Participants that
failed the pre-screening test were excluded from the study.
Next, participants received the following instructions: “In
this experiment we are studying how people describe im-
ages. You will be presented with different images and your
task will be to describe their content. In doing so, please
keep in mind the following instructions, 1) describe all the
important parts of the image, 2) do not start the sentences
with “There is” or “There are”, 3) do not describe unim-
portant details, 4) you are not allowed to copy and paste
descriptions, 5) descriptions should contain at least 5 words,
6) descriptions should contain at least 4 unique words. Note:
no prior expertise is required to complete this task, just de-
scribe what you intuitively think is important as accurately
as possible.” Participants were then presented with nine
random images from the dataset to help give them a sense
of the images they were about to describe.

In each trial of the main experiment participants saw one
of the images along with the following prompt “Please de-
scribe the content of the following image” (no semantic
labels were provided). They then provided their descrip-
tion in a free text response box, subject to the constraints
listed above. Each participant provided up to 30 text de-
scriptions with each image receiving 15 text descriptions on
average. To ensure that participants did not provide repet-
itive responses we computed the average Levenshtein edit
distance between their current response and all previous
responses. Participants for whom the average distance was
close to zero (< 0.2) after 5 trials were excluded from the
study. Any remaining random or very poor quality strings
were excluded in a post-processing stage.

B. Pre-processing
Label Smoothing If v⃗ is the one-hot vector, then v⃗smooth =
(1− ϵ)v⃗ + ϵ

k−1 (1− v⃗) where ϵ is the smoothing parameter
(we use a value of 0.8) and k is the number of classes (which
is equal to the length of the vector). Smoothing does not
change the relative structure of the resulting matrix but
allows linear transformation to be successfully applied to
the new vectors.

CNNB Embeddings CNNB contains embeddings not only
for single words but also concepts consisting of several

3https://github.com/Dallinger/Dallinger

words. To make use of these, labels consisting of multiple
words needed to have spaces replaced by underscores (e.g.
‘red onion’ becomes ‘red onion’). In addition, while the
CNNB dictionary is quite large, there are certain words or
concepts that it does not contain. In some of these cases,
labels consisting of multiple words whose joint form was not
found in CNNB had to be separated into individual words
and their joint embedding estimated by their normalized
sum (e.g. CNNB(animal body) ≈ CNNB(animal)+CNNB(body)√

2
).

In other cases, labels had to be replaced by a synonym or the
closest matching concept available in CNNB (e.g. ‘tatsoi’
was replaced by ‘spoon mustard’).

Computing Semantic Embeddings We used a pre-trained
SimCSE model, sup-simcse-bert-base-uncased,
(Gao et al., 2021), accessed via the HuggingFace li-
brary (Wolf et al., 2020).4 We extracted the semantic embed-
dings for each description, then took the average embedding
across all descriptions for each image. In order to combine
the SimCSE and CNNB representations, we first normal-
ized both sets of embeddings by their respective means and
standard deviations, and then concatenated the SimCSE and
CNNB embeddings to get a single vector for each image.

C. MDS
To appreciate the semantic content of the predicted simi-
larity matrices, we computed two-dimensional MDS repre-
sentations of the images using the scikit-learn library with
a maximum iteration limit of 10, 000 and a convergence
tolerance of 1e-100. First metric MDS was applied to get an
initial embedding, then four iterations of non-metric MDS
were applied and the best solution was picked. The results
are shown in Figure 5, and reveal a rich, interpretable se-
mantic organization of the stimuli capturing a variety of
semantic dimensions such as natural and functional classes
and color gradients.

D. Additional Results
Table 2 contains all results of the four competing models.
“Raw” corresponds to raw representations. “LT-Train” cor-
responds to linearly transformed representations evaluated
on the training set. “LT-CCV” corresponds to linearly trans-
formed representations evaluated on held-out images. CNN
values are reproduced from Peterson et al. (2018).

4We also used bert-base-uncased, but found that Sim-
CSE outperformed it.

https://github.com/Dallinger/Dallinger
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Table 2. R2 scores for the different prediction models and datasets.

Model Methodology Animals Automobiles Fruits Vegetables Furniture Various ⟨R2⟩
Labels Raw 0.23 0.69 0.20 0.24 0.34 0.19 0.31
CNNB Raw 0.51 0.64 0.17 0.17 0.31 0.29 0.35
SimCSE Raw 0.42 0.41 0.14 0.19 0.32 0.35 0.31
CNN* Raw 0.58 0.51 0.27 0.19 0.37 0.27 0.37
Labels LT-Train 0.29 0.71 0.26 0.27 0.38 0.48 0.40
CNNB LT-Train 0.85 0.86 0.53 0.60 0.67 0.72 0.71
SimCSE LT-Train 0.84 0.75 0.59 0.63 0.63 0.80 0.71
CNN* LT-Train 0.84 0.79 0.53 0.67 0.72 0.52 0.68
CNNB LT-CCV 0.72 0.86 0.38 0.43 0.63 0.73 0.63
SimCSE LT-CCV 0.64 0.55 0.33 0.39 0.49 0.64 0.51
CNNB + SimCSE LT-CCV 0.78 0.83 0.47 0.55 0.62 0.76 0.67
CNN* LT-CCV 0.74 0.58 0.36 0.35 0.35 0.54 0.49

Note: “Raw” corresponds to raw representations. “LT-Train” corresponds to linearly transformed representations
evaluated on training set, “LT-CCV” corresponds to linearly transformed representations evaluated on held-out images.
⟨R2⟩ is the average across all datasets. *CNN values are from Peterson et al. (2018).

Animals Automobiles Fruits

Vegetables Furniture Various

Figure 5. Two-dimensional MDS embedding of the joint CNNB-SimCSE similarity predictions.


